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Abstract 

 
   There are numerous charged particles (protons, electrons) revolving around the earth at 

magnetosphere. Highly charged particles are emitted during solar storms and eruptions. At the 

poles, heavy ions from Galactic Cosmic Rays (GCR) are dominant during solar minimum cycle. 

The satellites around the earth are always vulnerable to these charged particles. It causes various 

radiation effects in the satellite components. The energy, flux and fluent of these charged 

particles varies based on the altitude and inclination of the orbit. It also depends on solar cycle 

(solar minimum and maximum) of the year.  

 

    Based on the technology and design, the component can be hardened to overcome the 

radiation effects. The PMD (Photonic Mixer Device) 3D image sensor is planned to use for 

rendezvous and docking (RVD) maneuvers, to obtain the distance information of the object. But 

the PMD sensor is a commercial component, which is not designed and fabricated for space 

application. The aim of this thesis is to evaluate the survivability of the PMD image sensor for 

orbital operations. Using SPENVIS (Space Environment Information System) software, radiation 

sources and their effects in target orbit is estimated. Also from the information of previous space 

missions, total dose exposed on the object in orbit is predicted.  

 

   The Total Ionizing Dose (TID) testing is planned at irradiation facility. The total dose for 

exposure, dose rate, and number of samples required and the radiation testing procedure is 

planned. To measure the quality of sensor during the irradiation, the test case is designed. The 

test case lists the parameters (performance of the pixel and sensor) which have to be monitored 

during the testing. The methodologies for measuring those parameters are described.  The 

component is qualified if the parameters don’t exceed the maximum value during the irradiation 

and annealing. The future tasks for the implementation of radiation testing are discussed.
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1. Introduction 

   The radiation in space is generated by charged particles from various sources. The charged 

particles are produced by various sources from both within and beyond our solar system. The 

satellites in orbit are always exposed to radiation from various sources. The flux, fluence, and 

energy of the particle varies according to the altitude and inclination of the orbit above earth 

atmosphere. The radiation effects from these particles not only cause degradation but can also 

cause failure of electronics and electrical system of satellite. It can be overcome either by using 

radiation hardened devices or qualifying commercial devices by radiation ground testing. The 

radiation hardened devices are reliable for space application. The problem is hardened devices 

are expensive, less available and fabricated using non state of art technologies. 

 

    The COTS (Commercially of the shelf) components are affordable and accessible by private 

space organizations. But the COTS components are not designed for space application. It is 

vulnerable to radiation effects. The Photonic Mixer Device (PMD) is a 3D image sensor, it’s a 

commercial device and it’s not hardened for space application. It is planned to be used in the 

satellite operations. To qualify this component, first the exposure of radiation at orbit is 

estimated by SPENVIS (Space Environment Information System) software. Then the 

commercial component is qualified by radiation ground testing to determine if the component 

will survive in the radiation environment of the target orbit. The charged particles exposed to the 

target orbit, duration of the mission, design and manufacturing technology of the component are 

considered while implementing the radiation testing in the lab. Based on the results of radiation 

testing, it’s analyzed if the component will survive in the particular orbit of interest.  

 1.1 Thesis definition 

   The primary idea of the thesis is to test the radiation tolerance (ground testing) of the PMD 

PhotonICs 19k-S3 image sensor (3D chip). The image sensor is based on the CMOS technology. 

This 3D image sensor is evaluated for future orbital operation, which might be similar to DEOS 

(Deutsche Orbital Servicing Mission). DEOS is a typical on-orbit servicing mission. Hence the 

DEOS orbital configuration is assumed for the estimation of radiation exposure on the 

component. The configuration of the DEOS orbit are inclination = 90º, perigee = 400 km, apogee 

= 600 km. The following steps are taken in order to confirm the reliability of the sensor in the 

target orbit. 

 

i) Theoretical study about the PMD sensor, radiation environment of the target orbit and 

various radiation effects. 

ii) Estimation of the total dose exposed to semi-conductor in orbit using spenvis 

radiation model and comparing the results of spenvis with previous orbital 

experiences in radiation exposure. 



5 
 

iii) Determination of required shielding for the component in the orbit. 

iv) Estimating the total dose and dose rate for the irradiation test set up 

v) Designing the test case and evaluation of the component by parameters 

measurements. 

 

 

1.2 Report outline 

  The structure of the report is described in following; 

i) Introduction: Brief idea about the background of thesis and objectivity. 

ii) Theory: Detailed description about the radiation sources, effects and PMD sensor. 

The information from previous space missions related to radiation exposure 

iii) Spenvis radiation modal: Estimation of TID (Total Ionizing Dose) by radiation 

model. 

iv) Design of the radiation test set up: Estimation of dose rate, test case for parameters 

measurement. 

v)       Conclusion: summary and future tasks for the implementation of radiation testing. 
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2. Theory 

    This chapter contains three sections. First the basic operating principle and the components of 

PMD sensor are described, which is to be tested in the radiation environment. The next section 

list the characteristics of various radiation sources exposed to satellites in the orbit. The 

following section describes different radiation effects on various components. It is important to 

discuss about the radiation source and effects. The type of radiation and amount of exposure 

varies according to the orbit and the radiation effects are based on the orbit and technology of the 

component. In final section, the orbital experiences regarding the radiation level (doses) exposed 

on satellites and previous radiation testing on image sensor is discussed.    

2.1 Photonic Mixer Device (PMD) Sensor 

    The PMD PhotonICs 19k-S3 is a 3-d image sensor. The main objective of the thesis is to 

qualify this PMD sensor during radiation testing for space operation. The PMD sensor is based 

on Time of Flight (TOF) principle. In brief, a light is transmitted towards an object and distance 

to the object is calculated from the time taken to reflect back to the receiver, since the velocity of 

light is constant. Each pixel in the image sensor detects the brightness and depth (distance) of the 

image, hence it’s known as smart pixel. The operation of PMD camera system is explained in 

following. 

                                                    

 

 
                    Illumination 

 
                                                                     Trigger signal 

                                                                      (e.g. 20 MHZ) 

 

 

 
                   Reflection                   
                          of object                    Modulation                    Sensor  

                                                                          Control 
 
                                                                                                                 Digital data 

 

 

 

Figure 1: Block diagram of 3D TOF camera  

   The block diagram of 3D camera is show above in fig: 1. The main components in the camera 

are PMD image sensor and modulated light source. The Light Emitting Diode (LED) transmits 

the modulated light. The control unit sends the signal to LED to emit the modulated light. The 

modulation frequency can be changed from minimum of 0HZ to 80MHZ based on the scenario. 

Modulated light source 

       (LED/LASER) 

Control Unit 

Optics PMD Image Sensor ADC 

Object 

    Data      

processing 
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The normal modulation frequency is 20MHZ and it could illuminate the objects up to a distance 

of 7.5m (f = 20 MHZ, ʎ=15m, d= ʎ/2). The active light should reach the sensor after the 

reflection from the object, the illuminated light travels twice the distance (d). The imaging Time 

of Flight measurement based on PMD sensor is shown in fig: 2. 

 

 
 

Figure 2: Imaging Time of Flight measurement based on PMD. [Thorsten] 

  The quality of the 3D image depends on the amount of active light which is received by the 

PMD imager. The illuminated light which reaches the imager has phase shift after the reflection 

from the target. The control unit is configured to produce four samples of picture (A1, A2, A3, 

and A4) each with phase shift of 90°, which is proportional to distance. By acquiring the 

complete four images sequentially in the pixels, each pixel of the imager calculate the distance to 

the target (phase), grayscale value of the target (amplitude). Higher the amplitude, the more 

precise the distance calculation. The phase, strength of the signal (amplitude), gray scale value, 

and the distance equation are shown in following. 

 

Phase calculation =>   =    arctan  
     

      
                                                       (Eq: 1) 

 

Strength of the received signal (amplitude) => a = 
       

         
 

 
          (Eq: 2) 

 

Grey scale value of each pixel => b =  
           

 
                                       (Eq: 3) 

 

Distance to the target => d = 
   

       
                                                                   (Eq: 4) 

 

The fig: 3 show the signal received by PMD sensor. The black wave in the fig: 3 is the 

modulated light from LED (emitted light) and four red bars are the samples of the image after the 

reflection of the light on the target (reflected light). By using Auto Correlation feature the phase 

delay ( ) between the emitted waves and reflected wave is identified. The amplitude (a) in the 
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fig: 3 show quality of the 3d measurement. The gray scale (b) is the intensity (brightness) of the 

image. The depth and the intensity of the image depend on the illumination, field of view, optics, 

fill factor and sensor area. 

 

 

 

 
Figure 3 : PMD signal phase, amplitude and offset. [Thorsten] 

 
 

Table 1: Important parameters of photon ICs 19k-S3 image sensor 

Sensor Area 7.2mm(H) × 5,4 mm (V) 

Modulation frequency Min. - 0HZ, Typ.-20MHZ, Max.-80MHZ 

Fill factor 40% 

Size of pixel 45µm (H) × 45µm (V) 

Quantum efficiency @ 1MHZ 50% 

Quantum efficiency @ 20MHZ 40% 

Conversion gain 4.5 µV/e 

Dark current 150fA 

Read out Progressive scan with ROI 
Global shutter 
Global reset 
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2.2 Radiation Sources 

    The charged particles are of various types and generated by different sources, it can be 

classified as trapped and transient. The trapped charged particles are present in the 

magnetosphere, these particles are spread around the earth surface at various altitude. The 

transient particle events occur based on the solar activity.  It is listed in the following table: 1 

 

Table 2: Charged particles from various sources 

                                 Charged Particles from various sources 

                  ( Trapped ) 

      Particles in Van Allen belt.  

           (i)   Protons 

           (ii)  Electrons 

           (iii) Heavy Ions     

         ( Transient )    

   Solar Particle Events  

      (i)   Protons 

      (ii)  Heavy Ions 

      (iii) Electrons 

          ( Transient ) 

 Galactic Cosmic Radiation. 

         (i) Protons 

         (ii) Heavy Ions 

         (iii) alpha 

 

 

 
 

Figure 4: Sources of the space radiation. [Sakovsky] 

2.2.1 Trapped particles in Van Allen belt 

   The Van Allen belt is formed in the earth magnetic field (magnetosphere). The solar wind is 

the source for the radiation belt. The radiation belt mainly consists of electron, proton and heavy 

ion. The radiation belt is divided into two zones, inner belt and outer belt. The inner belt starts 

between 300 to 1000 km and lasts until 10000 km. The outer belt starts at 10000 km and spreads 

beyond 36000 km. Flux is the rate at which particles impinge on an unit surface area 

(particles/cm
2
-s). The fluence is the number of particles that impinge on an unit surface area 

(particles/cm
2
). The trapped proton and electron population varies according to the altitude. 

 

 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Sakovsky
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 The proton above 10 MeV lies in the altitude below 2000 km. In the low altitudes at south 

Atlantic the flux of protons with energy greater than 30 MeV is higher (10
4
 times) than the other 

regions of earth. The lower energy proton less than 1.0 MeV spreads over wide region until 

geosynchronous altitude. The typical satellite shielding can protect it from the protons with 

energy below 10 MeV. The trapped electron with maximum energy of 7 MeV lies in the outer 

belt. The inner belt electrons contain maximum energy of 5 MeV. The table: 2 contain the proton 

fluence at various altitude and orbital inclination. [L.D. Edmonds] [Sanchez] [Lima] [James]  

 

Table 3: Annual proton fluence. [G.M. Swift]  [Johnston] 

Mission Proton Fluence (particles/cm
2
) 

LEO ( 60º, 300 km) 

60 mills  Al shielding  

 

6 × 10
8 

LEO (28º, 600 km) 

100 mills Al shielding 

 

2.4 × 10
9 

LEO ( 98º, 705 km) 

i) 100 mills Al shielding 

ii) 60 mills Al shielding 

 

8 × 10
9 

3.6 × 10
9
 

  

2.2.2 Solar Particle events 

   The solar flares and coronal mass ejection events occur in the sun. It ejects electron, proton, 

heavy ions and alpha particles. In solar flares (90-95%) the emitted particles are protons. Heavy 

ions constitute only small per cent of the emitted particles. The electrons from solar eruption 

have low energy. The protons from solar flares sustain for few hours to few days and it has 

energy till 100 MeV. Contribution of heavy ions is less when compared to heavy ions form the 

cosmic radiation. The solar events are patterned base on the eleven year solar cycle. The high 

fluence of proton event occurs most in solar maximum. [L.D. Edmonds]  [James]  [Lima]  

[Sanchez] 

2.2.3 Galactic Cosmic Radiation 

   The GCR originates from outside the solar system. During solar minimum the exposure of 

GCR is more. The Galactic cosmic radiation contains about 85% protons and 14% alpha 

particles and 1% heavier nuclei. Comparing the solar eruption and radiation belt protons, the 

effect of GCR is less in equator and more in poles due to less geomagnetic shielding. It has low 

flux (particles/cm
2
-s) but high energy. The GCR mainly considered for SEE (Single Event 

Effects) in electronics. The main source for the radiation effects in electronics on orbit is due to 

proton and electron in Van Allen belt. The second cause is due to solar protons and third source 

is GCR heavy ions. The table: 3 contain the source of radiation in LEO, for the orbit inclination 

less than and greater than 60° and respective radiation effects. [James]  [Lima]  [Sanchez] 

 

 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Edmonds
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Sanchez
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Lima
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23James
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Swift
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Johnston
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Edmonds
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23James
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Lima
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Sanchez
file:///C:/Users/vishnu%20anand/Desktop/Thesis%20report.docx%23James
file:///C:/Users/vishnu%20anand/Desktop/Thesis%20report.docx%23Lima
file:///C:/Users/vishnu%20anand/Desktop/Thesis%20report.docx%23Sanchez
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Table 4: Source of radiation at different orbit inclination. [Lightsey] 

Space hazard           Single-Event Effects            Total Ionizing Dose 

   Specific 

     Cause 

Cosmic    

   Rays 

 Trapped  

 radiation 

       Solar 

      particle 

       Trapped 

       radiation 

      Solar  

     Particle 

LEO <60º Relevant Important Not applicable Important Relevant 

LEO >60º Important Important Important Important  Relevant 

    

    The flux of these sources is affected by the activity of the solar cycle. The solar cycle contain 

two phases, the solar minimum and solar maximum. The duration of the solar cycle is eleven 

year, four years of solar minimum and seven years of solar maximum. The fluence, flux and 

energy of the particle vary based on the altitude and inclination of the orbit. The table: 4 below 

summarize the list of charged particle, its variation during solar cycle and its effects on 

respective orbits. 

 

Table 5: Variation in the flux of the charged particle during the solar cycle. [Lima] 

Particle type Solar cycle & variation in flux Types of orbit affected 

Trapped – Protons Solar Min -  Higher 

Solar Max – Lower 

LEO, HEO, Transfer orbits. 

Trapped – Electrons Solar Min – Lower 

Solar Max – Higher 

LEO, GEO, HEO, Transfer 

orbits. 

Transient - GCR ions Solar Min – Higher 

Solar Max – Lower 

LEO, GEO, HEO. 

Transient - Solar protons During Solar Max only LEO (I>45º), GEO, HEO. 

Transient - Heavy ions During Solar Max only LEO, GEO, HEO, 

Interplanetary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Lightsey
file:///C:/Users/vishnu%20anand/Desktop/Thesis%20report.docx%23Lima
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2.3 Effects of radiation 

   The charged particle in space affects the electronic in the orbit. It causes various effects in 

electrical and electronics system in satellite. The radiation effects are broadly classified into two 

types, cumulative effects and Single Event Effects (SEEs). The various effects of radiation are 

classified in the fig: 2. 

 
 

Figure 5: Classification of radiation effects. [Faccio] 

 

2.3.1 Cumulative effects 

   The cumulative effects are due to microscopic defects in the component. These small defects 

do not affect the performance of the component. But over period of time these minor defects 

cause measurable effects and even cause failure of the components. It is classified into two types, 

Total Ionizing Dose (TID) and Displacement Damage (DD).  

 

(i) Total Ionizing Dose: 

   The electron, proton and heavy ions from the radiation sources cause ionization, when they 

incident on the matter (semi-conductor). It generates electron-hole pair. The ionizing particles 

loss their energy when they travel through the matter and that energy is deposited in the matter. 

Energy loss of the particle is classified into two types; they are electronic energy loss and nuclear 

energy loss.  The interaction of electron of the atom deals with electronic energy loss and 

interaction of nucleus of the atom deals with nuclear energy loss. The TID causes only electronic 

energy losses. The measure of total energy deposited per unit mass of the material through 

ionization is defined as Total Ionizing dose (TID). TID is measured over period of time, the 

effect of ionization increases gradually over the mission duration. The TID is measured in Gray 

(GY) in SI system, but traditionally the total dose is measured in rads (1GY = 100 rad).  

 

 

Radiation 
effects 

Cumulative 
effects 

Total 
Ionizing 

Dose (TID) 

Displacement 
Damage 

Single Event 
Effects 

Transient 
SEEs - 

SEU, SEFI 
Static SEEs 

Permanent 
SEEs -SEL, 
SEB, SEGR 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Faccio
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   The effects on CCDs are increased dark currents, effects on MOS transistor (Threshold voltage 

of the MOS transistor would shift) and Charge Transfer Efficiency. In CMOS sensor the effects 

are changes to MOS-based circuitry of imager, including change in pixel amplifier gain. Power 

consumption of the digital circuit would change. High leakage current cease the functionality of 

the circuit and it would lead circuit failure.  [Edmonds]  [Faccio] [Lima] [Swift]  [Richard] 

[ESA2010] The technologies susceptible to TID effects are give in the table: 21.  

(ii) Displacement Damage: 

   The radiative particles traverse the crystalline material, displaces the atoms from the normal 

lattice sites and it deforms the material structure, by non-ionizing energy losses. It is known as 

displacement damage effect. This effect depends on incident particle type, incident particle 

energy, particle fluence (particle/cm
2
) of the surrounding and the incident material. The 

displacement damage effect is estimated using NIEL (non-ionizing energy loss). In DD the 

material does not loose energy by ionization but by elastic/inelastic collision with nuclei in the 

material. This effect is more important for photo detector and electro-optic integrated circuit. 

 

   The effects on CCD and CMOS image sensor are increase in dark current, reducing gain and 

charge transfer efficiency (CTE) , increases hot spots(bad pixel flagged by software), Random 

Telegraph Signal and less responsivity. The effect on LEDs is reduced light power output. The 

proton testing is used to measure the displacement damage effect of the material. The proton 

testing is done using proton with energy between 10 to 200 MeV. There are possibilities in 

which high energy electron could cause displacement effect. In that case electron testing with 

energy of 3 MeV or higher can be done.  [Faccio] [Lima] [Swift]  [Richard] [ESA2008] 

Summary of displacement damage effect as a function of technology of the component is given 

in table: 22 and definition of DD effects are shown in table: 23. 

2.3.2 Single Event Effects (SEEs) 

   The Single Event Effect is caused when a single charged particle pass through the device and 

losses their energy by ionizing the device. It deposits enough energy on the matter to cause a 

failure in a single strike. It might also cause nuclear interaction with the incident material. These 

are transient effects. The SEEs can be destructive or nondestructive. If the device fails then it’s 

destructive and if the device losses data or control then it is nondestructive. The SEE of the 

device is estimated by two parameters, Qcrit and L.E.T.  The Qcrit is minimum amount of charge 

required to cause a soft error at any given node, it is measured in pico coulomb (pC). The silicon 

requires 22.5MeV of energy to generate 1 pC of charge (22.5 MeV is the stopping energy of 

silicon). When the deposited energy is higher than its stopping energy of the material, then it 

generates the charges at nodes. If the charge generated is higher than Qcrit then an SEE occurs in 

the device.  When Qcrit for a device is increased then it’s SEE rate is decreased.  [Faccio] [Lima] 

[Richard] 
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   The sensitivity of the device to SEE is characterized by LET versus cross section, it is shown 

in fig: 3. The amount of energy transferred during ionization is given by Linear Energy Transfer 

(LET) function. It is measured in MeV.cm
2
/g or KeV/µm. LET threshold is the minimum LET to 

cause an effect. The L.E.T varies depending on incident particle mass, incident energy and angle 

of incidence. The number of upset or errors, divided by number of particle per cm
2
 (fluence) is 

referred as cross section (σ). The saturation limit (σlim) is the cross section of the sensitive area. 

By the following four weibull parameters, LET threshold (LETth), saturation limit (σlim), width 

(W) and Power (S). SEU rates for a device can be generated by spenvis radiation model 

software. The upset or error rate are represented in, per bit, bit per second, and bit per day. SEEs 

test can be performed in a particle accelerator. Mainly there are three types of SEEs, transient, 

static and permanent Single Event Effects. It is explained in following. [Faccio] [Lima]                    

[Johnston] 

 
 

Figure 6: LET versus cross section curve. [ESA2010] 

 
(i) Permanent SEEs: 

   These effects cause permanent damage or failure. Single Event Latchup (SEL), Single Event 

Burnout (SEB), Single Event Gate Rupture (SEGR) are categorized under permanent SEEs. SEL 

occurs in CMOS technologies. The sustained high-current state induced by a single-particle 

interaction is referred to as single-event latch-up (SEL). The Latchup increase the current, if the 

power supply is maintained then the device is destroyed by thermal effect. By monitoring the 

current and power control circuit the damage can avoided. Single Event Burnout (SEB) occurs in 

power MOSFETs; the power devices are sensitive to SEB, when the device is in a biased off 

state. It’s similar to SEL. The permanent damage of the device occur when short-circuit current 

induced across the high voltage junction. Single Event Gate Rupture (SEGR) also affects power 

MOSFET in the ‘off’ state. The incident particle forms a conduction path in a gate oxide, 

resulting in device damage. [Faccio] [Richard] 
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(ii) Static and Transient SEEs: 

   This effects does not cause any permanent damage or failure, it cause errors (bits of 

information stored in logic circuit or in a storage device is changed) when the incident material is 

ionized. This effect is known as Single Event Upset (SEU). Static Random Access Memory 

(SRAM) and Dynamic Random Access Memory (DRAM) and other memory devices are 

affected by the SEU. By resetting, the device is operational. The Single Event Functional 

Interrupt (SEFI) is caused by ion strike; it leads to temporary non-functionality of the affected 

device. The transient SEEs cause variation in the amplitude of the signal. This effect is notable in 

most of the device. It mostly occurs in linear regulators and converters. The radiation effects due 

to different charged particles are summarized in the table: 5 and possible single event effect as a 

function of technology of the component is given in the table: 24.    [Faccio]  [Johnston]    

 

Table 6: Radiation effects of different particle. [Lima] 

Particle origin Particle Effects 

Trapped Protons Total Dose 

SEEs 

Displacement Damage 

Solar cell degradation 

Electrons Total Dose 

Solar cell degradation 

Heavy Ions SEEs 

Dose exposure for humans 

Transient Solar Protons Total Dose 

SEEs 

Displacement Damage 

Solar cell degradation 

Solar  Heavy Ions SEEs 

Galactic Cosmic Rays SEEs 

Dose Exposure for humans 

    

  In the above listed SEE, the permanent effects are caused by the solar heavy ions and GCR 

particles. The probabilities of heavy ions are higher in solar minimum cycle. But there are no 

exact number of events and possibility of occurrence of permanent failures on components. In 

CMOS technology the most common failure is SEL. The transient SEEs can be estimated by 

SPENVIS software. The SEU for a device over a day is estimated. The SEU rate (per bit per day) 

varies for each device based on three functions. They are design and manufacturing technology, 

LET threshold, and maximum sensitive surface of the component. The following are the range of 

upset rates of the components. 
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i) Bipolar - 1.91E-02 to 4.92E+00 errors/bit-day 

ii) CMOS - 3.34E-05 to 5.43E-02 errors /bit-day 

iii) RAM - 5.65E-05 to 4.92E-03 errors/bit-day  

iv) SOI - 2.81E-05 errors/bit-day 
 

    At the initial stage of the testing, the most important radiation effects for image sensor are TID 

and Displacement Damage. But in this thesis only TID are considered for the testing due to the 

factor of time and cost of testing. The radiation sources which are explained in the previous 

chapter are considered for the implementation of radiation testing. In the later chapters only TID 

is discussed for the design and implementation of radiation testing. Next section deals with the 

orbital experience (previous mission information’s) of the electronics in exposing to radiation. 

The total amount of dose (rad) absorbed by the device over a period of time in the target orbit is 

discussed in the next chapter. 

2.4 Orbital experience 

   The primary idea of this paper is to test the radiation tolerance of the PMD PhotonICs 19k-S3 

image sensor (3D chip). The image sensor is based on the CMOS technology. This 3D image 

sensor is planned to use for satellite operation. The radiation tolerance of the component is based 

on the design and manufacturing technology of the component. The COTS components are not 

designed in such way to withstand the radiation. In order to confirm the operation of the image 

sensor in the orbit, the respective sensor has to be tested for radiation tolerance.  

 

   The COTS components manufactured under various technologies like cmos, mos, rmos, fpga, 

bipolar, dram, sram, soi, sos, epi. Each of this technology reacts differently to the radiation and 

their effects differ. The radiation testing and parameter measurements should be designed based 

on the technology of the component. In general the COTS components have radiation tolerance 

of 1 – 10 Krad/year [JSC] and untested COTS component (Si) is estimated to have radiation 

tolerance up to 5 Krad [Underwood]. The radiation tolerance (dose) of PMD image sensor is 

unknown because it has not been tested in radiation. Hence the total dose requirement for the 

respective orbit is estimated using spenvis and from data’s of the previous mission. The table: 6 

show the required total dose for various orbits. The component is shielded by Aluminum with 

thickness of 100 mills (2.54 mm).  

 

Table 7: Total Dose requirements for respective space mission. [Kayali] 

Description Orbit Operating time 
(years) 

Total Dose (rad) (SiO2) 

Space station 500 km, 54º 10 5×10
3 

High inclination earth orbiter 705 km, 98º 5 2×10
4 

Geostationary 36,000 km 5 5×10
4 

Mars surface exploration NA 3 10
4 

Mission near Jupiter NA 9 1.5×10
5
 - 2×10

6 
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Table 8: One year dose at center of solid (Al) sphere at ISS. [ISS] 

Shielding 

(MILS) 

Shielding 

(MM) 

Shielding 

(G/CM
2
) 

Trapped 

Electrons (rad) 

Trapped 

Protons (rad) 

Total Dose 

(rad) 

3.000E–02 7.620E–04 2.118E–04 9.016E+05 9.762E+04 9.922E+05 

5.000E+01 1.270E+00 3.531E–01 1.939E+03 9.013E+01 2.029E+03 

8.000E+01 2.032E+00 5.649E–01 9.355E+02 7.658E+01 1.012E+03 

    

   The orbit of our mission is LEO polar orbit. Apogee is 600 km and Perigee is 400 km and 

inclination of 89º. In the table: 6 the high inclination orbiter were quiet close to our mission orbit. 

According to the high inclination earth orbit in (table: 6) with shielding of 100 mills (2.54 mm), 

the total dose of (SiO2) for one year is 4 Krad. This could be the closer approximation to our 

orbit. The 4 Krad is within our specified limit of dose of (1-10 Krad). The table: 7 contain the 

total dose absorbed for various shielding thickness at the ISS orbit over one year. The altitude of 

ISS is apogee-437 km and perigee-361 km. This altitude is quiet close to our orbit, but the 

inclination of the ISS orbit is 51.59º which is entirely different scenario in comparing to our orbit 

inclination. From the (table: 6) it is evident that, at ISS orbit the total dose acquired for one year 

is (1.012 Krad) for a shielding of 2 mm thickness is closer to our results generated in spenvis. The 

results from spenvis are discussed in the next chapter.    

 

   In an another reference, the Sony XC-ST70CE camera is used for stereo vision measurement in 

LEO orbit with shielding of 3mm thickness and for a duration of one year.  It’s irradiated up to   

3 Krad to test its performance [Rerrario]. The Commercial sensor survey testing report was made 

by NASA. In that CMOS based “Micron 5MPX” and “Micron 3MPX” was tested for radiation 

tolerance. The cameras tested for TID from 0.5 Krad to 5 Krad.  [Becker] 

 

   By comparing the data of the previous testing and mission, also by considering the shielding 

constraints and safety of the device, the image sensor in our mission should be irradiated up to 

5Krad in radiation test facility to ensure its radiation tolerance for our mission. In this chapter, 

radiation sources, effects, and total dose exposure in orbit is discussed and amount of dose the 

device should withstand in orbit is estimated from the review of various papers. In the next 

chapter, the total dose exposed in the target orbit is estimated using radiation model software 

(SPENVIS) is discussed. The theoretical and simulated solution is compared to find the balanced 

total dose exposure value for the irradiation at radiation testing facility. 
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3. Spenvis radiation model 

The Space Environment Information System (SPENVIS) is ESA operational software. It is 

developed and maintained at Belgian Institute of Space Aeronomy since 1996. It’s a World Wide 

Web tool and it provides information on the space environment and its likely effect on space 

systems. In SPENVIS spacecraft trajectory or coordinate grid is generated.  The flux and fluence 

of the charged particle around the trajectory is estimated. By estimating the radiation sources, 

TID, DD, and SEEs for simple geometry is calculated. The information provided by this 

software is acquired from the earlier space mission’s data. 

 

   Spenvis is used for estimating the various effects of radiation for electronics on orbit. For this 

mission spenvis is used for estimating the Total Ionizing Dose (TID) for silicon (Si). It is 

radiation model software; the first step is the input of spacecraft trajectories and mission 

duration. The altitude and inclination of the orbit is perigee = 400 km, apogee = 600 km, 

inclination = 90º. Estimation is made for mission duration of 3, 6, and 12 months. Next, radiation 

source has to be defined for this model. In this radiation model we have to test the Total Ionizing 

Dose effects. In order to measure this effect on silicon (Si), the sources of radiation have to be 

defined. The radiation sources are selected and their properties are defined. 

The defined radiation sources in spenvis are; 

(i) Trapped particles radiation model 

(ii) Long- term solar particles fluences 

(iii) Galactic cosmic ray fluxes  

3.1 Trapped particles radiation model 

   The trapped particle flux model has three different proton and electron modules. The AP-9 

proton model and AE-9 electron model is selected for this mission. The AP-8 and AE-8 model 

cover the full spatial and spectral range of the radiation belts. The AP-8 has the energy range 

from (0.1 MeV to 400 MeV), and the coordinate range (L) from 1.14 to 6.6 (L=1=Earth radius). 

The AE-8 has the energy range from (0.04 to 7MeV) and coordinate range from (1.14 to 12). The 

AP-8 and AE-8 model have the option to select between solar cycle of maximum and minimum. 

The solar cycle of maximum is selected for the trapped particles. [SpenvisT] 

 

   Using the specified orbital parameters and AP-9, AE-9 radiation models, the average spectra of 

trapped electron and proton for the respective orbit is estimated. The graph in fig: 3 and fig: 4 

show the average spectra of trapped electron and proton for one year. The graph shows the 

integral flux and differential flux in vertical axis and energy of the proton in horizontal axis. The 

integral flux represents the number of particle (fluence) of given energy in the orbit per unit area 

and unit time. The differential flux is the number of particles (fluence) per unit area, unit time 

and unit energy. The energy range in the horizontal axis is from 0.1 to 1000 MeV. The proton 

with maximum energy in the orbit is 300 MeV and minimum energy is 0.1 MeV. The graph 

shows that the flux of the trapped proton in the orbit decreases gradually as the energy of the 
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trapped proton increases. Number of protons (fluence) decreases gradually as the energy of 

proton increases. The flux and fluence for the trapped protons, energy range from 0.1 to 300 

MeV is given in the table: 15 

 

 

 

 
Figure 7: Average spectra of trapped protons for one year 

   The Figure.4 below shows the average spectra of trapped electron. The energy range of trapped 

electron in the orbit is 0 to 10 MeV. The electron with maximum energy in the orbit is 7MeV.  

The graph shows that the flux of the trapped electrons in the orbit decreases gradually as the 

energy of the electron increases. Number of trapped electrons (fluence) decreases gradually as 

the energy of electron increases. The flux and fluence for the trapped electrons, energy range 

from 0.04 to 7 MeV is given in the table: 17 

 

   The satellites in LEO with higher inclination between 45to 85 deg have increased number of 

electron in both northern and southern hemisphere [JSC]. The total mission fluence of trapped 

particle in the orbit is calculated by sum of all values in different energy ranges of integral 

spectra. The fluence is calculated without shielding.  The total number of electron encountered 

by the detector in the orbit, in one year is 1.98E+13 (particles/cm
2
).  
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The total number of proton encountered by the detector in the orbit, in one year is 

9.12E+11(particles/cm
2
). Hence the number of trapped electrons in the target orbit is higher than 

the number of trapped protons. 

 

 

 
 

Figure8: Average spectra of trapped electrons for one year 

   The fig.5 & 6 shows the distribution of proton and electron at an altitude of 400 to 600 km in 

the world map. The proton is distributed over in particular region from -10º to -80º latitude and   

-60º to 60º longitude and -15º to -80º latitude. The most of proton is present over south atlantic, 

this is due to the south atlantic anomaly. The trapped electrons are more widely distributed over 

the earth than the protons. The electrons are densely populated in both northern and southern 

hemisphere. The satellite with higher inclination encounters more electron than proton. The 

electrons are located over 45º to 75º N and -15º to -90º S latitude. In the longitude it’s spread 

over -180º to 180º. In the following table:1 Integral spectra of the trapped proton and trapped 

electron are listed.  
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Figure 9:  Trapped proton flux distribution at an altitude of 400 to 600 km 

 

 
 

Figure 10: Trapped electron flux distribution at an altitude of 400 to 600 km. 
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3.2 Long term solar particle fluences 

   The Long-term solar particles fluences model have the inputs from solar particles. The worst- 

case scenario module is selected for the solar particle fluence. The solar maximum is chosen. 

The long term solar particles fluence model contains two types of particle, solar protons and 

solar ions. The ESP model is used to predict the average flux and fluence of the solar proton. The 

ESP model contains the data’s of three different solar cycle and the respective energy levels. The 

Psychic model is clubbed with ESP model to predict the average flux and fluence of heavy ions.  

The psychic model contains the differential energy spectra for five of the major elements 

protons, alphas, Mg, Fe, and elements with atomic number greater than 28.  The ion range is 

selected from hydrogen (H) to uranium (U). The confidence level is 95%. The confidence level 

is the probability (in %) that the predicted proton fluence will not be exceeded. The magnetic 

shielding around the earth is enabled in this model. [SpenvisS] 

 

   The graph below is the plot for the energy of solar protons in horizontal column and integral 

fluence (number of solar protons per unit area) and differential fluence (number of solar protons 

per unit area and per unit energy) in vertical column. In the orbit the solar protons has a 

maximum energy of 500 MeV. In table: 19 contain the total mission solar proton fluence at 

spacecraft. The table contains the energy, integral and differential solar proton spectrum. 

 

 
 

Figure 11: Solar proton fluence spectrum. 
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   The solar ion events occur in solar maximum period. It has higher flux than the GCR. The 

large events occur in long span of time, for total mission of one year, its complex to predict. The 

solar ions have maximum energy of 500 MeV.  

 

 
 

Figure 12: Solar ion spectrum. 

 

3.3 Galactic Cosmic ray flux: 

   The Galactic Cosmic Ray flux model, have the inputs from cosmic particles. The GCR 

particles are from outside the solar system. The flux of the particle is changed in relation to the 

solar activity. Geomagnetic field provides the shielding to GCR particles. Also orbit with higher 

inclination is susceptible to GCR particles.  But still GCR of high energetic particle can cause 

damage in satellite. The ISO 15390 model and solar minimum is selected. GCR flux is more in 

solar minimum. The Ion range for GCR is from hydrogen (H) to uranium (U). The table:20 

contains the GCR energy range, total mission integral flux, total mission differential flux. The 

GCR has maximum energy of 20000 (MeV/n). [SpenvisG] 
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Figure 13: GCR ion spectrum 

 

3.4 Radiation model results 

   The source of radiation for measuring TID is trapped proton and electron, long- term solar 

particles fluences. The TID is estimated using Ionizing dose for simple geometries model from 

spenvis. The shielddose-2 model is used for shielding geometry. The inputs are shielding 

thickness, shielding material, shielding geometry and target material. The target material is 

silicon. The shielding material is Aluminum. The shielding geometry is “center of Al sphere”. 

The source of radiation is isotropic. The target material is analyzed with various shielding 

thickness of (Al) form 10
-4

mm to 3mm to find out the corresponding total dose.  

 

 
                  Figure 14: Centre of (Al) sphere 
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   The fig: 11 show the shielding geometry (Centre of sphere) chosen for the radiation model. 

This geometry is used where the components shielded to a finite level over all finite angles. It is 

used. It’s a function of radius of the sphere. The irradiation is from all directions. [SpenvisD] 

[SpenvisD2] 

 

Table 9: 1 year - Total mission dose (rad) 

Al absorber thickness Total 

Ionizing  

Dose  

Trapped 

Electrons 

 

Bremss- 

trahlung 

Trapped 

protons 

Solar  

protons 

Tr.el.+ 

Bremss 

 

Tr.el.+Br. 

+Tr.Pr. (mm)  (mils)  (g/cm
2
) 

0.000 0.004 6.705 3.04E+06 6.70E+05 4.84E+02 9.87E+05 1.39E+06 6.70E+05 1.65E+06 

1.4 55.11 0.378 5.90E+03 3.50E+03 2.41E+01 4.21E+02 1.95E+03 3.52E+03 3.95E+03 

2.0 78.74 0.54 3.04E+03 1.40E+03 1.53E+01 3.03E+02 1.31E+03 1.41E+03 1.72E+03 

3.0 118.1 0.81 1.39E+03 3.53E+02 9.49E+00 2.14E+02 8.13E+02 3.62E+02 5.77E+02 

 

Table 10:  183 days– Total mission dose (rad) 

Al absorber thickness Total 

Ionizing 

Dose  

Trapped 

Electrons 

 

Bremss- 

trahlung 

Trapped 

protons 

Solar  

protons 

Tr.el.+ 

Bremss 

 

Tr.el.+Br. 

+Tr.Pr. (mm)  (mils)  (g/cm
2
) 

0.000 0.004 0.000 1.52E+06 3.36E+05 2.42E+02 4.95E+05 6.97E+05 3.36E+05 8.31E+05 

0.95 37.40 0.257 5.96E+03 4.09E+03 2.00E+01 3.33E+02 1.51E+03 4.11E+03 4.44E+03 

1.000 39.37 0.270 5.38E+03 3.67E+03 1.87E+01 3.02E+02 1.38E+03 3.69E+03 3.99E+03 

2.000 78.74 0.54 1.521E+03 7.04E+02 7.69E+00 1.51E+02 6.57E+02 7.11E+02 8.63E+02 

 

 

Table 11: 31 days – Total mission dose (rad) 

Al absorber thickness Total 

Ionizing 

Dose 

Trapped 

Electrons 

 

Bremss- 

trahlung 

Trapped 

protons 

Solar  

protons 

Tr.el.+ 

Bremss 

 

Tr.el.+Br. 

+Tr.Pr. (mm)  (mils)  (g/cm
2
) 

0.000 0.004 0.000 2.61E+05 5.83E+04 4.27E+01 8.51E+04 1.81E+05 5.83E+04 1.43E+05 

0.360 14.17 0.097 5.95E+03 5.06E+03 1.42E+01 2.00E+02 6.78E+02 5.07E+03 5.27E+03 

1.000 39.37 0.27 1.03E+03 7.41E+02 3.84E+00 5.14E+01 2.38E+02 7.45E+02 7.96E+02 

2.000 78.74 0.54 2.84E+02 1.44E+02 1.56E+00 2.60E+01 1.12E+02 1.46E+02 1.72E+02 

 

   The tables above are the results of Total Ionizing Dose requirement for the target orbit, from 

the spenvis model. The (table: 8, 9, 10) contain the estimated TID for 1 year, 6 months, and 1 

month respectively. Each table contain the Aluminum shielding of various thickness, TID in rad, 

doses caused due to trapped electron, Bremsstrahlung, trapped protons and solar protons. When 

electron is deflected by heavy particles then part of the energy (rad) is emitted, it is known as 

bremsstrahlung.  
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   The first row of the table: 7 contain the TID for a shielding of (10
-4 

mm) 0.004 mils. This is 

minimum possible shielding thickness available in spenvis for TID calculation. We consider this 

minimum thickness (10
-4

 mm), as a component without shielding. The component without 

shielding in the orbit over a period of one year acquires the TID of 1.52× 10
-6

 rad. According to 

the first limitation, the COTS component should not exceed the Total dose of 1-10 Krad/year. By 

the knowledge of various missions in the similar orbit, this was discussed in the last chapter. The 

component would able to survive with 5.9 Krad of total dose for duration of one year with a 

shielding of 1.4 mm. In order to ensure the safety of the mission, the component should be 

shielded with 2mm thickness of Al. The component with 2mm of shielding in orbit over one year 

absorb total dose of 3.04 Krad. 

 

   The target material silicon (Si) shielded in Al sphere of thickness 2mm contains the following 

absorbed doses. The table: 8 shows that dose due to trapped electron is the main source of 

radiation, which produce dose of (1.40E+03 rad).  This was discussed in the previous section. 

The second main source is solar proton, it produce dose of (1.31E+03rad).  The trapped proton 

has the dose of (3.03E+02 rad). The Bremsstrahlung produces the dose of (1.53E+01 rad). The 

Total mission dose is (3.04E+03 rad).   The value of 3.04 Krad is within the criteria of COTs 

component of 1- 10 Krad. The component without shielding should be irradiated in the radiation 

test facility up to the total dose of 5Krad. If the component would survive the irradiation without 

functional failure until 5Krad or at the least until 4.56 Krad (which is 1.5×3.04 Krad, its based 

RDM) then the component would probably survive in the orbit with shielding of 2mm for one 

year. 

  

   The duration of the mission in the orbit is classified into maximum of one year, minimum of 1 

month and in average of 6 months. The total absorbed dose in 6 months with 2mm shielding is 

1.5 Krad and for one month it is 0.28 Krad. The Fig.11 shows the dose absorbed by Silicon at the 

center of Al sphere, for various thicknesses. The graph contains the doses due to electrons, 

bremesstrahlung, trapped protons, solar protons and total dose.  
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Figure 15: Dose of Si at the center of Al sphere for various thicknesses for a period of one year 

3.5 Radiation variation 

   The magnitude of radiation varies depend on the altitude and inclination of orbit from the 

surface of the earth. The number of trapped particle and transient particle varies based on the 

altitude and inclination of the orbit. Since this mission operates in LEO orbit, the major ionizing 

dose is caused by trapped particles (proton and electron in Van Allen belt) and next the transient 

particle. To know difference in radiation level and particle fluence, the radiation model in 

spenvis is simulated at various orbital inclinations, for an altitude of apogee is 600 km and 

perigee is 400 km and with Al shielding of 2 mm thickness. The TID and particle fluence is 

estimated for different orbit inclinations, it is listed in the table: 11 &12 respectively.  

 

   Based on the results from simulation, TID absorbed by the silicon is higher in the poles and 

lower in the equator. As mentioned in theoretical section, the ionizing dose by electron is higher 

(3.75E+02 rad) near poles (60° to 89°) and lower in equator (1.46E+01 rad). The ionizing dose by 

trapped protons is higher in equator (2.58E-03 rad) and lower at poles (2.58E-03 rad). The 

ionizing doses by solar protons are zero in equator (0° to 30°) and higher in poles (1.32E+03). 

The values are listed in table: 11.  
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   The numbers of electron is more at 60° (3.6×1013) and less in equator (3.89×10
9
). The trapped 

protons are more than electrons in equator and lower in poles when compared to electron 

fluence. The solar proton (transient) fluence is null in equator and higher (3.15×10
12

) in poles. 

GCR flux which is transient is higher in poles (6.78×10
4
). The values are listed in table: 12. The 

main reason for higher ionizing dose at pole is due to more transient particles at poles. The 

transient particles are higher in poles due to lack of magnetic flux.  

 

Table 12: TID variations for different orbit inclination at altitude of 600 to 400 km 

Orbit 

inclination 

( ° ) 

Al 

absorber 

thickness 

(mm) 

Total 

Ionizing 

Dose  

(rad) 

Bremsst 

-rahlung 

(rad) 

Tapped 

protons 

(rad) 

Trapped 

electrons 

(rad) 

Solar 

Protons 

(rad) 

0° 2 1.47E+01 1.18E-01 2.58E-03 1.46E+01 0.00E+00 

28° 2 5.67E+02 2.13E+01 3.41E-01 5.45E+02 0.00E+00 

60° 2 3.13E+03 2.42E+03 2.75E+01 3.75E+02 3.10E+02 

89° 2 3.04E+03 1.40E+03 1.54E+01 3.03E+02 1.32E+03 

 

 

Table 13: Particle fluence and GCR flux for different orbit inclination 

Orbit 

inclination 

( ° ) 

Al absorber 

thickness 

(mm) 

Electron 

fluence 

(particles/cm
2
) 

Proton fluence 

(particles/cm
2
) 

Solar fluence 

(particles/cm
2
) 

GCR 

integral 

Flux 

(m
-2
 sr

-1
 s

-1
) 

0° 2 3.89×10
9 

2.89×10
10 

0 4.79×10
3 

28° 2 5.0×10
11 

4.42×10
11 

0 8.8×10
3 

60° 2 3.6×10
13 

7.66×10
11 

7.39×10
11 

4.6×10
4 

89° 2 1.98×10
13 

9.12×10
11 

3.15×10
12 

6.78×10
4 

. 

   In this chapter the amount of dose would be exposed to the silicon in the orbit over a period of 

one year is estimated. The Total Ionizing Dose (TID) which should be irradiated to the device at 

radiation test facility is estimated, to ensure whether the component would survive in the orbit. In 

next chapter the process involved in radiation testing of the device and test plans are discussed. 
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4. Design of the radiation test setup 

   To measure and confirm the quality of COTS, irradiation testing is the only way. There are 

different source for irradiation. In this testing the Co60 gamma rays is used for the irradiation. The 

Co60 (gamma rays) radiative source are used for measuring the Total Ionizing Dose effects in the 

device. In analyzing most of the radiation test setup, generally the test setup is made in the 

research center or institutes which already has the radiation source and test facility for the testing 

the COTS components. One of the radiation facilities is available in ESTEC. The test facility 

available in the commercial market should be found. Once we found the test facility, according 

to that we could design the radiation test set up to perform radiation testing. The plan for the 

radiation testing is discussed in following.  

 

4.1 Dose rate 

   The dose rate in space is not constant in the period of time. The mean dose rate in space is in 

the order of 0.0001 to 0.005 rad(Si)/s. During the time of solar flare the pulsed dose rate is in the 

order of 0.1 to 2 rad/s. But the mean dose rate very low to attain in the radiation test set up. It 

would take months to attain the TID if the mean dose rate is used for irradiation. The ESA/SCC 

22900 has the standards for total dose steady-state irradiation test method. The dose rate 

classified into two levels; 

Window 1 (Standard rate): 3.6 krad to 36 krad hr
-1 

(1 to 10 rad/s)  

Window 2 (Low rate): 36 to 360 rad hr
-1

 (0.01 to 0.1 rad/s)   [ESASCC] [A. Barnard]                 

[F. Sturesson] 

 

   The standard rate is also known High dose rate; it is the most preferable one for COTS 

radiation test. High dose rate consumes less time and cost to attain the required TID.  The cost 

for the production of Low dose rate is higher compared to the HDR and time taken for LDR to 

attain the TID is longer when compared to HDR.  But the LDR almost creates the exact scenario 

in orbit and it’s considered as the worst case scenario. In this radiation test the image sensor 

should able to operate without functional failure until the total dose of 5 Krad. [Edmonds] 

 

   The resistance of COTS components towards radiation differs highly with LDR and HDR. The 

components fail very earlier in Low dose rate when compared to High dose rate. Hence we 

prefer to perform both LDR and HDR test. But the first priority is LDR test. According to the 

ESA/SCC, the total exposure time should be less than 96 hrs. For the Low dose rate, the time 

constraint is considered. The CMOS components are preferred to do LDR test. There are two 

limiting factors in selecting the LDR. As the components should be reused after the irradiation, 

hence testing the component at 36 to 360 rad hr
-1

 has higher risk of destructing component at 

earlier stage of irradiation. Another factor is the time; based on convenience the test to be done in 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23ESASCC
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a single day. Considering these two factors, intermediated dose rate 1 Krad/hr (0.27 rad/s) is 

decided. The dose rate of 1 Krad/hr will take 5 hr to reach total dose of 5 Krad.    

4.2 Device under Test (DUT) 

   The testing can be done for a single component or in system level.  Testing each component 

separately is reliable; it helps in finding the exact radiation effects in the component. In the initial 

phase each COTS component can be tested separately, in the latter phase radiation testing can be 

done in system level. To test a component, minimum of five random samples is needed. In which 

four samples are irradiated in testing and the fifth one is a reference sample, which is not 

irradiated but the functioning of the fifth sample is measured spontaneously. One of the four 

samples is in switch off state, to measure its radiation tolerance in switch off condition and 

remaining three is in on state.  

 

   The DUT is mounted on the test circuit board. The distance between DUT and the radiation 

source is determined by the dose rate and homogeneity of the desired radiation.  The distance 

shall be three times the value of semi-diagonal of the test board or the illuminated beam should 

not exceed half cone angle of 18.4 deg. In the most of test setup the radiation source is fixed and 

test board is movable. The distance between the radiation source and test board is varied based 

on the required dose rate. The test board is placed closer to the radiation source if the required 

dose rate is higher and vice versa. The picture below shows the radiation source and test board 

setup. [ESASCC] [A. Barnard]  [F. Sturesson] 

 

 

             
 

Figure 16: The Co60 radiation source [Cecile] 
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4.3 Radiation testing procedure 

   The radiation testing can be made in online or offline mode based on convenience. In online 

mode both irradiation of the device and the evaluation of the device are done in the same test 

setup and in offline mode irradiation and evaluation of the device are made in different places. In 

order to reduce the complexity of the shielding requirement of the measuring device both the 

parameters measurement and image quality assessment of the sensor are measured in offline 

mode the parameters are measured in a non radiative chamber at intermediate dose levels. The 

measurement is made at intermediate dose levels of 1, 2, 3, 4.5, 5 Krad. In the offline mode the 

measurement should be made within maximum of 1hr. 

 

   The radiation testing consists of three phase, (i) Pre-radiation testing, (ii) Radiation testing   

(iii) Post radiation testing (annealing). Throughout the test the components can be biased based 

on requirement, ESA/SCC specifies that biasing the components would create the worst case 

scenario. The biasing has different affect for different technologies of the component. Care full 

biasing should be made based on the technology. But the components tested under both biased 

and un-biased condition able to analyze the tolerance of the component in detail.  

 

   The electronic devices which monitor the DUT should be checked. The pre-radiation testing is 

the electrical measurement made before the irradiation. The parameters of the components are 

monitored, the monitored data is reported. The pre-radiation testing is done at room temperature. 

The second phase is the irradiation. The DUT is irradiated at the specified dose rate continuously 

until the component reach the specified dose of 5 Krad. The parameters of the components are 

monitored at intermediate dose level as explained before. The temperature during irradiation 

should be 20±10º C. The variation in temperature throughout the irradiation should not be more 

than 3º.  

 

   After the irradiation the third phase is the annealing. The annealing should begin within one 

hour of the completion of the irradiation. We recommend annealing of 168 hrs at 25º C. 

Annealing is the important process in radiation testing. After the required irradiation, the 

components are affected. The percentage of damage varies for different components. The 

components overcome the damage and come to stable condition during the annealing time. The 

components are evaluated during annealing, such that if the component would overcome the 

damage and regain its performance gradually. If the component fails during annealing then it’s 

not validated. The whole radiation testing process is shown in the flow chart in fig:14.  

[ESA/SCC] [Barnard] 
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             Test plan for approval of the components 
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Figure 17: The test plan for testing TID of component 
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4.4 Test case 

   The main objective of the test is to measure the performance of the image sensor in radiation 

environment. The TID radiation test is planned to perform on PMD PhotonICs 19k-S3 image 

sensor (3D chip). The behavior of the sensor before irradiation, during irradiation, and after 

irradiation (annealing) will be measured. Two factors of sensor have to be observed during 

irradiation. First the parameters (ex: current consumption, power consumption, etc) of the sensor 

and second the pixel quality (ex: DSNU, PRNU and qualitative image assessment) of the sensor. 

These two factors have to be evaluated during and after irradiation to validate the image sensor. 

[Chen] 

 

(i) Parameters measurement of the image sensor 

(ii) Pixel quality assessment of the image sensor 

 

(i) Parameters measurement of the sensor 

    The parameters of the sensor are measured during intermediate dose levels and after the 

irradiation (annealing).  The parameters should not exceed its maximum values till the total dose 

of 5 Krad. If it exceeds then it’s a functional failure, then the component is not approved to use 

in the orbit. The sensor parameters are specified in table: 13, these parameters show the 

performance of device. The pixel quality measurement is discussed in the next section. [Torfs] 

[Johnston] [Bogaerts] 

 

Table 14: Senor Parameters 

Parameters Min. Typ. Max. 

Current consumption  40 mA 50 mA 

Power consumption  175 mW 225 mW 

Supply voltage 4.9 V 5 V 5.1 V 

Output current -4mA  4 mA 

        

(ii) Pixel quality assessment of the sensor 

The characteristics of pixel is described in following; 

 Dark current – When the image sensor is placed in a black box (not illuminated), there 

can be no current flow in an ideal sensor. But there is always leakage current produced by 

thermally generated charges in a real sensor, it is known as dark current. The dark current 

for a single pixel can be determined in a black box. The dark current per second is 

calculated, if the dark frames of the pixel are captured at several integration times. 

 

 Quantum efficiency – Quantum efficiency is the sensor response to different wavelength 

of light. The number of photon incident on a pixel is compared to the number of electron 

produced. 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Chen
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QE (ʎ) = Ndet(ʎ) / Ninc(ʎ) 

Ndet – detected signal charge per pixel at wavelength (ʎ) 

Ninc – number of incident photons of wavelength (ʎ) 

 

 Conversion gain - The sensor converts the photo-generated electron to micro voltage and 

the potential gain measured per electron is the conversion gain 

 

 Dark Signal Non Uniformity (DSNU) and Photon Response Non-uniformity (PRNU) – 

These two properties describes the uniformity of each pixel in an array. The DSNU 

shows the distribution of dark current and leakage difference between the pixels. PRNU 

shows pixel responsiveness when illuminated and gain difference between the pixels. 

 

The image sensor characterization is based on fill factor, quantum efficiency, conversion 

gain, full well capacity, dark current, noise parameters, integration/exposure time, and 

dynamic range. The dark current, quantum efficiency, and charge conversion gain are the 

main parameters, which are assessed from digital output data collected in dark and 

illuminated conditions. The function quantum efficiency and charge conversion gain is 

shown in the fig: 14. [Wallis] [Goodbeer] 

 

 
 

Figure 18: Image sensor function 

 

Test methodologies: 

   The Radiation testing of PMD camera is made in system level. The test bench is designed to 

evaluate sensor parameters. The camera is placed inside a black box to collect the dark images.  

The equipments inside the black box are light source for flat field illumination and an object (ex: 

bar, cylinder, etc) for imaging. Thermocouples are placed inside a black box to measure the 

ambient temperature and sample temperature of the sensor. The data collection and sensor 

control are made using laptop interface. 

 

   The test can be performed by manual and auto settings in sensor. Most of the image sensors 

have on chip image correction features to provide to low noise performance. The function of auto 

correction features is to adjust the parameters of the sensor, it could mislead in measuring the 
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effects on parameters of the device during irradiation. For ex: the dark signal in pixel is increased 

with the TID, it could be changed by auto correction features. The main idea is to identify the 

basic degradation in the image senor without auto correction features (manual) and also to 

identify how the effects could be corrected using auto function enabled. The data from the 

images sensor can be collected in two ways, manual and auto. The manual data collection has 

fixed exposure time, fixed signal chain gains (analog to digital) and disabled on chip correction 

features. The auto method has data collection with sensor auto function enabled to know how the 

radiation effects are corrected internally by the sensor. [Becker] [Thorbourn] 

 

    The following data set are collected in pre and post radiation. Dark images collected at 

different integration time, it is used to for calculating dark signal rate, noise, dark signal non-

uniformity (DSNU). Flat field images at different integration times to measure the photon 

transfer curve, noise, photo response non-uniformity (PRNU). Images of target object at best 

focus for different integration time, to measure the quality of the image, the distance between the 

sensor and the object. The auto data measure the same functions at one exposure time chosen by 

sensor with auto correction features. The fig.16 is an example for the test bench setup. 

 

 
 

Figure 19: Commercial sensor survey test bench.  [Becker] 

 

i) Dark signal - The dark signal data (five set of frames) are collected under un-illuminated 

condition with same integration time from micro seconds to seconds. For the pre- irradiation, 

dark signal is captured relatively in longer integration time and high conversion gain. After 

the irradiation two sets of dark frames are collected, the one with same gain and integration 

time, another with less gain and less integration time. The average is calculated from the five 

set of frames on pixel basis. The mean dark rate is the difference of the average dark signal at 

two different integration times divided by the difference in time. To calculate dark signal rate 

file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Becker
file:///C:/Users/vishnu%20anand/AppData/Roaming/Microsoft/Word/Thesis%20report.docx%23Becker


36 
 

for entire array, the two post irradiation data sets has to be merged. The dark signal rate over 

entire image is calculated by averaging all the pixels.  

 

ii) In another method the dark output voltage of the sensor is measured. The dark output voltage 

of each pixel is measured by placing the image sensor for certain integration time. The 

average value is calculated from relevant pixels in the array. Then average dark output 

voltage for various integration time is measured. The average dark output voltage Vs 

integration time is made. The slope of the straight line given dark signal (dark output voltage 

per unit time). The dark signal at various doses could be measured in this procedure. [Eid] 

 

iii) DSNU: The dark signal non-uniformity is calculated for a pixel by dividing the array into 

16×16 windows and rms dark rate value is calculated over each window. 

 

iv) PRNU: Flat field images (illumination – LED light) is used to determine the photo response 

non-uniformity. The five set of frames are collected at same integration time and averaged. 

Photo response rate is calculated by the difference of the average for two integration times 

divided by difference in integration time. 

 

v) Pixel Noise: The average rms pixel noise is calculated from the dark frame data. 

 

vi) Target image (qualitative image assessment): The images are taken before and after 

irradiation for an exposure time of 200 ms.  The auto correction feature should be enabled. 

The hot pixels in pictures will be recognized after the irradiation. The image quality is 

compared before and after irradiation. 

 

 

vii) Gain: The data’s are represented in digital number (Analog to Digital). The digital number is 

converted to electron by plotting the signal variance (DN
2
) Vs average signal level under flat 

field illumination condition. The conversion gain is calculated for dark and illuminated data 

sets. [Becker] [Vu] 

 

viii) Quantum efficiency: To measure the quantum efficiency, the (PRNU) method could be 

used with the light source of different wavelength (ex: LED) [Gonthier] [Walkera].  

 

Table 15: Pixel Parameters 

Parameters Min. Typ. Max. 

Quantum  

efficiency 

10 MHz 40% 50%  

20 MHz 30% 40%  

Dark current  150 fA 200 fA 

Conversion gain 3.8µV/e 4.5 µV/e  
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ix) Distance measurement: The above parameters measure the quality of the pixel under 

illuminated and dark condition; it’s a grey scale value of the pixel. Another important 

property of the PMD image sensor is depth (distance measurement). The object of interest is 

placed in front of image sensor with a known distance. The distance can be varied from 0.1m 

to 7.5m (it’s based on frequency modulation of sensor). Each pixel in the sensor measure the 

distance to the object. The measurements are made during irradiation or at each 

intermediated dose levels. By comparing the measured value of each pixel with the reference, 

the pixel performance in measuring distance will be evaluated. 
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5. Conclusion 
 

    In order to qualify the PMD image sensor for orbital operation, the following things have been 

done. First the theoretical study about radiation sources and effects.  The trapped charged 

particles, solar events, Galactic cosmic rays are the major sources exposed to the target orbit. 

Their properties and their maximum exposure during the solar cycle are detailed. The radiation 

effects are classified into cumulative and Singe Event Effect. The Total Ionizing Dose and 

Displacement Damage come under cumulative effect. These two are major effects for image 

sensor. The Single Event Effect is classified into permanent effect and transient effects. Single 

Event Latchup effect occurs more in CMOS based devices. The information from the previous 

space mission implies that the total dose of 4Krad will be exposed on target orbit for duration of 

one year. 

 

     The SPENVIS software is used for radiation simulation. In the target orbit, the number of 

electrons is higher than the number or protons. The energy range of protons is higher than 

electron. The protons are mostly distributed over the south Atlantic region. The electrons are 

distributed mostly around the north and south poles. In comparing all the sources, GCR ions 

have the high energy. The simulation results show that the target material silicon (Si) shielded in 

Al sphere of thickness 2mm contains the following absorbed doses. The trapped electron is the 

main source of radiation, which produce dose of (1.40 Krad). The second main source is solar 

proton, it produce dose of (1.31Krad).  The trapped proton has the dose of (3.03E+02 rad). The 

Bremsstrahlung produces the dose of (1.53E+01 rad). The Total Ionizing dose of the mission is 

(3.04E+03 rad).    

 

    The COTs component has a radiation tolerance of 1- 10 Krad and untested COTS component 

will survive up to 5Krad, this are initial assumptions. The value of 3.04 Krad is within the 

criteria of COTS dose limit. Hence the component without shielding should be irradiated in the 

radiation test facility up to the total dose of 5Krad. If the component would survive the 

irradiation without functional failure until 5Krad or at the least until 4.56 Krad (which is 

1.5×3.04 Krad, it’s based on RDM) then the component would probably survive in the orbit with 

shielding of 2mm for one year. 

 

     The intermediated dose rate 1 Krad/hr (0.27 rad/s) is decided. The dose rate of 1 Krad/hr will 

take 5 hr to reach total dose of 5 Krad. To test a component, minimum of five random samples is 

needed. In which four samples are irradiated in testing and the fifth one is a reference sample, 

which is not irradiated but the functioning of the fifth sample is measured spontaneously. One of 

the four samples is in switch off state, to measure its radiation tolerance in switch off condition. 

The remaining three samples are tested in on state, to know which two of the samples have 

similar results. The test plan for the approval of the component is discussed in detail. The testing 

can be made in a system level or in a component level, based on the convenience.  
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    The next step is the test case, the ways to measure the performance of sensor during the testing 

is described. First factor, the parameters of the sensor is measured during intermediate dose 

levels and after the irradiation (annealing). The parameters should not exceed its maximum 

values till the total dose of 5 Krad. If it exceeds then it’s a functional failure, then the component 

is not approved to use in the orbit. The second main factor is to measure the pixel quality of the 

senor. The dark signal, DSNU, PRNU, pixel noise, gain, quantum efficiency, qualitative image 

assessment and distance measurement are to be evaluated to measure the quality of sensor. The 

test methodologies to monitor these functions are described in detail. These two factors have to 

be evaluated during and after irradiation to validate the image sensor. 

 

5.1 Future work 
 

    The main aim of the thesis was to implement the radiation testing but we could not acquire the 

required amount of samples for testing. According to the ESA specification for TID testing, 11 

samples are required for testing. But a minimum of five samples is required to reach the desired   

radiation testing. In the worst case the test could be made in a system level with one sample but it 

cannot justify the testing. To know exact performance of the PMD image sensor 3D chip, the 

component level test should be made with minimum of five samples. In order to take next step 

towards testing, first we need minimum of five samples. Once the required samples are acquired 

then the PCB layout should be designed and manufactured. Then it should be programmed to 

control its function and to retrieve the data. The next step is to find the test facilities to perform 

the test. Then the required test setup to measure the parameters at test facility should be 

discussed in earlier to the test. Once these criteria are fulfilled the TID test will be achievable. 

Biasing the device and accelerated testing at high temperature can also be considered if it is 

needed. After the testing the results can be analyzed to estimate the radiation tolerance of the 

PMD image sensor. 

 

The TID testing for image sensor is just a first level of radiation testing.  The next important test 

for images sensor is Displacement Damage (non-ionizing test).The Displacement Damage can be 

simulated using SPENVIS. Once the TID, DD test are made the cumulative effects on sensor can 

be analyzed. After this SEE testing should be planned, the permanent and transient effect can be 

tested in particle accelerator. By these testing the radiation effects in the component can be 

known well.  
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Acronyms 
List of abbreviation used in the report 

 

COTS          Commercial Off-The-Shelf 

PMD           Photonic Mixer Device 

TID             Total Ionizing Dose 

GCR           Galactic Cosmic Ray 

LEO             Low Earth Orbit 

HEO            Highly Elliptical Orbit  

GEO            Geostationary Earth Orbit 

SEE             Single Event Effect 

SEU             Single Event Upset 

SEFI            Single Event Functional Interrupt 

SEL             Single Event Latchup 

SEB             Single Event Burnout 

SEGR          Single Event Gate Rupture 

SESB          Single Event Snap Back 

SET             Single Event Transient 

SED            Single Event Disturb 

SEHE          Single Event Hard Error 

MCU           Multiple Cell Upset 

DD              Displacement Damage 

NIEL           Non Ionizing Energy Loss 

CCD            Charge-Coupled Device 

CMOS         Complementary Metal Oxide Semiconductor 

CTE             Charge Transfer Efficiency 

LET              Linear Energy Transfer 

MOSFET     Metal Oxide Semiconductor Field Effect Transistor 

SRAM          Static Random Access Memory 

DRAM         Dynamic Random Access Memory 

RDM            Radiation Design Margin 

LDR             Low Dose Rate 

HDR            High Dose Rate 
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DUT            Device Under Test 

DSNU         Dark Signal Non Uniformity 

PRNU         Photo Response Non Uniformity 

QE              Quantum efficiency 

FWC           Full Well Capacity  

 

 

Developments software and tools 
(i) SPENVIS  

(ii) MATLAB 

(iii)  MS Word 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Spenvis Data  
 

Table 16: AP 9 Integral proton spectra 

  

Total 
mission 

Total 
mission 

average 
flux 

fluence 

Energy (/cm2/s) (/cm2) 

(MeV)     

1.00E-01 6.33E+03 2.00E+11 

1.50E-01 5.35E+03 1.69E+11 

2.00E-01 4.53E+03 1.43E+11 

3.00E-01 3.22E+03 1.02E+11 

4.00E-01 2.33E+03 7.35E+10 

5.00E-01 1.75E+03 5.51E+10 

6.00E-01 1.37E+03 4.32E+10 

7.00E-01 1.13E+03 3.57E+10 

1.00E+00 8.04E+02 2.54E+10 

1.50E+00 5.91E+02 1.86E+10 

2.00E+00 4.59E+02 1.45E+10 

3.00E+00 3.03E+02 9.54E+09 

4.00E+00 2.05E+02 6.47E+09 

5.00E+00 1.47E+02 4.64E+09 

6.00E+00 1.10E+02 3.47E+09 

7.00E+00 8.67E+01 2.74E+09 

1.00E+01 5.43E+01 1.71E+09 

1.50E+01 3.77E+01 1.19E+09 

2.00E+01 3.02E+01 9.52E+08 

3.00E+01 2.28E+01 7.20E+08 

4.00E+01 1.84E+01 5.80E+08 

5.00E+01 1.49E+01 4.70E+08 

6.00E+01 1.24E+01 3.92E+08 

7.00E+01 1.06E+01 3.35E+08 

1.00E+02 6.77E+00 2.13E+08 

1.50E+02 3.55E+00 1.12E+08 

2.00E+02 1.96E+00 6.18E+07 

3.00E+02 6.16E-01 1.94E+07 

4.00E+02 0.00E+00 0.00E+00 

5.00E+02 0.00E+00 0.00E+00 
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Table 17: AP 9 Differential proton spectra 

  
Total mission Total mission 

average flux fluence 

Energy (/cm2/MeV/s) (/cm2/MeV) 

(MeV)     

1.00E-01 2.09E+04 6.59E+11 

1.50E-01 1.80E+04 5.68E+11 

2.00E-01 1.54E+04 4.85E+11 

3.00E-01 1.10E+04 3.46E+11 

4.00E-01 7.37E+03 2.32E+11 

5.00E-01 4.81E+03 1.52E+11 

6.00E-01 3.08E+03 9.73E+10 

7.00E-01 2.06E+03 6.48E+10 

1.00E+00 8.43E+02 2.66E+10 

1.50E+00 3.45E+02 1.09E+10 

2.00E+00 2.29E+02 7.22E+09 

3.00E+00 1.27E+02 4.00E+09 

4.00E+00 7.76E+01 2.45E+09 

5.00E+00 4.76E+01 1.50E+09 

6.00E+00 3.03E+01 9.54E+08 

7.00E+00 2.01E+01 6.35E+08 

1.00E+01 8.00E+00 2.52E+08 

1.50E+01 2.41E+00 7.61E+07 

2.00E+01 1.25E+00 3.93E+07 

3.00E+01 5.90E-01 1.86E+07 

4.00E+01 3.96E-01 1.25E+07 

5.00E+01 2.97E-01 9.37E+06 

6.00E+01 2.15E-01 6.79E+06 

7.00E+01 1.69E-01 5.34E+06 

1.00E+02 1.04E-01 3.29E+06 

1.50E+02 4.81E-02 1.52E+06 

2.00E+02 2.57E-02 8.11E+05 

3.00E+02 9.80E-03 3.09E+05 

4.00E+02 3.08E-03 9.71E+04 

5.00E+02 0.00E+00 0.00E+00 
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Table 18: AE 9 Integral electron spectra 

  

Total 
mission 

Total mission 

average 
flux 

fluence 

Energy (/cm2/s) (/cm2) 

(MeV)     

4.00E-02 2.93E+05 9.24E+12 

1.00E-01 1.50E+05 4.74E+12 

2.00E-01 7.43E+04 2.34E+12 

3.00E-01 4.30E+04 1.36E+12 

4.00E-01 2.51E+04 7.91E+11 

5.00E-01 1.51E+04 4.77E+11 

6.00E-01 1.00E+04 3.15E+11 

7.00E-01 6.55E+03 2.07E+11 

8.00E-01 4.63E+03 1.46E+11 

1.00E+00 2.51E+03 7.91E+10 

1.20E+00 1.31E+03 4.14E+10 

1.50E+00 6.60E+02 2.08E+10 

1.80E+00 3.49E+02 1.10E+10 

2.00E+00 1.83E+02 5.77E+09 

2.20E+00 1.07E+02 3.38E+09 

2.50E+00 6.59E+01 2.08E+09 

2.80E+00 4.54E+01 1.43E+09 

3.00E+00 3.18E+01 1.00E+09 

3.20E+00 2.28E+01 7.18E+08 

3.50E+00 1.63E+01 5.15E+08 

3.80E+00 1.18E+01 3.72E+08 

4.00E+00 8.47E+00 2.67E+08 

4.20E+00 6.06E+00 1.91E+08 

4.50E+00 4.24E+00 1.34E+08 

4.80E+00 2.92E+00 9.20E+07 

5.00E+00 2.05E+00 6.46E+07 

5.50E+00 1.15E+00 3.64E+07 

6.00E+00 7.42E-01 2.34E+07 

6.50E+00 4.28E-01 1.35E+07 

7.00E+00 2.05E-01 6.47E+06 
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Table 19: AE 9 Differential Electron Spectra 

  
Total mission Total mission 

average flux fluence 

Energy (/cm2/MeV/s) (/cm2/MeV) 

(MeV)     

4.00E-02 2.99E+06 9.42E+13 

1.00E-01 1.77E+06 5.59E+13 

2.00E-01 5.35E+05 1.69E+13 

3.00E-01 2.46E+05 7.75E+12 

4.00E-01 1.40E+05 4.40E+12 

5.00E-01 7.54E+04 2.38E+12 

6.00E-01 4.28E+04 1.35E+12 

7.00E-01 2.69E+04 8.47E+11 

8.00E-01 1.64E+04 5.16E+11 

1.00E+00 8.02E+03 2.53E+11 

1.20E+00 3.69E+03 1.17E+11 

1.50E+00 1.93E+03 6.09E+10 

1.80E+00 9.54E+02 3.01E+10 

2.00E+00 4.84E+02 1.53E+10 

2.20E+00 2.34E+02 7.39E+09 

2.50E+00 1.23E+02 3.89E+09 

2.80E+00 6.83E+01 2.15E+09 

3.00E+00 4.53E+01 1.43E+09 

3.20E+00 3.08E+01 9.73E+08 

3.50E+00 2.20E+01 6.93E+08 

3.80E+00 1.57E+01 4.96E+08 

4.00E+00 1.14E+01 3.61E+08 

4.20E+00 8.47E+00 2.67E+08 

4.50E+00 6.29E+00 1.98E+08 

4.80E+00 4.37E+00 1.38E+08 

5.00E+00 2.91E+00 9.19E+07 

5.50E+00 1.31E+00 4.12E+07 

6.00E+00 7.25E-01 2.29E+07 

6.50E+00 5.37E-01 1.69E+07 

7.00E+00 3.55E-01 1.12E+07 
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Table 20: ESP Psychic total fluence: solar protons 

  Fluence at spacecraft Model fluence at 1.0AU 

  Total mission fluence Total prediction period 

Energy Integral Differential Integral Differential 

(MeV) (cm-2) (cm-2 MeV-1) (cm-2) (cm-2 MeV-1) 

0.1 2.46E+11 1.64E+12 1.18E+12 7.98E+12 

0.11 2.31E+11 1.42E+12 1.10E+12 6.92E+12 

0.12 2.17E+11 1.23E+12 1.04E+12 5.99E+12 

0.14 1.95E+11 9.56E+11 9.35E+11 4.65E+12 

0.16 1.78E+11 7.61E+11 8.54E+11 3.70E+12 

0.18 1.64E+11 6.22E+11 7.87E+11 3.03E+12 

0.2 1.53E+11 5.20E+11 7.33E+11 2.53E+12 

0.22 1.43E+11 4.44E+11 6.86E+11 2.16E+12 

0.25 1.31E+11 3.58E+11 6.29E+11 1.74E+12 

0.28 1.22E+11 2.96E+11 5.82E+11 1.44E+12 

0.32 1.11E+11 2.36E+11 5.31E+11 1.15E+12 

0.35 1.04E+11 2.03E+11 4.99E+11 9.86E+11 

0.4 9.52E+10 1.62E+11 4.56E+11 7.90E+11 

0.45 8.78E+10 1.33E+11 4.20E+11 6.46E+11 

0.5 8.17E+10 1.11E+11 3.91E+11 5.40E+11 

0.55 7.66E+10 9.47E+10 3.66E+11 4.61E+11 

0.63 6.98E+10 7.56E+10 3.34E+11 3.67E+11 

0.71 6.43E+10 6.17E+10 3.08E+11 3.00E+11 

0.8 5.92E+10 5.04E+10 2.83E+11 2.45E+11 

0.9 5.46E+10 4.13E+10 2.61E+11 2.01E+11 

1 5.09E+10 3.45E+10 2.43E+11 1.68E+11 

1.1 4.77E+10 2.94E+10 2.28E+11 1.43E+11 

1.2 4.49E+10 2.55E+10 2.15E+11 1.24E+11 

1.4 4.04E+10 1.97E+10 1.93E+11 9.60E+10 

1.6 3.69E+10 1.57E+10 1.76E+11 7.64E+10 

1.8 3.40E+10 1.28E+10 1.63E+11 6.25E+10 

2 3.16E+10 1.07E+10 1.51E+11 5.22E+10 

2.2 2.97E+10 9.16E+09 1.42E+11 4.45E+10 

2.5 2.72E+10 7.40E+09 1.30E+11 3.60E+10 

2.8 2.51E+10 6.41E+09 1.20E+11 3.12E+10 

3.2 2.27E+10 5.82E+09 1.08E+11 2.83E+10 

3.5 2.10E+10 5.22E+09 1.00E+11 2.54E+10 

4 1.87E+10 4.07E+09 8.90E+10 1.98E+10 

4.5 1.68E+10 3.26E+09 8.02E+10 1.58E+10 

5 1.53E+10 2.83E+09 7.32E+10 1.38E+10 

5.5 1.40E+10 2.53E+09 6.65E+10 1.23E+10 

6.3 1.22E+10 1.94E+09 5.80E+10 9.44E+09 
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Fluence at spacecraft Model fluence at 1.0AU 

 
 

Total mission fluence 
 

Total prediction period 
 

Energy 
(MeV) 

Integral 
(cm-2) 

Differential 
(cm-2 MeV-1) 

Integral 
(cm-2) 

Differential 
(cm-2 MeV-1) 

          8 1.08E+10 1.59E+09 5.14E+10 7.73E+09 

9 9.48E+09 1.31E+09 4.50E+10 6.36E+09 

10 8.31E+09 1.02E+09 3.95E+10 4.95E+09 

11 7.38E+09 8.54E+08 3.51E+10 4.15E+09 

12 6.58E+09 7.36E+08 3.12E+10 3.58E+09 

14 5.91E+09 6.08E+08 2.79E+10 2.96E+09 

16 4.86E+09 4.43E+08 2.30E+10 2.15E+09 

18 4.08E+09 3.41E+08 1.93E+10 1.66E+09 

20 3.47E+09 2.65E+08 1.64E+10 1.29E+09 

22 2.99E+09 2.12E+08 1.42E+10 1.03E+09 

25 2.61E+09 1.75E+08 1.23E+10 8.50E+08 

28 2.15E+09 1.31E+08 1.02E+10 6.36E+08 

32 1.80E+09 1.02E+08 8.47E+09 4.98E+08 

35 1.45E+09 7.39E+07 6.81E+09 3.59E+08 

40 1.25E+09 5.95E+07 5.86E+09 2.89E+08 

45 9.89E+08 4.35E+07 4.64E+09 2.11E+08 

50 8.00E+08 3.22E+07 3.75E+09 1.57E+08 

55 6.58E+08 2.45E+07 3.08E+09 1.19E+08 

63 5.49E+08 1.92E+07 2.56E+09 9.32E+07 

71 4.19E+08 1.33E+07 1.95E+09 6.49E+07 

80 3.28E+08 9.50E+06 1.52E+09 4.62E+07 

90 2.55E+08 6.78E+06 1.18E+09 3.30E+07 

100 1.97E+08 4.79E+06 9.03E+08 2.33E+07 

110 1.56E+08 3.42E+06 7.09E+08 1.66E+07 

120 1.26E+08 2.47E+06 5.71E+08 1.20E+07 

140 1.04E+08 1.89E+06 4.69E+08 9.20E+06 

160 7.35E+07 1.20E+06 3.26E+08 5.82E+06 

180 5.38E+07 7.72E+05 2.36E+08 3.74E+06 

200 4.08E+07 5.28E+05 1.76E+08 2.51E+06 

220 3.18E+07 3.77E+05 1.35E+08 1.76E+06 

250 2.53E+07 2.78E+05 1.06E+08 1.29E+06 

280 1.83E+07 1.85E+05 7.58E+07 8.40E+05 

320 1.36E+07 1.27E+05 5.55E+07 5.71E+05 

350 9.52E+06 7.82E+04 3.84E+07 3.44E+05 

400 7.49E+06 5.67E+04 2.99E+07 2.45E+05 

450 5.18E+06 3.58E+04 2.07E+07 1.50E+05 

500 3.71E+06 2.33E+04 1.49E+07 9.53E+04 

 
2.78E+06 1.39E+04 1.12E+07 5.58E+04 
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Table 21: Ion spectrum (GCR) 

Energy 
Integral 

flux 
Differential flux 

(MeV/n) (m2/ sr/ s/) (m-2 sr-1 s-1 (MeV/n)-1) 

1.00E+00 1.05E+03 1.72E-04 

1.10E+00 1.05E+03 2.08E-04 

1.20E+00 1.05E+03 2.49E-04 

1.40E+00 1.05E+03 3.40E-04 

1.60E+00 1.05E+03 4.44E-04 

1.80E+00 1.05E+03 5.61E-04 

2.00E+00 1.05E+03 6.91E-04 

2.20E+00 1.05E+03 8.32E-04 

2.50E+00 1.05E+03 1.07E-03 

2.80E+00 1.05E+03 1.33E-03 

3.20E+00 1.05E+03 1.71E-03 

3.50E+00 1.05E+03 2.02E-03 

4.00E+00 1.05E+03 2.60E-03 

4.50E+00 1.05E+03 3.22E-03 

5.00E+00 1.05E+03 3.90E-03 

5.50E+00 1.05E+03 5.93E-03 

6.30E+00 1.05E+03 7.51E-03 

7.10E+00 1.05E+03 9.23E-03 

8.00E+00 1.05E+03 1.13E-02 

9.00E+00 1.05E+03 1.38E-02 

1.00E+01 1.05E+03 1.63E-02 

1.10E+01 1.05E+03 1.91E-02 

1.20E+01 1.05E+03 2.19E-02 

1.40E+01 1.05E+03 2.78E-02 

1.60E+01 1.05E+03 3.41E-02 

1.80E+01 1.05E+03 4.06E-02 

2.00E+01 1.05E+03 4.72E-02 

2.20E+01 1.05E+03 5.41E-02 

2.50E+01 1.05E+03 6.45E-02 

2.80E+01 1.05E+03 7.50E-02 

3.20E+01 1.05E+03 8.92E-02 

3.50E+01 1.05E+03 9.98E-02 

4.00E+01 1.05E+03 1.17E-01 

4.50E+01 1.05E+03 1.34E-01 

5.00E+01 1.05E+03 1.51E-01 

5.50E+01 1.05E+03 1.67E-01 

6.30E+01 1.05E+03 1.92E-01 
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Energy 
(MeV/n) 

Integral 
flux 

(m2/ sr/ s/) 
Differential flux 

(m-2 sr-1 s-1 (MeV/n)-1) 

7.10E+01 1.05E+03 2.15E-01 

8.00E+01 1.05E+03 2.39E-01 

9.00E+01 1.04E+03 2.63E-01 

1.00E+02 1.04E+03 2.85E-01 

1.10E+02 1.04E+03 3.04E-01 

1.20E+02 1.03E+03 3.22E-01 

1.40E+02 1.03E+03 3.50E-01 

1.60E+02 1.02E+03 3.74E-01 

1.80E+02 1.01E+03 3.97E-01 

2.00E+02 1.00E+03 4.17E-01 

2.20E+02 9.96E+02 4.31E-01 

2.50E+02 9.82E+02 4.45E-01 

2.80E+02 9.69E+02 4.52E-01 

3.20E+02 9.51E+02 4.58E-01 

3.50E+02 9.37E+02 4.61E-01 

4.00E+02 9.14E+02 4.60E-01 

4.50E+02 8.91E+02 4.54E-01 

5.00E+02 8.69E+02 4.43E-01 

5.50E+02 8.47E+02 4.29E-01 

6.30E+02 8.13E+02 4.07E-01 

7.10E+02 7.82E+02 3.86E-01 

8.00E+02 7.48E+02 3.64E-01 

9.00E+02 7.13E+02 3.39E-01 

1.00E+03 6.80E+02 3.25E-01 

1.10E+03 6.48E+02 3.02E-01 

1.20E+03 6.19E+02 2.81E-01 

1.40E+03 5.67E+02 2.45E-01 

1.60E+03 5.21E+02 2.14E-01 

1.80E+03 4.80E+02 1.88E-01 

2.00E+03 4.45E+02 1.67E-01 

2.20E+03 4.13E+02 1.48E-01 

2.50E+03 3.72E+02 1.26E-01 

2.80E+03 3.37E+02 1.08E-01 

3.20E+03 2.98E+02 8.86E-02 

3.50E+03 2.73E+02 7.74E-02 

4.00E+03 2.38E+02 6.28E-02 

4.50E+03 2.10E+02 5.19E-02 

5.00E+03 1.86E+02 4.35E-02 

5.50E+03 1.66E+02 3.70E-02 

6.30E+03 1.39E+02 2.93E-02 
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Energy 
(MeV/n) 

Integral 
flux 

(m2/ sr/ s/) 
Differential flux 

(m-2 sr-1 s-1 (MeV/n)-1) 

7.10E+03 1.18E+02 2.39E-02 

8.00E+03 9.83E+01 1.95E-02 

9.00E+03 8.07E+01 1.57E-02 

1.00E+04 6.64E+01 1.29E-02 

1.10E+04 5.47E+01 1.06E-02 

1.20E+04 4.50E+01 8.83E-03 

1.40E+04 2.99E+01 6.29E-03 

1.60E+04 1.90E+01 4.63E-03 

1.80E+04 1.08E+01 3.50E-03 

2.00E+04 4.63E+00 2.71E-03 
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Table 22: Technologies susceptible to TID effects 

Technology category Sub categories Effects 

MOS NMOS 

PMOS 

CMOS 

CMOS/SOS/SOI 

Threshold voltage shift, 

Decrease in drive current, 

Decrease in switching speed, 

Increased leakage current. 
BJT  hFE degradation, particularly 

for low-current conditions 

JFET  Enhanced source-drain, 

leakage currents. 

Analogue microelectronics 

(general) 
 Changes in offset voltage and 

offset current, 

Change in bias current,  

Gain degradation. 

Digital microelectronics 

(general) 
 Enhanced transistor leakage, 

Logic failure from (1) reduced 

gain (BJT), or (2) threshold 

voltage shift and reduced 

switching speeds (CMOS) 

CCDs  Increased dark currents, 

effects on MOS transistor 

elements (described above), 

some effects on CTE. 

APS (CMOS)  Changes to MOS-based 

circuitry imager (as described 

above) – including changes in 

pixel amplifier gain. 
MEMS  Shift in response due to charge 

build-up in dielectric layer 

near to moving parts. 

Quartz resonant crystals  Frequency shifts 

Optical materials Cover glasses, Fiber optics, 

Optical components, coatings, 

instruments and scintillators. 

Increased absorption, 

Variation in absorption 

spectrum (coloration). 
Polymeric surfaces (generally 

only important for materials 

exterior to spacecraft)  

 Mechanical degradation, 

Changes to dielectric 

properties. 
 [ESA2008] 
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Table 23:  Technology susceptible to DD effects. 

Technology category Sub-category Effects 

General bipolar BJT 

Integrated circuits 

hFE degradation in BJTs, 

particularly for low-current 

conditions (PNP devices more 

sensitive to DD than NPN) 

diodes Increased leakage current and 

increased forward voltage 

drop 

Electro-optic sensor CCDs CTE degradation, 

Increased dark current, 

Increased hot spots, 

Increased bright columns, 

Random telegraph signals. 

APS Increased dark current, 

Increased hot spots, 

Random telegraph signals, 

Reduced responsivity. 

Photo diodes Reduced photocurrents, 

Increased dark currents. 

Photo transistors hFE degradation, 

Reduced responsivity, 

Increased dark current. 

Light- emitting diodes LEDs (general) Reduced light power output 

Laser diodes Reduced light power output, 

Increased threshold current. 

Opto-couplers  Reduced current transfer ratio 

Solar cells Silicon, GaAs, InP, etc. Reduced current short-circuit 

current, 

Reduced open-circuit voltage, 

Reduced maximum power. 
Optical materials Alkali halides, Silica. Reduced transmission 

Radiation detectors Semiconductor gamma ray 

and X-ray detectors: Si, 

HPGe, CdTe, CZT. 

Reduced charge collection 

efficiency (calibration shifts, 

reduced resolution), Poorer 

timing characteristics, HPGe 

show complex variation with 

temperature. 

Semiconductor charged-

particle detectors. 

Reduced charge collection 

efficiency (calibration shifts, 

reduced resolution) 

 [ESA2008] 
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Table 24: Definition of DD effects. 

 
Parameter Phenomenology and 

observation 

Technologies affected 

Charge-transfer efficiency 

(CTE) 

Creation of traps in active 

volume of CCD – reduced 

charge collection form each 

pixel, also streaking observed 

due to the delayed release of 

trapped charge. 

CCD 

Dark current Excess charge from electro-

optic sensor due to charge 

collection from radiation-

induced defects. 

CCD, APS, photo-diodes, 

photo-transistors. 

Hot spots Defect-induced charge 

generation in specific pixels 

which become brighter than 

the average dark current. 

These are usually defined in 

the context of the application 

and identified by the image 

processing software as “bad 

pixels”. Very bright spots can 

result from field- enhanced 

emission mechanisms. 

CCD, APS. 

Random telegraph signals 

(RTS) 

Two or more multi-level dark 

–current states with random 

switching between the dark 

current states from seconds 

(for imager at room 

temperature) to hours (if 

operated at reduced 

temperature) 

CCD, APS. 

Bright columns Defect-induced dark current 

can saturate a pixel with a 

time-constant comparable to 

or longer than device read out 

times. Information from one 

or more pixels after the 

damage pixel are this rendered 

unreadable. 

CCD 

Reduced photo-current, Pixel 

responsivity 

Reduced charge collection as a 

result of decreased minority 

carrier life-times. 

APS, photo-diodes, photo-

transistors 

Light output 

 

 Reduced radiation power 

efficiency. 
LED, laser diodes. 

 [ESA2008] 
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Table 25: Possible single event effect as a function of component technology and family 
C
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U
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M
U

 

S
E

D
R

 

S
E

H
E

 

S
E

F
I 

S
E

T
 

S
E

D
 

Transistor Power 

MOS 
    X X        

ICs CMOS or 

BiCMOS 

or SOI 

Digital SRAM X

* 

   X X  X    

DRAM/SD

RAM 

X

* 

X   X X  X X   

FPGA X
* 

   X  X  X  X 

EEPROM/ 

Flash 

EEPROM 

X

* 

     X  X  X 

µP/ 

µcontroller 

 

X    X   X X  X 

Mixed 

Signal 

ADC X

* 

   X    X X X 

DAC X

* 

   X    X X X 

Linear  X

* 

     X   X  

Bipolar Digital      X     X  

Linear      X     X  

Opto-

electronics 
  Opto-

couplers 

         X  

  CCD 

 

         X  

  APS 

(CMOS) 

X         X  

*except SOI 

 [ESA2008] 
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