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Abstract 

Optical calorimetry (OC) is a novel form of radiation dosimetry that used two interfering beams 

of light to measure the radiation induced phase change in a volume of water, and relates the phase 

change to absorbed dose to water. It presents a promising dosimetric method for the measurement 

of FLASH therapy beams, where its measurement of dose to water, lack of components perturbing the 

radiation beam, and dose rate independence avoids many of the technical challenges facing traditional 

dosimetric methods in these ultra-high dose rate beams. The current OC dosimeter outputs a 2D 

image of dose, integrated across the volume of water. This study aims to investigate the requirements 

to accurately reconstruct a 3D dose distribution through performing a tomographic reconstruction 

upon the 2D OC dosimeter output. 

 Due to a desire to keep the mechanical complexity of a 3D OC dosimeter design minimised, 

this work looks at performing a single-projection reconstruction upon radially symmetric radiation 

beams using the inverse Abel transform, and performing a two-projection reconstruction on simple 

square and circular radiation beams using a filtered back projection or fast Fourier transform 

algorithm. A multi-projection reconstruction where the restriction on the number of projections used 

is removed was also performed, to indicate the level of mechanical complexity such an approach 

would entail if required.  

 Reconstruction results showed the single-projection inverse Abel transform method could 

reconstruct a manually integrated proton beam to an accuracy of better than 1%, but this error 

increased to 8% when using the projection data generated using the FRED virtual OC dosimeter model. 

This error could be reduced to below 4% when the level of noise in the FRED dosimeter model was 

reduced to 1/8th of the full amount, indicating that an accurate 3D reconstruction using a single 

projection is possible, but a substantial decrease in the noise within the detector system is required. 

The two-projection method performed accurately in some situations, did not reliably produce 

accurate reconstructions of simple photon beams with clinical features modelled. The multi-

projection reconstruction investigation determined that at least 25 projections would be required to 

achieve a reconstruction with an error below 2% for all beams investigated, representing a significant 

increase in mechanical complexity of the OC dosimeter design. 

 The findings of this work recommend that in order to accurately reconstruct a 3D dose 

distribution using the OC dosimeter, the single-projection inverse Abel transform method could be 

used provided the noise in the dosimeter system is reduced, or the multi-projection FBP 

reconstruction method could be used provided that the additional mechanical complexity of such a 

design is accounted for.  
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Chapter 1: Introduction 

1.1 Cancer and Radiation Therapy 

Cancer is the unrestrained proliferation of cellular growth resulting from mutations within a cell’s 

deoxyribonucleic acid (DNA), which if left untreated it can lead to severe illness or death [1]. 

Worldwide in 2020, it was estimated 19.3 million new cancer cases occurred, with 10 million deaths 

resulting from some form of cancer [2]. Due to population growth and an aging population the number 

of new cancer cases are projected to increase by nearly 50% to 28.4 million by 2040, indicating a 

growing need for cancer treatments worldwide. A similar trend is seen in New Zealand cancers 

statistics, with 24,500 new cancer registrations and 9600 deaths due to cancer in 2017, an increase 

from 16,000 and 7,300 respectively in 1997 [3]. The annual cost of registered cancers on the NZ health 

care system was estimated at $500 million in 2011 [4]. The most common treatment options for a 

cancer patient include surgery, chemotherapy, radiation therapy, or some combination of the above 

[5,6]. There are advantages and disadvantages to each of the treatment options, a compromise 

between the effectiveness of the treatment, the local versus systemic effect of the treatment, and the 

short- and long-term side effects of the treatment, which vary between the different sites within the 

body cancer can occur [7,8]. It is a common estimate that 50% of all cancer patients would benefit 

from radiation therapy, either as the primary treatment modality, in addition to chemotherapy or 

surgery, or a combination of all three [9]. 

The aim of a radiation therapy treatment is to deliver a lethal dose of radiation to a target volume 

within the patient, while minimising the dose delivered to the surrounding healthy tissues [10]. The 

high energy ionizing radiation used is highly damaging to tumour cells, but the amount of dose 

required to eliminate all cancerous cells can also be damaging to healthy tissue. Radiation 

prescriptions for various sites within the body are therefore carefully determined from evidence-
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based research, considering both the dose required to eradicate the tumour and the potential for 

radiation induced side effects [8,11–13]. 

The most common form of radiation therapy is External Beam Radiation Therapy (EBRT) [14,15]. 

This can come in several different forms, including megavoltage (MV) photon beams, mega electron-

voltage (MeV) electron beams, or kilovoltage (kV) photon beams. Clinically, MV photons beams 

delivered from a treatment unit such as a linear accelerator are the most frequently used, where 

multiple radiation fields can be delivered from different beam angles around the patient. This results 

in the individual beams converging to deliver a conformal dose to the target volume, a volume 

consisting of the tumour mass with added margins to account to microscopic spread of the tumour 

and uncertainties during the treatment delivery [16–18].  

For a radiation therapy treatment, the outcome for the patient is dependent on the amount and 

location of the dose delivered. Insufficient dose to the tumour volume can result in survival of some 

tumour population, increasing the risk of recurrence of the cancer. On the other hand, if too much 

dose is delivered this can increase the risk and severity of radiation induced side effects in the treated 

region [19]. This compromise can be demonstrated with a plot of dose response curves, as shown in 

Figure 1.1. The tumour control probability (TCP) is the probability that a given dose will result in 

eradication of a tumour, while the normal tissue complication probability (NTCP) is the probability of 

radiation induced side effects occurring in healthy tissue. The shape of the TCP and NTCP curves and 

the relative spacing between them is dependent on the location and stage of the tumour, and the 

location and radiosensitivity of the healthy tissue surrounding this. The difference between the TCP 

and NTCP probability curves for a certain level of dose is known as the therapeutic window [20]. The 

larger the therapeutic window, the greater chance of achieving elimination of the tumour while 

keeping the probability of side effects occurring low. The size of the therapeutic window is very 

sensitive to the amount of dose delivered. As shown in Figure 1.1, as the dose is decreased slightly 

from D1 to D2 this can result in a large decrease in the TCP for only a small reduction in the NTCP. 
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Alternatively, a small increase in dose would result in a large increase in NTCP for only a small increase 

in the TCP. Optimising the dose delivered in a treatment to maximise the therapeutic window is crucial 

to achieve the best possible outcomes for the patient. Therefore, a high level of accuracy in the 

amount of dose delivered for a radiation therapy treatment is required [21]. 

 

Figure 1.1. Illustration of the dose-response curve. This shows the relationship between the dose delivered in a radiation 
therapy treatment and the TCP and NTCP. Two therapeutic windows are shown, relating to the doses D1 and D2. Note the 
small change in dose resulting in a large change in the position of the treatment on the TCP and NTCP curves, causing a large 
change in the size of the therapeutic window for that amount of dose. 

New treatment techniques have been developed in recent years that aim to increase the 

therapeutic window of a radiation therapy treatment, such as FLASH therapy [22,23]. FLASH therapy 

utilizes ultra-high dose rate radiation beams and is characterised by a reduction in the normal tissue 

complication rate compared to conventional approaches. However, one of the issues preventing the 

widespread clinical implementation of this technique is the challenge of accurately measuring the 

radiation dose from these beams [24–29].  

1.2 Radiation Dosimetry 

Radiation dosimetry describes the measurement of absorbed dose. Dose is the quantity used to 

measure the amount of energy deposited into a medium by a beam of radiation, and is defined as the 
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quotient of mean energy 𝑑𝜀 imparted to matter of mass 𝑑𝑚 by ionising radiation. The SI units of dose 

are joules of energy per kilogram of mass (J kg-1), also known as the Gray (Gy). 

 
𝐷 =  

𝑑𝜀̅

𝑑𝑚
 . (1.1) 

Recommendations from the International Commission on Radiation Units and Measurements 

(ICRU) [18,30] are that the dose delivered to the target volume in a radiation therapy treatment needs 

to be within ±5% of the prescribed dose. This uncertainty can be divided into two separate aspects of 

a radiation treatment, the geometric uncertainty associated with patient setup and target volume 

positioning, and the dosimetric uncertainty based on the amount of dose delivered from the 

treatment machine [31]. Current clinical dosimetry practises use international dosimetry protocols 

such as the International Atomic Energy Agency (IAEA) TRS-398 [32] or American Association of 

Physicists in Medicine (AAPM) TG-51 [33]. Careful adherence to these procedures allows the 

determination of absorbed dose to water to a combined standard uncertainty of 1.5 – 2%.  

As the dose is dependent on the mass of the volume in which it is measured, the choice of 

medium for this volume of mass is non-trivial. In clinical dosimetry, the quantity of interest is the 

amount of dose deposited within the patient. Measurements within a patient is not possible, so water 

is commonly used as a surrogate, as it has similar radiation scattering and absorption properties to 

soft tissue and is a convenient medium in which to make measurements [34]. Therefore, dose to water 

is widely considered to be the standard quantity for dosimetric reference and calibration 

measurements [32,33]. 

Many types of dosimetry systems are available for making clinical dose measurements. These 

include ionometric, calorimetric, and chemical, where dose is related to charge, heat, or a molecular 

change respectively [35]. These methods are described in more detail in Section 2.1. Each method has 

various strengths and limitations, making it more suited to specific dosimetric applications. For ultra-

high dose rate dosimetry however, these traditional methods have limitations, and there is a need for 
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research and development into novel approaches to accurately quantify dose for FLASH beams 

[24,25,28]. 

Optical Calorimetry (OC) is a novel dosimetry technique with the potential to overcome a number 

of the inherent challenges in ultra-high dose rate FLASH dosimetry. OC uses interfering light waves to 

measure the radiation induced phase change in a volume of water, then relates this back to absorbed 

dose [36,37]. It has high spatial resolution, can be used at very high dose rates, and can measure two-

dimensional (2D) dose distributions. OC measures the dose in water rather than dose in some non-

water medium, and has no components of the detector perturbing the radiation beam like in an 

ionization chamber, so the amount of correction factors required to determine the dose to water is 

reduced. This has the potential to decrease the uncertainty in the measurements, especially for novel 

radiation treatments for which these correction factors have not been well established.  

Current OC measurements capture a 2D image of integrated dose across a measurement volume, 

but the potential expansion of optical calorimetry into three-dimensions (3D) has not yet been 

investigated. To expand to 3D, the 2D integrated dose images would need to be generated from 

different directions, then a tomographic reconstruction performed to obtain a full 3D dose 

distribution. This could have large clinical benefits, as a full characterisation of the dose distribution 

resulting from FLASH therapy beams could potentially be generated from a single measurement, 

helping address current limitations in FLASH dosimetry. 

1.3 Research Aim 

The aim of this work is to develop a framework for 3D dose reconstruction for an OC dosimeter 

and investigate the requirements to measure absolute and relative 3D dose distributions. 

Tomographic reconstruction methods will be investigated to determine the accuracy of 3D dose 

distributions generated from the OC dosimeter output and make recommendations as to the most 

suitable approach. The findings of this study will determine the feasibility of and guide the design for 

the future construction of a prototype 3D OC dosimeter.  
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Chapter 2: Background 

This chapter provides background on current dosimetry systems, the existing optical calorimetry 

dosimeter, and how OC has several inherent advantages for use in FLASH dosimetry. The operation of 

the OC dosimeter will be detailed, along with the physical principles of optical interferometry, digital 

holographic interferometry, and optical calorimetry on which it is based. Efforts made to create a 

virtual model of the dosimeter, the verification of this virtual dosimeter, and the use of this in the 

ongoing refinement of the OC dosimeter will be described. This is followed by a brief overview of 

several tomographic reconstruction methods used throughout this study. 

2.1 Overview of Dosimetry Systems 

The ideal dosimetry system required for novel delivery techniques such as FLASH therapy would 

be capable of measuring dose to water with high accuracy and precision, with a large dynamic range 

and high spatial resolution. The detector response should be linearly related to the amount of dose 

delivered and be independent of the dose rate of the radiation beam, the beam quality or energy of 

the beam, and the beam direction. Readout of the detector should be instantaneous, and the system 

itself should be robust and practical to use. Current dosimetric systems can be broadly categorised 

into three main methods: calorimetric, ionometric and chemical. While each of these methods share 

several features with the hypothetical perfect dosimeter described above, each has drawbacks 

associated with it also. 

Calorimetric dosimetry, such as the use of a water calorimeter, is the measurement of the 

radiation induced temperature increase in a medium, resulting from the transfer of energy to the 

medium from the radiation in the form of heat [38]. The temperature increase can be related to the 

energy transferred using the specific heat capacity of the medium. A calorimeter provides a 

measurement of dose with high accuracy and precision, which is independent of dose rate and energy. 

Calorimetry can measure absolute dose to water directly, making it the choice of dosimeter for many 
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primary standard dosimetry labs worldwide [39]. But the spatial resolution of a calorimeter is limited 

by the dimensions of the temperature reading probe, and the presence of this physical probe perturbs 

the radiation beam, changing the absorbed dose due to scattered radiation. Calorimeters also tend to 

be large in design, making them impractical for routine clinical dosimetry purposes [40,41]. 

Ionometric dosimetry, such as the use of a gas-filled ionization chamber or a diode, uses two 

charged electrodes collect to radiation induced charged particles, generating a current that is 

measured with an electrometer. This is generally the standard method of routine clinical dosimetry, 

as ion chambers and diodes are small, robust, and practical to use, provide an instantaneous readout, 

and measure dose with high accuracy and precision. But a gas filled chamber with a metallic electrode, 

or a silicon diode are both different mediums to water, so to convert the measured charge into a dose 

to water several corrections must be applied [42]. Further correction factors must also be applied to 

account for the perturbation of the radiation fluence by the detector itself. The spatial resolution of 

an ion chamber is fundamentally limited by the size of the chamber, as the measured dose is averaged 

throughout the sensitive volume of the chamber. The chamber response is also highly dependent on 

the beam quality, with different correction factors required for each energy in which it is used. The 

number of correction factors required to modify the measured quantity to calculate dose results in an 

increased overall measurement uncertainty [43–46]. 

Chemical dosimetry is a class of radiation measurement where the chemical composition of the 

detector is altered upon exposure to radiation. Common examples of chemical dosimetry include the 

Fricke dosimeter, where the radiation induced conversion of Fe2+ to Fe3+ ions is measured [35,47], and 

radiochromic film, where the polymerisation of molecules due to radiation causes darkening of the 

film [48–50]. The Fricke dosimeter can be imaged using Magnetic Resonance Imaging (MRI) or 

Computed Tomography (CT), the conversion of Fe ions quantified and related back to dose. 

Radiochromic film can use a flatbed scanner to determine the pixel values at each point on the film 

and relate this back to dose using a calibration curve for that batch of film. Both these forms of 
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dosimetry have excellent spatial resolution, limited only by the performance of the readout device. 

Film can measure film in two dimensions, the Fricke dosimeter three dimensions, allowing for 

information of both the amount and the distribution of dose. The downside of these approaches 

includes the long processing and readout procedure, with radiochromic film most accurate after it had 

had 24 hours to develop [50], and Fricke dosimeters requiring MRI or CT access. This means the dose 

measured can remain unknown until the next day, limiting the clinical usefulness of the measurements 

in any situation that requires instant feedback of results. The chemical composition can vary between 

batches also, resulting in film requiring a calibration curve for every film batch produced, for example 

[50]. These dosimetry systems are single use only, and require careful handling, setup, and processing 

to produce accurate results, making chemical dosimetry more expensive and less practical than 

ionometric dosimetry for many applications. 

2.2 Optical Calorimetry 

Optical Calorimetry is a novel dosimetry technique that has the potential to overcome limitations 

of current dosimetry approaches for non-conventional radiation beams, such as those in ultra-high 

dose rate FLASH therapy [36]. OC uses two interfering light waves to measure the radiation induced 

phase change in a volume of water. This phase change can then be directly related back to absorbed 

dose, allowing for calculation of absorbed dose to water. Optical calorimetry is built upon the 

holographic interferometry dosimetric techniques of Hussmann [51,52] and Miller [53,54] in the 

1970’s, before technological and computational advances lead to the development of a prototype 

Digital Holographic Interferometry (DHI) dosimeter by Cavan & Meyer in 2014 [36,55]. This prototype 

has since undergone refinement by Hubley [37], and Roberts [56–59], to form the current OC 

prototype dosimeter which is the focus of this study. 

OC dosimetry has several advantages over traditional dosimetry techniques such as ionisation 

chambers, diodes, and film: 
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1. Direct measurement of absorbed dose to water, rather than measuring dose to a non-water 

medium such as air, removing the need for correction factors to convert the measured 

reading back to dose to water.  

2. Minimal perturbation of the radiation field by the detector, as all the measurement system 

sits externally to the radiation beam, removing the need for correction factors to compensate 

for changes to the beam fluence during the measurement process.  

The correction factors involved with traditional dosimetry techniques, such as for converting 

dose to air to dose to water or to account for the perturbation of the radiation field by the detector, 

are well understood and characterized for conventional dosimetry. These correction factors are less 

understood for FLASH therapy treatment techniques, so the corresponding uncertainties when 

measuring these ultra-high dose rate fields with traditional detectors are higher [60]. By measuring 

dose to water and not perturbing the radiation beam, optical calorimetry avoids the need for the same 

correction factors, presenting a potential dosimetry option with less measurement uncertainty.  

3. Dose is measured with a high spatial resolution, decreasing the volume averaging effects 

inherent with radiation detector of a finite size such as an ionisation chamber or diode.  

4. Detector response is independent of dose rate, an important characteristic for the 

measurement of FLASH beams [59].  

5. The output of the OC dosimeter is a 2D map of integrated dose, allowing for the simultaneous 

acquisition of the dose variation across the entire radiation field. 

These advantages position optical calorimetry as a promising tool for FLASH dosimetry. The 

fundamental principles underlying the function of the prototype OC dosimeter, and the development 

and refinement the prototype dosimeter has undergone are detailed in the following sections. 

2.2.1 Optical Interferometry 

Interferometry is a field of measurement where the interference between two light waves is used 

to measure a perturbation to a system, such as a change in refractive index or a microscopic 
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displacement, where this change results in the alteration to the path length of one of the light waves 

[61]. The basics of interferometry can be explained through the principles of light. 

Light is a transverse electromagnetic wave, with separate electric and magnetic field components 

oscillating orthogonally to the direction of travel. A laser light source can be plane polarized, meaning 

the electric and magnetic field components each oscillate within a single plane, and coherent, meaning 

the frequency of the wave is stable both spatially and temporally. A plane polarized wave at position 

𝑟 at a time 𝑡 can be described by the harmonic wave equation: 

 𝐸⃗⃗(𝑟, 𝑡) = 𝐸0
⃗⃗⃗⃗⃗ cos(𝑘⃗⃗𝑟 − 𝜔𝑡 + 𝜙) , (2.1) 

where 𝐸0
⃗⃗⃗⃗⃗ is the real amplitude of the wave, 𝜙 the phase of the wave, 𝑘⃗⃗ the wave number and 𝜔 the 

angular frequency of the wave. The wave number is related to the wavelength 𝜆 of the wave by the 

relation: 

 
𝑘⃗⃗ =

2𝜋

𝜆
 , (2.2) 

while the angular frequency is related to the wavelength by: 

 
𝜔 =

2𝜋𝑐

𝜆
 , (2.3) 

where 𝑐 refers to the propagation speed of the wave in a medium, or the phase velocity. The intensity 

𝐼 of a light wave is the parameter of the wave that a sensor can directly detect, and is proportional to 

the square of the electric field strength averaged over time: 

 𝐼 ~ |𝐸0
⃗⃗⃗⃗⃗|

2
 . (2.4) 

The refractive index is a property that describes the optical density of a medium. For a given 

wavelength of light, it is defined as the ratio of the phase velocity of the light in a vacuum 𝑐 to the 

phase velocity in the medium 𝑣: 

 𝑛 =  
𝑐

𝑣
 . (2.5) 
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The higher the refractive index, the more optically dense that medium is, and the slower light 

will travel through that medium. For a light wave propagating through a medium, the Optical Path 

Length (OPL) is defined as the product of the refractive index of that medium and the geometric 

distance 𝑑  the light travels in that medium: 

 𝑂𝑃𝐿 = 𝑛𝑑 . (2.6) 

Light waves travelling the same geometric distance through two media of different refractive 

index would each travel a different optical path length. This difference in the optical path lengths 

travelled by the waves is related to the difference in the phase between the two light waves: 

 
∆𝑂𝑃𝐿 =  

𝜆∆𝜙

2𝜋
 . (2.7) 

By combining equations 2.6 and 2.7, for two light waves travelling the same geometric distance 

through two mediums of different refractive index, the difference in refractive index between the two 

mediums can be related to the change in optical path length, and in turn the change in phase between 

the two light beams: 

 
∆𝜙 =  

2𝜋𝑑∆𝑛

𝜆
 . (2.8) 

Interference is caused by the superposition of two light waves overlapping in space, the two 

individual waves combining to create a single wave. The combined intensity of two interfering waves, 

𝐼1 and 𝐼2, with the same frequency and polarisation is given by: 

 𝐼 =  𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos ∆𝜙 , (2.9) 

where 𝐼1 and 𝐼2 are the intensities of the two individual incident waves, and ∆𝜙 =  𝜙1 − 𝜙2 is the 

phase difference between the two waves. The third term in equation 2.9 determines the nature of the 

interference as it varies sinusoidally with the phase difference. Constructive interference occurs when 

cos ∆𝜙 is at its maximum (∆𝜙 = 0, 2𝜋, 4𝜋, … ), while destructive interference occurs when cos ∆𝜙 is 

at its minimum (∆𝜙 = −𝜋, 𝜋, 3𝜋, … ). When a plane through the interfering light waves is viewed, the 

constructive and deconstructive interference processes result in a series of alternating light and dark 
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bands known as interference fringes. The spacing of these fringes is dependent on the rate of variation 

of the phase difference between the two light waves, with a more rapidly varying phase producing 

more narrow fringes.  

An interferometer uses the interference fringe distribution to determine the phase difference 

between the two interfering light waves. This phase difference can then be related back to the change 

in OPL, and then to the change in refractive index. From there, the perturbation to the system causing 

the change in refractive index can be calculated. For the case of OC dosimetry, this perturbing factor 

is the radiation absorbed dose. 

2.2.2 Digital Holographic Interferometry 

Holographic interferometry is a form of optical interferometry, allowing for the reconstruction 

of both the amplitude and phase of the image wave [62]. A simple holographic interferometer can be 

setup with two interfering waves: the object beam, which probes the object of interest, and the 

reference beam, which passes only through air. The object of interest has a different refractive index 

to air, so the object beam travels a different OPL relative to the reference beam as it traverses the 

object of interest, resulting in a different phase change between the object and reference beams over 

the same geometric distance. When the two beams recombine the phase difference between them 

results in the formation of an interference pattern, called an optical interferogram, which is captured 

on a detector such as film or a digital camera. The recorded interferogram is then re-illuminated by 

the reference beam, causing an image of the original object beam to form. This reconstructed image 

is known as a hologram. When two holograms of two different states of the object of interest are 

captured, the difference between the two states can be used to extract information about the change 

in the object wave between the two states. For interferograms produced by holographic 

interferometry, the reconstructed fringe patterns correspond to the phase difference between the 

object and reference waves. This process is simplified compared to classical interferometry, where the 
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recorded fringe patterns must be analysed for each state of the object, then compared to calculate 

the phase difference. 

Digital holographic interferometry (DHI) is a further advancement of this process, first developed 

in 1994 by Schnars and Jupner [63,64]. Advances in optical sensor technology and increases in 

computer processing power allow for the digital recording of interferograms, and for the use of 

numerical algorithms for hologram reconstruction. The digital technique removes the film 

development and realignment steps, leading to time savings and reduced positional uncertainties 

compared to the film technique. Interferograms can be digitally captured in real time at a high frame 

rate, from which phase information at any point in the image can be obtained for each recorded state 

of the object. Any of these recorded states can be used as the reference interferogram which changes 

to the system are compared against. This provides another advantage over film-based methods, 

where the reference interferogram is generated prior to the object measurements. The reduction in 

time differences between the reference and object states leads to increased reliability of the results. 

2.2.3 The Cavan & Meyer DHI Dosimeter 

The DHI technique can be applied to radiation dosimetry, creating the technique known as optical 

calorimetry. DHI is used to calculate the radiation induced phase difference between irradiated and 

reference states of a volume of water. The absorbed dose to water can then be calculated from the 

phase difference. The operation of the Cavan & Meyer DHI dosimeter, from which the OC dosimeter 

of this study was developed are described in this section, while the further refinement of this 

dosimeter by Hubley and Roberts are described in Section 2.2.4. Further details on this work can be 

found in [36,37,57]. 

The first step is to probe a test cell of water with an optical interferometer. A coherent helium-

neon (HeNe) laser is split into two beams, the object beam passing through the test cell and the 

reference beam passing through air. The greater refractive index of water relative to air causes the 

object beam to travel a larger optical path length compared to the reference beam, resulting in a 
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phase difference between the two beams. The phase difference between the beams causes an 

interferogram to form, which is recorded digitally on a CMOS camera chip. Interferograms are 

captured for both the unirradiated reference state and irradiated state of the test cell. The irradiated 

state corresponds to a certain dose delivered to the test cell with ionising radiation. A schematic 

diagram and the setup of the original Cavan & Meyer DHI dosimeter is shown in Figure 2.1. 

 
(a) 

 
(b) 

Figure 2.1. Optical setup of Cavan & Meyer DHI dosimeter. Schematic diagram (a) and dosimeter setup with laser path and 
component labels indicated (b). M, ND, BS, BE and L denote mirror, neutral density filter, beam splitter, beam expander and 
lens respectively. Reproduced with permission from Cavan & Meyer (2014) [36]. 

The interferograms are then reconstructed in MATLAB (The Mathworks, Natik, MA) to extract 

the phase. The interference patterns of the individual interferograms are digitally re-illuminated by 

the reference wave, and the Fresnel transform used to extract a 2D map of the phase information of 

the object wave. This is done for both the irradiated and un-irradiated interferograms, resulting in a 

2D map of phase difference between the two states known as the interference phase. This represents 

the phase change of the object wave integrated across the dimension of the test cell along the laser 

path.  
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Once the interference phase is determined, the phase difference ∆𝜙(𝑋𝐼 , 𝑌𝐼) is related to the dose 

for each point in the 2D map. The change in optical path length ∆𝑂𝑃𝐿(𝑋𝐼 , 𝑌𝐼) is determined from the 

change in phase using equation 2.7, from which the change in refractive index ∆𝑛(𝑋𝐼 , 𝑌𝐼) is calculated 

using equation 2.8. Using the relationship between 𝛥𝑛 and 𝛥𝑇 [65] the temperature increase 

∆𝑇(𝑋𝐼 , 𝑌𝐼) in the water due to energy absorption of the ionizing radiation is determined from the 

change in refractive index. Finally, the absorbed dose to the water cell can be determined from the 

equation 

 𝐷(𝑋𝐼 , 𝑌𝐼) = 𝑐𝑚∆𝑇(𝑋𝐼 , 𝑌𝐼) , (2.10) 

where 𝑐𝑚 is the specific heat of water [66]. 𝐷(𝑋𝐼 , 𝑌𝐼) is a 2D map of the dose, integrated over the 

width of the test cell in the direction of the object beam, at each point 𝑋 and 𝑌 within the image.  

2.2.4 The Optical Calorimetry Dosimeter 

 The development of the Cavan & Meyer DHI dosimeter proved that DHI was a viable technique 

for radiation dosimetry [36,55]. The current OC dosimeter is a refined and improved version of this 

original design [37,56,57]. To drive development of the prototype dosimeter design used in previous 

work, a virtual model of the dosimeter was created in the optical modelling software FRED (Photonics 

Engineering, Tucson, AZ). The virtual OC dosimeter model in FRED is displayed in Figure 2.2. 

 

Figure 2.2. FRED virtual model of the OC dosimeter. Reproduced with permission from Hubley et al (2019) [37]. 
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Each individual optical component was created within FRED, with the material, geometry and 

coating parameters set according to manufacturer specifications and adjusted to match experimental 

findings, until the full DHI dosimeter was virtually reconstructed. The ability of the virtual FRED model 

to determine simple dose distributions was tested, and comparison of experimental interferograms 

to simulated interferograms indicate the virtual dosimeter accurately reproduced the output of the 

experimental dosimeter, validating the use of the virtual dosimeter model as a surrogate for the real-

life prototype dosimeter [37,56]. A series of modifications to the OC dosimeter to improve its 

performance were then developed, including path length equalisation, miniaturisation, external 

vibration isolation and the addition of temperature-controlled housing. For each change the 

improvement to the accuracy of the dosimeter was predicted using the virtual FRED model, then 

verified using experimental measurements [57,58]. 

The current study will expand on this earlier work, using both manually generated projections 

and the virtual dosimeter model in FRED to simulate the generation of projection data via the OC 

dosimeter. A tomographic reconstruction, as described in Section 2.4, will then be performed on these 

projections, and the ability to reconstruct a 3D dose distribution from the OC dosimeter output 

investigated. One consideration that must be made when developing any 3D dosimeter based on the 

current OC dosimeter design is the mechanical complexity of the design. The OC dosimeter is designed 

to determine temperature changes of a few ten-thousandths of a degree, so is required to be 

extremely sensitive to detect the corresponding changes in refractive index. As such, this means the 

dosimeter is also extremely sensitive to any alignment or positioning errors, mechanical vibrations, 

and atmospheric turbulence [37]. As shown by the dosimeter performance improvements when the 

setup was miniaturised and the path lengths equalised, the dosimeter is sensitive to the size and 

layout of the optical component also.  Mechanical complexity is used here as a general term to 

describe all these factors. For the successful expansion of the OC dosimeter to three dimensions, a 

solution which results in minimal increase to the mechanical complexity of the dosimeter is strongly 

desired. 
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2.3 Dosimetric Quantities and Terminology 

Several relevant dosimetric quantities are frequently referred to throughout this study, as these 

are commonly used to characterise clinical radiation beams. These quantities are defined below: 

• Depth of Dose Maximum (Dmax) - the depth along the central axis (CAX) of the radiation beam 

corresponding to the point of maximum dose in that radiation beam. 

• Percentage Depth Dose (PDD) - a plot of the central axis absorbed dose at different depths of 

a radiation beam, as a percentage on the maximum dose [32,67].  

• Profiles – a plot of the absorbed dose at different lateral points at a constant depth across a 

radiation beam, normalised to the dose at the central axis [32,67]. 

• Bragg Peak – specific to proton radiation, where dose deposited is inversely proportional to 

the square of the velocity of the particles [68]. This results in an initially low rate of dose 

deposition, before most of their energy is deposited in a narrow depth range as they come to 

a stop. This results in the proton PDD having an extended, low dose build-up region followed 

by a large peak at a specific depth, before rapidly falling off past this point. This peak is known 

as the Bragg Peak, the depth of which is energy dependent [69]. 

• Flatness – for photon and electron beams, the ratio of the maximum to minimum dose within 

the central region of the radiation beam [70]. For proton beams, lateral flatness is defined as 

the ratio of the difference between the maximum and minimum dose to the sum of the same 

doses [71,72]. 

• Symmetry – for photon and electron beams, the maximum value of the ratio of the dose at 

points an equal distance from the CAX over the central region of a lateral profile [70]. For 

proton beams, lateral symmetry is defined as the ratio of the difference between the integral 

dose in each half of the lateral profile to the sum of the same doses [71,72]. 

• Penumbra – due to the scattering that occurs as radiation interacts with a medium, the edge 

of a radiation beam is slightly blurred rather than sharp. The extent of this blurring is 
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quantified with the penumbra, the part of the beam profile that is between 20% and 80% of 

the CAX dose [70]. 

• Wedged intensity fields – the radiation field is modified so it is non-uniform in one direction. 

Commonly used in photon 3D conformal radiation therapy treatments to achieve a uniform 

dose distribution within the target volume, when correcting for irregular surface contours, 

oblique beam angle incidence, or tissue inhomogeneities [73]. 

2.4 Tomography 

A tomographic reconstruction generates a three-dimensional image from two-dimensional input 

data. This section will cover the three tomographic reconstruction algorithms investigated in this 

study, namely the inverse Abel transform, filtered back projection, and the fast Fourier transform. 

Some advanced reconstruction techniques that were outside the scope of this study to investigate, 

but could be implemented in any future work, are also mentioned. 

2.4.1 Abel Transform 

To generate the projection of a radially symmetric 3D object onto a 2D surface, the mathematical 

operation known as the forward Abel transform can be used, for situations where the axis of radial 

symmetry of the object distribution is parallel to the plane upon which the projection is captured [74]. 

The inverse Abel transform is the reverse of this process, where the 2D projection is used to 

reconstruct the original 3D distribution. The Abel transform is commonly used in fields such as flame 

and plasma flume analysis, plasma spectroscopy, and the imaging of 2D charged particle distributions 

[75–78]. 

Mathematically, the forward Abel transform is given by 

 
𝐹(𝑦, 𝑧) = 2 ∫

𝑓(𝑟, 𝑧)𝑟

√𝑟2 − 𝑦22

∞

𝑦

𝑑𝑟 , (2.11) 
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where 𝑦 and 𝑧 describe the spatial coordinates of the 2D projection and 𝑟 and 𝑧 describe the spatial 

coordinates of the 3D distribution. 𝐹(𝑦, 𝑧) is the intensity of the projection in the 2D plane at (𝑦, 𝑧), 

while 𝑓(𝑟, 𝑧) is the value of the 3D distribution at (𝑟, 𝑧). The inverse Abel transform is given by: 

 
𝑓(𝑟, 𝑧) = −

1

𝜋
∫

𝑑𝐹(𝑦, 𝑧)

𝑑𝑦

∞

𝑟

1

√𝑦2 − 𝑟2
𝑑𝑦 . (2.12) 

In theory, the inverse Abel transform can be applied to measured 2D projection data to recover 

the original 3D volume. But experimental data is often discrete, such as intensity values captured on 

the pixels of a digital camera. Therefore, numerical evaluation of these integrals is required. This can 

generate unreliable results, both with noisy data due to the derivative in the equation, and for the 

case of 𝑦 = 𝑟 where the denominator goes to zero causing the integrand to become infinite.  

To overcome these issues, various numerical methods providing an approximate solution to the 

inverse Abel transform equation have been developed over the years. One of the first methods was 

proposed by Pretzler in 1991 [74], where the radial distribution at each depth 𝑓(𝑟, 𝑧) is expressed as 

a linear sum of cosine functions with unknown amplitudes. By minimising the least squares difference 

between the measured projection 𝐹(𝑦, 𝑧) and the projection generated from the sum of cosines, the 

original radial distribution can be recovered. 

Since then, many numerical methods to provide solutions to the Abel transform have been 

developed [79–82]. Comparisons of the different methods for specific applications can be difficult 

however, as each of the Abel transform methods was developed independently, often using different 

mathematical conventions, different input data size and format conventions, and written in different 

computing languages. The different methods were also created with different goals in mind, such as 

favouring computational efficiency or robustness to noise. PyAbel [83,84] is a numerical package that 

combines several different Abel transform methods into a single Python (Python Software Foundation, 

https://www.python.org/) library. They are presented following the same mathematical conventions 

and using the same data formats, simplifying the comparison between the different Abel transform 



20 
 

methods for different applications. The PyAbel package was used for the Abel transform section of 

this work. 

The methods available in the PyAbel package include: 

• basex – developed by Dribinski et al. [79]. The original distribution is expanded as a basis 

set of Gaussian like functions of variable number and width, with expansion coefficients 

determined through a least-squares fit. These functions have known analytical Abel 

transforms, so the transform is completed using simple linear algebra. 

• hansenlaw – Hansen and Law’s recursive method [80]. Makes a coordinate transformation 

to model the Abel transform as a set of linear-differential equations, iterating along each 

row of the image. All rows in the image can be processed simultaneously, creating a 

numerically efficient transform. 

• three_point – the matrix-algebra method developed by Dasch [81]. Projection data is 

expanded as a quadratic function in the region surrounding each data point, then the 

derivative estimated using a three-point approximation. This enables the analytical 

integration of the inverse Abel integral around each radial point as a simple matrix algebra 

operation. 

• two-point – a simplified version of the three-point method, also developed by Dasch [81]. 

Uses matrix algebra operations similar to the three-point method. 

• onion_peeling – the third method of Dasch implemented in PyAbel. The onion-peeling 

method approximates the projection as rings of constant property for each radial point, 

then uses matrix algebra deconvolution [81]. 

• onion_bordas – back-projection method developed by Bordas et al [85]. For a given pixel in 

a row, calculates the contribution to the signal from that pixel. Signal is subtracted from the 

experimental projection pixel, and added to the back-projected image pixel. This is 

repeated from the outside to the image centre, for each row of pixels in the image. 
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• direct – attempts a direct integration of the Abel transform using simple numerical 

integration. Assumes only that the data has cylindrical symmetry [86]. 

• daun – modified onion-peeling deconvolution method of Daun. The original distribution is 

approximated with a step function or up to a third-degree polynomial, allowing the forward 

transform to be approximated by a system of linear equations in matrix form. Inverse 

transform is performed via onion-peeling with Tikhonov regularization applied [82]. 

The performance of the PyAbel package has been tested by Hickstein in 2019 [83], aside from 

the Daun method which was a later addition to the PyAbel package. Each method of the inverse Abel 

transform was used to numerically reconstruct a Gaussian function. The analytical Abel transform of 

a Gaussian function also results in a Gaussian function, allowing for an accurate analytical solution to 

equation 2.12. Comparing the numerical methods against the analytical solution for a one-

dimensional Gaussian distribution gives an indication of the accuracy of that numerical method. While 

some discrepancy between the reconstructed and analytical results were found, the PyAbel methods 

were found to agree to within a root mean square error of 0.5% for all the methods except one [83].  

The Abel transform was successfully used for radiation dosimetry applications by Ashraf & 

Rahman in 2021, looking at radioluminescence dosimetry of FLASH dose rate electron beams [87]. A 

water tank was doped with quinine sulfate solution, resulting in the production of optical photons 

when the water solution is irradiated. 2D projection images were captured by a camera, orthogonal 

to the radiation beam. The inverse Abel transform was used to reconstruct the 3D dose image from 

the 2D projection, with good agreement for measured depth dose characteristics and profile 

measurements. These results give confidence that the Abel transform can be useful in a dosimetric 

application. 

The use of the inverse Abel transform is limited to radially symmetric beams, however. As many 

FLASH applications have radial symmetry [88,89] this will not limit the OC dosimeter for its most likely 

clinical application. But as many current clinical dosimetry methods are based upon the use of square 
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fields [32,33], the ability to reconstruct a square field would be advantageous and increase the utility 

of the OC dosimeter. Therefore, different reconstruction methods will be required for these fields. 

2.4.2 Filtered Back Projection 

Filtered Back Projection (FBP) has been used for tomographic reconstruction applications such 

as computed tomography since the 1970s. It is based on the mathematical principles of the Radon 

transform [90,91], where given projection data acquired from various angles around an object as a 

linear sum through the object, the aim is to solve for structures internal to the object based on the 

summed projection values. For each projection, the measured projection values are evenly distributed 

across the image matrix, before being summed to compute the back-projected image. Simple back-

projection results in a characteristic 1/r blurring when many projections are used, due to the radial 

geometry of the back-projecting leading to an increase in density of data points for small r values. 

Filtered back projection improves on this by applying a deconvolution kernel to each projection to 

compensate for the 1/r blurring [92]. The computational process can be sped up using properties of 

the Fourier transform, which is mathematically equivalent, but computationally faster. 

A traditional FPB reconstruction, such the reconstruction of internal anatomy in an abdominal CT 

scan, utilizes hundreds of individual projections. This work does not benefit from the same approach 

due to the desire to keep the mechanical complexity minimised. Two orthogonal projections are the 

minimum number required to observe information on the full radiation beam, while keeping the 

increase to the mechanical complexity minimised. While a two-projection reconstruction would not 

be satisfactory to reconstruct a complex anatomical image, homogeneous dose distributions are much 

simpler compared to this, with only regions of dose or background and no dose gradients in between. 

As the reduced mechanical complexity from the two-projection approach is highly advantageous, the 

accuracy it is possible to achieve via this method will be investigated. 
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2.4.3 Fast Fourier Transform 

Another potential tomographic reconstruction technique is through the use of Fourier 

reconstruction methods. The Fourier Transform (FT) is a mathematical operation that decomposes a 

spatially varying function into a series of functions dependent on the spatial frequency [93]. A Fourier 

reconstruction is based upon the principles of Fourier Slice Theorem, which states that the 1D FT of a 

projection through an object and a slice through the 2D FT of the same object are equivalent [94,95]. 

In practice, this means that for several projections taken through an object distribution at a series 

of angles, the 1D FT of the projections can be computed. These are then arranged in frequency space, 

centred upon the origin, at the same angle the projections were taken at. These projections are then 

interpolated from polar to Cartesian coordinates, before the 2D inverse FT is performed on the 

frequency domain image, reconstructing the original object distribution in the spatial domain. A 

Fourier-based reconstruction has been shown to be computationally faster than a FBP reconstruction, 

though traditional methods suffer from artefacts arising when interpolating the radially distributed 

projection data in frequency-space onto a Cartesian grid [94]. 

The Fast Fourier Transform (FFT) is simply a computationally efficient method of performing a FT 

[95]. A limitation of Fourier-based reconstruction techniques is in the interpolation step between the 

polar coordinates in frequency space and the Cartesian coordinates of the reconstructed image, 

leading to the formation of reconstruction artefacts [94]. A two-projection tomographic 

reconstruction using a FFT reconstruction potentially avoids this limitation, as two orthogonal 

projections align in both polar and Cartesian coordinates, so no interpolation step would be required. 

Therefore, the FFT reconstruction has the potential for accurate reconstruction of simple 

homogeneous fields, so presents another avenue to investigate for the two-projection reconstruction. 

2.4.4 Advanced Reconstruction Methods 

For this work the inverse Abel transform, filtered back projection, and the fast Fourier transform 

reconstruction algorithms have been selected to investigate, as these algorithms are well established 
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and easy to implement into the tomographic reconstruction framework and characterise. But there 

also exist more advanced reconstruction methods that would also be suitable for the tomographic 

reconstruction of the OC dosimeter output. 

Iterative reconstruction is a reconstruction algorithm that generates the reconstructed image 

over multiple iterative steps, rather than a single reconstruction step [96,97]. The same projection 

data are input into the algorithm, which generates an initial estimate of what the reconstructed image 

is. Forward projection data is then generated from this reconstruction estimate, and these projections 

are compared to the known projection data. The difference between the original and the estimate 

projection data is known as the error matrix. For the next iteration of the reconstruction, a slightly 

different image estimate is produced, the forward projections generated and compared, and a new 

error matrix computed. If the new error matrix is an improvement over the original the iteration is 

accepted, and the process is repeated. If not, that iteration is not accepted and a new iteration 

generated with a different alteration to the image estimate. This process is repeated until the error 

matrix is reduced to an acceptable level. This iterative process generates highly accurate 

reconstructions, but it is computationally expensive and harder to implement compared to a FBP or 

FFT approach [92]. 

Tomosynthesis is a reconstruction technique designed for limited angle tomography, developed 

for medical imaging with the motivation to reduce imaging doses [98–100]. Reconstruction can be 

based upon the inverse Radon transform or iterative algorithms, but additional approximation 

algorithms are used to compensate for the partial data sampling due to the low projection numbers. 

Tomosynthesis is based upon the retrospective reconstruction of arbitrary planes within the image. 

Projection images are shifted or added to bring structures of different planes into focus, allowing for 

the focussing of different planes at depth [101]. Much like iterative reconstruction however, 

tomosynthesis can be hard to implement and computationally expensive relative to FBP and FFT. 
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Iterative reconstruction and tomosynthesis have the potential for higher accuracy 

reconstructions from a lower number of projections compared to filtered back projection, making 

them both potential candidates for tomographic reconstruction of the OC dosimeter output. But 

implementing and fully characterising these more complex reconstruction algorithms was beyond the 

scope of this thesis, and these techniques remain an area of future work.  

2.5 Concluding Remarks 

Ultra-high dose rate radiation therapy techniques such as FLASH therapy offer the potential to 

increase the therapeutic window of radiation treatments. They are capable of delivering large doses 

with superior healthy tissue sparing relative to conventional treatments. Challenges in the dosimetry 

of these beams are a significant obstacle to overcome before these beams are widely implemented 

into clinical use, however. Optical calorimetry has the potential to overcome some of these difficulties, 

and if a tomographic reconstruction of the 2D output from the OC dosimeter could be performed with 

a high level of accuracy 3D dose distributions of these beams could be generated, significantly helping 

the dosimetric characterisation of these beams. 

Due to the nature of the alignment of optical components within the dosimeter, there is a strong 

desire to reduce any additional mechanical complexity of the OC dosimeter as it is modified to perform 

the tomographic reconstruction. As such, Chapter 4 will investigate the reconstruction accuracy of a 

single-projection 3D reconstruction using the inverse Abel transform, which can be implemented with 

no modification to the current OC dosimeter design. The next smallest increase in mechanical 

complexity would be to take two orthogonal projections simultaneously, so Chapter 5 will investigate 

what is gained by this increase in complexity using a two-projection FBP or FFT reconstruction. Finally, 

the constraint of keeping the mechanical complexity low will be relaxed, and the reconstruction 

accuracy of a many-projection reconstruction will be investigated in chapter 6, to determine the 

maximum possible 3D reconstruction accuracy with the OC dosimeter output.  
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In the next chapter the simulation methods used to generate the range of beams used to 

characterise the performance of the subsequent tomographic reconstructions are detailed, as are the 

simulation methods used to model the integration of the projection data by the OC dosimeter. The 

methods and quantities used to determine the accuracy of the tomographic reconstructions, and 

compare the accuracy between the different methods are also detailed. 
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Chapter 3: Simulation Methods 

This chapter will detail the simulation methods used in this project, used to test the accuracy of 

performing a tomographic reconstruction accuracy on the two-dimensional output of the OC 

dosimeter. This includes the simulation of the radiation beam data that the OC dosimeter will be 

imaging, and the methods used to model the dose integration that occurs within the OC dosimeter 

detector system. This chapter will also cover the process used to analyse the reconstruction accuracy 

of the various tomographic reconstruction methods, and how this was quantified. These simulation 

methods and accuracy calculations are shared across all the various reconstruction approaches. 

3.1 Radiation Beam Data Simulation 

Two methods of simulating the generation of beam data for the investigation of the inverse 

Abel Transform in this chapter were used: one using MATLAB (The Mathworks, Natik, MA) to model a 

clinical 6MV photon beam from a linear accelerator, and one using TOPAS [102] to model a clinical 

70MeV proton beam. Both methods were used to produce a 3D dose distribution within a 

256x256x256 array. This size was chosen as a compromise between having enough pixels to maintain 

spatial resolution in the dose distribution, but without having too many pixels and being too 

computationally expensive to reconstruct. Both beams were created with the same orientation, with 

the radiation beam entering vertically downwards with the z-axis representing depth, and the x- and 

y-axes the lateral and longitudinal dimensions of the radiation beam respectively. 

In MATLAB, a pseudo-circular region in the centre of a 256x256 array was created, with a 

nominal dose value of 1.0 to represent the deposition of dose from a radiation source, and the 

background region given a dose value of 0.0. This array represents an x-y plane of dose, sliced out of 

the radiation beam. These dose values were arbitrary for the purposes of this work, as it is the relative 

dose distribution that is of interest. The radiation beam size could be varied from a few pixels to the 

whole width of the array, though in practice beam sizes ranged from 32 pixels to 192 pixels in 
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diameter, to represent a realistic proportion of the detector array the radiation beam would cover. 

The detector array on the current OC dosimeter is 1280x1024 with 6.7µm2 pixels, corresponding to a 

maximum image size of 8.6cm x 6.7cm. Beam expansion and magnification or minification techniques 

could be used to image smaller and larger dose distributions if required, so the actual beam size 

modelled is also arbitrary for the purposes of this study. It is the pixel resolution of the output image, 

or the proportion of the image array the radiation beam occupies that is the real variable of interest. 

Because of the arbitrary nature of distance in this work, depth, distance, and position measures are 

mostly presented with units of pixels throughout this work.  

A penumbral region was added to the edges of the circular region, modelled with a 𝑡𝑎𝑛ℎ(𝑥) 

function. This gave an approximation of the edge of a radiation beam, therefore creating a better 

approximation of the overall shape of a radiation beam. Figure 3.1 shows this modelled penumbra 

compared to the measured penumbra from a 10x10cm 6MV photon beam at 10cm deep, delivered 

using an Elekta Versa HD linear accelerator (Elekta Oncology Systems, Crawley, UK).   

 

Figure 3.1. Beam Penumbra comparison. The beam penumbra modelled in the MATLAB beam data simulations using a tanh(x) 
function and the beam penumbra from an Elekta Agility Versa HD 6MV photon beam are shown, for a 10x10 cm field at a 
depth of 10 cm. 
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A uniformly distributed random noise component was added to the dose distribution, modelled 

as a percentage of the maximum dose value. This created a more accurate approximation of the 

inherent non-uniformity of a radiation beam. This 2D array was then repeated and stacked 256 times, 

to create a 256x256x256 3D array. This was then scaled in the z-dimension using 6X photon beam 

percentage depth dose (PDD) data from an Elekta Versa HD linear accelerator (Elekta Oncology 

Systems, Crawley, UK) to characterise the change in dose with depth of a radiation beam. Figure 3.2 

shows the modelled photon 3D dose distribution alongside a CAX PDD and Dmax profile. 

 

 
(b) 

 
(a) (c) 

Figure 3.2. MATLAB simulated 6X photon beam. 3D Dose Distribution (a), central axis PDD (b), and dose profile at the depth 
of maximum dose (c). The profile and PDD have been normalised to the maximum dose. 

This is a simplified model of a radiation beam and does not include features of a clinical beam 

such as beam divergence of the radiation beam with depth. But the advantages of this model are that 

it is very fast to compute, and easy to build in modifications to the model, such as varying the shape 

and size of the beam, the intensity of the beam, the level of noise modelled and the width of the 

penumbra. More complex clinical beam features such as a wedged intensity can also be included in 

the model with little additional computational time.  

MATLAB was also used to simulate a simplified model of an Intensity Modulated Radiation 

Therapy (IMRT) beam. This model consisted of a modified square field, with the beam region split into 

a 3x3 checkerboard pattern when viewed from the x-y plane perspective. The checkerboard pattern 
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consisted of different dose levels ranging from between 0.3 and 1.0. A Gaussian filter was then applied 

to the model, as a method of blurring the edges between the dose levels, approximating penumbra. 

While simple, the different dose levels and the presence of multiple dose gradients in both dimensions 

of the x-y plane represent some of the complex features of an IMRT radiation beam, and will test the 

various tomographic reconstruction algorithms ability to reconstruct these more complex fields. A 

slice through this dose distribution representing an x-y plane of dose is shown in Figure 3.3. 

 

Figure 3.3 Modelled IMRT radiation beam x-y slice. This beam consists of a 3x3 checkerboard pattern of varying dose levels, 
creating multiple dose gradients in both dimensions and presenting an increased level of complexity to reconstruct. 

Three-dimensional dose distributions were also generated using TOPAS Monte Carlo (MC) 

software to simulate the dose deposition of a proton beam [102,103]. TOPAS is a Geant4 based 

particle simulation toolkit, that has been used for numerous radiation dosimetry applications [104–

107]. A 70 MeV circular proton beam at an SSD of 4cm was used, with the beam size varying from 

5mm to 40mm in steps of 5mm. Each simulation was run for 1 billion histories, resulting in a maximum 

standard error of the sum of less than 0.26% for all the modelled beams. This low uncertainty allows 

good confidence that the MC simulation models the dose deposition in a water phantom to an 

accuracy sufficient for this study. The TOPAS simulation output was scored on a 100x100x100 array, 

and then interpolated to a 256x256x256 array using a 3D linear interpolation function to reduce the 

computational time of the simulation and decrease the uncertainty in each individual pixel. Figure 3.4 

shows the 3D dose distribution alongside a CAX PDD and Dmax profile for a TOPAS modelled proton 

beam. 
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(b) 

 
(a) (c) 

Figure 3.4. TOPAS simulated 70keV proton beam. The 3D Dose Distribution (a), central axis PDD (b), and dose profile at the 
depth of maximum dose (c) are shown. The profile and PDD have been normalised to the maximum dose. 

The radiation beam data simulation methods differ slightly between the photon and the proton 

beams, with the MATLAB method for the photon beams being quicker but more simplified, while the 

TOPAS method for the proton beams was much slower, but more accurate [102,103]. This was 

deemed acceptable for the purposes of this study. The MATLAB approach allows for easy modification 

of several beam features, and the effect this has on the tomographic reconstruction quality 

characterized. For the proton beam, clinical modifiers such as passive beam scanning or dynamic spot 

scanning [108] are much more complex to model, and outside the scope of this initial investigation 

into the tomographic reconstruction of these beams. As FLASH proton beams are a potential clinical 

application of the OC dosimeter, a higher accuracy in this beam model was desired. As such, the MC 

simulation was chosen for its superior accuracy, and with only small number of different sized beams 

to model the long computational times were not detrimental to the timeframe of this study. 

3.2 Detector System Simulation 

The prototype OC dosimeter captures the integrated phase change across the water cell before 

and after irradiation, then this phase change is converted into dose. This differs slightly to the process 

used in this study, as the beam data is modelled as dose directly. However, these two variables can be 

directly related to one another via the change in refractive index due to the absorbed dose induced 
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temperature increase [37,56]. This allows for the assumption that integrated phase is equivalent to 

integrated dose and for these variables to be used interchangeably.  

Once the beam data has been produced, it needs to be integrated in one dimension to simulate 

the image acquired by the dosimeter. The integration was performed either by a manual sum in 

MATLAB or Python, or by using the virtual model of the OC dosimeter in FRED Optical Modelling 

software. The manual sum method is the theoretical best-case scenario, where no information has 

been lost to additional noise introduced by the dosimeter system. The virtual OC dosimeter model in 

FRED has had significant effort put in so that its output matches real-world measurements, including 

modelling the inherent noise characteristics. For the FRED integration method either a photon beam 

generated in MATLAB (Figure 3.5), or a proton beam generated in TOPAS (Figure 3.6) was loaded into 

FRED as a volume of water containing the 3D dose distribution.  

   
(a) (b) (c) 

Figure 3.5. TOPAS modelled 20mm proton beam distribution. The 3D dose distribution is shown in (a), and the resulting 2D 
central slice (b) and 2D integrated dose projection (c). The slice is generated by taking the central 2D z-x plane from the 3D 
distribution, while the projection is generated by summing the entire 3D distribution in the y-dimension. The difference 
between the two images is highlighted in the dose values, with the slice having a maximum of around 2 Gy while the projection 
has a maximum of closer to 250 Gy. Due to the cylindrical symmetry of the dose distribution the intensity varies across the x-
axis in the projection also, while it is much more consistent in the slice image. 

The dose distribution in FRED was modelled as a relative refractive index change between 

pixels. As FRED has been independently verified that the absolute refractive index change gives the 

absolute temperature change, and therefore the absolute dose change [37,56,57], the relative 

refractive index change rather than the absolute change could be modelled to speed up the simulation 

process. This relative refractive index change was then scaled appropriately to give the equivalent 

amount of dose of interest. The geometry of this integration was kept constant in both methods, for 

both sets of data. The radiation beam is assumed vertically downwards, in the z-dimension. The object 
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beam of the prototype dosimeter is orthogonal to this, and here is defined as being the +y direction. 

So, for each integration method the 3D image was integrated in the y-dimension, producing a 2D x-z 

array representing the integrated dose image that is the final output of the OC dosimeter. 

   
(a) (b) (c) 

Figure 3.6. MATLAB modelled 160-pixel photon beam distribution. The 3D dose distribution is shown in (a), and the resulting 
2D central slice (b) and 2D integrated dose projection (c). The slice is generated by taking the central 2D z-x plane from the 
3D distribution, while the projection is generated by summing the entire 3D distribution in the y-dimension. The difference 
between the two images is highlighted in the dose values, with the slice having a maximum of 1 Gy while the projection has 
a maximum of closer to 110 Gy. Due to the cylindrical symmetry of the dose distribution the intensity varies across the x-axis 
in the projection also, while it is much more consistent in the slice image. 

3.3 Quantifying Reconstruction Accuracy 

An important step is determining what constitutes an acceptable reconstruction of a 3D dose 

distribution, and how the reconstructed 3D distribution compares to the original 3D distribution. This 

involves quantifying the difference between the two dose distributions and determining whether this 

are within an acceptable limit. For this study, the Root Mean Square Error (RMSE) and maximum error 

were chosen to quantify the accuracy. The RMSE is between the true value 𝑥 and the estimated value 

𝑥 is given by the equation: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥 − 𝑥)2𝑁

𝑛=1

𝑁
 . (3.1) 

The RMSE is a useful tool for determining the error for noisy data, where the mean value of a 

comparison would average out to zero, giving a potentially falsely accurate result. The maximum error 

simply describes the maximum difference between the reconstructed distribution and the original, 

presented as a percentage of the maximum dose value in the distribution. For this dosimetric 
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technique to be clinically relevant, it needs to be able to determine dose to an uncertainty level that 

is equal to or better than current dosimetric methods described in Section 2.1. 

The exact method of determining the RMSE is slightly different between the different 

reconstruction techniques, depending on the orientation of the reconstruction algorithm output. The 

details for each method are described in detail in the following sections.  

3.3.1 1D Gaussian Reconstruction 

This is the simplest case, with only a single one-dimensional (1D) array for both the original and 

reconstructed distributions. The RMSE between the two distributions is calculated directly. 

3.3.2 Inverse Abel Transform Reconstruction 

The output of the inverse Abel Transform is a 2D image, representing a vertical slice through the 

centre of the original 3D distribution. In the coordinate system of this study, this is a z-x image, where 

the z-axis represents the axis of radial symmetry in the radiation beam, and the x-axis being lateral 

through the beam. Rotational interpolation of the 2D slice can then generate the full 3D distribution. 

This interpolation step becomes time-consuming when computing a number of reconstructions, and 

is unnecessary as a 2D slice through the centre of a radially symmetric object contains the same 

amount of information as the full 3D distribution. Therefore, the reconstructed 2D image was 

compared to the central slice of the original 3D distribution to determine the reconstruction accuracy. 

When comparing the reconstructed image to the 2D central slice of the original distribution, 

profiles are taken along both the z- and x- dimensions to quantify the reconstruction. This is shown in 

Figure 3.7. Firstly, along the z-axis at the centre of the radiation beam, then secondly along the x-axis 

at the depth of dose maximum. This allows the profiles to represent central axis PDDs and lateral 

profiles at the depth of dose maximum (Dmax) respectively, two dosimetric quantities that can be used 

to characterise a clinical radiation beam [109]. 
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(a) (b) 

 
(c) (d) 

Figure 3.7. PDD and Dmax Profile measurement locations. 2D central slice images are taken from the centre of the 3D dose 
distribution, for the TOPAS simulated 20mm proton beam and the MATLAB modelled 160-pixel photon beam. Marked in red 
are the location of the profiles used to characterise the dosimetric accuracy on the reconstruction, with the CAX PDD on the 
left (a,c), and the Dmax profile on the right (b,d). 

In addition, to provide an indication of the reconstruction accuracy for the clinical dosimetrically 

relevant parts of a radiation beam, the RMSE for the central 21 pixels and central 81 pixels for the 

profiles were also calculated. The central 21 pixels represent the central axis of a radiation beam and 

is the part of the reconstruction where high accuracy is the most desired, as the majority of clinical 

dosimetric quantities are defined on the central axis [32,33]. The central 81 pixels were chosen as they 

represent the region of the distribution containing the pixels with significant amounts of dose 

deposited within them. The actual proportion of the distribution within the beam region will vary as 

the overall size of the beam is varied, but the value of 81 pixels was chosen as a compromise between 
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the largest and smallest field sizes investigated in this study, to keep the analysis consistent. These 

regions within a profile are the same for both photon and proton beams, and are shown in Figure 3.8. 

For proton radiation, the dose deposited is inversely proportional to the square of their velocity 

[110]. The initial dose deposition is low, with the rate of dose deposition slowly increasing as they 

interact with a medium, before the majority of their energy is deposited as they come to a complete 

stop. This results in the proton PDD having an extended, low dose build-up region followed by a large 

peak at a specific depth, before rapidly falling off past this point. This peak is known as the Bragg Peak, 

the depth of which is energy dependent. The location of the Bragg Peak is an important quantity in 

proton dosimetry [111], so high reconstruction accuracy in this region is desired. For the PDDs of 

proton beams the RMSE was also calculated for the Bragg Peak region, defined here as a 21-pixel 

region centred on the depth of dose maximum, as this is the region of the PDD containing the Bragg 

Peak. This is shown in Figure 3.9 below. 

 
(a) 

 
(b) 

Figure 3.8. Dosimetrically relevant area of accuracy analysis. Shown is a TOPAS 20mm proton beam PDD and profile, with the 
PDD (a) showing the Bragg Peak region highlighted in red. In the profile (b) the central axis region is highlighted in red, while 
the beam region is highlighted in yellow. 
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3.3.3 Filtered Back Projection & Fast Fourier Transform Reconstructions 

The output of the FBP and FFT algorithms is a 2D array, representing a horizontal slice through 

the 3D distribution at some depth. In the coordinate system of this work this represents a x-y image, 

with the x-axis and y-axis being lateral and longitudinal through a radiation beam, where depth is the 

z-axis. The original 3D distribution can be reconstructed by performing the reconstruction at each 

depth z, then stacking the slices upon each other to form the full dose volume. 

Profiles were used to quantify the reconstruction quality of these methods. The definitions for 

the CAX and beam regions and their associated RMSE from Section 3.3.2 apply. As the reconstructed 

image is an x-y plane of dose at a single depth, the profile is taken through the centre of the radiation 

beam along the x-axis. For the analysis of FBP and FFT reconstructed fields, often only a single slice at 

the depth of dose maximum was reconstructed. As the dose distributions for these reconstructions 

were created by creating multiple x-y slices, then scaling the slice with a PDD and stacking them upon 

each other to form the 3D distribution, the reconstructions other depths are simply scaled copies of 

this slice. The analysis of all the slices provides no additional information compared to the Dmax slice, 

with the same relative errors occurring on each slice. To save time in the analysis process, only the 

single Dmax slice was reconstructed and analysed. For the same reason, PDD analysis was not 

performed on these dose distributions, as all the information on the reconstruction quality is 

contained in a single x-y slice for these beams. 
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Chapter 4: Single Projection Reconstruction 

This chapter investigates the limitations on reconstruction accuracy for a single projection 

system. A single projection reconstruction is highly desirable as it would require no modification to 

the current prototype optical calorimeter dosimeter. The likely application of the OC dosimeter lies in 

FLASH dosimetry, which are often produced circularly with radial symmetry [22,112]. This makes the 

investigation of the single-projection reconstruction of these beams using the inverse Abel transform 

a priority for this work. The findings of this chapter will therefore be indicative of what level of 3D 

dose reconstruction accuracy is possible to achieve with the current OC dosimeter.  

The focus of this chapter will be on using the inverse Abel transform to reconstruct the 3D dose 

distribution, using the PyAbel software package in Python [84]. This provides access to a number of 

different methods to perform the inverse Abel transform, so finding the best performing method for 

our purposes was investigated initially. As the Abel transform is only relevant for use on radially 

symmetric objects, circular photon beams were modelled in MATLAB and Monte Carlo simulated 

proton beams were generated using TOPAS. The reconstruction accuracy of these beams was initially 

investigated using a manual sum to model the integration due to the dosimeter, before then being 

compared to the reconstruction resulting from using FRED to integrate the beam, better representing 

the real-world performance of the dosimeter. 

Finally, the limits of the inverse Abel transform were tested by attempting to reconstruct non-

radially symmetric beams such as a square beam. This would confirm that the single projection 

approach using the inverse Abel transform is only applicable to radiation fields that are radially 

symmetric, and no information about any asymmetries in the beam is sought. 

4.1 PyAbel Functionality Tests 

The inverse Abel transform uses a 2D projection taken through a radially symmetric object and 

reconstructs the central 2D slice of that object. As the 3D object distribution is radially symmetric, this 
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reconstructed 2D central slice contains all the information of the 3D array, and a full 3D array can be 

obtained via interpolation. 

Here, the inverse Abel transform is used to reconstruct the original dose distribution from the 

modelled integrated dose image of the OC dosimeter. This was implemented using the PyAbel package 

in Python. This package contains eight transformation methods, each a different approximation of the 

Abel transform solution for a cylindrically symmetric object. To determine the best method for the 

reconstruction of OC dose images, the performance of the individual methods was tested initially on 

a Gaussian distribution to check the accuracy of the PyAbel package was as expected. Next, the 

methods were tested on more clinically relevant models of a proton beam and a photon beam. The 

best performing method could then be characterized fully to estimate the maximum reconstruction 

accuracy possible using the inverse Abel transform reconstruction method. 

4.1.1 Gaussian Distribution Reconstruction 

Initially, methods investigating the performance of the PyAbel package presented in Hickstein et. 

al 2019 [83] were repeated, to check the implementation of the PyAbel package. Results that were 

not comparable to their findings would indicate an error in the procedure. A 1D non-symmetric 

Gaussian distribution, 70 pixels in length was generated, with the first pixel corresponding to the 

centre of the radially symmetric distribution. The Abel transform of a Gaussian distribution is itself a 

Gaussian distribution, allowing for an easy comparison between the analytical result and the 

reconstructed distribution for the case of a 1D Gaussian [83]. Hickstein et. al found that none of the 

methods provide a perfect solution, so a slight discrepancy in the reconstructed distribution is 

expected, with this error becoming more pronounced at points close to the centre of radial symmetry. 

A comparison of the reconstructed distribution to the analytical distribution for each method will 

determine the size of this discrepancy and indicate the best performing methods available. 

The first step was to repeat the investigation using the exact distributions as used by Hickstein 

et. al. Both the Gaussian distribution and the integrated projection data corresponding to the Gaussian 
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were generated using the abel.tools.analytical.GaussianAnalytical module of PyAbel [84]. The 

projection data were reconstructed using each inverse Abel transform method, then the 

reconstructed distribution compared to the original distribution, as shown in Figure 4.1 for the direct 

method. 

  
(a) (b) 

Figure 4.1. Inverse Abel transform asymmetric Gaussian reconstruction. The inverse Abel transform (direct method) 
reconstructed Gaussian distribution and original distribution are shown in (a). The Gaussian distribution is asymmetric and 
70 pixels in length, following the methodology of Hickstein et. al 2019. The percentage error (b) between the original and 
reconstructed distribution, highlighting the maximum discrepancy occurring closer to the axis of radial symmetry. 

To compare to the results of Hickstein et. al [83] the RMSE between the two distributions was 

calculated as a percentage of the maximum value. The maximum percentage error for the 

reconstruction was recorded also. These were calculated for each of the seven reconstruction 

methods, as shown in Table 4.1. 

Table 4.1. Inverse Abel transform asymmetric Gaussian reconstruction accuracy. The MRSE was calculated for inverse Abel 
transform reconstructed non-symmetric Gaussian distributions of length 70, for the entire distribution, beam region and 
central axis region, and the maximum error for the different inverse Abel transform methods in PyAbel. 

METHOD HICKSTEIN RMSE (%) RMSE (%) MAX ERROR (%) 

DIRECT 0.15 0.15 0.32 

BASEX 0.04 0.04 0.07 

HANSEN-LAW 0.23 0.33 1.64 

TWO POINT 0.32 0.32 1.76 

THREE POINT 0.06 0.06 0.17 

ONION PEELING 0.07 0.07 0.32 

ONION BORDAS 12.03 0.80 4.06 

 

The calculated results match very well to the expected results, showing the implementation of 

the Abel transform was correct. A slightly larger RMSE for the Hansen-Law method than what was 
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expected was found, as was greatly reduced reconstruction error for the Onion Bordas method. This 

can likely be attributed to different versions of the PyAbel code being used in the Hickstein et al. 2019 

paper, compared to the most current 0.8.5 version used here. But as the performance of the Hansen-

Law method is only 0.1% worse, while the other methods perform exactly as expected or better, this 

allows the use of the PyAbel package confident it is working as intended. 

To test the transform methods using a slightly more representative sample of the data to be 

investigated in this study, the reconstruction of a fully symmetric 1D Gaussian distribution of length 

255 was also investigated. This better approximates the resolution of the radiation beam distributions, 

and a symmetric Gaussian better approximates the profile of a radiation beam. An odd number of 

pixels was chosen so the centre of the distribution was located on a single pixel, to avoid any pixel 

averaging or asymmetry effects. An example of the reconstructed distributions is shown in Figure 4.2 

for the Basex inverse Abel transform method. 

  
(a) (b) 

Figure 4.2. Inverse Abel transform reconstruction of a symmetric Gaussian. The inverse Abel transform (Basex method) 
reconstructed Gaussian distribution and original distribution are shown in (a). The Gaussian distribution is symmetric and 255 
pixels in length, representative of the radiation beams modelled in this study. The percentage error (b) between the original 
and reconstructed distribution, highlighting the maximum discrepancy occurring close to the centre of the distribution.  

As for the asymmetric Gaussian, the RMSE and maximum error are calculated for each 

reconstruction. In addition, to provide an indication on the reconstruction accuracy for dosimetrically 

relevant parts of a radiation beam, the RMSE for the CAX and beam regions, as defined in Section 

3.3.2, were also calculated. This was done for the entire range of transform methods in PyAbel, 
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including the additional Daun method which was added to the PyAbel package since the publication 

of the 2019 paper. Results are shown in Table 4.2. 

Table 4.2. Inverse Abel transform symmetric Gaussian reconstruction accuracy. The RMSE is calculated for the inverse Abel 
transform reconstructed symmetric Gaussian distributions of length 255, for the entire distribution, beam region and central 
axis region, and the maximum error for different inverse Abel transform methods. 

METHOD RMSE (%) BEAM RMSE (%) CAX RMSE (%) MAX ERROR (%) 

DIRECT 0.12 0.21 0.14 0.27 

BASEX 0.03 0.06 0.06 0.07 

HANSEN-LAW 0.14 0.24 0.43 0.88 

TWO POINT 0.15 0.26 0.50 1.00 

THREE POINT 0.02 0.03 0.05 0.05 

ONION PEELING 0.03 0.04 0.08 0.13 

ONION BORDAS 0.41 0.73 1.41 2.71 

DAUN (D=3) 1.54E-06 9.75E-07 1.50E-06 1.55E-05 

These results show that all the transform methods produce an accurate reconstruction of the 

Gaussian distribution, with the RMSE being less than 0.5% in all cases. The greatest accuracy was found 

with the BASEX, Three Point, Onion Peeling and Daun methods, while the least accurate result came 

from the Onion Bordas method. These results for these methods show increased accuracy compared 

to what was seen in Hickstein et al. This is expected, as one of their findings was the reconstruction 

accuracy improved as the number of pixels in the distribution increased. Therefore a 255-pixel 

distribution should be easier to reconstruct than a 70-pixel distribution, as is shown in the results here. 

This provides further confidence that the inverse Abel Transform is working as expected. 

Of the Abel Transform methods the Daun method appears superior, with a reconstruction error 

several order of magnitudes smaller than the other methods. The next best was the BASEX, Three 

Point and Onion Peeling methods, all producing a RMSE of less than 0.05%, and a maximum error of 

less than 0.15%. While these methods are strong candidates for use reconstructing the prototype OC 

dosimeter output, it is important to also consider that a simple 1D Gaussian distribution is shaped 

differently and contains none of the noise characteristics of a radiation beam. While the Gaussian tests 

confirm the inverse Abel Transform methods perform accurately and as expected, these methods 
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need to be tested on a more realistic radiation beam dose profile to truly determine the best method 

for the purposes of this study. 

4.1.2 Proton Beam Reconstruction 

The next step was to repeat the Gaussian distribution investigation using a TOPAS proton beam 

distribution, allowing the comparison of the inverse Abel Transform methods on representative 

radiation beam data. Projection data were generated via integrating the 3D distribution in one 

dimension, as described in Section 3.2. The inverse Abel transform was then performed on this 2D 

projection data for each of the different methods. A 20mm proton beam was chosen as the test beam 

for this investigation, as it is in the middle of the size range of simulated beams. Examples of this 

reconstruction for several methods are shown in Figure 4.10, with the Basex, Hansen-Law and three-

point methods showing good profile matching at Dmax, with only a slight discrepancy on the CAX 

present. 

   
(a) (b) (c) 

Figure 4.3. Inverse Abel transform TOPAS modelled proton beam reconstruction accuracy. Using manually summed projection 
data, the inverse Abel transform reconstructed proton beam Dmax profiles are compared to the original Dmax profile for the 
Basex (a), Hansen-Law (b) and three-point (c) methods of PyAbel. 

Reconstruction accuracy was quantified by comparing Dmax profiles and PDDs for the original and 

reconstructed distributions, with the RMSE and maximum error being calculated for each. For the 

profiles the RMSE is calculated for the entire distribution, the beam region and the CAX region, as 

shown in the Table 4.3. These results for the profile reconstruction all show a RMSE of less than 1%, a 

beam RMSE of less than 1.5%, a central axis RMSE of less than 2.5%, and a maximum error of less than 

4%. Of the eight methods tested, the Onion Bordas method appears superior, with a RMSE of 0.5%, 

beam RMSE of 0.8%, central axis RMSE of 0.9%, and a maximum error of 1.4%. Of particular 
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importance to this study is that the central axis reconstruction error is less than 1% for the Onion 

Bordas method, half the size or less compared to the other methods. 

Table 4.3. Inverse Abel transform proton beam profile reconstruction accuracy. Using manually summed projection data, the 
RMSE was calculated for the inverse Abel transform reconstruction of a 20mm TOPAS proton beam profile for the entire 
distribution and the beam and central axis regions. The maximum reconstruction error was calculated also. This was repeated 
for all the inverse Abel transform methods in PyAbel. 

METHOD RMSE (%) BEAM RMSE (%) CAX RMSE (%) MAX ERROR (%) 

DIRECT 0.79 1.33 1.90 2.80 

BASEX 0.72 1.19 1.81 3.26 

HANSEN-LAW 0.78 1.32 2.01 3.82 

TWO POINT 0.81 1.37 2.06 3.80 

THREE POINT 0.69 1.20 1.83 2.90 

ONION PEELING 0.75 1.25 1.88 3.52 

ONION BORDAS 0.51 0.80 0.89 1.43 

DAUN (D=3) 0.73 1.22 1.84 3.23 

Figure 4.4a shows a comparison of the original and reconstructed profiles at Dmax, for the Onion 

Bordas inverse Abel transform method. Figure 4.4b shows the percentage error between the two 

profiles as a function of lateral position. 

  
(a) (b) 

Figure 4.4. Onion Bordas inverse Abel transform profile reconstruction accuracy. The inverse Abel transform reconstructed 
proton beam Dmax profile is compared to the original Dmax profile for the Onion Bordas reconstruction method (a). The 
percentage error between the original and reconstructed profiles is shown in (b). 

For the PDD’s the RMSE was calculated for the entire distribution and the Bragg Peak region. 

However, it became apparent that the level of noise in the reconstructed profiles could cause 

misleading results for these PDDs. When taking the PDD down a single central column of pixels, very 

different results could be obtained when using the 127th, 128th or 129th pixel, for example, due to the 

high frequency oscillations of the reconstruction between these pixels. To remove this potential error 
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the PDDs were calculated as the mean of the central five profiles, averaging out any outlying results 

when the PDD was located within a high or low part of the reconstruction noise. The mean PDD results 

are shown in Table 4.4 for each of the inverse Abel transform method. 

Table 4.4. Inverse Abel transform proton beam PDD reconstruction accuracy. The RMSE is calculated for the inverse Abel 
Transform reconstruction of a 20mm TOPAS proton beam PDD, for the entire distribution and the Bragg Peak region, 
averaged over the central five PDDs, and the maximum error of the reconstruction for the different inverse Abel transform 
methods in PyAbel. 

METHOD RMSE% BRAGG PEAK RMSE (%) MAX ERROR (%) 

DIRECT 0.91 1.95 2.80 

BASEX 0.83 1.77 3.26 

HANSEN-LAW 1.09 2.33 3.82 

TWO POINT 0.99 2.12 3.80 

THREE POINT 0.88 1.88 2.90 

ONION PEELING 0.86 1.85 3.52 

ONION BORDAS 0.05 0.28 0.15 

DAUN (D=3) 0.86 1.83 3.23 

These results show a similar trend to the profile results. All methods produced a RMSE of less 

than 1%, except for the Hansen-Law method at 1.1%. The Bragg Peak RSME was less than 2.5% and 

the maximum error was less then 4% for all methods. Again, the Onion Bordas method performs the 

best of all the tested methods, with a RMSE of 0.05%, a Bragg Peak RMSE of 0.3%, and a maximum 

error of 0.15%. This can be seen in Figure 4.5, showing the plot of the original and reconstructed 

central axis PDDs and the percentage error between the two. 

  
(a) (b) 

Figure 4.5. Onion Bordas inverse Abel transform PDD reconstruction accuracy. The inverse Abel transform reconstructed 
proton beam PDD is compared to the original distribution PDD for the Onion Bordas reconstruction method in (a). The 
percentage error between the original and reconstructed PDDs is shown in (b). 
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The results from the proton beam reconstruction were quite different to the results from the 

Gaussian distribution reconstruction, which is worth noting. Based off the Gaussian results, the Daun 

method should have provided superior results, with the BASEX, Three Point and Onion Peeling 

methods being the next best. Instead, the Onion Bordas method was the best performing of the 

transform methods, and the rest all performed on a similar level. This is the opposite to what was 

found for the Gaussian reconstruction, where the Onion Bordas was the worst performing method. 

However, it is stated in the PyAbel documentation that different methods may perform better than 

others depending on the type and level of noise found in the image to be reconstructed [83]. This 

would suggest that for the noise characteristics found in the modelled proton beam dose distributions, 

integrated using the manual sum method, the Onion Bordas method is the best suited for 

reconstruction. 

From these initial results it was concluded that of the eight transform methods in the PyAbel 

package tested, the Onion Bordas reconstruction method appears the most appropriate for 

reconstructing the proton beams modelled in this study.  

4.1.3 Photon Beam Reconstruction 

The final step of the PyAbel functionality tests was to test the reconstruction methods on a 

radially symmetric photon beam, allowing another comparison of the methods on another model of 

radiation beam data. This followed the same process as used for the proton beam reconstruction in 

section 4.1.2. Projection data was generated by integrating the 3D distribution in one dimension, then 

the inverse Abel transform was performed on this using each of the individual methods. The 

reconstructed 2D image was then compared to the central 2D slice of the original 3D distribution, 

using profiles at Dmax and PDDs to quantify the reconstruction accuracy. 

A photon beam of 128 pixels in width, generated as described in Section 3.1, was chosen for this 

initial test as it is the middle of the size range of the modelled photon beams. This beam was simulated 

with noise and penumbra added to make the model more representative of a clinical radiation beam. 
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As described in Section 3.3, the RMSE for the entire profile, beam region and CAX region, along with 

the maximum error were used to quantify the accuracy of the profile reconstruction. For the PDDs, 

the RMSE for the entire PDD and the maximum error were used. As a photon PDD does not have a 

Bragg Peak, and the distribution varies slowly with depth relative to a proton PDD, extra RMSE regions 

were not used for the analysis of the PDD reconstruction accuracy. The reconstruction accuracy 

metrics are shown in Table 4.5 below. 

Table 4.5. Inverse Abel transform photon beam profile reconstruction accuracy. Using manually summed projection data, the 
RMSE was calculated for the inverse Abel transform reconstruction of a MATLAB modelled 192-pixel width photon beam 
profile for the entire distribution and the beam and central axis regions. The maximum reconstruction error was calculated 
also. This was repeated for all the inverse Abel transform methods in PyAbel. 

METHOD RMSE (%) BEAM RMSE (%) CAX RMSE (%) MAX ERROR (%) 

DIRECT 3.72 6.29 12.0 30.9 

BASEX 11.7 20.7 40.3 183 

HANSEN-LAW 2.37 3.92 5.93 10.1 

TWO POINT 7.82 13.8 26.6 119 

THREE POINT 6.49 11.4 22.1 96.8 

ONION PEELING 12.2 21.6 42.2 191 

ONION BORDAS 2.88 4.74 8.55 14.6 

DAUN (D=3) 10.2 18.1 35.2 158 

 It is immediately apparent from Table 4.5 that the reconstructions for the modelled photon 

beams are not of the same quality as the proton beams, with errors of 40% for the CAX RMSE, 20% 

for the beam RMSE, and 12% for the entire distribution RMSE. A maximum error of 190% was found 

for the Onion Peeling method. The best performing method was the Hansen-Law method, with a RMSE 

of 2.4%, beam RMSE of 3.9%, CAX RMSE of 6%, and a maximum error of 10%. Interestingly, this is the 

opposite of what was found in the Gaussian and proton beam reconstructions, where the Hansen-Law 

method was among the worst performing. This highlights the variability between the methods for 

different datasets with different noise characteristics, and the importance of testing the methods for 

each type of distribution. The cause of the large reconstruction errors can be easily seen in the Dmax 

profiles, shown in Figure 4.6 for the three-point and Hansen-Law methods as examples. All the 

transform methods have large, oscillatory artefacts on the central axis. For most methods this results 

in a large spike right on the central pixel, as show above for the three-point method. The Hansen-Law 



48 
 

and Onion Bordas methods perform better relative to the other methods as this large central spike is 

not present, as shown for the Hansen-Law above. But this still results in maximum construction errors 

of greater than 10%, and CAX errors of greater than 5%. The presence of this artefact on the central 

axis is highly undesirable for the purposes of this study, as this is the region where the reconstruction 

accuracy is most critical. 

  
(a) (b) 

Figure 4.6. Inverse Abel transform photon beam profile reconstruction accuracy. The inverse Abel transform reconstructed 
proton beam profile is compared to the original distribution PDD for the three-point reconstruction method in (a), and the 
Hansen-Law method in (b). Both figures highlight the large reconstruction artefact found on the central axis, with the three-
point method demonstrating a large spike, while the Hansel-Law method demonstrates a large trough.  

These CAX artefacts result in large errors for the PDDs also, as this artefact is largest in the pixels 

where the PDD is taken. Averaging the central five columns to generate the PDD improves the result 

slightly, but as shown in Table 4.6, the PDD reconstruction errors in the photon beam reconstructions 

remain large for all methods. 

Table 4.6. Inverse Abel transform photon beam PDD reconstruction accuracy. The RMSE is calculated for the inverse Abel 
Transform reconstruction of a MATLAB modelled 192-pixel width photon beam PDD, for the entire distribution and the Bragg 
Peak region, averaged over the central five PDDs, and the maximum error of the reconstruction for the different inverse Abel 
transform methods in PyAbel. 

METHOD RMSE% MAX ERROR (%) 

DIRECT 7.52 13.5 

BASEX 20.5 36.8 

HANSEN-LAW 4.26 7.65 

TWO POINT 9.98 17.9 

THREE POINT 12.1 21.7 

ONION PEELING 18.1 32.4 

ONION BORDAS 7.3 13.1 

DAUN (D=3) 18.2 32.9 
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As observed in the profile analysis none of the reconstructed PDD curves compare well with the 

original, for any of the reconstruction methods. The Hansen-Law and Onion Bordas methods were the 

best performing, but still resulted in an RMSE of at least 4%, and a maximum error of at least 7.5%. 

The BASEX method was the worst performing, with a RMSE of 20%, and a maximum error of 37%.  

These results show that for the reconstruction of MATLAB simulated photon beams, integrated 

using the manual sum method, of the available transform methods in PyAbel the best performing was 

the Hansen-Law method. Despite the reconstruction showing very accurate matching of profiles in the 

penumbra region, the presence of large artefacts in the CAX region resulted in the Hansen-Law 

method having a RMSE of 2.4% for the entire profile or 6% for the CAX, and a PDD RMSE of 4%. 

4.1.4 Concluding Remarks 

The initial functionality testing showed that for a single projection reconstruction using the 

inverse Abel transform, using manually summed projection data, the reconstruction of the TOPAS 

generated proton beams using the Onion Bordas method resulted in a very accurate reconstruction, 

while the reconstruction accuracy of MATLAB generated photon beams was reduced by the presence 

of artefacts on the central axis. As the proton beams were the more accurate beam model, and the 

reconstruction of FLASH proton beams is a likely application of the OC dosimeter, it was decided to 

focus on the characterisation and determining the level of accuracy achievable with this method. The 

photon beam reconstruction could potentially be just as accurate if the prominent CAX artefact could 

be removed, but solving that particular problem fell outside of the timeframe of this study, so remains 

an area of potential future work. 

4.2 Proton Beam Reconstruction Characterisation 

From the initial PyAbel functionality testing, it was determined that the Onion Bordas inverse 

Abel Transform method was the most accurate for the purpose of reconstructing the proton beams in 

this study. The next step was to optimise and fully characterise this reconstruction on a series of 
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different sized proton beams and determine how robust the reconstruction is. Optimising the 

reconstruction will look at the effects of pre- and post- reconstruction filtering, to reduce the noise 

and produce the best quality reconstruction without compromising the spatial integrity. Any effect of 

beam size on reconstruction accuracy has implications for the prototype 3D OC dosimeter design. If 

the proportion of the image occupied by the radiation beam affects the reconstruction accuracy, then 

this would indicate on the maximum and minimum sized radiation beam the dosimeter can measure 

as it is currently designed, indicate a requirement to investigate into minification or magnification 

techniques if this beam size range is not desirable, or determine size requirements for the detector 

array. 

4.2.1 Filtering 

Due to the stochastic nature of a radiation beam, there will always be small fluctuations in the 

dose throughout a Monte Carlo modelled 3D dose distribution. This can be clearly seen in Figure 4.7 

for a zoomed in Dmax profile of a 20mm TOPAS simulated proton beam, and the reconstructed profile. 

These fluctuations appear detrimental to the performance of the inverse Abel Transform 

reconstruction, so pre-reconstruction filtering of the dose distribution to smooth these fluctuations 

out could be beneficial for the reconstruction accuracy. The reconstructed image also contains a noise 

component, that could be reduced with post-reconstruction filtering. 

  
(a) (b) 

Figure 4.7. Filtering of TOPAS proton beam profiles. Zoomed in images of 20mm TOPAS proton beam Dmax profiles, 
highlighting the variation within the distribution. (a) Original Dmax profile. (b) raw and filtered Onion Bordas inverse Abel 
transform reconstructed profiles, with a 7-point rolling average filter applied to reduce the noise in the reconstructed image. 
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The impact of pre- and post-reconstruction filtering was investigated, using a 20mm TOPAS 

simulated proton beam, and the Onion Bordas inverse Abel Transform method. The RMSE, CAX RMSE 

and maximum error was calculated for the reconstructed distribution Dmax profile, with different types 

and level of filtering applied. Both a uniform filter and a Gaussian filter were investigated.  The uniform 

filter replaces the pixel value with the mean value of a range of neighbouring pixels, with the number 

of pixels being averaged specified [113]. The Gaussian filter is similar but weighs the pixels in the 

centre of the specified range more heavily, with the standard deviation of the Gaussian filter being 

specified [114]. These two filtering options were chosen for their smoothing ability, ease of 

implementation within the Python environment and high computational speed.  Uniform filter widths 

of 3, 5, 7 and 9 were tested, while standard deviations of 0.5, 1.0, 1.5 and 2.0 were investigated for 

the Gaussian filter. Figure 4.8 shows how the filtering effected the reconstruction accuracy. 

  
(a) (b) 

  
(c) (d) 

Figure 4.8. Reconstruction error with different levels of filtering. An Onion Bordas inverse Abel transform reconstruction of a 
20mm TOPAS proton beam was used, with different filter specifications for (a) pre-reconstruction uniform filtering, (b) pre-
reconstruction Gaussian filtering, (c) post reconstruction uniform filtering and (d) post reconstruction Gaussian filtering. 
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The pre-reconstruction filter was applied to the projection data before the inverse Abel 

Transform was performed on it, while the post-reconstruction filter was applied to the dose 

distribution after the inverse Abel Transform reconstruction had been performed. A one-dimensional 

filter was used for each filter type, with the filter being applied in the lateral dimension for each row 

of pixels. This prevented any loss of spatial resolution in the z-dimension, crucial for maintaining 

accuracy when determining the Bragg Peak. The additional filtration did not significantly improve the 

reconstruction quality, however. While the error in the central axis region increases slightly with the 

increased filtration, this is offset by a large increase in error in the total distribution and the maximum 

error. The reason for this is apparent when comparing an error plot for reconstruction Dmax profiles 

for a filtered versus a non-filtered reconstruction, as shown in Figure 4.9. 

  
(a) (b) 

Figure 4.9. Effects of filtration on reconstruction error. Plots show the reconstruction error for an Onion Bordas inverse Abel 
transform reconstruction of a 20mm TOPAS proton beam, for an unfiltered beam (a) and the reconstruction with a 7-point 
uniform filter applied (b). 

Clearly, while the filtering slightly improves the noise characteristics in the central axis region, it 

also increases the error at the edge of the beam. This is due to the filter smoothing out the sharp 

definition of the beam edge, as the lower intensity penumbra region gets averaged out with the high 

intensity beam region. This is not a desirable result, so filtering of the entire distribution is not 

beneficial to the reconstruction quality. It would be possible to filter only the central region of the 

beam, reducing the noise in this region while avoiding any beam edge blurring effects. But as the 

improvement to the CAX RMSE is only very slight with this filtering applied, the benefits of filtering 

the manually integrated TOPAS images do not seem worthwhile at this time. 
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4.2.2 Beam Size 

To investigate the effects of the beam size on reconstruction accuracy TOPAS simulated proton 

beams were used, of sizes ranging from 5mm to 40mm in 5mm increments. The manual sum method 

was used to generate the projection data, as described in Section 3.2, then the inverse Abel Transform 

is used on this projection data to reconstruct the original distribution. Following the findings of Section 

4.1.2, only the Onion Bordas method was used. For each of the 8 beam sizes the reconstructed 2D 

image is compared to the central 2D slice of the original distribution. The RMSE, beam RMSE, CAX 

RMSE and maximum error for profiles at the depth of dose maximum, and the RMSE, Bragg Peak RMSE 

and maximum error for PDDs are calculated to quantify the reconstruction accuracy. For the PDDs the 

average over the centre 5 pixels is taken, to reduce the impact an outlying high or low reconstruction 

point has on this calculation. The measures of error in the profile and PDD comparisons are shown in 

Figure 4.10 below, as the error is plotted as a function of the beam size. 

  
(a) (b) 

Figure 4.10. Reconstruction error as a function of beam size. Dmax profiles (a) and PDDs (b) were compared, for TOPAS 
modelled proton beams ranging from 5mm to 40mm in size, for the Onion Bordas inverse Abel transform reconstruction 
method.  

These results show a general increase in reconstruction accuracy as the beam size is increased. 

For the profiles all measures of error decrease as the beam size increases from 5mm to 20mm, then 

remain relatively consistent between 20mm and 40mm in size, except for a small increase in the 

measured errors for the 35mm beam. For the PDDs the error also decreases as the beam size increases 

from 5mm to 20mm, but the error then increases again with beam size, particularly for the calculated 
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max error. The BP RMSE has a large spike for the 35mm reconstruction, but this remains consistent 

for all beam sizes greater than the 20mm beam. 

 The source of the increased error for the smaller beam sizes can be seen in the Dmax profile 

comparisons, shown in Figure 4.11 for the 5mm and 15mm beams. Particularly for the 5mm beam, 

the reconstruction overestimates the dose at the central axis, peaking at around 3.5% larger than the 

original dose. A check of the other transform methods confirmed the Onion Bordas method is still the 

best performing for these smaller beams, with the other transform methods all resulting in maximum 

errors of around 10%. This error is much less pronounced in the 15mm beam reconstruction, with the 

CAX RMSE and maximum error falling to half the size than for the 5mm beam. 

  
(a) (b) 

Figure 4.11. Narrow beam inverse Abel transform reconstruction. Comparisons of Dmax profiles for original and inverse Abel 
Transform reconstructed dose distributions, for a 5mm (a) and 25mm (b) TOPAS proton beam. 

The larger beams in general all perform better than the smaller beams, with the exception of the 

maximum error increasing slightly and a large jump in the Bragg Peak RMSE for the 35mm beam. 

Closer examination of the Dmax profile comparisons indicates the cause of this as a trough in the 

reconstructed profile, located on the central pixels where the PDD is calculated. The exact cause of 

this reconstruction artefact was not determined, but this can be seen in Figure 4.12, showing the 35 

mm proton beam original and reconstructed profiles, alongside the percentage error between the two 

profiles as a function of the beam position.  
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(a) (b) 

Figure 4.12. TOPAS 35mm proton beam inverse Abel transform reconstruction. Comparisons of the Dmax profile for the original 
and inverse Abel Transform reconstructed dose distribution (a), and the calculated percentage error between the distributions 
(b), for a 35mm TOPAS proton beam. 

4.2.3 Proton Beam Characterisation Conclusions 

This section investigated factors effecting the accuracy of the Onion Bordas inverse Abel 

transform, performed on TOPAS simulated proton beam data using the manual sum integration 

method. Filtering of the data did not result in any accuracy improvements, for both pre-reconstruction 

and post-reconstruction filtering. The filtering resulted in increased errors due to the blurring of the 

beam edge before it reduced the error in the central axis region. The size of the radiation beam was 

found to affect the reconstruction accuracy, with the 5mm and 10mm beams showing an increased 

reconstruction error relative to the beams 15mm and larger, for which the reconstruction error 

remained relatively constant. 

4.3 FRED Projection Reconstruction 

From the investigation into single projection reconstruction using the inverse Abel Transform, 

the results from this study indicate the Onion Bordas method performs the best with the TOPAS 

generated proton beam data. This reconstruction has been found to perform better for beam sizes 

15mm and above. So far, these reconstructions have been performed by manually summing the 3D 

dose distribution data along the line of observation of the detector to simulate the projection data 

the OC dosimeter would produce. Due to the simplistic nature of this model, it fails to capture any of 
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the additional noise characteristics that are added by the detector system, so does not represent a 

true simulation of the OC dosimeter prototype. 

To make the integration of the projection data more realistic, the virtual model of the prototype 

OC dosimeter within FRED optical modelling software was used. Different 3D dose distributions were 

imported into the FRED model, and the dosimeter output for each beam was simulated. As described 

in Section 2.2.4 this provides a more accurate representation of the real-life output of the prototype 

OC dosimeter. The difference between the two methods can be clearly seen by comparing the dose 

projection images of each. The FRED projection contains a significant increase in noise relative to the 

manual sum, which can be seen in both the projection images and the Dmax profile comparison for a 

30mm proton beam model in Figure 4.13. 

   
(a) (b) (c) 

Figure 4.13. Comparison of integrated projection images of a 30mm TOPAS proton beam. Integration was performed by a 
manual sum (a), or via the dosimeter model in FRED optical modelling software (b). Comparison of profiles taken through 
Dmax for each projection (c). 

A limitation in the virtual OC dosimeter model became apparent, as the integration performed 

by FRED appeared to saturate at a maximum dose value. This is shown in Figure 4.14. This effect was 

apparent in the smaller beams, where the dose was concentrated over fewer pixels resulting in a 

greater dose per pixel. For the beams 25mm and smaller, the FRED projections did not follow the 

expected curved shape obtained when integrating a cylindrical object, rather appearing cropped in 

the central region of the beam. Unfortunately, the cause for this could not be determined, and it was 

beyond the scope of this project to investigate why this model was breaking down for these smaller 

beams. As such, the FRED reconstructions focused on the 30mm, 35mm and 40mm beam sizes. As 



57 
 

found in section 4.2.2 these larger beams were more accurate to reconstruct than the smaller ones, 

so limiting the study to the larger beams will not compromise the quality of the reconstruction. 

  
(a) (b) 

Figure 4.14. Effects of beam size on the FRED integrated projection data. Comparison of manually integrated and FRED 
integrated projections, for a 20mm (a) and 40mm (b) TOPAS proton beam. The cropping of the top of the FRED projection is 
evident in the 20mm projections, while the 40mm beam follows the shape of the manual projection, albeit noisily. 

The noise in the raw FRED projections was too large to achieve a sensible reconstruction with the 

inverse Abel Transform, with the resulting image showing little resemblance to the original dose 

distribution. It is evident pre-reconstruction filtering the FRED projection would be required to 

generate a usable reconstruction. An example of the effects of filtering on this projection can be seen 

in Figure 4.15, for Gaussian filters of sigma = 3, 6 and 9, compared to the non-filtered projection in 

Figure 4.14 above. The agreement between the manually summed projection data and the FRED 

generated projection data improves as more filtering is applied, with the sigma = 9 filtering showing a 

much better agreement in the centre of the projection compared to the sigma = 3 filter. The 

compromise for this filtering comes at the expense of the edge of the projection, with the sigma = 9 

projection showing poor agreement at the edge of the projection data. The filtering spreads out the 

edge of the projection, creating a filtered projection that is wider than the original. To investigate the 

impact filtering had on the inverse Abel transform reconstruction of FRED projection data, the 

methods of section 4.2.1 were repeated with varying levels of uniform and Gaussian filtering applied 

to the projected image prior to reconstruction. 
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(a) (b) (c) 

Figure 4.15. The effects of filtering on the FRED generated projection data. The FRED projection from the 30mm TOPAS 
modelled proton beam was filtered with a Gaussian filter of sigma = 3 (a), 6 (b) and 9 (c). 

The 30mm beam was chosen to investigate, as the results of 4.2.2 found this to be the most 

accurate of the 3 largest beams to reconstruct. Figure 4.16 shows for various levels of uniform filter 

and Gaussian filter the corresponding RMSE, CAX RMSE and maximum error for the Dmax profile 

comparisons, and the RMSE, Bragg Peak RMSE and maximum error for the PDD comparisons. 

  
(a) (b) 

  
(c) (d) 

Figure 4.16. Reconstruction error for levels of filtering of FRED projection data. Filtering was applied prior to reconstruction, 
using: (a) Uniform filter Dmax profile error. (b) Uniform filter PDD error. (c) Gaussian filter Dmax profile error. (d) Gaussian filter 
PDD error.  
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These results show that a high level of filtering is required to achieve improvements in 

reconstruction accuracy, much greater than what was attempted in section 4.2.1. The best profile 

reconstruction performance occurs for the Gaussian filter with a sigma of 5 or 6. But even with this 

filtering, the reconstruction error remains around 8-10%, above the level of accuracy that would be 

deemed acceptable for dosimetric purposes. The noise in the FRED projection was too great to be 

filtered out to improve the central axis accuracy without excessive blurring of the beam edge and the 

increased error associated with this, as shown in the profile comparisons for reconstructions with 

different levels of Gaussian filtering applied in Figure 4.17.  

  
(a) (b) 

  
(c) (d) 

Figure 4.17. Effects of filtration on FRED projection reconstruction accuracy. This is shown through a comparison of Dmax 
profiles for a 30mm TOPAS proton beam reconstructed using the Onion Bordas inverse Abel Transform method. The unfiltered 
reconstruction for the manually summed projection data is shown in (a). The reconstruction using projection data integrated 
using FRED with different levels of Gaussian filter applied, specified by a standard deviation of (b) 3, (c) 6 and (d) 9. 

In the lighter filtered reconstruction (4.17b), there is still a large level of noise in the 

reconstructed image, with the reconstructed profile fluctuation between 20% above and below the 

original profile. Increasing the filtration reduces this fluctuation, resulting in a better agreement 

between the reconstructed and original profiles, shown here for the medium (4.17c) and heavily 

filtered (4.17d) reconstructions. But as the filtration increases the gradient of the beam edge reduces 
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also. The error introduced by this blurring of the beam edge begins to outweigh any reduction in error 

in the central axis region as the filtering increases. As shown in the heaviest filtered reconstruction, 

an artefact in the centre of the reconstructed distribution remains, while the edges of the distribution 

have been blurred significantly. None of the filtered reconstructions reaches the accuracy of the 

manually summed projection data reconstruction (4.17a). 

Due to the different noise profiles in the FRED projections compared to the manually summed 

projections, the range of inverse Abel transform methods were re-tested on the FRED projection, to 

determine if any of the other methods performed better than the Onion Bordas method. A 40mm 

TOPAS proton beam was used, with a Gaussian filter (sigma = 5) applied to the FRED projection before 

reconstruction. The results for the reconstruction accuracy of the different inverse Abel transform 

methods are shown in Table 4.7. 

Table 4.7. FRED data reconstruction accuracy for different inverse Abel transform methods. A 40mm TOPAS simulated proton 
beam distribution was used, with a Gaussian filter (sigma = 5) used to smooth to the projection before reconstruction. This 
reconstruction was repeated for all available methods in PyAbel. 

 PROFILE PDD 

METHOD RMSE 

(%) 

Beam 

RMSE (%) 

CAX 

RMSE (%) 

Max Error 

(%) 

RMSE 

(%) 

RMSE 

(%) 

Max 

Error (%) 

ONION BORDAS 9.68 13.1 16.1 26.6 12.8 30.8 60.9 

DIRECT 9.89 13.5 16.9 27.4 14.5 41.7 69.4 

BASEX 9.94 13.5 17.0 27.6 15.1 29.2 72.4 

HANSEN-LAW 10.1 13.8 17.4 28.2 14.8 38.7 70.8 

TWO POINT 10.0 13.7 17.3 28.2 15.0 51.5 72.3 

THREE POINT 9.91 13.4 16.9 27.5 14.6 47.9 70.1 

ONION PEELING 9.97 13.6 17.1 27.8 15.2 61.3 73.0 

DAUN (D=3) 9.94 13.5 17.0 27.6 15.0 55.8 71.9 

The different methods all resulted in a near identical reconstruction, with the calculated accuracy 

metrics very similar for all reconstructions. The Onion Bordas method is still the most accurate 

performing out of the range of methods, but there is not a significant difference between them. Figure 

4.18 compares the reconstructed Dmax profiles for the Onion Bordas, Daun and Hansen-Law methods, 

and shows a very similar reconstructed profile for each method. The fact the different methods all 

produce a very similar reconstructed profile suggests the limitation of using the inverse Abel transform 
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to reconstruct the FRED projection data lies in the noise within the projection data, rather than the 

performance of the inverse Abel transform itself. 

   
(a) (b) (c) 

Figure 4.18. Dmax profile comparison for FRED integrated projection data. The Onion Bordas (a), Daun (b) and Hansen-Law (c) 
methods of inverse Abel transform were used for the reconstruction of a 40mm TOPAS simulated proton beam distribution, 
with a Gaussian filter (sigma = 5) used to smooth to the projections before reconstruction. 

The individual methods are reconstructing the data they are given, but there is too much noise 

within that data for that reconstruction to resemble the original distribution. From these results, a 3D 

reconstruction based on the current performance of the prototype OC dosimeter does not appear to 

be feasible. To achieve a reconstruction with a clinically relevant level of reconstruction error, which 

would be in the order of 2% or less, the noise in the FRED projection data needs to be reduced. This 

concept is explored in the next section, with the reduction in noise in the FRED projections required 

to achieve an acceptable reconstruction investigated. 

4.4 FRED Dosimeter Noise Investigation 

The noise in the OC dosimeter system that is modelled in FRED comes from a number of different 

sources [37,56]. Ongoing refinements of the OC dosimeter are aimed at reducing the noise in the 

measurement system to improve performance [56–59]. The levels of noise modelled in FRED can be 

adjusted to replicate these improvements. By modelling a number of incremental dosimeter 

performance increases, the reduction in noise required to produce an accurate 3D reconstruction 

from a single projection using the inverse Abel Transform can be estimated. 

To do this, the 30mm, 35mm and 40mm proton beams were used in the FRED model of the 

prototype dosimeter. The FRED model was modified for each case, generating projection images with 
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the full modelled noise, then 1/2, 1/4, 1/8 and 1/16 of the full noise levels. For each noise level the 

individual components contributing to the noise were modified so the overall noise in the projection 

output contained the desired increment of the full noise level. While the improvements to the OC 

dosimeter performance are unlikely to result in such a uniform change to the noise level as modelled 

here, this analysis is simply to indicate the magnitude of performance increase that will be required. 

A projection image with no modelled noise in the OC dosimeter system was generated also. The 

difference the noise level has on the projection can be clearly observed, with projections for the 40mm 

proton beam with no noise, a quarter of full noise, and the full modelled noise shown in Figure 4.19. 

   
(a) (b) (c) 

Figure 4.19. FRED projections with different levels of modelled noise. A 40mm TOPAS proton beam was run through the FRED 
virtual dosimeter model, at multiple levels of noise modelled within the dosimeter system. The difference in the sharpness of 
the projection between the full noise (a), quarter noise (b), and no noise (c) projections is apparent, especially in the Bragg 
Peak region. 

The Onion Bordas inverse Abel Transform was then performed on each of the FRED projections 

for each beam size, for each level of noise that was modelled. A Gaussian filter (sigma = 5) was applied 

to each projection before reconstruction. The reconstruction accuracy was quantified using 

comparisons of the Dmax profiles and PDDs between the reconstructed image and original image, with 

the RMSE, beam RMSE, CAX RMSE, and maximum error calculated for the profiles, and the RMSE, 

Bragg Peak RMSE, and maximum error calculated for the PDDs. The results for the 35mm and 40mm 

beam reconstructions are displayed in Figure 4.20, as a plot of the reconstruction error versus the 

level of modelled noise. 
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(a) (b) 

  
(c) (d) 

Figure 4.20. Reconstruction error for FRED projections with varying noise. The FRED virtual dosimeter was modelled with 
increments of the full noise within the detector system. The error in the profile reconstructions for a 35mm (a) and 40mm (b) 
TOPAS proton beam, and the error in the PDD reconstructions for a 35mm (c) and 40mm (d) proton beam are shown. 

The reconstruction error is plotted against the fraction of FRED modelled noise, ranging from full 

noise to 1/16th of the full modelled noise. The reconstruction for the FRED projection with no-noise 

modelled in the dosimeter system is shown also, as the theoretical maximum performance scenario. 

For both beam sizes, and for both the profile and PDDs, the reconstruction steadily decreases as the 

modelled noise in the OC dosimeter decreases. The no-noise reconstruction results in errors of 1%, a 

result that is comparable to the manually summed projection reconstructions in section 4.2. For the 

1/8th and 1/16th of the full-noise model, the reconstruction error is around 4%.  

This suggests that the noise in the OC dosimeter is the biggest limitation on the accuracy of the 

3D dose distribution reconstruction from a single projection. The accuracy of the no-noise 
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reconstruction and the improving performance as the level of noise is reduced suggest the 3D dose 

reconstruction accuracy would be improved if the noise in the OC dosimeter is reduced substantially. 

4.5 Square Field Reconstruction 

To confirm the limitations of a single projection reconstruction using the inverse Abel transform, 

the reconstruction of a non-radially symmetric radiation beam was attempted. A MATLAB modelled 

square photon field of 128 pixels in size was used. The Hansen-Law method was used, as this was 

found to be the best performing for the circular photon beams. The original 2D central slice, the 

reconstructed image, and the comparison of Dmax profiles are shown in Figure 4.21 below. 

  
 

(a) (b) (c) 

Figure 4.21. Single projection reconstruction of a MATLAB modelled square field. The Hansen-Law method of the inverse Abel 
transform was used to perform the reconstruction. A slice through the centre of the 3D distribution is shown in (a), and the 
attempted reconstruction of this slice is shown in (b). A comparison of the profiles at Dmax for each is shown in (c). 

As expected, the reconstruction of a non-radially symmetric field using the inverse Abel 

transform did not produce an accurate reconstruction. This confirms the expected result, and it can 

be concluded that the inverse Abel transform is only relevant for radially symmetric fields. 

4.6 Concluding Remarks 

In this chapter the accuracy of using the inverse Abel Transform to reconstruct a 3D dose 

distribution from a single projection was investigated. The PyAbel package was used to implement the 

inverse Abel transform, and the various methods available in PyAbel were tested on a Gaussian 

distribution, then both proton and photon beam models. The Daun method was the most accurate on 

the Gaussian, the Onion Bordas method the most accurate on the proton beam, while the Hansen-
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Law method was the most accurate for the photon beams. As the best photon beam reconstruction 

still resulted in errors of greater than 2% with prominent CAX artefacts present, and the more likely 

application of the OC dosimeter lies in FLASH therapy and proton beams, which are often produced 

circularly with radial symmetry, the decision was made to focus henceforth on proton beam 

reconstruction using the Onion Bordas method. 

The accuracy of an Onion Bordas inverse Abel Transform was determined for a range of proton 

beam sizes, finding that in general the reconstruction error increased for the smaller 5mm and 10mm 

beam sizes but remained relatively consistent for sizes 15mm and larger. FRED optical modelling 

software was then used to provide a more accurate model of the prototype dosimeter system, with 

an accurate representation of the noise in the detector system. This decreased the reconstruction 

performance significantly, with the error in the reconstruction being unable to be reduced below 8%. 

While this indicates the current dosimeter system is unable to perform a 3D reconstruction from a 

single projection to an acceptable accuracy with the current levels of noise in the OC dosimeter 

system, future improvements to the dosimeter system can be modelled as noise reductions in FRED. 

From this, it was determined that the noise would have to be reduced substantially to achieve results 

within the range of the desired reconstruction accuracy. 

This determines that 3D dose reconstruction from a single projection is possible, albeit with 

improvements to the dosimeter required. But there are limitations of the single projection 

reconstruction technique. For one, this would restrict the application of the OC dosimeter to only 

radially symmetric beams. While these are used in clinical radiation therapy, particularly in the 

emerging field of FLASH therapy where the OC dosimeter is most likely to be utilised, historical and 

current clinical MV photon and MeV electron dosimetry protocols commonly specify reference 

dosimetry in terms of square fields [32,33]. For this dosimeter to be viable across all aspects of clinical 

dosimetry the ability to handle square fields is desirable. Another limitation is that the single 

projection approach will not reconstruct any information about any asymmetries in the radially 
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symmetric beam. While this is acceptable for absolute dose measurements on the central axis, or 

averaged profiles through the beam, any details on the flatness and symmetry of the beam will not be 

determined from a one projection reconstruction. 

As such, then next chapter will investigate the reconstruction accuracy achievable with a two-

projection reconstruction technique. This is the least possible increase to the mechanical complexity 

of a 3D OC dosimeter that has the potential to reconstruct square fields and determine the flatness 

and symmetry of radiation beams. 
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Chapter 5: Two Projection Reconstruction 

 Chapter 4 showed that the inverse Abel transform could perform an accurate tomographic 

reconstruction from a single projection, provided the 3D distribution of interest had radial symmetry 

and low noise. But the inverse Abel transform is limited to only radially symmetric distributions, with 

it unable to reconstruct, for example, a square field. This chapter will investigate the use of two 

orthogonal projections for the reconstruction of simple square radiation fields. The modifications to 

the prototype OC dosimeter required to capture two orthogonal projections simultaneously are 

relatively minor, involving a second object beam split from the original and directed towards a second 

camera, so only a small increase to the mechanical complexity of the OC dosimeter. While this is less 

desirable than a single projection reconstruction, where no modification to the prototype dosimeter 

was required, the potential benefits of a two-projection reconstruction lie in the ability to move 

beyond being limited to radially symmetric radiation fields. Being able to reconstruct the square fields 

commonly used in clinical radiation dosimetry or determine any asymmetries in the radiation beam 

such as the flatness and symmetry would increase the clinical utility of the OC dosimeter, so is worthy 

of investigation. 

The focus of this chapter will be on investigating the performance of various tomographic 

reconstruction algorithms to reconstruct simple square, rectangular and circular fields, using only two 

projections. Circular fields will allow a comparison back to the single projection reconstruction using 

the inverse Abel Transform and determine any differences in reconstruction accuracy between the 

two techniques. Reconstruction of any complex beam features is likely outside the capabilities of a 

two-projection reconstruction, but it is hoped that for basic fields a two-projection tomographic 

reconstruction will be able to provide useful information. These simple fields are still clinically 

relevant, representing the radiation beams delivered during reference dosimetry measurements.  

Initially the Filtered Back Projection (FBP) algorithm will be used, before investigating the use of 

a Fast Fourier Transform (FFT) reconstruction. For the reasons discussed in Section 2.4.4, only these 
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two approaches will be considered for the two-projection reconstruction investigation. For this 

MATLAB modelled photon beam data was used, the generation of which is described in Section 3.1. 

The TOPAS modelled proton beams were not investigated in this chapter, as the previously modelled 

beams had radial symmetry, so the inverse Abel transform was used. TOPAS modelled square beams 

were not generated, as it was desirable to test a wide range of beam parameters to characterise the 

effect each had on the reconstruction accuracy. The long duration of the TOPAS simulations would 

have limited the number of beams that could be simulated in the timeframe of this study, so the 

MATLAB reconstructions were considered more desirable for their speed of modelling and ease of 

modification of beam features. 

The reconstruction accuracy for the different reconstruction algorithms was determined as per 

the methods described in Section 3.3, and was tested for a variety of size, shape, and intensity of 

radiation beams, and for different levels of modelled noise within both the radiation beam and the 

background region. To increase the complexity and better model clinical radiation beams, additional 

features such as beam penumbra and a wedged intensity field were also modelled. The projection 

data was generated using MATLABs radon function [115] for the FBP reconstructions, and a manual 

sum for the FFT reconstructions. If the two-projection reconstruction with either technique proves 

accurate enough, the investigation will be repeated using FRED to simulate the projections, allowing 

for a more realistic model of the output of the OC dosimeter. 

5.1 Filtered Back Projection Reconstruction 

Filtered back projection was chosen as the initial tomographic reconstruction algorithm to test 

as it is a well-established and well understood algorithm and is easy to implement in MATLAB using 

the iradon function [116]. It is also quick to compute, saving computational time when simulating a 

large variety of beam features. In general, most reconstructions using a FBP algorithm would require 

many more than two projections to accurately determine any features within the reconstructed 

image. However, as this current application relies only on very basic shapes with homogenous levels 
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of dose within them, it is hoped a two-projection reconstruction may contain enough information for 

the purposes of this study.  

Initial reconstruction attempts were performed on square and circular beams 128 pixels in size, 

while the rectangular beam was defined as 160 x 80 pixels, each centred within a 256x256 background 

array. These fields are shown in Figure 5.1 (a-c).  

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5.1. Initial two-projection FPB reconstruction attempts. Two orthogonal projections were taken of a square (a), 
rectangular (b) and circular (c) radiation field. These projections were reconstructed using a Filtered Back Projection 
reconstruction algorithm with the default Ram-Lak filter (d), (e) & (f). Profiles along the x-axis through the centre of the 
radiation beam (g), (h) & (i) compare the reconstructed profile to the profile through the original radiation beam. 

The beams were given a nominal dimensionless dose value of 1.0, while the background was set 

at 0.0. No noise or penumbra was added to keep the fields simple initially. Projection data was 

generated using MATLABs radon function, summing the data along the X-axis and Y-axis. MATLABs 
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iradon function was then used on the projections to perform the FBP reconstruction, using the default 

Ram-Lak filter. The reconstructed images are shown in Figure 5.1 (d-f). Reconstruction accuracy was 

evaluated using profiles taken through the centre of the original and reconstructed images, along the 

X-axis, as shown in Figure 5.1 (g-i). From these profiles the RMSE, Beam RMSE and CAX RMSE were 

calculated to quantify the reconstruction accuracy. It is immediately clear that a two-projection FBP 

reconstruction of these basic shapes results in several large reconstruction artefacts. The square and 

rectangle reconstructions feature very large regions of over- and under- response at the beam edge, 

while the centre of the radiation beam reconstructs around 30% low for the square and 20% low for 

the rectangle. Interestingly, the circular field does a better job of reconstructing as a square than the 

square field does, with a very noisy but on average accurate reconstruction of the profile through the 

centre of the beam, and an accurate reconstruction of the dose at the central axis. However, these 

profiles are only accurately matching for orthogonal angles through the centre of the beam. One area 

where the reconstruction does perform well is determining the beam edge of the square and 

rectangular beams, as evidenced in the profiles in Figure 5.1. 

The large reconstruction artefacts at the beam edge for the square and rectangular FBP 

reconstructions make it unlikely that an accurate full reconstruction can be performed using only two 

projections through the direct application of the Radon transform. However, the circular beam 

reconstruction suggests a reconstruction of the CAX dose is possible with two projections. Other useful 

information could still be obtained from the reconstructions, such as the position of the beam edge, 

or the way that the reconstruction accuracy is related to beam parameters such as size and intensity, 

and beam features such as noise and penumbra. The focus for the rest of the FBP investigation will be 

to see if this CAX dose can be accurately determined, as this could be considered the most clinically 

important feature to characterise accurately. The beam and CAX RMSE will be the primary quantifiers 

of reconstruction accuracy for this section.  
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5.1.1 FBP Filter Choice 

The iradon function in MATLAB contains five filter options: the default Ram-Lak filter, and the 

Shepp-Logan, Cosine, Hamming and Hann filters. Each of the latter four filters modifies the Ram-Lak 

filter to reduce the contribution of high frequency components to the reconstruction. The 

reconstructions for the square, rectangle and circle field were repeated with each of the filter types 

to investigate the effect the choice of filter had on reconstruction accuracy, as shown in Table 5.1. 

Table 5.1. Two-projection FBP reconstruction accuracy with filter. The range of filters available in MATLABs iradon function 
were tested, for square, rectangular, and circular MATLAB modelled photon beams. 

FILTER 
SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX 
RMSE (%) 

Beam 
RMSE (%) 

CAX 
RMSE (%) 

Beam 
RMSE (%) 

CAX 
RMSE (%) 

RAM-LAK 31.1 36.0 18.5 19.9 17.4 13.0 
SHEPP-LOGAN 31.1 36.0 18.4 19.9 14.5 11.1 
COSINE 31.1 36.0 18.4 19.9 9.91 8.57 
HAMMING 31.1 36.0 18.4 19.9 7.96 7.43 
HANN 31.1 36.0 18.4 19.9 7.44 7.21 

 From this, it is clear the choice of filter has no significant effect on the central reconstruction 

accuracy for either the square or the rectangular field. The circular field reconstruction showed good 

improvement with the filter choice, with the Hann filter reducing the CAX RMSE to 7%. These results 

are expected when looking at the nature of the reconstruction artefacts between the square and 

circular fields, with the square field dominated by a large smooth underestimation of the dose, while 

the circular field is dominated by high frequency oscillations. The different FBP filters reduce the 

contribution of the high frequency components to the reconstruction, which is shown in these results 

as a reduction in the CAX RMSE for the circular field. As the Hann filter is the best performing out of 

the filter options available in iradon, it will be used exclusively for the rest of the FBP investigation. 

5.1.2 Beam Size 

The next step in the two-projection FBP reconstruction investigation was to look at the effect of 

the beam size on the reconstruction accuracy. The radiation beams were all modelled within a 

256x256 array, with the radiation beam centred within this. Beams of 32, 64, 96, 128, 160 and 192 
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pixels in size were used for the square and circle beams, while the rectangular field used the same 

sizes for the x-dimension and 80 pixels for the y dimension. As described in Section 3.1, the use of 

beam expansion and magnification or minification techniques makes the actual width of the modelled 

radiation beam arbitrary, rather it is the proportion of the 256-pixel image array the radiation beam 

occupies that is of interest. The beam RMSE was not calculated for any 32- or 64-pixel fields, as the 81 

pixels this is defined as is larger than the radiation beam itself for these. The CAX RMSE was also 

reduced to the central 11 pixels for the 32-pixel fields for the same reason. The results for these 

reconstructions are shown in Table 5.2 below. 

Table 5.2. Two-projection FBP reconstruction accuracy with field size. Various sized square, rectangle, and circular MATLAB 
modelled photon beams were investigated. 

BEAM SIZE 
(PIXELS) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

32 n/a 33.4 n/a 5.12 n/a 7.51 
64 n/a 34.8 n/a 33.0 n/a 8.30 
96 28.2 35.7 27.4 34.6 6.62 7.71 

128 31.1 36.0 25.5 28.6 7.44 7.21 
160 33.2 36.1 18.4 19.9 6.43 6.33 
192 34.2 36.2 8.97 9.76 6.91 6.21 

Increasing the beam size steadily decreases the accuracy of the square field reconstruction, with 

the CAX RMSE increasing from 33% to 36% as the beam size increases from 32 to 192 pixels. The 

rectangle field reconstruction showed a different trend, with a reduced error for the smallest beam 

(5%), jumping up to above 30% for the middle-sized beams. The reconstruction error then steadily 

reduced as the beam size increased, finishing with a CAX RMSE of 10% for the largest field. The circle 

beam steadily improved from 8% to 6% as the beam size increased. 

5.1.3 Beam Intensity 

All the beams modelled in MATLAB so far have had a background intensity of 0.0, representing 

the assumption of a background subtraction being performed during the processing of the prototype 

OC dosimeter output. Based on FRED simulations of the dosimeter output for un-irradiated water, this 

background should have a value of 0.02. The same FRED simulations were run for different levels of 
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dose, to determine the pixel value relative to the background level for each dose level, as shown in 

Table 5.3. Setting the background to 0.02 and varying the intensity of the beam relative to this 

investigates the contrast sensitivity of a two-projection reconstruction and could determine a 

minimum level of dose required to achieve an accurate reconstruction. 

Table 5.3. Relationship between dose and pixel value for FRED modelled radiation beams. 

DOSE (GY) PIXEL VALUE RELATIVE TO 
BACKGROUND 

0 0.02 1.0 
0.5 0.034 1.7 
1.0 0.05 2.5 
2.0 0.10 5.0 
4.0 0.25 12.5 
8.0 0.45 22.5 

16.0 0.80 40.0 

Square, circle, and rectangular radiation beams 128 and 160x80 pixels in size respectively were 

modelled in MATLAB, with beam intensity values matching the dose values in Table 5.3 and the 

background intensity set to 0.02. The beam and CAX RMSE were calculated for each reconstruction, 

for each of the beam shapes. The relationship between beam intensity and reconstruction accuracy is 

shown in Figure 5.2. 

 

Figure 5.2. Relationship between the reconstruction error and dose. A two-projection filtered back projection reconstruction 
was performed, for varying levels of dose in a MATLAB modelled square, rectangular, and circular photon beams. 

For all measures of error for each of the beam shapes, the calculated reconstruction error was 

consistent with delivered dose for doses above 4 Gy but increases as the intensity is reduced below 
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this. Based on this result, to avoid adding additional error the dose measured with the prototype OC 

Dosimeter using a two-projection reconstruction should be limited to use in applications where doses 

of 4 Gy or more are delivered. 

5.1.4 Beam Noise 

Due to the stochastic nature of a radiation beam, small fluctuations in the measured dose within 

the beam are expected [67,70]. A simple model of this feature can be added to the MATLAB beam 

model by adding random noise to each pixel of the image, as a percentage of the maximum dose 

value. The dose reconstruction was repeated for the standard square, circle and rectangular radiation 

fields used above, but with various levels of additional noise added to the beam model. The effect this 

noise has on the reconstruction accuracy can then be quantified, as shown in Table 5.4. 

Table 5.4. Two-projection FBP reconstruction error for various levels of added noise. Square, rectangular, and circular MATLAB 
modelled photon beams were used in the reconstruction. 

ADDED 
NOISE (%) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0 31.1 36.0 18.4 19.9 7.44 7.21 
0.5 31.2 36.0 18.5 19.9 7.38 7.20 
1.0 30.9 35.7 18.6 20.1 7.44 7.31 
2.0 30.9 35.6 18.5 20.3 7.75 7.04 
5.0 32.8 37.0 18.9 20.7 8.94 9.02 

The additional noise has little impact on the reconstruction error for either the square, rectangle, 

or circular radiation beam, with the beam and CAX RMSE remaining constant with as the added noise 

increases. Only when the additional noise reached 5% did the calculated reconstruction error increase. 

This suggests the two-projection approach using filtered back projection is relatively insensitive to 

noise. 

5.1.5 Beam Penumbra 

One way to make the MATLAB modelled radiation beams more representative of a clinical 

radiation beam is to approximate the penumbra at the beam edge. For these models, this was done 

using a tanh(x) function for a region of the dose distribution at the beam edge, the size of which was 
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defined as the penumbra width. The width of the penumbra could be varied, and the resulting effect 

this has on the reconstruction accuracy investigated. These results can be found in Table 5.5. 

Table 5.5. Two-projection FBP reconstruction accuracy with penumbra width. Square, rectangular, and circular MATLAB 
modelled photon beams were investigated. 

PENUMBRA 
WIDTH 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0 31.1 36.0 18.4 19.9 7.44 7.21 
8 30.2 35.9 15.5 17.0 5.47 7.00 

16 29.2 35.8 11.6 13.2 5.29 7.18 
24 28.2 35.8 6.37 7.94 4.97 7.00 
32 29.6 35.6 3.04 0.12 5.34 7.18 
40 35.8 35.5 16.5 14.1 9.11 7.18 
48 31.8 35.3 41.0 38.7 13.0 6.94 

The beam RMSE and CAX RMSE was calculated for each shape of radiation field, for a penumbra 

width ranging from 8 pixels to 48 pixels on all edges of the radiation beam. The results show that for 

the square fields the reconstruction error remained constant with increasing penumbra width, with a 

beam RMSE of around 30% and CAX RMSE of around 35%. The rectangular and circular fields showed 

more variation, with both rectangle error measures and the circle beam RMSE decreasing as the 

penumbra width increased to 32 pixels. As it increased above 32 pixels the error increased again. The 

circle CAX RMSE remained constant over all beam sizes.  

The cause of this variation in the rectangular field reconstruction beam RMSE is due to the large 

beam edge artefact moving towards the centre of the beam as the penumbra width is increased, so 

the beam region begins to include this in the RMSE calculations for the largest widths. The rectangle 

CAX RMSE error is variation is notable, as it reaches a minimum value of 0.1% for the 32-pixel 

penumbra with, which would indicate an accurate reconstruction. This reconstruction is examined 

more closely in Figure 5.3. Looking at the rectangle beam reconstructed and original profile 

comparisons for the 24-, 32- and 40-pixel penumbra widths, it is evident that the reconstruction still 

contains the large beam edge artefact. But as the penumbra width is increased and the edge of the 

dose distribution becomes more curved, this artefact flattens and spreads out, increasing the 

reconstructed dose in the centre of the reconstruction. 
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(a) (b) (c) 

Figure 5.3. Effects of penumbra on two-projection FBP rectangular field reconstruction. Dmax profiles are compared for the 
original MATLAB modelled rectangular photon beam distribution and the reconstructed distribution, for 24-pixel (a), 32-pixel 
(b), and 40 (c) width of modelled penumbra. 

For the 32-pixel penumbra, this causes a close agreement between the reconstructed and 

original dose in the centre of the distribution. Unfortunately, this low reconstruction error appears to 

be a coincidence caused by the beam edge artefact, rather than a sign of an accurate reconstruction. 

As the reconstruction still contains large reconstruction artefacts at the beam edge, and the CAX dose 

reconstruction is not accurate for other widths of modelled penumbra, this reconstruction is not 

deemed to be reliable. 

5.1.6 Wedged Intensity Beam 

An additional complexity that can be added to the MATLAB modelled radiation beams is a 

wedged intensity across the dose distribution. Wedged fields are a treatment technique used to 

compensate for patient contour or tissue inhomogeneity variations [117]. Provided that one of the 

orthogonal projections used in the two-projection reconstruction technique is parallel to the wedge 

angle, a wedged intensity field represents another complexity of a clinical radiation beam that can be 

incorporated into the MATLAB beam model. 

Here, the wedge angle is defined as the magnitude of the variation of the dose intensity across 

the width of the distribution. For example, the 40° wedge will result in a dose variation of 1.2 to 0.8 

across the 128-pixel beam width. Wedge angle was varied from 0 to 60° in 10° increments, for each of 

the square, rectangle, and circle radiation beams. Beam RMSE and CAX RMSE were calculated for each 

reconstruction. The variation of reconstruction accuracy with wedge angle can be found in Table 5.6. 
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Table 5.6. Two-projection FBP reconstruction accuracy for a variety of wedge angles. Square, rectangular, and circular 
MATLAB modelled photon beams were investigated. 

WEDGE 
ANGLE (°) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0 31.1 36.0 18.4 19.9 7.44 7.21 
10 31.1 36.0 18.5 19.9 7.44 7.21 
20 31.1 36.0 18.6 19.9 7.45 7.22 
30 31.2 36.0 18.7 20.0 7.46 7.22 
40 31.2 36.1 18.9 20.0 7.48 7.23 
50 31.2 36.1 19.1 20.1 7.49 7.24 
60 31.2 36.1 19.4 20.1 7.51 7.24 

These results show that the wedge angle had very little effect on the error in the reconstruction, 

for both the beam RMSE and CAX RMSE, for the square, rectangle, and circle beam reconstructions. 

This can be confirmed through an examination of profiles comparing the original dose distribution to 

the reconstructed one, such as the one in Figure 5.4 for the reconstruction of circular and square 

beams with a 60° wedge applied. 

  
(a) (b) 

Figure 5.4. Wedged intensity beam two-projection FBP reconstruction profile comparison. The Dmax profiles for original 
MATLAB modelled circular (a) and square (b) photon beam distributions, and the reconstructed distributions are displayed, 
for beams with a 60° wedged intensity modelled. 

These profiles show that for the circular beam the wedge angle is reconstructed almost perfectly. 

The beam edge artefact and noise in the beam region are still present, unchanged from the unwedged 

beam, but the gradient of the reconstructed dose matches the original dose well. For the square field 

the large artefacts in the reconstruction make it hard to make a conclusive judgement on any changes 

to the reconstruction accuracy with wedge angle. 
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5.2 Fast Fourier Transform Reconstruction 

The second tomographic reconstruction algorithm to investigate for the two-projection 

reconstruction portion of this study is the Fast Fourier Transform (FFT). This follows a similar structure 

to the FBP reconstruction, with initial reconstruction attempts performed on 256x256 MATLAB 

generated beam models representing an x-y slice of dose at depth, as shown in Figure 5.5 (a-c).  

   

(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5.5. Initial two-projection FFT reconstruction attempts. Two orthogonal projections were taken of a square (a), 
rectangular (b) and circular (c) radiation field. These projections were reconstructed using a FFT reconstruction algorithm (d), 
(e) & (f). Profiles along the x-axis through the centre of the radiation beam (g), (h) & (i) compare the reconstructed profile to 
the profile through the original radiation beam. 
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The modelled beams consisted of a 128x128 pixel square radiation beam, a 128-pixel diameter 

circular beam, and a 160x80 pixel rectangular beam. The beams had a dose value of 1.0 and the 

background 0.0. Projection data was generated by summing through the dose distribution at 

orthogonal angles, along the x and y axis. A simple Fourier reconstruction algorithm was developed, 

with the FFT of the projections taken and summed in k-space, then the inverse FFT taken to produce 

the reconstructed image. The reconstructed image was then scaled proportional to the width of the 

radiation beam in each projection to reconstruct the dose. The reconstruction accuracy was evaluated 

using profiles taken through the centre of the original and reconstructed images, along the X-axis. 

From these profiles the RMSE, beam RMSE and CAX RMSE were calculated to quantify the 

reconstruction accuracy, as defined in Section 3.3. The initial attempts at a FFT reconstruction of a 

square, rectangular, and circular field are shown in Figure 5.5 (d-f). These initial reconstructions 

resulted in more accurate reconstructions compared to the FBP two projection reconstructions, with 

no sign of the large reconstruction artefacts that were prevalent in the FBP technique, as displayed in 

Figure 5.5 (g-i). The square field results in a near perfect reconstruction in the beam region, with an 

overestimation of the dose outside of this. The rectangular field results in a slight overestimation of 

the dose, while the circle field is accurate in the very centre of the beam but underestimates the dose 

towards the edge of the beam. 

This square field result is particularly promising, capable of a very accurate reconstruction of a 

square field from two orthogonal projections. The next step was to characterise the FFT reconstruction 

for a range of beam sizes and intensities, and then investigate the effect adding features more 

representative of a clinical radiation beam has on the reconstruction accuracy, such as noise, 

penumbra, and wedged intensity. 

5.2.1 Beam Size 

Similar to Section 5.1.2 for the FBP reconstruction, the effect the size of the radiation beam, and 

hence the width of the beam within the image array, has on the reconstruction quality is investigated. 



80 
 

Beams of 32, 64, 96, 128, 160 and 192 pixels in size were modelled for the square and circle beams, 

while the rectangular field used these same sizes for the x-dimension and 80 pixels for the y-

dimension. The beam RMSE was not calculated for any 32- or 64-pixel fields, as the 81 pixels this is 

defined as is larger than the radiation beam for these fields. The CAX RMSE was also reduced to the 

central 11 pixels for the 32-pixel fields for the same reason. The results for these reconstruction 

attempts are displayed in Table 5.7. 

Table 5.7. Two-projection FFT reconstruction accuracy for a variety of beam sizes. MATLAB modelled square, rectangular, and 
circular photon beams were investigated. 

BEAM SIZE 
(PIXELS) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

32 n/a 0.0 n/a 10.7 n/a 2.89 
64 n/a 0.0 n/a 0.62 n/a 1.47 
96 0.0 0.0 0.42 0.42 9.84 0.98 

128 0.0 0.0 2.77 2.77 5.16 0.74 
160 0.0 0.0 6.07 6.07 3.28 0.59 
192 0.0 0.0 9.73 9.73 2.26 0.49 

The two-projection FFT reconstruction generated no error for the square field reconstruction, 

with the original and reconstructed dose distributions agreeing perfectly for all beam sizes. The 

rectangular field reconstruction was best for the 96-pixel beam with a 0.4% error for both the beam 

and CAX RMSE, before the error increased as the field sized increased or decreased. The circle beam 

steadily improved in accuracy as the beam size increased, with the largest beam size resulting in a 

2.2% beam RMSE and a 0.5% CAX RMSE. 

5.2.2 Beam Intensity 

Following the procedure of 5.1.3, the background pixels were set to a value of 0.02 to represent 

un-irradiated water, and the beam pixels set to various values corresponding to various levels of 

deposited dose, to investigate the effects of beam intensity of the reconstruction accuracy. The results 

for this investigation can be found in Table 5.8. 
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Table 5.8. Two-projection FFT reconstruction accuracy with beam intensity. MATLAB modelled square, rectangular, and 
circular photon beams were investigated. 

BEAM 
INTENSITY 

(GY) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0.5 20.3 20.3 21.6 21.6 21.0 20.3 
1.0 29.7 29.7 31.6 31.6 30.7 29.7 
2.0 39.8 39.8 39.8 39.8 41.1 39.7 
4.0 45.8 45.8 45.8 45.8 47.3 45.8 
8.0 47.6 47.6 47.6 47.6 49.1 47.5 

16.0 48.5 48.5 48.5 48.5 50.2 48.5 

Interestingly, the FFT reconstruction error showed the opposite relationship to beam intensity 

compared to the FBP reconstruction, with the largest errors found for the high dose beams, and the 

error decreasing as the dose increased. The large error is likely a result of the background pixels having 

a non-zero intensity value, so when these are included in the integration of the projections it creates 

a scaling error in the final reconstruction. The error decreasing with dose, and therefore the relative 

difference between the background and beam pixels, is unexpected. From this result it is 

recommended that a background correction be performed prior to the FFT reconstruction to avoid 

this error. 

5.2.3 Beam Noise 

To create a more accurate model of a clinical radiation beam, random noise was added to each 

of the beam models to represent the fluctuations found throughout a dose distribution due to the 

stochastic nature of radiation. The reconstruction accuracy for each beam shape was determined for 

several noise levels, ranging from 0.5% to 5%, as show in Table 5.9. 

Table 5.9. Two-projection FFT reconstruction accuracy with modelled noise levels. MATLAB modelled square, rectangular, and 
circular photon beams were investigated. 

ADDED 
NOISE (%) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0 0.0 0.0 6.07 6.07 5.16 0.74 
0.5 0.29 0.29 6.05 6.05 5.16 0.71 
1.0 0.56 0.64 6.10 6.34 5.14 1.17 
2.0 1.15 1.08 6.18 6.03 5.36 0.99 
5.0 2.7 2.67 6.43 7.46 5.81 2.46 
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Despite the beam and RMSE error steadily increasing as the noise increased for the square 

reconstruction, this error remains at around half the amount of noise added to the radiation beam. A 

comparison of the original and reconstructed profiles for the square field with 1% and 5% noise added 

is shown in Figure 5.6, with the reconstructed dose proving a good estimate of the average of the 

original dose distribution. 

  
(a) (b) 

Figure 5.6. Effects of noise on the two-projection FFT reconstruction. The Dmax profiles for a MATLAB modelled square photon 
beam distributions and the reconstructed distributions is shown, with 1% (a) and 5% (b) noise within the beam modelled. 

For the rectangle and circular beams, the reconstruction error remained at a level similar to the 

zero-noise reconstruction for up until 2% noise added. A larger increase in reconstruction error for the 

5% added noise was observed, but the magnitude of this increase in error remained smaller than the 

level of noise added. These results suggesting the two projection FFT reconstruction is relatively 

insensitive to noise, for square, rectangular, and circular field reconstruction. 

5.2.4 Beam Penumbra 

Adding penumbra to the beam model is another way of making the making the MATLAB beam 

model a closer approximation of a clinical radiation beam. Penumbra were added to the beam edge 

by the same method as described in Section 3.1, for each of the square, rectangle, and circular fields. 

The resulting reconstruction error calculated as the penumbra width is increased is displayed in Table 

5.10. 
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Table 5.10. Two-projection FFT reconstruction accuracy with different penumbra width. MATLAB modelled square, 
rectangular, and circular photon beams were investigated. 

PENUMBRA 
WIDTH 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0 0.0 0.0 6.07 6.07 5.16 0.74 
8 3.23 3.23 1.53 1.53 7.12 2.38 

16 8.20 8.20 2.58 2.58 12.2 7.37 
24 13.3 13.3 7.62 7.62 17.8 12.5 
32 18.6 18.6 13.5 13.5 23.6 17.9 
40 22.0 22.8 19.1 19.1 28.1 23.4 
48 25.9 28.6 24.7 24.7 30.7 29.1 

For the square and circle fields investigated, adding penumbra to the beam model resulted in a 

significant increase in the reconstruction error, with this error increasing as the penumbral width is 

increased. For the rectangular field, the 8- and 16-pixel penumbra width beams resulted in a reduction 

in the calculated reconstruction error, before the error began to increase as the penumbra width was 

increased beyond this. Much like the case for the rectangular field and penumbra width for the FBP 

reconstruction, this was a result of the error introduced into the reconstruction by the penumbra 

counteracting the natural overestimation of the dose for the rectangular beam, rather than a removal 

of the individual sources of error themselves. This can be seen in the profile comparisons of the 

rectangle beam with 0-, 16- and 32-pixel penumbra width in Figure 5.7 below. 

   
(a) (b) (c) 

Figure 5.7. Effects of penumbra on two-projection FFT rectangular field reconstruction. Dmax profiles for the original dose 
distribution and the reconstructed dose distribution are compared, for a MATLAB modelled rectangular photon beam with 
modelled penumbra of 0 (a), 16 (b) and 32 (c) pixels in width. 

5.2.5 Wedged Intensity Beam 

The final beam complexity investigated for the two-projection FFT reconstruction was the 

addition of a wedged intensity to the radiation beam model. With the wedge angle aligned parallel to 
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one of the orthogonal projections, the reconstruction was repeated for the square, rectangle, and 

circular fields, for a variety of wedge angles defined as in 5.1.6. The results from this investigation are 

shown in Table 5.11. 

Table 5.11. Two-projection FFT reconstruction accuracy with wedge angle. MATLAB modelled square, rectangular, and 
circular photon beams were investigated. 

WEDGE 
ANGLE (°) 

SQUARE RECTANGLE CIRCLE 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

Beam 
RMSE (%) 

CAX RMSE 
(%) 

0 0.0 0.0 6.07 6.07 5.16 0.74 
10 0.92 0.13 6.12 6.05 5.27 0.75 
20 1.84 0.25 6.32 6.03 5.57 0.78 
30 2.76 0.38 6.65 6.02 6.05 0.83 
40 3.68 0.50 7.10 6.01 6.66 0.90 
50 4.60 0.63 7.63 6.01 7.37 0.97 
60 5.52 0.76 8.25 6.01 8.15 1.06 

The reconstruction error steadily increases as the wedge angle increases, for all measures of error 

apart from the rectangle CAX RMSE, which remained constant at 6% for all wedge angles. This increase 

in error was particularly prominent for the square field beam RMSE, increasing from zero error for the 

unwedged beam to 5.5% error for the 60° wedged beam. This can be illustrated from looking at the 

reconstructed profiles shown in Figure 5.8 for the square fields with a 0°, 30° and 60° wedge. 

   
(a) (b) (c) 

Figure 5.8. Two-projection FFT reconstruction accuracy for wedged intensity square fields. Dmax profiles for the original dose 
distribution and the reconstructed dose distribution are compared, for a MATLAB modelled square photon beam with a 0° 
(a), 30° (b) and 60° (c) wedge modelled. 

The profile comparisons show that the FFT reconstruction is unable to reconstruct a wedged 

angle correctly, with the magnitude of the angle being underestimated. This results in a reconstruction 

error that increases in magnitude further from the central axis of the beam and increases as the wedge 

angle increases.  
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5.3 IMRT Field Reconstruction 

The final step in the two-projection reconstruction investigation is to look at what happens when 

the FBP and FFT reconstructions attempt to reconstruct a square field with a more complex, 

inhomogeneous dose distribution within it. This approximates an Intensity Modulated Radiation 

Therapy (IMRT) radiation field, containing different dose levels and multiple dose gradients in both 

dimensions within the radiation beam. It must be acknowledged that as the two-projection 

reconstruction of simple fields did not perform a tomographic reconstruction accurately, it is expected 

that the reconstruction of a more complex field will also not result in an accurate reconstruction. The 

purpose of this section is to establish a baseline for the IMRT beam reconstruction accuracy, for 

comparison to the multi-projection technique in Chapter 6. The IMRT beam was modelled as described 

in Section 3.1.  

A two-projection reconstruction was performed for both the FBP and FFT reconstruction 

algorithms. The reconstruction accuracy was assessed through the comparison of profiles through the 

original and reconstructed dose distribution, with the RMSE, Beam RMSE and CAX RMSE calculated as 

detailed in 3.3. The results of the IMRT beam reconstruction are shown in Table 5.12 below. 

Table 5.12. Two-projection IMRT field reconstruction accuracy. A two-projection FBP and FFT reconstruction of a MATLAB 
modelled IMRT photon field was investigated. 

METHOD 
IMRT 

RMSE (%) CAX RMSE 
(%) 

Beam 
RMSE (%) 

FBP 46.4 45.5 62.3 
FFT 24.6 26.0 36.8 

Both the FBP and FFT two-projection reconstruction methods fail to reconstruct the IMRT 

distribution accurately. The calculated RMSE for the reconstructions was 46% and and 26% for the 

central axis region and 37% and 62% for the beam region, for the FBP and FFT recontructions 

respectively. Both a comparsion of the reconstructed distributions to the original image and a 

comparison of the profiles show the FBP projection suffers from large artefacts occuring at each 

individual dose gradient, while the FFT reconstruction flattens the dose gradients out, causing the 
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regions of differing dose to become almost indistinguishable. Examples of the reconstructed 

distributions, and the respective profile comparisons are displayed in Figure 5.9. 

  
(a) (b) 

  
(c) (d) 

Figure 5.9. Two-projection reconstruction of an IMRT dose distribution. The reconstructed images are for a FBP (a) and FFT 
(b) reconstruction algorithm. Profiles through the centre of the original and reconstructed distributions are shown for the 
FBP (c) and FFT (d) reconstructions. 

From these results, it is concluded that the modelled IMRT distribution is unable to be 

reconstructed accurately with the two-projection reconstruction method.  

5.4 Two-Projection Reconstruction Concluding Remarks 

5.4.1 Filtered Back Projection 

Two-projection reconstruction using a filtered back projection algorithm for square and 

rectangular fields produced large artefacts at the beam edges and an underestimation of the dose at 

the centre, resulting in CAX reconstruction errors in the magnitude of 20 – 30%. Varying the FBP filter, 

beam size, beam intensity produced little improvement in the reconstruction quality, but the intensity 
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investigation suggests that the reconstruction error increases for doses below 4 Gy. The 

reconstruction of circular fields performed better than the square fields for the two-projection 

reconstruction, but still recorded a reconstruction error of around 6-8%. This is a decrease in 

performance compared to the single projection reconstructions using the inverse Abel Transform. 

While the circular field results suggest that a two-projection reconstruction would be able to 

reconstruct beam features such as penumbra and wedged intensities with no loss of accuracy, the 

overall reconstruction error is still too high for two-projection FBP reconstruction to be a viable option 

for the reconstruction of circle fields using the prototype OC dosimeter either. 

With this level of accuracy for the two-projection filtered back projection reconstruction for the 

manually summed data, it was decided not to investigate the reconstruction of the FRED integrated 

data. As seen in Section 4.3, the projections modelled through FRED contain a high level of noise, 

representative of the performance of the OC dosimeter, but detrimental to the accuracy of any 

reconstruction. With high levels of reconstruction error present already, and any improvement with 

the FRED data fundamentally unlikely, FRED projection reconstructions were not attempted for the 

two-projection FBP reconstruction technique. 

5.4.2 Fast Fourier Transform 

Two-projection reconstruction using a fast Fourier transform algorithm resulted in an accurate 

reconstruction for the simple square fields, provided that no additional beam complexities were 

added. The reconstruction error proved independent of the beam size and noise added, while the 

error increased significantly when there was any detectable background intensity, indicating that a 

background correction would be necessary. The reconstruction also did not perform well when any 

beam penumbra or wedged intensity was added, with large increases in reconstruction error 

observed. While the reconstruction works well for a perfectly square beam, the reconstruction fails 

when features of a clinical radiation beam are added. As such, a two-projection reconstruction also 

does not appear to be a viable option for the 3D reconstruction of square fields using the output of 
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the prototype OC dosimeter. The reconstruction of rectangular and circular fields resulted in 

persistent levels of reconstruction error, with these fields performing worse than the square field 

reconstruction for almost all the beam parameters investigated. The two-projection FFT 

reconstruction of the circle fields resulted in a worse reconstruction than the single projection 

reconstruction using the inverse Abel Transform, suggesting the single projection technique is the 

superior option. 

With this level of accuracy for the two-projection fast Fourier transform reconstruction for the 

manually summed data when features of a clinical radiation beam were modelled, it was again decided 

to not further this investigation with the use of the FRED integrated projection data. Despite the FFT 

reconstruction appearing relatively insensitive to noise, the high levels of reconstruction error present 

for the clinical beam models are unlikely to improve using the FRED data. Therefore, FRED projection 

reconstructions were not attempted for the two-projection FFT reconstruction technique. 

5.4.3 IMRT Beam Reconstruction 

The two-projection reconstruction technique using FBP and FFT algorithms was attempted upon 

a complex dose distribution with multiple dose levels. As expected, this was beyond the capabilities 

of a two-projection reconstruction, with reconstruction errors between 25% and 60%. Based on the 

reconstruction accuracy of simple fields this result was anticipated for a more complex field. But this 

result allows for the comparison of the multi-projection reconstruction accuracy.   

The focus of the next chapter will be to determine what is required to reconstruct the square and 

IMRT fields to an accurate level. For this, the desire to keep the mechanical complexity of the OC 

dosimeter design is deemed less crucial, and the number of projections required to achieve a 

reconstruction to an accuracy of better than 3% will be investigated. 
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Chapter 6: Multi-Projection Reconstruction 

This chapter focuses on investigating the maximum reconstruction accuracy attainable when the 

restriction of keeping the mechanical complexity of the prototype 3D dosimeter minimised is relaxed, 

allowing for the use of many projections. While Chapter 4 has shown that it is possible to reconstruct 

3D dose distributions resulting from simple circular radiation fields with low noise, Chapter 5 showed 

the two-projection FBP and FFT methods failed to reconstruct square fields when complexities 

representing a clinical radiation field are modelled, or the IMRT field with multiple dose levels. The 

inverse Abel Transform is unable to reconstruct anything without radial symmetry, making it 

unsuitable for measuring any of the square fields commonly used in clinical reference dosimetry. This 

chapter will determine the relationship between the number of projections and the accuracy of the 

reconstruction of the square, rectangular, circular and IMRT fields. 

While the use of many projections is considered undesirable due to the increase in required 

mechanical complexity of the OC dosimeter design, it is not outside the realms of possibility. The 

optical components of the dosimeter could be mounted upon a rotating optical platform [118] with 

the test cell remaining stationary in the centre. As the platform completes a full rotation the object 

beam would continuously pass through the test cell, allowing projections from any angle to be 

captured. This would require a cylindrical test cell to be used, to keep the optical path length through 

the cell the same for each projection, which would require subsequent modification to the 

reconstruction code to account for the new optical componentry. As the detector would take a finite 

amount of time to complete a rotation, continuous dose accumulation and/or heat diffusion effects 

would also need to be considered. The magnitude of the mechanical vibration of the optical 

components as the platform rotates, and the effect this has on the noise in the dosimeter output 

would require investigation also. However, while a multi-projection approach would present new 

technical challenges to overcome (the details of which are outside the scope of this study) it is not an 

insurmountable challenge.  
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6.1 Projection Number Investigation 

The Filtered Back Projection reconstruction algorithm was used for this investigation, due to 

the ease of utilizing the radon [115] and iradon [116] functions in MATLAB for different numbers of 

projections, and the overall better performance as demonstrated in Chapter 5. The performance of a 

multi-projection reconstruction using the FFT algorithm is a potential area of future work. Code was 

written so the chosen number of projections were evenly distributed throughout a 180° arc. A 180° 

arc was chosen as all the projection information can be captured within 180° as the second 180° are 

just a mirror of the first, so the information density is doubled for the same number of projections. 

The square, rectangular, circular, and IMRT fields were generated as described in Section 3.1. 

Following the findings of the initial FBP investigation in Section 5.5.1, the Hann filter was used 

as it provided the greatest accuracy. Beams were modelled within a 256x256 array, representing a x-

y plane through the 3D dose distribution. Square, circular and the IMRT beams were 128 pixels in size, 

while the rectangular beam was 160x80 pixels. All beams were given a background value of 0.0 and a 

nominal dose value of 1.0, while the IMRT beam had a 3x3 checkerboard pattern of varying dose levels. 

The goal of this multi-projection reconstruction was to determine the number of projections required 

to reconstruct a clinical beam, so penumbra were added to all beams investigated. The effects that 

added noise had on the reconstruction accuracy are investigated in section 6.1.2, and wedged 

intensity fields are investigated in section 6.1.3. Projections through the dose distribution were taken 

using MATLABs radon function, then the FBP reconstruction performed using the iradon function.  

Reconstruction accuracy was evaluated through the comparison of profiles through the centre 

of the dose distribution, between the original and reconstructed images. The RMSE between the 

profiles was calculated, using the same definitions for total RMSE, beam RMSE and CAX RMSE as 

defined in Section 3.3. In addition, the mean dose in a circular Region of Interest (ROI) 10 pixels in 

diameter on the beam CAX was measured for both images, and the percentage error between them 

calculated. The aim of the multi-projection reconstruction investigation was to find the number of 
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projections required to reach a 2% reconstruction error. 2% uncertainty is approximately the level of 

dosimetric accuracy achievable using current clinical dosimetry protocols such as TRS-398 [32] or 

AAPM TG-51 [33], so this represents a level of reconstruction accuracy to aim for to ensure the 

uncertainty in dose determination using the OC dosimeter is similar to current methods. 

6.1.1 Initial Reconstructions 

The Filtered Back Projection reconstruction was performed for different number of projections 

ranging from 2 to 100, and the reconstruction accuracy metrics recorded for each reconstruction. This 

was done for square, rectangular, circular, and IMRT modelled photon beams. The reconstruction 

accuracy as a function of the number of projections used in the FBP reconstruction are plotted in 

Figure 6.1 below. 

  
(a) (b) 

  
(c) (d) 

Figure 6.1. FBP reconstruction accuracy metrics with increasing numbers of projections. MATLAB modelled square (a), 
rectangle (b), circle (c), and IMRT (d) photon beams were investigated.  
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The results show a predictable and consistent trend across all four beams, with the 

reconstruction accuracy increasing as the number of projections increase. The calculated error metrics 

were at their greatest for the reconstructions with low numbered projection reconstructions, with 

total RMSE errors greater than 30% measured for all fields. Interestingly, the two-projection 

rectangular beam reconstruction had a very low initial beam RMSE, CAX RMSE, and mean error metrics 

relative to the other beams. This was a result of the beam edge artefact in the region the accuracy 

metrics were calculated however, as described in Section 5.1.5, rather than an accurate 

reconstruction. This is evident from the corresponding large total RMSE for this reconstruction, that 

not all parts of the beam are being reconstructed accurately.  

The reconstructed images for 15, 25 and 50 projections reconstructions are shown in Figure 

6.2 for the IMRT field, along with comparisons for the original and reconstructed central profiles for 

these fields. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.2. Multi-projection IMRT field FBP reconstruction. Reconstructed dose distributions for 15 (a), 25 (b), and 50 (c) 
projection reconstructions. Profile comparisons between the original and reconstructed distributions for 15 (d), 25 (e), and 50 
(f) projection reconstructions. 
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 As the number of projections increases, the accuracy metrics all show a rapid decrease, with 

the beam and CAX RMSE reduced to less than 2% and mean ROI error reduced to less than 0.5% by 25 

projections for all fields. The reconstruction accuracy then plateaus, with only a gradual increase in 

accuracy between 25 projections and 100 projections. For the mean ROI errors this plateau reaches 

zero, indicating that with sufficient projections the mean value of the pixels within the ROI of the 

reconstructed dose distribution equals the mean of the same pixels in the original image. For the RMSE 

metrics this plateau never quite reaches zero, with the with the IMRT Beam RMSE reaching 0.2%, the 

circle Beam RMSE reaching 0.5%, and the square field CAX RMSE reaching 0.7%. This indicates that 

there are still some residual reconstruction differences in these dose distributions, that are still 

present regardless of the number of projections. Figure 6.2 shows the increase in reconstruction 

accuracy with projection number for the IMRT field. Reconstruction artefacts can be clearly seen for 

all the dose levels in the 15-projection reconstruction. For the 25-projection reconstruction these have 

reduced, with only slight discrepancies at the interface of each dose level observed. The 50-projection 

reconstruction profiles show a near exact reconstruction. 

6.1.2 Beam Noise 

The multi-projection reconstruction was then repeated with various levels of random noise 

was added as a percentage of the maximum dose in the modelled beam, to determine if noise affected 

the number of projections required to reach a 2% reconstruction accuracy relative to the no-noise 

reconstruction. The FBP reconstruction was repeated for projections ranging from 2 to 100, for 

MATLAB modelled square, rectangular, circular and IMRT fields with 0% to 5% noise added. Figure 6.3 

shows the reconstruction accuracy as a function of number of projections for the IMRT field, with 2% 

and 5% noise added to the modelled beam. The level of added noise did not affect the number of 

projections required to reach the maximum reconstruction accuracy for these simple fields, with 

minimal improvement seen above 25 projections for all the reconstructed fields as in Section 6.1.2, 

for all levels of noise modelled. The difference between the mean value of a CAX ROI in the original 
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and reconstructed beam also tended towards zero after 25 projections. But the noise did affect the 

level of maximum reconstruction accuracy achievable, with the RMSE metric reaching a minimum of 

1% for the 2% added noise and 3% for the 5% added noise. These results were similar across all types 

of modelled beam.  

  
(a) (b) 

Figure 6.3. Multi-projection FBP reconstruction accuracy of an IMRT beam with modelled noise. A MATLAB modelled IMRT 
photon beam was used, with (a) 2% and (b) 5% noise added. 

The error in the reconstruction after 25 projections as indicated by the RMSE is in the order 

of half the level of noise that was added to the modelled beam. Figure 6.4 compares profiles through 

the centre of the original and reconstructed IMRT beam with 5% noise added, for reconstructions with 

15, 25 and 50 projections. For the 25 and 50 projection reconstructions, the profiles show the 

reconstruction performs well at averaging out the noise in the original distribution, producing an 

approximation of the noise-free profile. 

   
(a) (b) (c) 

Figure 6.4. Multi-projection FBP IMRT beam with noise profile comparison. The original MATLAB modelled IMRT beam and 
the FBP reconstructed dose distribution profiles are shown for 15 (a), 25 (b), and 50 (c) projection reconstructions, for beams 
with an additional 5% noise added. 
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 This, along with the mean ROI difference tending towards zero after 25 projections, suggests 

that adding noise to the reconstruction did not significantly affect the performance of the multi-

projection reconstruction. The number of projections required to achieve a reconstruction to an 

accuracy of better than 2% remains 25 for noisy data. 

6.1.3 Wedged Intensity 

The final additional beam complexity investigated for the multi-projection reconstruction was 

the addition of a wedged intensity to the modelled beam. This was added following the methods of 

section 5.1.6. A wedge was not added to the IMRT beam, as this already contained multiple dose 

gradients within the radiation beam. The FBP reconstruction was repeated for numbers of projections 

ranging from 2 to 100, for MATLAB modelled square, rectangular, and circular fields, with wedge 

angles of 0 to 60° modelled.  

The results from this investigation found that the presence of the wedge made no significant 

difference to the accuracy of the multi-projection reconstruction. The reconstruction accuracy 

improved rapidly with projection number for all beams, as in Section 6.1.1. This relationship between 

reconstruction accuracy and number of projections is shown in Figure 6.6 for the square field, with a 

30° and 60° wedge angle modelled. 

  
(a) (b) 

Figure 6.5. FBP wedged beam reconstruction accuracy and number of projections. MATLAB modelled wedged square photon 
beams with a (a) 30° and (b) 60° wedge angle were investigated. 
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This accuracy improvement peaks at 25 projections, with the reconstruction accuracy remaining 

constant with the number of projections beyond this. This can also be seen through analysis of the 

reconstructed profiles. Shown in Figure 6.5 are the profiles through the reconstructed distribution for 

a square beam with a 60° wedge modelled, for 15, 25, and 50 projection reconstructions. All the 

reconstructions accurately account for the wedge angle, but the presence of artefacts in the 15-

projection reconstruction reduces the corresponding reconstruction accuracy. These artefacts are 

reduced in the 25-projection reconstruction and not present in the 50-projection reconstruction. 

   
(a) (b) (c) 

Figure 6.6. Multi-projection FBP reconstructed wedged square beam profile comparison. The original MATLAB modelled 
wedged square beam and the FBP reconstructed dose distributions are shown for 15 (a), 25 (b), and 50 (c) projection 
reconstructions. 

6.2 Concluding Remarks 

Square fields representative of clinical radiation beams proved unable to reconstruct accurately 

with the two-projection FBP or FFT reconstruction, as did the IMRT field and its multiple dose levels, 

so the number of projections required to achieve an accurate reconstruction of these complex fields 

was investigated in this chapter. Using a filtered back projection reconstruction algorithm, it was 

determined that 25 projections was required to reconstruct the IMRT beams with both the RMSE and 

mean error in a CAX region of interest below 2%. The same result was determined for the square, 

rectangular and circular beams also. This investigation was repeated for the same radiation beams 

with additional modelled noise, or a wedged intensity modifier applied and determined the noise and 

the wedge had no significant impact on the multi-projection FBP reconstruction accuracy. 25 

projections remain the threshold for achieving a reconstruction accuracy of better than 2%. 
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It was decided not to investigate the FFT reconstruction used in this work for the multi-

projection method, as the results for the simple fields with features of clinical radiation beams 

modelled were found to be more reliable for the FBP method, and it is suggested that the FBP 

reconstruction is expected to perform better than simple Fourier reconstruction methods such as the 

one implemented in this work. Further research into the FFT reconstruction is a potential area of 

future work, investigating the performance of a multi-projection FFT reconstruction relative to the 

FBP, and determining the number of projections required to reach the same level of accuracy.  

As a 2% uncertainty is approximately the level of dosimetric accuracy achievable using current 

clinical dosimetry protocols such as TRS-398 [32] or AAPM TG-51 [33], this represents a level of 

reconstruction accuracy to aim for to ensure the uncertainty in dose determination using the OC 

dosimeter is similar to current methods. That 25 projections would be required achieve this level of 

accuracy for the square and IMRT fields using a FBP reconstruction will be applied to any future 

modifications to the OC dosimeter if a multi-projection tomographic reconstruction approach is 

pursued. 
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Chapter 7: Discussion 

Optical calorimetry is a novel dosimetric technique, that has a potential application in measuring 

the ultra-high dose rate beams used in emerging therapeutic techniques such as FLASH therapy. One 

of the features of OC dosimetry is that it outputs a 2D map of integrated dose. Performing a 

tomographic reconstruction upon this output will produce a 3D dose distribution, and could allow for 

the dose to be determined at any point within the radiation beam from a single measurement. This 

would make a 3D OC dosimeter a useful clinical tool, as a single measurement potentially could 

accurately obtain several important dosimetric quantities used to characterize clinical radiation 

beams. This would include information on the CAX dose at a range of depths, the 2D distribution of 

dose at a range of depths allowing for the calculation of flatness and symmetry, and the position of 

the beam edge and width of the beam penumbra allowing for the determination of beam field sizes. 

Current clinical methods for acquiring this data involves a number of repeated scanning 

measurements with an ion chamber or a diode, or careful handling and processing of film with a higher 

uncertainty in measurement [67]. The OC dosimeter also has advantages over traditional dosimetric 

methods for the characterisation of ultra-high dose rate FLASH therapy beams, as it avoids the need 

for a number of correction factors that increases the measurement uncertainty for traditional 

dosimetric methods in these beams [22]. These factors would position a 3D OC dosimeter as an 

important clinical dosimetry tool. 

An important consideration for the design of a prototype 3D OC dosimeter is the increase in 

mechanical complexity of the dosimeter required to achieve the tomographic reconstruction. The OC 

dosimeter relies on extremely precise positioning and alignment of optical components to obtain 

reliable measurements, so there is a strong desire to minimise any modification to the dosimeter in 

order to expand its capabilities to measuring in three dimensions. As such, this study primarily focused 

on investigating the accuracy achievable with no modifications to the dosimeter for a single projection 

reconstruction using the inverse Abel transform, or for a two orthogonal projection technique using a 
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filtered back projection or a fast Fourier transform algorithm. The reconstruction accuracy for a 

multiple-projection reconstruction was investigated also, to gain an indication of the number of 

projections required to achieve a reconstruction accuracy comparable to the uncertainty in current 

dosimetric methods. If it were decided to follow a multi-projection reconstruction approach, this 

would allow for the corresponding increase in mechanical complexity required to be estimated. 

Current clinical dosimetric methods, such as ionization chamber measurements following 

international protocols such as IAEA TRS-398 or AAPM TG-51, can achieve measurements of dose with 

a corresponding uncertainty (k=2) of between 1.5 – 2% for MV photon beams, MeV electron beams, 

or MeV proton beams at conventional dose rates. For FLASH therapy, the ultra-high dose rate of these 

beams increases the uncertainty in dose measurement using traditional dosimetric techniques to 

greater than 5% [22,26,28]. These figures allow the selection of a 2% reconstruction error as a level of 

accuracy to aim for the tomographic reconstruction process. This target will position the 3D OC 

dosimeter to measure dose with a level of uncertainty comparable to current dosimetric methods, 

and better than current UHDR methods, while still considering that the tomographic reconstruction is 

only one of the sources of uncertainty in the optical calorimetry measurement process. 

The reconstruction accuracy achievable for each of the three potential dosimeter designs, and 

the corresponding impact the designs have on reconstruction accuracy are summarised below, for 

different levels of complexity in the measured radiation field. How these reconstructions would 

correspond to the measurement of clinical dosimetric quantities is detailed, along with any limitations 

inherent to the corresponding reconstruction technique. 

7.1 Radially Symmetric Field Reconstruction 

The radially symmetric fields investigated included TOPAS modelled circular proton beams, and 

MATLAB modelled circular photon beams. This radial symmetry allows the use of the inverse Abel 

transform, implemented using the PyAbel package in Python, to reconstruct the full 3D distribution 

from a single projection. Obtaining an accurate 3D reconstruction from a single projection is 
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advantageous for this method as this means the requirement for the OC dosimeter design remains 

simplified, so the output from the OC dosimeter can be used in its current state with no modifications 

and corresponding increase in mechanical complexity required. The reconstruction of these beams 

was investigated using two methods for simulating the dose integration process that occurs in the 

detector: manually summing the 3D distribution in one dimension, and using the virtual dosimeter 

model in FRED modelling software. 

For the proton beams, the manually summed data were investigated first. The best performing 

method within the PyAbel package was the Onion Bordas method, capable of achieving a 

reconstruction error of less than 1% across both the Dmax profiles and central axis PDDs. This is well 

within the target 2% reconstruction accuracy, indicating that the inverse Abel transform is potentially 

a suitable solution for the 3D dosimeter. The effect the beam size had upon reconstruction accuracy 

was investigated, with similar accuracy found for sizes between 15mm and 40mm but slightly larger 

errors for the 5mm and 10mm. As detailed in Section 3.1 the absolute beam size is arbitrary, as 

magnification, minification, and beam expansion techniques could be used to scale the size of the 

beam image relative to the camera chip, rather it is the pixel resolution relative to the beam size of 

interest. This reduction in accuracy for the smaller beams suggests that the size of the beam as a 

proportion of the image array impacts the reconstruction accuracy. When the beam is narrow and less 

pixels are available for the reconstruction process, this was detrimental to the reconstruction quality. 

So, it is recommended that the optical componentry setup in the 3D OC dosimeter be arranged such 

that the imaged beam is no less than one quarter of the image array.  

One area that was not investigated in this work was the effect the size the image array had on 

the reconstruction. As a large range of beams and reconstruction techniques were investigated, the 

size of the image array was limited to 2563 pixels to allow for the reconstruction of the 3D dose 

distributions within a reasonable timeframe for each beam. But current detector in the OC dosimeter 

is capable of capturing images at 1280x1024 pixels. One of the findings of Hickstein et al. 2019 was 
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that the reconstruction accuracy of the inverse Abel transform increased as the number of pixels in 

the reconstructed distribution increases [83]. This was also seen in section 4.1.1, with the accuracy of 

the Gaussian distribution reconstruction increasing for the 255-pixel distribution relative to the 70-

pixel distribution. As such, it is reasonable to expect a full 10243 reconstruction to perform at a higher 

accuracy than the 2563 reconstructions performed here. While these would be more computationally 

expensive to compute, much of the characterisation of the tomographic reconstruction of these 

beams has been performed in this work, so a smaller range of beams would be needed to investigate. 

The effect this had on the reconstruction accuracy would be important information for determining 

the next steps for the 3D OC dosimeter development, and is an area of future work. 

This level of reconstruction accuracy on the manually summed data in Section 4.2 suggests the 

3D OC dosimeter has the potential to be well suited for making clinical dosimetry measurements for 

radially symmetric beams. The high reconstruction accuracy on the central axis suggests suitability for 

accurately determining dose outputs or measuring PDDs, while the low RMSE and good profile 

matching suggests accurate measuring of the beam penumbra and field edges. These imply the OC 

dosimeter can measure dose accurately both dosimetrically and geometrically. One area the OC 

dosimeter is limited however, would be for measurements of beam flatness and symmetry. As the 

inverse Abel transform assumes radial symmetry any information on beam asymmetries is averaged 

out over the beam in the reconstruction process, so no information on any potential flatness or 

symmetry errors can be gained.  

When FRED integrated proton beams were used in Section 4.3, simulating the real-life 

performance of the OC dosimeter, the resulting projection data showed a large increase in noise 

relative to the manually summed data. This is representative of the noise that is inherent in the OC 

dosimeter system currently. Unfortunately, the inverse Abel transform reconstruction appears 

sensitive to this noise. This is potentially due to the nature of the numerical approximations to the 

inverse Abel integral of Equation 2.12. Each method within PyAbel attempts this approximation in a 
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slightly different way, but commonly involving approximating the function with a series of simpler 

functions. The high levels of noise in the FRED data likely makes this approximation process less 

accurate and unreliable, and as a result the quality of the reconstruction is degraded. Attempts at 

filtering this noise out of the FRED projections were made in Section 4.3, resulting in a reasonable 

approximation of the manually summed projection, with only small discrepancies between the two 

evident. But this small discrepancy in the projection data results in large difference in the 

reconstructed data. Attempts at high levels of filtering were made, but this resulted in a blurring of 

the beam edge before it improved the central axis accuracy. A part of the utility of a 3D OC dosimeter 

is the ability to determine both dosimetric and geometric information of the dose distribution 

resulting from a radiation beam, so this compromise is undesirable. If the aim of the OC dosimeter 

was focused solely on determination of dose on the CAX, this compromise would be less of an issue. 

One area of filtering that was not investigated in this study was applying a filter to only the beam 

region of the projection, to try and improve the CAX accuracy without compromising the bema edge 

delineation. This is an area of future work, to further investigate filtering the FRED projections to 

determine of different filters or filtering techniques can improve reconstruction accuracy. 

The final investigation of Section 4.3 found that all inverse Abel transform methods returned a 

near identical reconstruction of the same filtered FRED projection. There were large reconstruction 

errors, but these errors were the same for all the individual methods. This suggests the limitation on 

the accuracy of a tomographic reconstruction using the inverse Abel transform on the FRED projection 

data lies in the noise in the projection data, rather than the Abel transform itself. The high level of 

noise currently modelled in the virtual OC dosimeter in FRED distorts the projection data too much for 

the original dose distribution to be accurately determined. To attempt to improve the reconstruction 

quality, the level of noise in the FRED projections was reduced in Section 4.4, and the reconstruction 

accuracy was repeated with noise levels ranging between 1/2 and 1/16th of the full modelled noise. 

This reduction in noise simulates the ongoing and future refinement of OC dosimeter, aiming to 

improve performance by reducing sources of noise within the OC dosimeter system. This showed a 
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clear improvement when the noise was reduced, with the reconstruction errors reducing from 10 – 

20% to 4% for the 1/8th and 1/16th noise levels. This sets a target for the reduction in noise in the OC 

dosimeter system. For the single projection inverse Abel transform 3D dose reconstruction method to 

be realised, the level of noise in the OC dosimeter would need to be reduced substantially, to at least 

1/8th of the current level of noise. 

The use of a single-projection inverse Abel transform tomographic reconstruction is a promising 

option for a potential 3D OC dosimeter. While the noise levels in the current OC dosimeter mean that 

further refinement of the OC dosimeter is required before this becomes a possibility, the tomographic 

reconstruction accuracy showed clear improvement with reducing noise. If this is achieved, this study 

indicates that a reconstruction both dosimetrically and geometrically accurate is possible, with 

accurate CAX dose and beam edge determination at all depths within the radiation beam. The single-

projection method presents no increase in mechanical complexity to the OC dosimeter design, 

increasing the ease of implementation. The limitations in this technique lie in it being limited to radially 

symmetric fields, and unable to resolve flatness and symmetry information from a beam. 

The second type of radially symmetric beams investigated were simple circular photon beam 

models generated in MATLAB. But for all the inverse Abel transform photon beam reconstructions, 

prominent reconstruction artefacts on the central axis were observed. Aside from these artefacts, the 

reconstruction for the rest of the profiles were accurate. While the cause of these artifacts was not 

determined in this study, there is potential for an accurate reconstruction if they can be removed or 

filtered out. This was not investigated in this study, as the decision was made to focus on the proton 

beam models to correspond with the likely implementation of the OC dosimeter in FLASH therapy. 

This remains a potential area of future work. 

The reconstruction of radially symmetric fields was also investigated using the two-projection 

reconstruction method. For this the MATLAB modelled circular beams were used, as these could easily 

be modified and additional complexities could be added, to characterise the reconstruction accuracy 
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with various features of clinical radiation beams. Both a filtered back projection algorithm and a fast 

Fourier transform were investigated. While the two-projection method produced some accurate 

results in some specific cases, like determining the CAX dose for a FBP reconstruction, in general the 

two-projection method resulted in large reconstruction errors. This does not present a superior option 

to the single-projection inverse Abel transform for the fields compared. As the two-projection method 

would require the OC dosimeter be modified to capture two projections from orthogonal angles 

simultaneously, subsequently increasing the mechanical complexity of the dosimeter, it can be 

concluded that for radially symmetric fields the single-projection reconstruction using the inverse Abel 

transform is the better option. 

Finally, the multi-projection method was used to investigate the reconstruction of radially 

symmetric fields. Using a FPB reconstruction, approximately 25-projections were required to achieve 

a reconstruction error of less than 2%, an accuracy comparable to the ideal performance of the single-

projection method, and the level of accuracy in current clinical dosimetry techniques. The multi-

projection method could be implemented clinically to determine the CAX dose and the beam edge, 

and was able to accurately reconstruct beam asymmetries such as a wedge angle. This shows it is 

capable of determining the flatness and symmetry of a radiation beam, which the single-projection 

method was not capable of.  The multi-projection method would present the superior tomographic 

reconstruction option, were it not for the large increase in mechanical complexity of the OC dosimeter 

required to modify it to capture 25 projections. This compares to capturing a single projection with 

the current OC dosimeter, with no modifications necessary.  

The multi-projection method also appears to be insensitive to added noise, with it capable of 

reconstructing a radiation beam to the same accuracy when 5% random noise was added. The multi-

projection method was not used for the FRED projection data due to time restraints, so determining 

whether the same level of noise reduction in the OC dosimeter is required to accurately reconstruct 

the FRED data as the single-projection data required is an area of future work. If the same level of 
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noise reduction was required, then the additional mechanical complexity introduced by the multi-

projection method would likely result in the single-projection method being the superior option. But 

if a lesser, more achievable level of noise reduction is required, then the challenge of the increased 

mechanical complexity might be preferable to finding further noise reductions. 

In conclusion, for the tomographic reconstruction of a radially symmetric radiation field using 

the OC dosimeter, both the single-projection method and multi-projection method present as viable 

options, but both would require more work on the OC dosimeter refinement or design to fully 

implement them. The single-projection method is desirable from a mechanical complexity perspective 

but requires a reduced level of noise in the OC dosimeter system. The multi-projection method would 

require the mechanical complexity challenge to be tackled, so is only viable if this method would 

require smaller improvements to the noise in the dosimeter. Determining this and advising on the 

direction to take will be the first step of future work for this project. 

7.2 Square Field Reconstruction 

While the one-projection reconstruction method presents a promising reconstruction 

technique for the reconstruction of radially symmetric 3D dose distributions, this technique is not 

suitable for any radiation fields that do not have inherent radial symmetry. While this symmetry exists 

for the FLASH proton beams, a likely application for the OC dosimeter, many current clinical dosimetry 

practices are based upon the use of square fields [32,33]. To increase the utility of the OC dosimeter, 

and ensure it is not limited to only radially symmetric fields, the accuracy of reconstructing square 

fields was investigated. 

The simplest modification to the OC dosimeter to potentially enable the reconstruction of 

square fields is to take two orthogonal projections. This would be easy to construct, with the addition 

of a second beam splitter to divide the object beam into two. They could then be directed to probe 

the test cell orthogonally, before recombining with the reference beam at a separate detector for each 

beam. This would allow for the simultaneous capture of two orthogonal projections, with minimal 
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modification to the OC dosimeter construction. This desire to keep the mechanical complexity of any 

tomographic OC dosimeter minimised is the key motivation for the two-projection approach. If further 

projections are required, this would entail a much larger redesign of the optical components within 

the dosimeter, and alterations to the DHI reconstruction algorithms used to generate the phase map 

from the interferograms. While two projections are much less than what is used in a typical 

tomographic reconstruction, the fields being reconstructed are much simpler than the typical image 

being reconstructed, with only a square region of dose and background outside of that. As such, 

projections from two orthogonal angles would theoretically contain all the information within the 

dose distribution. Two-projection reconstructions were performed using filtered back projection and 

fast Fourier transform reconstruction algorithms. 

The FBP reconstruction consistently resulted in reconstruction errors of 30% or more, 

suggesting a two-projection approach with FBP is not viable. This method could determine the location 

of the beam edges accurately, which is potentially useful dosimetric information. But without being 

able to accurately determine the dose within the radiation field, there is nothing to suggest this 

method would perform better than any of the currently available dosimetry methods. The FFT 

reconstruction performed much better than the FBP method for very simple square fields but broke 

down when any beam complexities were modelled. As even the simplest of clinical radiation fields will 

have noise and penumbra components, this suggests the two-projection method with the FFT 

reconstruction implemented in this study is not viable either. While the two-projection reconstruction 

approach is desirable from a mechanical complexity perspective, the corresponding reconstruction 

accuracy with FBP or FFT reconstruction methods was not to the level required for clinical use of the 

dosimeter, so these two-projection methods for the reconstruction of square fields is not 

recommended for future implementation for the OC dosimeter. 

Similar to the radially symmetric field, the multi-projection approach was also implemented for 

the square field reconstruction, also concluding that approximately 25 projections are required to 
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achieve a reconstruction accuracy of better than 2%. While the modification of the OC dosimeter to 

be capable of taking 25 projections would greatly increase the mechanical complexity, for the case of 

the square field reconstruction this appears to be necessary, as the two-projection approach was 

unable to perform this reconstruction to a reasonable accuracy. To determine dosimetric quantities 

such as CAX dose at different depths or flatness and symmetry from a square field using the OC 

dosimeter, the multi-projection approach would be required. For the reconstruction of square fields, 

the multi-projection approach is the recommended option. 

7.3 Complex Field Reconstruction 

The final type of field investigated in this study was the IMRT field, a complex field with a 3x3 

checkerboard of different dose levels, creating multiple dose gradients across both dimensions within 

the radiation beam. While less complex than the dose distribution that would result from a true IMRT 

field being delivered to a water phantom, the presence of multiple dose levels and dose gradients 

across both dimensions ensures the main technical difficulties of an IMRT field are represented.  

As this field is not radially symmetric, a single projection inverse Abel transform reconstruction 

was not attempted. Two-projection reconstruction was performed with both the FBP and FFT 

algorithms, resulting in CAX RMSE of 46% and 26% respectively. The multiple dose gradients presented 

too much complexity for these to reconstruct accurately, with the FBP reconstruction featuring large 

artefacts at the boundaries of each dose level, while the FFT reconstruction flattens the individual 

dose gradients out, reducing the ability to discriminate between the dose levels. This result was 

expected, from the results of the two-projection reconstruction of simple fields. It is concluded that 

the two-projection method is unable to accurately reconstruct any radiation beams with complex dose 

gradients. 

To achieve an accurate reconstruction of the complex IMRT field, the multi-projection 

reconstruction technique was required. Similar to the circular and square field reconstructions, 25 

projections were required to achieve a reconstruction accuracy of less than 2%. So, while this 
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approach will involve an increase of the mechanical complexity of the OC dosimeter, it is the only 

method capable of generating a reconstruction of acceptable accuracy. Therefore, to reconstruct a 

multi-level 3D dose distribution from an IMRT field using the OC dosimeter, the multi-projection 

approach is recommended. 

7.4 Future Work 

The first area of future work arising from this study will be to investigate the sensitivity of a multi-

projection FBP reconstruction to the noise in the FRED projection data, relative to the single-projection 

reconstruction using the inverse Abel transform. If the noise sensitivity is similar, then the extra 

mechanical complexity required for the multi-projection method should result in the single-projection 

method being the direction to pursue. But if the multi-projection method proves to be impacted less 

by the noise, then there are two possible immediate next steps for the development of a 3D OC 

dosimeter: reducing the noise in the OC dosimeter system to at least 1/8th of the current noise level 

to enhance the single-projection method, or accounting for the additional mechanical complexity in 

the OC dosimeter design and implementing the multi-projection method. Which is more feasible to 

achieve between reducing noise and modelling the extra complexity, or whether both are achievable, 

or neither are achievable, will determine the next step in the development of the 3D OC dosimeter. 

One area to help reduce the level of the noise could be further investigation of the filtering of the 

FRED projection data. Only the uniform and Gaussian filters were tested, and these were applied to 

the whole projection data, with the limiting factor for the filtering being the increase in error at the 

beam edge as this became more blurred as the filtering increased. Whether other forms of filtering 

could be more effective, or applying a filter to only the central region of the projection such that the 

beam edge resolution is maintained are avenues that could reduce the impact of the noise on the 

reconstruction of the FRED data. 

As detailed in Section 7.1, increasing the size of the image array is another potential avenue for 

improving reconstruction accuracy. The performance of the inverse Abel transform is expected to 
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increase with the number of pixels in the distribution being reconstructed, due to an increased density 

of pixels to use in the reconstruction [83]. Increasing the resolution of the dose distributions from 2563 

could present an easy avenue for increasing the reconstruction accuracy, coming at the cost of 

increasing the computational requirement of the reconstruction. 

Another possible route for improving the reconstruction performance is to further investigate the 

use of the FFT reconstruction. The Fourier reconstruction algorithm investigated in this study was 

simple, with the two-projection reconstruction proving capable of perfectly reconstructing basic 

square fields but showing a decrease in accuracy as additional complexities were added to the 

modelled beam. Investigating the implementation of more advanced forms of Fourier reconstruction, 

such as those found in [94,95,119], and determine whether these result in a better reconstruction for 

more complex fields than the method implemented in this work. The use of the FFT reconstruction in 

the multi-projection reconstruction analysis was not able to be investigated in the timeframe of this 

work, so comparing this approach to the FBP approach, and specifically determining whether the 

target number of projections for reconstruction accuracy of less than 2% is greater or lesser than 25 

would help guide the next steps of the 3D OC dosimeter development. 

The cause of the CAX artefacts in the inverse Abel transform reconstruction of the MATLAB 

modelled beams was never fully determined, and avenues for reducing or removing this were not fully 

explored in this study. Investigating whether modifications to the inverse Abel transform, or using 

filtering methods to account for this artefact could improve the understanding of using the inverse 

Abel transform, or the types of filtering that could be effective for this application. Using TOPAS to 

model some photon dose distributions and contrasting this to the MATBLAB modelled dose 

distributions could also indicate whether it was the geometry of a photon beam, or the simple nature 

of the MATLAB beam models that was causing these reconstruction artefacts. 

Finally, the application of tomosynthesis or iterative reconstruction algorithms to the 

reconstruction methods used here should provide improved reconstruction performance compared 
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to the FPB or FFT methods. As described in Section 2.4.4, these advanced reconstruction techniques 

require more computing resources and are more difficult to implement, so were deemed outside the 

scope of the initial explorations into 3D OC dosimetry in this study. But these techniques are better 

performing at low projection numbers than FBP and the FFT [92,96,101]. They could be applied to the 

two-projection reconstruction method to improve the performance, potentially making this a more 

viable reconstruction option. Or they could be applied to the multi-projection reconstruction, reducing 

the number of projections required to achieve a reconstruction accuracy of acceptable quality, and 

hence potentially decreasing the mechanical complexity obstacle to overcome in the implementation 

of this multi-projection technique. 
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Chapter 8: Conclusion 

It is possible to generate three-dimensional dose distributions through tomographic 

reconstruction of the integrated dose output from an optical calorimetry dosimeter, but achieving a 

reconstruction of a clinically acceptable accuracy will require further refinement and development of 

the OC dosimeter. The single-projection reconstruction method using the inverse Abel transform has 

the potential to deliver accurate reconstructions of radially symmetric beams from the OC dosimeter 

as currently designed, however the levels of noise in the dosimeter will need to be reduced in order 

to achieve the desired reconstruction accuracy. The multi-projection reconstruction technique is the 

only viable technique tested in this study for the reconstruction of square fields, or fields with multiple 

dose levels. But the implementation of this technique will require modification to the OC dosimeter 

design to acquire at least 25 projections, at the cost of a large increase in the mechanical complexity 

of the dosimeter. Determining whether it is more feasible to reduce the noise in the OC dosimeter 

system to at least 1/8th of its current level or increase the mechanical complexity of the OC dosimeter 

system will likely decide which of the single-projection or multi-projection techniques is the most 

viable for the future development and construction of a 3D optical calorimetry dosimeter. 
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