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Reservoir Computing for Prediction of the
Spatially-Variant Point Spread Function

Stephen J. Weddell, Member, IEEE, and Russell Y. Webb, Member, IEEE

Abstract—A new method is presented which provides prediction
of the spatially variant point spread function for the restoration of
astronomical images, distorted by atmospheric turbulence when
viewed using ground-based telescopes. Our approach uses reser-
voir computing to firstly learn the spatio-temporal evolution of
aberrations caused by turbulence, and secondly, predicts the space-
varying point spread function (PSF) for application of widely-used
deconvolution algorithms, resulting in the restoration of astronom-
ical images. In this article, a reservoir-based, recurrent neural net-
work is used to predict modal aberrations that comprise the spa-
tially variant PSF over a wide field-of-view using a time-series en-
semble from multiple reference beacons.

Index Terms—Adaptive optics, reservoir computing, wavefront
prediction.

I. INTRODUCTION

ONG exposure imaging through atmospheric turbulence
L results in the distortion of faint astronomical science ob-
jects due to the aberration of effectively planar wave fronts.
Wavefront sensors provide indirect measurement of wave fronts
from either natural, or artificially created, reference beacons. By
measuring the aberrations from a beacon the spatially-invariant
(on-axis) PSF is deconvolved with widely used algorithms to
restore image quality of a science object, known hereafter as a
target object. However, due to the temporal evolution of the at-
mosphere and corresponding spatial variability of the PSF, the
angular separation between a reference beacon and target object
is limited by the isoplanatic angle, 6. Various methods, such as
maximum a posteriori-based estimation [1], and modal tomog-
raphy [2], employ multiple reference beacons for wave front re-
covery over anisoplanatic regions.

The restoration of astronomical images, distorted by the ef-
fects of imaging through the turbulent atmosphere, is based on
mathematical principles, applied through digital image and dig-
ital signal processing. The real-time restoration of such images
can be achieved using adaptive optics (AO), where the optical
path of an imaging system is altered by applying the conjugate
of the measured wave front to a deformable mirror [3], thus
closing the control loop. As AO systems are extended, greater
demands are placed on the control system. Open-loop systems,
such as deconvolution from wavefront sensing (DFWS) [4], pro-
vide the basis for this study by allowing an estimate of a target
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object to be made using aberration data from multiple reference
beacons. However, to meet real-time requirements for wide field
astronomical imaging, an efficient method for the prediction
of the spatially-variant PSF is required. In this article we con-
sider a recurrent artificial neural network (RNN) for prediction
of modal expansions of a wave front over a wide field-of-view
(FOV), employing time-series aberration data from several ref-
erence beacons.

This paper is organized as follows. Section II provides a back-
ground discussion on several topics in imaging and machine
learning that are used throughout this paper. Our approach to
restoring images in anisoplanatic regions is outlined in Sec-
tion III. The use of ANNSs in prediction, specifically using reser-
voir computing architectures, is discussed in Section I'V and this
is followed by a brief analysis of low-order aberration data in
Section V. An outline of our simulation procedures is given in
Section VI. The results of our simulations are presented in VII,
and real-time considerations of our work are considered in Sec-
tion VIII. Lastly, our conclusion and outline of future work are
given in Section IX.

II. BACKGROUND

In this section we firstly outline atmospheric turbulence and
define the wavefront function. Wide-field adaptive optics and
wavefront sensing is discussed and this is followed by defini-
tions of the point spread function and image model. An overview
of Zernike polynomials, commonly used to represent wavefront
aberrations is given, and a brief introduction to artificial neural
networks (ANNSs) concludes this section.

A. Atmospheric Turbulence

The Earth’s atmosphere is comprised of up to three thin layers
of turbulence [5]. The movement of large air masses known
as weather, is caused by temperature fluctuations and pressure
variations. Mixing of air over scale lengths of between one cen-
timetre to several hundreds of meters is the cause of atmospheric
turbulence.

The effects of light propagating through atmospheric turbu-
lence can be represented by a wavefront function, W(z,y). A
wave front is defined as the optical path-length equivalence (the
product of distance, z, and the refractive index, n) from a source
object to the pupil plane. In this article only natural guide stars
(NGSs) are considered as reference beacons and the region of
interest is a wide FOV defined by the entrance pupil, P(z,y),
of an optical instrument. The phase fluctuation ¢(x, y) is of pri-
mary interest in this article and can be expressed as a function
of the wavefront aberration W (z, y) by

Ha9) = W () 1)
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where A is the wavelength and the wave aberration function,
W (z,y) is measured along transverse coordinates, (z,¥).

B. Wide-Field Adaptive Optics

Wide field adaptive optics is of particular interest in ground-
based astronomy. Most target objects are typically too faint for
direct wavefront measurements. Single NGSs of sufficient mag-
nitude (V' < 14) provide a wavefront reference, however wave-
front errors increase as the angular separation between a target
object and NGS exceed the isoplanatic angle, . Within the vi-
sual spectrum, 6 is only a few arc seconds [6] and is typically
< 40 arc seconds at near infrared wave-lengths. To reduce such
limitations, a point-source can be created using a high-power
laser and can be positioned within close proximity to a target ob-
ject. Such reference beacons are referred to as laser guide stars.
However, distortions, such as focal anisoplanatism, and the in-
ability to measure tilt aberrations, limit their use as an exclusive
alternative to NGSs [7].

Focal isoplanatic errors have been reduced with the use of
multiple laser guide stars and application of 3-D tomography.
First introduced by Tallon and Foy [8] and supporting a zonal
reconstruction method, a modal approach using Zernike poly-
nomials from multiple NGSs has been proposed by Ragazzoni
et al. [9].

C. Wavefront Sensing & Data Acquisition

Wavefront sensing is an extensive topic discussed in-depth
by Roggemann et al. [4] and Roddier [3]. In this paper, we
limit our discussion to wavefront sensing using the curvature
sensing method [3] for two reasons. Firstly, since an estimate
of the wavefront phase is measured from the focal, rather than
the pupil plane, the curvature method can be used to simulta-
neously estimate the wavefronts of multiple reference beacons
using a wide field charge coupled device (CCD). Secondly, es-
timating phase from curvature is a nonlinear operation [10] that
can be facilitated by the application of a trained ANN [11].
Efficient solutions that employ dimensionally reduction have
demonstrated the feasibility of real-time wavefront estimation
from focal plane images using a radial basis function neural net-
work [12].

Wavefront data comprising time-series ensembles of Zernike
coefficient terms were acquired from field observations using
the method described here. These acquired data ensembles form
the basis of our simulation models discussed in Section VI-B.
We present a time-series analysis of these data ensembles in
Section V.

D. The Point Spread Function and the Image Model

In optical signal processing the response of a system to a point
source of light is a 2-D impulse response function commonly
referred to as a point spread function (PSF). Since an object,
f(+), can be represented as a set of weighted point sources, the
response is that of a linear system, observing that object, f(-), is
the superposition of weighted and shifted versions of the PSF.

Given the coordinate systems (z,y) representing image
space and (2’,y’) representing object space, the PSF can be

written, h(z,y; 2, y’). If the object being observed is f(z’,/'),
the image recorded can be written

d(e,y) = / / @y (e, gt ' dy + () @)

where 7)(z,y) represents the inevitable presence of noise in
the process. This then represents a continuous model for the
imaging process.

Without loss of generality and recognising that the image sen-
sors, such as CCDs, are inevitably discrete in nature, a discrete
equivalent to (2) can be written

N M

d(p,q) =YY f(k,Dh(p,g: k1) +n(pg) ()

k=11=1

where (p, q) and (k, 1) are the indices of discrete coordinates in
image and object spaces, respectively. The noise sources 7)(p, ¢)
comprise CCD sensor read noise and photon noise. These noise
sources are modelled using Gaussian and Poisson distributions
[13], respectively.

In general, h(p, ¢; k, 1) is dependent both on (p, ¢) and (k, 1),
i.e., variations of the PSF depend on the location of the source
point. In a significant number of imaging situations, however, a
spatially invariant model can be adopted, such that (3) becomes
a convolution, thus

N M

dp,q) =Y. > f(k,Dh(p—kig—1)+n(p,q). @)

k=11=1

The optical transfer function (OTF), represented as H (u, v),
is the normalized autocorrelation of the pupil function, P(z,y),
or simply, the Fourier transform of the PSF. The OTF is analo-
gous to the frequency response of a time-domain filter.

Atmospheric turbulence alters the phase of effectively planar
wave fronts, as defined in Section II-A. Such phase alterations
over the pupil plane results in distortions in the image plane;
such distortions are modelled by the deformation of the PSF.

The relationship between the wave front and PSF is given as
[14]

A 2

FT {P(w,y)exp [—j 2;W(ﬂmy)} }

5)
where F'T is the Fourier transform operator, d is the distance
from the exit pupil to the image, A, is the area of the exit
pupil, P(z,y) is the exit pupil function, A is the wavelength,
and W (z, y) is the wavefront aberration at the exit pupil.

Equation (5) relates the PSF to the wave front in the pupil
plane, however it does not provide insight into the effects of
the PSF on specific wavefront aberrations. For example, a low-
order aberration, such as tilt, will result in a displacement of
the PSF, whereas higher order aberrations, such as defocus and
astigmatism, will result in the deformation of the PSF.

In summary, the temporal effect of air turbulence results in
continuous wavefront aberration in the pupil plane and corre-
sponding distortion or shifting of the PSF. The resulting image
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Fig. 1. Generalized imaging model.

is thus formed as a distorted or shifted PSF of the original ob-
ject, with additive noise due to data acquisition. These aspects
are related to the temporal imaging model and are discussed in
the following section.

E. Temporal Extensions to the Image Model

In developing an imaging model we need to recognise that the
quantities involved are time variant; the object and point spread
function and therefore the image also, are all functions of time.
For completeness therefore, we should write

N M

SN fk, Lth(p—kiq— 1 t) +n(p, a;t) (6)

k=11=1

di(p,q,t) =

for the time-variant, spatially—invariant image model, and

N
d2(p,q,t) = Zkalt (0, @ k, ;1) + n(p, q;t)  (7)

k=11=1

for the time-variant, spatially-variant image model.

The image model used to represent the work outlined in
this paper is shown in Fig. 1. The input—output relationship
of an object, f(k,l;t), can be expressed as distortion and
deconvolution operations by respective functions h(p, ¢; k, 1, )
and w(p, ¢; k,1; t), with additive noise source, 7(p, ¢;t). The
distortion of object, f(k,l;t), with an aberration represented
by the PSE, h(p,q;k,l;t), results in measured data in the
spatio—temporal domain, ds(p, ¢;t), with additive noise com-
ponent, n(p, ¢; t). Models of this kind are known as the forward
problem [15].

The recovery of the original image, f(k,[;t), in the presence
of noise, 7)(p, ¢; t), results in an estimation of the original image,
f (k,;t). Restoration problems such as this are referred to as the
inverse problem and are typically ill-posed.

On-axis measurements using reference beacons allow isopla-
natic measurements to be performed, however deviation from
on-axis measurements of only a few arc seconds in the visible
spectrum [6] result in a decrease in the correlation of Zernike
coefficients, as a function of angular separation between a ref-
erence beacon and target object.

Prediction of the PSF in anisoplanatic AO images for restora-
tion has been conducted, firstly using wave-optics simulation to
compute the PSF for various field angles, and secondly, by fit-
ting each simulated PSF to a parameterized model [16]. The co-
efficients of the model are then interpolated for prediction of the
PSF over a wide range of field angles. Fusco et al. [17] showed
that the optical transfer function (OTF) could be separated into
two components, an OTF that provided the on-axis isoplanatic
OTF, and a second OTF that defines the off-axis anisoplanatic
component. By using the correlation of the Zernike coefficients
and estimation of the C2 atmospheric profile, the OTF could be
theoretically computed over the entire FOV, assuming an infi-
nite exposure time.

Prior knowledge, such as C2 profiles for individual turbu-
lence layers, has been used to minimise the PSF variations over
wide angular separations. This technique, known as modal to-
mography, [9] has been used to estimate modal aberrations, in
terms of Zernike polynomials, of anisoplanatic regions over a
wide FOV. Modal representation of wavefront aberrations using
Zernike polynomials is highly relevant to our work and is dis-
cussed in Section II-F.

Since our ultimate objective is in the restoration of images
over anisoplanatic regions, our interest is in the spatially variant
PSF given by (7). As shown in the preceding discussion and
model given in Fig. 1, our analysis is also based on the temporal
evolution of the PSF. Justification for this consideration is based
on the evolution of the PSF over a wide field-of-view, and thus,
the PSF should be considered a function of both time and space.
This is further discussed in Section VI-B.

F. Zernike Polynomials

Zernike polynomials are 2-D orthonormal basis functions
commonly used to define optical aberrations over the unit
circle. They represent the statistical eigenfunctions of optical
distortions that quantitatively classify each aberration using a
set of polynomials. This set of polynomials is defined as

Zizeven(r,6) = Vi F TR (1)V/2eos(mb)
Zizoaa(r,0) = v/n + LR™(r)/2sin(mf) }m #0 (8)

Zi(r) = R%(p)V2,m=0 (9)

where r is the aperture radius, ¢ is a single index numbering
scheme adopted by Noll [18], and the terms m and n are the
azimutal and radial order, respectively. The radial polynomial
function, R}?*(r), is defined as

(n—m)/2 _
- (_l)n(n S)' (n—2s)
R™(1 + n—m) .

(10)
Each Zernike mode can be represented by a 2-D image, com-
monly referred to as a phase map. For example, an aberrated
PSF is represented by K phase maps on the pupil plane.
The linear combination of K aberrations over a unit circle of
radius R results in an approximation of the phase perturbation

DI

P(Rp.0) (11)

Authorized licensed use limited to: University of Canterbury. Downloaded on December 16, 2008 at 05:58 from |IEEE Xplore. Restrictions apply.



WEDDELL AND WEBB: RESERVOIR COMPUTING FOR PREDICTION OF THE SPATIALLY-VARIANT POINT SPREAD FUNCTION 627

where p is the normalized aperture given an aperture of radius,
R, and when K = oo, (11) is an exact representation of the
phase. Additionally, the piston term, Z;, has been removed in
(11), as is common for single aperture instruments.

The Zernike coefficients are defined as

1 27
0; = /0 /0 W(o)b(Rp,0)Zi(p, 6)d0dp  (12)

where W(p) is the pupil weighting function.
The generalized pupil function can be defined as [4],

W(z,y) = W(z,y) explio(z,y)]

where the pupil weighting function, WW(z,y), is more conve-
niently expressed in rectangular coordinates.

Equation (13) is a modal description of the wave front over the
exit pupil of an imaging system. However, Ragazzoni showed
that a smaller, circular portion of a wave front on the pupil can
be described by another ensemble of Zernike coefficients [2].
We apply this important result by using a modal representation
to describe wavefront aberrations in both isoplanatic and aniso-
planatic regions for predicting the spatially variant PSF over a
wide FOV.

13)

G. Artificial Neural Networks

Artificial neural networks (ANNs) are inspired by biological
neurons and their interconnections that form the structure of the
brain. ANNs can be defined as a network of nodal structures
each comprising one or more input and output nodes, a weighted
matrix of interconnections providing communication between
each input and output, and an activation function that ensures
each output is bounded. When an analytical model is either not
available or is too complex, black-box modelling can be applied
using ANNSs to find the solution space. In this regard, ANNs
do not necessarily model internal mechanisms but are trained to
learn the overall behavior of a target system [19].

A class of ANNs known as recurrent networks supports an ar-
chitecture based on signal feedback to enhance a systems ability
to predict or forecast some future value [20]. Such networks can
be employed to capture the dynamics of the input signals. The
integration of ANNSs and associated topologies for AO applica-
tions has augmented or replaced many existing models by pro-
viding a simplified methodology [11].

The application of ANNs in AO systems can be grouped into
two categories; firstly, the classification of wavefront aberra-
tions in the pupil plane, and secondly, the prediction of wave-
front aberrations [11]. Recently, an ANN system architecture
has been proposed for the prediction of wavefront aberrations
using multiple NGSs [21].

III. APPROACH

Our approach is to use a recurrent artificial neural network
(ANN) to predict the space variant PSF that represents a target
object in an anisoplanatic region over a wide FOV. Firstly, a
reservoir-based ANN is used to learn the temporal evolution
of aberrations from N source objects within an anisoplanatic
field, with respect to a nominated target object. Secondly, once
trained, the ANN is used to estimate aberrations from a target

object, given a generalized distortion field. Lastly, the predicted
space variant PSF is compared with the actual space invariant
PSF and the resulting mean-squared error (MSE) is used to val-
idate this method.

Rather than employ or estimate a model of the distortion
through maximum likelihood, our goal is to estimate a general-
ized solution. We address the inverse problem of image restora-
tion by reconstructing the spatially variant PSF with simulated
aberration data and the use of a trained, recurrent ANN.

Our method used to reconstruct the spatially-variant PSF can
be summarized in six stages.

» Stage 1: Determine N isoplanatic regions over a wide FOV;

each region is defined by a single NGS.

» Stage 2: Estimate the set of wavefront aberrations from N
NGSs over a time-series and the angular separations that
exist between each NGS and a nominated target, 7'. An es-
timate of the wavefront aberrations, S7 =320, are incor-
porated with corresponding angular separations, §£7% , to
form a data ensemble for use as a training set.

» Stage 3: An RNN is trained using data from simulations
performed during Stage 2.

» Stage 4: The performance of the RNN is evaluated using
test ensembles, exclusive of the training set.

» Stage 5: The RNN is optimized to achieve a minimum MSE
over the set of isoplanatic regions that comprise the FOV.
Repeat stages 1 to 5 until acceptable performance is ob-
tained.

» Stage 6: The predicted PSF is used with a deconvolution
algorithm to reconstruct a portion of the image, supported
within a corresponding anisoplanatic region.

Our hypothesis is that by using the temporal correlation prop-
erties of the optical field to learn the temporal properties of the
index of refraction fluctuations, a recurrent ANN can be em-
ployed for prediction of the SVPSF over a wide field, given N
NGSs.

Until recently, the prediction of high-dimensional time-series
data to within acceptable performance criteria, required spe-
cialized, computationally intensive training algorithms. Fortu-
nately, a relatively recent RNN architecture, generally referred
in the literature as reservoir computing, minimizes the amount
of training required [22], and this feature has been fully utilized
in our application.

IV. RESERVOIR COMPUTING

Artificial neural networks (ANNs) that employ supervised
learning require training data to provide a generalized solution
in K dimensional space. Spatio—temporal data comprising
wavefront aberrations from each source, S, and separa-
tions of a target to multiple source objects are used to train an
artificial neural network for predicting the effects of turbulence
in anisoplanatic regions.

Specialized, recurrent ANN architectures that simplify the
training of ANNs and provide good performance, in terms of
generalization and approximation, have been reported in the lit-
erature [19]. The generic term, reservoir computing, has been
given to such recurrent networks and includes echo state net-
works (ESNs) and liquid state machines. A method will be de-
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Fig. 2. Echo State Network (ESN) Architecture.

scribed in this section that utilizes an echo state network (ESN)
to predict phase distortions represented by multiple PSFs over
a wide FOV. A method using a time-delayed neural network
for prediction of aberrations caused by turbulence has been pro-
posed [23]. However, in our view, the complexities in training
and implementing such networks can be avoided with the use
of ESNs. An extension to the method outlined in this paper for
general image processing applications is considered.

A. Architecture

Recurrent networks support a memory structure and are
therefore suitable for time-series prediction. ESNs are recurrent
networks that simplify training and provide a reservoir of
rich dynamics [19]. A fixed sparse matrix, Wpg, is used to
implement the recurrent network and a linear readout, Wy,
is trained to produce an output. Equation (14) defines the state
vector, X (n), and output vector, Y (n), of the ESN as shown in
Fig. 2:

X(n) = '™ (winu(n)T +wprX(n— 1T

+ WbackY(n - l)T)7

Y (1) = 0*"(wou X(n)") (14)
where wi,, is the input weight matrix, wpg is the dynamic reser-
voir matrix, Wpack 1S the feedback matrix, cp(') are sigmoidal
activation functions, and W is the output weight matrix.

The predicted output of the input series, u(n), one time-step
into the future, is given by

a(n+1) =Y (n). (15)

The ESN is used as a modal predictor to determine Zernike coef-
ficients, given spatio—temporal input data. Zernike terms Z5__ 2
are extracted from each image frame, shown as source reference
S1..n as shown in Fig. 5. A resulting time-series ensemble is
created over successive image captures and is defined by (18) in
Section V-B. The analysis of these resulting time-series is dis-
cussed in Section V.
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B. Training

In addition to Zernike coefficients, the angular separations
between each source, Sy, and the target object, 7', are used to
train the ESN over a wide spatial field. The projections of each
separation on the image plane equate the Euclidian distances
between S1.. v and 7. We denote the separation data as, Hfﬁv,
where N is the number of source objects, and is represented in
vector notation as E.

Batch training is used as distinct from online training, due
to the lower MSE achieved by the former. The recurrent layer
is also known as the dynamic reservoir. Randomized, fixed
weights associated with the dynamic reservoir are shown in
Fig. 2 and are represented in matrix form as, wpg. At each
training step the outputs of the dynamic reservoir that form
an NN-dimensional subspace are used in conjunction with the
desired response, G(n + 1). The resulting Euclidian distance is
used to update the linear coefficients, Wy

Thus, the output weights, shown as w,,¢ in Fig. 2 are trained
in this process, however unlike other RNNs that employ the
backpropagation through time (BPTT) algorithm [20], the re-
current layer in echo state networks is not trained and remains
fixed. The Moore—Penrose pseudo-inverse is used to minimise
output weights and is given as

(16)

Wout = (X-Wtrain)+

where X is the state vector, and Wy,,j, is the training vector that
comprises the Zernike terms Z» oo and spatial data, E.

V. TIME-SERIES ANALYSIS

Time-series analysis was conducted on wavefront aberration
data acquired from both field observations and simulation. A
comparative study was conducted on these data-sets, firstly to
validate our simulations in wavefront propagation and imaging
through turbulence, and secondly, to provide an insight into the
chaotic behavior of low-order tilt distortions to aid in the pre-
diction of wavefront aberrations. A summary of these results is
presented in this section. For a more rigorous temporal analysis
of wavefront tilt data see McGaughey er al. [24].

A. Field Data Acquisition

Two CCD cameras were used to acquire intra-focal and extra-
focal images of two NGSs, S} 2, over a 56 arc second FOV.
Both cameras were synchronized to capture an image every 16.7
ms. The resulting frame rate of 60 frames/s (FPS) was based on
the temporal decorrelation time of the atmosphere, given by the
Greenwood frequency [25]

fa =043[Viina - (10) ] (17)
where the wind velocity, V,,in4, was estimated at 2.4 ms~! and
Fried’s coherence length, o, was measured at 0.05 m using gen-
eralized scintillation detection and ranging (SCIDAR) [26] in-
strumentation at the Mt. John Observatory, New Zealand. Over-
sampling was also deemed necessary due to noise considera-
tions and variability of wind speed.

A region of interest was defined for each NGS and the Poisson
equation was solved to retrieve wavefront maps using the cur-
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Fig. 3. Short-exposure intra- and extra-focal images of p¢! Crucis (a) and (b),
and g2 Crucis (c) and (d), respectively.

vature method proposed by Roddier [3]. The orthonormal set of
Zernike polynomials is used to represent the wavefront aberra-
tions of each NGS.

Data ensembles were created using long exposures, each
comprised from a set of 1000 short exposure images. Time-se-
ries data defining Zernike coefficients, as . . . asq, representing
the wavefront aberrations from each NGS were used as the
basis for analysis. To verify our simulation model, short-ex-
posure intra- and extra-focal images were acquired using the
wavefront retrieval method outlined previously. As a reference
beacon, the binary star ;4 Crucis was selected. This proved an
ideal candidate for our study with a separation of ;! and s2
Crucis of 35 arc seconds and magnitude, V ~ 4 and V = 5.2,
respectively. Typical examples of respective images used for
wavefront retrieval are shown in Fig. 3. The analysis of tilt
aberrations Z» 3 was performed, however higher-order aberra-
tions Z, 7 that distort, rather than displace the PSF as outlined
in Section II-D, are presented in Section V-B.

B. Analysis

Given N samples, a time series can be represented as

u(n) = [u(n),u(n —1),u(n —2),...u(n — N+1)]. (18)
Nineteen Zernike coefficients were recorded and time series
analysis was conducted on selected aberrations to determine
the extent of low-dimensional chaotic attractors and prediction
error. Examples of time-series data, such as defocus, Z,4, and
astigmatism, Z5, are shown in Fig. 4.

The following parameters were measured for time-series
analysis.

1) The correlation time, 7,

2) The minimum embedding dimension, Dg.

3) The largest Lyapunov exponent, Ay..

4) Correlation dimension, D,..

0" @
gttt ’w" i

Fig. 4. Time-series Zernike aberrations: (a) Defocus (Z4) and (b) astigmatism
(Zs).

TABLE 1

TIME-SERIES ANALYSIS—PARAMETER SUMMARY
Time-Series Zernike Polynomial
Parameter Z0bs | 7Obs | 7Obs
Correlation Time, 7. 2.1 1.9 2.4

Embedding Dimension, Dg 5 4 5
Lyapunov Exponent, A, 1.8 22 1.85
Correlation Dimension, D, 2.92 3.9 3.1

The minimum embedding dimension was determined by Cao’s
method [27] and was employed using the nonlinear time series
analysis package, TSTOOL [28].

To estimate the Lyapunov exponents, an algorithm similar to
Wolf [29] was used. The average exponential growth of the dis-
tance of neighboring orbits was calculated from the prediction
error. An estimate of the largest Lyapunov exponents was based
on increases in the prediction error, as a function of predic-
tion time. The results of a temporal analysis conducted on low-
order wavefront aberrations from observational (field) time-se-
ries data is shown in Table 1. Based on these results our simu-
lation data was validated and provided a solid basis for further
exploration in terms of the optimization of neural network archi-
tectures for the prediction of wavefront aberrations over a wide
FOV. For example, a posteriori knowledge of the chaotic tem-
poral behavior of the system can be used as a basis to establish
spectral density and sparseness of the reservoir matrix.

Since the largest Lyapunov exponent is positive, the time se-
ries is considered chaotic [30]. The correlation dimension tests
the presence of deterministic chaos and has previously been per-
formed on wavefront tilt data [24]. Thus, this analysis implies
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that each modal aberration has a deterministic component that
can be predicted. Several studies on the prediction of wavefront
tilt have been undertaken [12], [31], [32].

C. Modelling Chaotic Time-Series

Dynamic modelling of nonlinear time-varying systems is
achievable using conventional state-space analysis. For ex-
ample, the state and output equations of a time-varying system
can be defined as

W) _ Awyar) + Bloa(t) (19)
yl(t) = C(D)a(t) + D)= () 20)

However, the complexity of devising a model of N dimensional
space with time-varying coefficients, as shown in (19) and (20)
as A(t), B(t), C(t), and D(t) is compounded by the require-
ment of a priori knowledge of each function with respect to
time. Over a wide FOV such considerations must also apply as
the spatially variant PSF is affected by the temporal decorrela-
tion of the atmosphere. Adopting Taylor’s frozen turbulence hy-
pothesis [14] does not address the issue of turbulence evolution
over a wide aperture. The adaptation of a RNN was employed in
an attempt to capture this quality for prediction of the SVPSF.
A discussion on the methods used to verify this are provided in
Section VI-D.

VI. SIMULATIONS

Simulations were conducted in two phases. The first phase
required the propagation of 800 nm light from reference and
target beacons using the phase screen method [33]. A curva-
ture sensor extracted 19 Zernike coefficients from two intensity
pattern images, each pair comprising a data ensemble of 1000
frames. The second phase employed several hundred data en-
sembles, firstly for the training, and finally for testing. The MSE
was then recorded, based on the prediction error between the
actual and estimated aberrations, as the separations between the
target object and reference beacons were varied over an aniso-
planatic region. The following subsections detail the methods
used in both phases.

A. Overview

The image plane can be represented by three isoplanatic re-
gions and one anisoplanatic region over a 2 arc minute, 20 arc
second FOV, as shown in Fig. 5. A boundary atmospheric layer
is represented by a phase screen and perturbs target objects
and source (NGS) beacons, T1.,, and S1 ., respectively, in the
image plane. Each source beacon has a corresponding target
object within an isoplanatic region A, = and A; each region
is defined by angular separations of 0 < fy < 20 arc sec-
onds. An anisoplanatic region Y supports extended target ob-
jects, F1. . Within each isoplanatic region, perturbations ac-
quired from a source beacon can be used to effectively compen-
sate turbulence affecting a corresponding target object within an
isoplanatic patch. However, none of the source beacons in any
of the isoplanatic regions can be used to individually estimate

200
aresec.|
|

Isoplanatic
region, £

Anisoplanatic
Isoplanatic region, Y’
region, A

E] [

Isoplanatic region, A

Anisoplanatic
region, Q

Key:

T, Target PSFs
E,_,: Extended PSFs
S;. Source PDFs

Fig. 5. Simulation platform representing a multi-aperture image plane over a
wide field-of-view.

any of the extended target objects within the anisoplanatic re-
gion, Y. Used collectively however, all N source objects were
required to estimate aberrations affecting any of the extended
target objects within region Y.

Time-series data that resulted from several simulation runs
supported the analysis presented in Section V. A detailed
description of our simulation platform, including phase screen
generation and estimation of wavefront aberrations, is provided
in Section VI-B.

Simulating the propagation of NV source objects through mul-
tiple turbulent layers and recovering the Zernike coefficients a;
given by (12), where ¢« = 2. . .20, forms the basis for our work
to predict the spatially-variant PSF over a wide FOV.

B. Propagation Through Turbulence

A phase screen was required to provide Kolmogorov power
spectrum of refractive index fluctuations over a wide FOV in
excess of 3 arc minutes. The random midpoint displacement
method [33] was used to generate a phase screen, based on a
telescope diameter, D, of 1 m and the Fried coherence length,
ro, of 0.05. Thus, D/ro = 20. The resulting phase screen is
shown in Fig. 6(a).

Regions representing individual, isoplanatic patches were se-
lected over the phase screen and the propagation of monochro-
matic light from a NGS was used to create independent wave-
front aberrations in the pupil plane. The extraction of two iso-
planatic patches is shown in Fig. 6(b). The curvature method
by Roddier [3] was used to recover the wavefront aberrations
in the image plane and the Zernike terms, Z5_ 29, for the NGS
reference beacon shown in the top-left of Fig. 6(b), is shown in
Fig. 6(d).

A time series ensemble comprising atmospherically distorted,
stationary wave fronts was generated using the methods outlined
in Section II-C. The phase screen was then moved with velocity,
v, initially assuming the Taylor hypothesis [4]. The index of re-
fraction fluctuations were displaced with velocity v over a fixed
spatial region defined by the telescope aperture. Poisson and
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Fig. 6. (a)Phase screen, (b) multi-aperture mask: two reference beacons, (c) multi-aperture mask: seven reference beacons, and (d) Zernike coefficients as . . .

from one reference beacon.

Gaussian noise models were used in recovering each isoplanatic
image within each frame.

Our interest is the temporal evolution of the wavefront
aberrations for real-time image restoration. Thus, later models
used temporal evolution of the phase-screen, rather than a
static model moved across the aperture. This resulted in the
consideration of recurrent neural networks (RNNs) to provide
both short and long term memory for predicting the evolution
of an aberrated wave front. By incorporating both spatial and
temporal data, and effectively training an ESN to learn the
evolution of modal aberrations, the prediction of wavefront
aberrations for PSF reconstruction in anisoplanatic regions
showed to be an effective method with consistent results, in
terms of MSE, over a wide spatial field. Fig. 7 shows the geom-
etry of three NGSs «, (3, v, a target object, ¢, and the angular
separation between the target object and each source objects,
e, e, and 0., respectively. An observational platform G,
and two turbulent layers, L, and L; at altitudes 2z and z;
respectively, are shown with corresponding structure constants
of the index of refraction fluctuations, C2(z) and C2(z1).

Two objects imaged through turbulence with angular separa-
tion less that the isoplanatic angle, 6, are considered equivalent
[4]. The isoplanatic angle, 6, is given by Fried [6] as,

I -3/5
fo = 58.1 x 1073)\%/5 / C2(2)2°/3 dz (21)
0
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Fig.7. Geometrical view of the simulation model showing both isoplanatic and
anisoplanatic regions.
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Fig. 8. Echo State Network configuration used for the prediction of wavefront
aberrations.

where ) is the optical wavelength, z is the altitude, CZ is the
structure constant of the turbulence, and L is the path length
through turbulence.

The angular separation . shown in Fig. 7 is considered to
be within an isoplanatic region. However, considering the an-
gular separations of source objects, «, and 3, to target object, -,
are considered anisoplanatic. Aberrations to the PSFs that result
from imaging these objects will be significantly different if ei-
ther source object, o or (3, was used as a reference source. This
is due to imaging through an anisoplanatic region.

C. Prediction Using Reservoir Computing

A time-series ensemble, acquired from observation and sim-
ulation runs, comprised a data ensemble of 19 Zernike coeffi-
cients Zs_ o9 from N source objects, S;. n, and angular sep-
aration data, 65" , between a target object and each source.
Each ensemble was used as a basis for time-series prediction
using an echo state network (ESN). The data structure used to
predict wavefront aberrations in anisoplanatic regions is shown
in Fig. 8. The results of our simulations are presented and dis-
cussed in Section VII.

D. Reservoir Adaptation

The spectral radius (SR) is used as a parameter to establish the
structure of the each recurrent network. The SR is the maximum
eigenvalue for the dynamic reservoir’s weight matrix, w, and is
not allowed to exceed unity. As there are multiple solutions to
satisfy this condition, the performance of the network will vary
for each reservoir structure formulated [34].

The parameters typically used for network optimization in-
clude the following.

1) Size of the dynamic reservoir.

2) Density of the processing elements (PEs) within the dy-
namic reservoir.
3) Spectral radius.
Optimization of the ESN described in Section IV-A was con-
sidered; however, adaptations using only the spectral radius was
performed. For a comprehensive discussion on reservoir adap-
tation see Steil [35].

A genetic algorithm has been applied to a feedforward neural
network to minimize the prediction error of tilt aberrations [36].
Howeyver, due to their iterative-based architecture, we consid-
ered the gains in minimizing the prediction error would be offset
by the additional computational complexity in using a generic
algorithm.

VII. RESULTS

Simulations were conducted using the platform described in
Section VI and the resulting data ensembles were normalized
and used for training an ESN discussed in Section IV-A. From
(11), Zernike coefficients a;, where : = 2. .. 20, from N source
objects, were estimated over 5 arc second incremental separa-
tions from K randomized targets within the anisoplanatic re-
gion Y, as shown in Fig. 5. The ESN was then tested using
separations from IV sources within Y that were not previously
used for training. A second phase screen that provided a vari-
able r( parameter was generated for this procedure. Due to the
dominant effect of low-order aberrations on wavefront phase,
focus (Z,) and astigmatism (Z5) aberrations are presented in
this comparison. Separations ranging from zero to 20 arc sec-
onds showed consistent results using multiple sources. As the
isoplanatic angle was increased between 20 to 40 arc seconds
within the anisoplanatic region, the average MSE remained con-
sistent.

In order to determine the performance of ANN architecture
on the spatial, as distinct to spatio—temporal effects of the aber-
rations, a feedforward network was included in this comparison.
The effect of nonlinearity was also investigated. The response
from a linear predictor on aberration data was therefore incor-
porated in our analysis.

Fig. 9 presents two sets of results for the prediction of de-
focus and astigmatism aberrations, Zernike terms Z4 and Z5
respectively. Fig. 9(a) and (c) show consistent prediction errors
over a wide FOV using two reference beacons for Zernike terms,
Z4 and Z5, respectively. To improve clarity only error bars for
the ESN have been included on each graph. Given the selection
of spectral radius, there are many possible weight matrices that
comprise the same spectral radius. However, the performance,
in terms of the MSE, was found to be statistically repeatable
over relatively small data ensembles.

Lastly, we hypothesized that if the number of source objects
were increased, the predictability of wavefront aberrations
would improve. This was confirmed for seven source objects
as shown in Fig. 9(b) and (d) for Zernike terms Z, and Zs,
respectively. However, the improvement in MSE was signif-
icantly better for the ESN, compared to the feedforward or
linear predictor.

Lastly, we admit that imaging several, bright, natural source
beacons within a FOV of 1-2 arc minutes is implausible. How-
ever, supplementing two or more NGSs with several artificial
beacons may extend the method. Maintaining sufficient signal to
noise ratio for acquisition of high order aberrations using NGSs
of magnitude greater than 8, and employing the curvature sensor
method as described in this article, also requires careful consid-
eration. An example of the attenuation in phase measurements
as a function of modal order is shown in Fig. 6(d).
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Fig. 9. MSE prediction of defocus (Z,) and astigmatism (Z5) Zernike terms over anisoplanatic regions, using a linear predictor, feed-forward, and echo state
network: (a) Z, with two source objects, (b) Z, with seven source objects, (¢c) Z5 with two source objects, and (d) Z5 with seven source objects.

VIII. PRACTICAL CONSIDERATIONS FOR
REAL-TIME APPLICATION

For effective real time application of an uncompensated
DWES system over a wide FOV, the efficiency of the method
outlined in Section III for prediction of the spatially variant
PSF, is dependent on the following.

* A high-speed image acquisition system supporting either a

multi-aperture or wide-field configuration.

* An efficient feature extraction method that can be im-
plemented in a field programmable gate array to extract
Zernike terms from N point source objects, based on a
similar method discussed in Section II-C.

* A highly parallel hardware implementation of our method
outlined in Section III.

Replication of such systems using a VLSI hardware implemen-
tation for N bright point source objects can provide input data
for the method described in this paper, and outlined in Fig. 8.
Since ESNs only require training of their output nodes, an ef-
ficient batch training system could be achieved using off-line
training data runs, prior to an observation session. Once trained,
an optimized ESN provides a very efficient platform for pre-
dicting the spatio—temporal evolution of the PSF over a wide
field. Extensions, both in terms of efficiency and system opti-
mization through architectural enhancements, [19], [34], [37]
ensure that this relatively new RNN, referred to in the literature
as reservoir computing, will find new and emerging applications
in astronomical image reconstruction and AO control systems.

IX. CONCLUSION

This paper has shown how reservoir computing can be incor-
porated with a spatio—temporal image model and used to predict
wavefront aberrations affecting target objects within anisopla-
natic regions, using wavefront data from several bright reference
beacons and distributed over a wide FOV. Once these aberra-
tions have been determined, a deconvolution algorithm can be
used to reconstruct the spatially-variant PSF for the restoration
of astronomical images. Since the sparse matrix of an ESN does
not require training, the Moore—Penrose pseudoinverse can be
used to determine output weights. A possible extension to this
work is the incorporation of ANNs for classification of Zernike
terms. Extensions to existing work on dimensionally reduction,
referenced in this paper, is an active area of our ongoing re-
search.
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