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Abstract. We describe some new and recent results that allow
for the analysis and representation of reticulate evolution by non-
tree networks. In particular, we (1) present a simple result to show
that, despite the presence of reticulation, there is always a well-
defined underlying tree which corresponds to those parts of life that
do not have a history of reticulation, (2) describe and apply new
theory for determining the smallest number of hybridization events
required to explain conflicting gene trees, and (3) present a new
algorithm to determine whether an arbitrary rooted network can
be realized by contemporaneous reticulation events. We illustrate
these results with examples.
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Introduction

Evolutionary relationships are generally represented by non-reticulating
trees, and for certain groups of taxa (e.g. mammals) this model seems
well suited. However, for other groups (for example, plants, some fish,
and bacteria), processes of reticulate evolution such as the formation
of hybrid species, horizontal gene transfer, and other mechanisms (for
example, endosymbiosis) suggest that evolutionary history would be
better described by a network that is more complex than a tree, with
some species arising from the genetic contribution of two (rather than
one) ancestral lineages.

Although processes of reticulate evolution have long been recognized
in biology, techniques for representing and analyzing reticulate evolu-
tion have tended to be fairly ad-hoc. For example, one might first
build a tree and then heuristically add some additional edges if these
improve the fit of the data (as in Legendre and Makarenkov, 2002).
In the last few years there has been much new theoretical work by
computer scientists and mathematicians (e.g., Baroni, 2004; Baroni et
al., 2004; Gusfield, 2004; Gusfield et al., 2004; Holland et al., 2004;
Huson et al., 2004; Huson et al., 2005; Moret et al., 2004; Song and
Hein, 2004) with the aim of providing more rigorous approaches to the
representation and analysis of reticulate evolution.

In the the third and fourth sections, we provide a brief overview
of some of our recent work, and show how it can be applied to set
lower bounds on the degree of reticulation required to explain two
conflicting phylogenetic trees. We illustrate the application of these
results on two trees that describe the evolution of alpine Ranunculi in
New Zealand. In the fifth section, we present a fast algorithm that
determines whether or not a hybrid phylogeny can be realized by hy-
bridization events between species that existed at the same time—an
obvious biological requirement, though one that is often overlooked in
a formal mathematical representation. The last section contains some
concluding remarks.

Hybrid Phylogenies

In this section we introduce some terminology that is useful for
describing and studying hybrid evolution. Informally, a ‘hybrid phy-
logeny’ is simply a rooted network in which each arc (directed edge)
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leads from an ancestral taxon to its immediate descendants. However,
unlike a rooted phylogenetic tree, we allow for some (ancestral or ex-
tant) taxa to have two (or more) incoming arcs. In other words, we
regard those taxa as being hybrids, consisting of a genetic composition
from both (or all) of the incoming arcs. In this section, we formalize
these notions in order to obtain precise results. Furthermore, we de-
scribe a tree that underlies any hybrid phylogeny, and provide some
background and motivation for the rest of the paper. Throughout, the
notation and terminology mostly follows Baroni (2004) and Baroni et

al. (2004).

First we recall some graph-theoretic terminology. Directed graphs

(also known as digraphs) are used in evolutionary biology to represent
the evolutionary history of extant species. Usually, this representation
takes the form of a rooted phylogenetic tree. However, in this paper we
are mostly interested in representations called (rooted) hybrid phyloge-

nies. A directed graph consists of a collection of nodes, and a collection
of directed edges called arcs with each arc joining two nodes. Nodes
typically represent species, individuals, or DNA sequences, while arcs
represent relationships of ancestry. Thus if u is the “parent” of v, then
we denote this relationship with the arc (u, v). The first node indicates
where the arc is coming from and the second node indicates where the
arc is going to, thus (u, v) 6= (v, u).

The degree of a node v is the number of arcs incident with v. In
directed graphs, we often distinguish between arcs coming out of a
node and those coming into a node. In particular, the outdegree of v

is the number of arcs whose first component is v and is denoted d+(v).
The indegree of v is the number of arcs whose second component is v

and is denoted d−(v). In rooted phylogenies and hybrid phylogenies,
the outdegree of a node v is the number of “children” of v, while the
indegree of v is the number of “parents” of v.

A directed path in a digraph is an alternating sequence

v0, a1, v1, a2, v2, . . . , vk−1, ak, vk

of nodes and arcs in which ai is an arc from vi−1 to vi for all i, and
no node or arc appears more than once. Essentially, a path describes
one way in which we can get from one node to another following the
direction of the arcs. A directed cycle of a digraph is directed path in
which the first and last nodes are equal. A digraph is acyclic if it has
no directed cycles.
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Figure 1. A hybrid phylogeny H, and two rooted phy-
logenetic trees T1 and T2 displayed by H.

An acyclic digraph D with no underlying parallel edges (that is, no
pair of arcs joining the same two nodes) is rooted if there is a distin-
guished node ρ, called the root, with the properties that d−(ρ) = 0 and
there is a directed path from ρ to every node of D.

If D is a rooted digraph, then a rooted subtree of D is any rooted
tree that is obtained from D by deleting nodes (and any arcs incident
with these nodes) and arcs.

We now formally describe rooted phylogenetic trees and hybrid phy-
logenies. Throughout these definitions, and indeed throughout this
paper, X will always denote a set of extant species. A rooted phylo-

genetic tree T on X is a rooted tree with no nodes that have both
indegree one and outdegree one, whose leaf set is X, and whose root
has outdegree at least two. In addition, T is binary or fully-resolved

if all interior nodes have outdegree two. We sometimes refer to X as
the label set of T and denote it has L(T ). Indeed, for a collection P of
rooted phylogenetic trees, we denote the union of the label sets of the
trees in P by L(P). Two rooted binary phylogenetic trees T1 and T2

are shown in Fig. 1.

A hybrid phylogeny H on X is a rooted acyclic digraph in which

(i) X is the set of nodes of outdegree zero,
(ii) the root has outdegree at least two, and
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(iii) for all nodes v with d+(v) = 1, we have d−(v) ≥ 2.

Nodes of indegree at least two (called hybridization nodes) represent
hybridization events. These correspond to an exchange of genetic in-
formation between hypothetical ancestors by processes such as hori-
zontal gene transfer, gene fusion etc. To illustrate, a hybrid phylogeny
H on X = {a, b, c, d, e} is shown in Fig 1, where the root is the top-
most node. The node ∗ as well as the node labelled b are hybridization
nodes. Here and in all other figures, it is implicit that arcs are directed
downwards. Observe that a rooted phylogenetic tree on X is a par-
ticular type of hybrid phylogeny (one that contains no hybridization
nodes).

Let T be a rooted phylogenetic tree on X and let H be a hybrid
phylogeny on X ′, where X ⊆ X ′. Then H displays T if T can be
obtained from H by deleting nodes and edges, and by replacing nodes
of indegree one and outdegree one and their incident edges with a single
edge (that is, suppressing nodes of indegree one and outdegree one).
Extending this to a collection P of rooted phylogenetic trees, we say
that H displays P if H displays every tree in P. For example, in Fig 1,
the hybrid phylogeny H displays both T1 and T2. Biologically speaking,
saying that H displays T means that a gene tree with the topology
described by T could arise from an evolutionary history depicted by H
without requiring the action of other processes such as lineage sorting.

The concept of display can be generalized to allow refinement of
non-binary trees, however, we do not require this in this paper.

An underlying tree for a hybrid phylogeny. Processes of reticu-
late evolution such as the evolution of hybrid species seem to call into
question the very existence of any meaningful concept of a tree of life.
However, we now describe a simple mathematical result that formalizes
how there is always an underlying tree corresponding to those parts of
life that do not have a history of reticulation. This result is similar
in spirit (though different in detail) to results by Bafna and Bansal
(2004), Gusfield (2004), and Huson et al. (2005).

Let H = (V, E) be a hybrid phylogeny on X with root node ρ. Let
VC be the set of nodes of H that lie on at least one undirected cycle
(that is, a cycle that arises by ignoring the orientation of the arcs).
Let VT = (V − VC) ∪ {ρ} ∪ X. For a node v of V , let c(v) denote the
set of species x in X for which there is a directed path from v to x
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Figure 2. (a) A hybrid phylogeny H and (b) the rooted
phylogenetic tree associated with H as described in
Proposition 1.

(i.e. c(v) is the extant species for which v is an ancestor, often referred
to as a cluster or a clade). To illustrate these concepts, consider the
hybrid phylogeny H shown in Fig. 2(a). Here the nodes in VT are solid.
Furthermore, c(u) = {a, b, c} and c(z) = {d, e}.

A hierarchy C on X is a collection of subsets of X, containing X and
all singleton subsets of X, and satisfying the property

A, B ∈ C ⇒ A ∩ B ∈ {∅, A, B}.

Observe that the sets in C are nested—if they have one or more species
in common, then one set is a subset of the other. It is a classical result
in phylogenetics that a hierarchy on X is exactly the set of clusters of a
rooted phylogenetic X-tree. Given a hybrid phylogeny H, the following
result describes a tree that underlies H. Informally speaking, it is the
tree obtained by ‘collapsing’ portions of H where hybridization has
occurred. This has the potential to give rise to trees that are poorly
resolved in places.

Proposition 1. Let H be a hybrid phylogeny on X with node set V .

Then the collection C = {c(v) : v ∈ VT} is a hierarchy on X, in which

case there is a rooted phylogenetic X-tree whose set of clusters is C.

Proof. The proof is by contradiction. Suppose that {c(v) : v ∈ VT}
is not a hierarchy. By definition, there exist nodes v1, v2 ∈ VT and
elements a, b, x ∈ X such that x ∈ c(v1) ∩ c(v2), a ∈ c(v1) − c(v2),
and b ∈ c(v2) − c(v1). Since c(v1) is not a subset of c(v2), there is no
directed path in H from v2 to v1. Similarly, there is no directed path
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from v1 to v2. Since x ∈ c(v1) ∩ c(v2) there is a directed path P1 from
v1 to x and a directed path P2 from v2 to x. Let v be the first node
that is shared by both P1 and P2. Note that such a node exists since x

is a node shared by P1 and P2. Since there is no directed path from v1

to v2 or v2 to v1, we know that v 6= v1 and v 6= v2. Similarly, there exist
directed paths Qi from ρ to vi (for i = 1, 2) and we can let w be the
last node that is shared by Q1 and Q2. Again such a node exists since
ρ is shared by both Q1 and Q2. Now if we ignore the direction of the
four paths P1, P2, Q1, and Q2 then the path from w to v1 (given by Q1)
and w to v2 (given by Q2) and from v1 to v (given by P1) and from v2

to v (given by P2) constitutes an undirected cycle in H, contradicting
the assumption that v1, v2 ∈ VT . �

For the hybrid phylogeny H shown in Fig. 2(a), the above construc-
tion yields the rooted phylogenetic tree T shown in Fig. 2(b). Here C
in the statement of Proposition 1 is

{

{a, b, c, d, e}, {d, e}, {a}, {b}, {c}, {d}, {e}
}

.

Real-time hybrids. Maddison (1997) (see also Moret et al., 2004)
pointed out an important biological requirement of hybrid phyloge-
nies. Namely, although a hybrid phylogeny might display two trees,
there may be no process of hybridization between contemporaneous
taxa (either past or present) that can realize this hybrid phylogeny.
Nevertheless, by allowing for additional (unsampled, or perhaps ex-
tinct) taxa one can resolve this issue without introducing any addi-
tional hybridizations. Essentially the role of such an additional taxa is
to ‘carry’ a gene (or combination of genes) from the past into some time
when it can be inserted into the new hybrid species. Whether these
taxa really are (or were) present is another question, but if we are con-
cerned with just placing lower bounds on the degree of hybridization
then we can (conservatively) allow them.

To illustrate this point, consider Fig. 3. Both hybrid phylogenies
H and H′ display T1 and T2 using two hybridization nodes. However,
while H has a ‘real-time’ realization (see Fig 4)—a concept that will be
formalized in the fifth section, H′ has no such realization. To see the
latter, observe that the “parents” of the hybrid species b must coexist
in time and the “parents” of the hybrid species c must also coexist
in time. Yet, by considering the ancestor-descendant relationships of
these parents, this is not possible. Nevertheless, by allowing another
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Figure 3. Two rooted phylogenetic trees T1 and T2 and
two hybrid phylogenies H and H′ that display T1 and T2.
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Figure 4. Two hybrid phylogenies that explain the
real-time evolutionary histories of T1 and T2 in Fig. 3.

species x that may be either extinct or not yet sampled, one can provide
such a realization to H′. This realization is shown as H′′ in Fig. 4.

In the fifth section we present an algorithm for determining whether
a given hybrid phylogeny has a ‘real-time’ realization, or whether ad-
ditional taxa (as in H′′ in Fig. 4) might be required.

Finding the minimal degree of hybridization. A topical question
is: what is the smallest number or reticulation events required to ex-
plain a set of gene trees? This number sets a lower bound on the degree
of reticulation that has occurred in the evolution of the species under
consideration. If this initial set of data is a collection of rooted phylo-
genetic trees, this problem can be interpreted within the framework of
hybrid phylogenies as follows.
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For a hybrid phylogeny H with node set V and root ρ, set

h(H) =
∑

v∈V ;v 6=ρ

(d−(v) − 1).

Note that, as d−(v) is the number of parents of v and every node has
exactly one parent if there is no hybridization, d−(v)−1 is the number
of “extra parents” that v has. Observe that h(H) ≥ 0, and h(H) = 0
precisely if H is a rooted phylogenetic tree. Extending this definition,
the hybrid number of a collection P of rooted phylogenetic trees is

h(P) = min{h(H) : H is a hybrid phylogeny that displays P}.

The value h(P) represents the smallest number of hybridization events
that are required to explain P. Bordewich and Semple (2005) showed
that computing this number is NP-hard even in the simplest case that
P consists of just two rooted binary phylogenetic trees on the same
leaf sets. However, despite this negative result, there are some attrac-
tive and useful positive results that have recently been described for
computing and bounding h(P). We describe these in the next section.

The Minimum Number of Hybrid Events Required for

Two Trees

We begin this section with some further graph-theoretic notation.
Let T be a rooted binary phylogenetic X-tree and let A be a subset
of X. We denote the minimal rooted subtree of T that connects the
elements in A by T (A). Furthermore, we use T |A to denote the rooted
subtree that is obtained from T (A) by suppressing all nodes of indegree
one and outdegree one.

Now let T and T ′ be two rooted binary phylogenetic X-trees. We
will write h(T , T ′) to denote h(P) for P = {T , T ′}.

The first result we describe shows how one can simplify the calcula-
tion of h(T , T ′) when one or more clusters are shared by both T and
T ′. More precisely, suppose that A ⊂ X is a cluster of both T and T ′

(that is, there is a node of each tree that has A as its set of descendants
in X). Let T |A and T ′|A denote the subtree of T and T ′ (respectively)
that have leaf set A, and let Ta and T ′

a be the rooted trees obtained
from T and T ′ (respectively) by replacing the subtree having leaf set
A with a new leaf a.
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Figure 5. Two rooted binary phylogenetic trees T and
T ′ without (above) and with (below) their root labelled
ρ.

Theorem 1. Let T and T ′ be two rooted binary phylogenetic X-trees.

Suppose that A ⊂ X is a cluster of both T and T ′. Then

h(T , T ′) = h(T |A, T ′|A) + h(Ta, T
′

a).

The proof of Theorem 1 is given in the Appendix. This result is
typical of other relationships that can be established by exploiting a
description of h(T , T ′) in terms of what has recently been called a
“good-agreement-forest” for the pair T and T ′ (see Baroni et al., 2005).
(“Good” is an overused term, so in this paper we will refer to such
agreement forests as “acyclic”.) We describe this connection now, and
provide an application in the next section to show how these results
can be used in practice.

To make the interpretation work, we regard the root of both T and
T ′ as a node ρ that is adjoined to the original root by a new edge.
Furthermore, we view ρ as part of the label sets of both T and T ′;
that is, we view the label sets of T and T ′ as X ∪ {ρ}. For example,
consider the two rooted binary phylogenetic trees T and T ′ shown in
the top part of Fig. 5. For the purposes of the interpretation, we view
T and T ′ as shown in the bottom part of Fig. 5.



HYBRIDS IN REAL TIME 11

2 3 4 5 6

ρ ρ

F2

1 2 3 4 5 6

F1

1

Figure 6. Two agreement forests for the two rooted
binary phylogenetic trees shown in Fig. 5.

An agreement forest for T and T ′ with k + 1 components is a col-
lection {Tρ, T1, T2, . . . , Tk}, where Tρ is a rooted tree whose label set Lρ

includes ρ and T1, T2, . . . , Tk are rooted binary phylogenetic trees with
label sets L1,L2, . . . ,Lk such that the following properties are satisfied:

(i) The label sets Lρ,L1,L2, . . . ,Lk partition X ∪ {ρ}.
(ii) For all i ∈ {ρ, 1, 2, . . . , k}, Ti is the same as (isomorphic to)

T |Li and T ′|Li.
(iii) The trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T ′(Li) : i ∈

{ρ, 1, 2, . . . , k}} are node disjoint rooted subtrees of T and T ′,
respectively.

More informally, F is an agreement forest for T and T ′ if, up to sup-
pressing degree-two nodes, F can be obtained from each of T and T ′

by deleting |F| − 1 edges. As an example, the two forests F1 and F2

shown in Fig. 6 are both agreement forests for the two trees T and T ′

shown in Fig. 5.

It has recently been shown (Bordewich and Semple, 2004) that for
any two rooted binary phylogenetic trees T and T ′ on the same leaf set
the smallest value of k of any agreement forest for T and T ′ equals the
rooted subtree prune and regraft distance between T and T ′. Denoted
drSPR(T , T ′), this distance is the minimum number of rooted subtree
prune and regraft operations required to transform T into T ′. It is
tempting to conjecture that drSPR(T , T ′) and h(T , T ′) are identical,
and indeed the former takes the value 1 if and only if the latter does.
However, drSPR(T , T ′) is only a lower bound for h(T , T ′), and one can
construct pairs of trees T and T ′ on n species such that drSPR(T , T ′) =
2 yet h(T , T ′) > n

2
− 1 (Baroni et al., 2005).

An agreement forest for T and T ′ is a maximum-agreement forest if,
amongst all agreement forests for T and T ′, it has the smallest number
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of components. To continue the previous example, it is straightforward
to check that the forest F1 in Fig. 6 is a maximum-agreement forest for
the two trees T and T ′ in Fig. 5. Thus the rooted subtree prune and
regraft distance between these two trees is 2. For the interpretation of
h(T , T ′) in terms of agreement forest, we need one further definition.

Let F = {Tρ, T1, T2, . . . , Tk} be an agreement forest for T and T ′.
Let GF be the directed graph whose nodes represent the trees in F and
for which (Ti, Tj) is a directed edge from the node representing Ti to
the node representing Tj precisely if i 6= j and either

(I) the root of the subtree T (Li) in T is an ancestor of the root of
the subtree T (Lj) in T , or

(II) the root of the subtree T ′(Li) in T ′ is an ancestor of the root
of the subtree T ′(Lj) in T ′.

Since F is an agreement forest, the roots of the subtrees T (Li) and
T (Lj), and the roots of the subtrees T ′(Li) and T ′(Lj) are not the
same. We call F a acyclic-agreement forest if GF is acyclic; that is, if
GF has no directed cycles. Furthermore, if over all acyclic-agreement
forests for T and T ′, F contains the smallest number of components,
then F is a maximum-acyclic-agreement forest for T and T ′, in which
case we denote this value of k by mg(T , T ′). Observe that mg(T , T ′) =
0 if and only if, up to isomorphism, T and T ′ are identical. The forest
F2 in Fig. 6 is a acyclic-agreement forest for the two trees T and T ′ in
Fig. 5. Indeed, this forest is a maximum-acyclic-agreement forest for
T and T ′. To see that F1 is not a acyclic-agreement forest for T and
T ′, observe that GF1

contains a directed cycle (see Fig. 7, where the
nodes are drawn as large circles enclosing the trees they represent).

The interpretation of the hybrid number of two rooted binary phy-
logenetic trees on the same label sets in terms of agreement forests is
stated in following theorem which is established by Baroni et al. (2005).
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Theorem 2. Let T and T ′ be two rooted binary phylogenetic X-trees.

Then

h(T , T ′) = mg(T , T ′).

For example, it follows from Theorem 2 that the value of h(T , T ′)
for the two trees in Fig. 5 is 3.

We mentioned previously that computing h(T , T ′) is NP-hard. The
reason for this is that finding a maximum-acyclic-agreement forest for
T and T ′ is NP-hard. Currently, the best known method for finding
such a forest is trial and error. However, if one has an acyclic-agreement
forest F (not necessarily maximum) for T and T ′, then there is a simple
algorithm using F for constructing a hybrid phylogeny that displays
both T and T ′. This algorithm is provided by the inductive proof of
Theorem 2 in Baroni et al. (2005) and is given below.

There is a simple, fast, and well-known way of deciding whether
or not a directed graph D is acyclic. Find a node, v1 say, that has
indegree zero. If there is no such node, then D contains a directed
cycle. Now delete v1 (and all arcs incident with v1) from D, and find
a node, v2 say, that has degree zero. Again, if there is no such node,
D contains a directed cycle. Deleting v2 and continuing in this way,
we eventually find that D is not acyclic or obtain an ordering of the
nodes, v1, v2, . . . , vn say of D, so that for all i ∈ {1, 2, . . . , n}, the node
vi has indegree zero in the digraph obtained from D by deleting the
nodes v1, v2, . . . , vi−1 and all edges incident with these nodes. This
ordering implies that D is acyclic (see Lemma 1). Consequently, we
will call such an ordering an acyclic ordering of D. We remark here
that this process is formally incorporated in the algorithm given in the
fifth section.

The algorithm for constructing a hybrid phylogeny from an acyclic-
agreement forest F is as follows. Note that, in any acyclic ordering of
GF , the node Tρ always appears first.

Algorithm: HybridPhylogeny(F)
Input: An acyclic-agreement forest F for two rooted binary phylogenetic
X-trees T and T ′ with k + 1 components.
Output: A hybrid phylogeny H that displays both T and T ′ in which the
number of hybridization nodes is k.
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1. Find an acyclic ordering, Tρ, T1, T2, . . . , Tk say, of GF .
2. Set H0 = Tρ and set i = 1.
3. Attach Ti to Hi−1 via two new edges. Each of these edges join the root

of Ti to some (not necessarily distinct) edge of Hi−1. These edges are
added so that the resulting hybrid phylogeny displays T |L({Tρ, T1, . . . , Ti})
and T ′|L({Tρ, T1, . . . , Ti}).

Set Hi to be the resulting hybrid phylogeny, and return Hi if i = k.
4. Increment i by 1 and go to Step 3.

Application

In this section, we apply the theory of the last section to two phy-
logenetic trees on 46 sequences of alpine Rununculi of New Zealand,
reported by Lockhart et al. (2001). The first tree was constructed
from nuclear ITS sequences, while the second was constructed from
chloroplast (JSA) sequences (for details see Lockhart et al., 2001). The
two trees showed considerable agreement, however there was also a fair
degree of incompatibility. One possible explanation for this incompat-
ibility is the occurrence of hybrid evolution, whereby the nuclear ITS
sequence has a different history to the chloroplast (JSA) sequences. Of
course, there may be other sources of phylogenetic error (sampling ef-
fects such as noise, model mis-specification, lineage sorting) that could
cause the two trees to conflict, even in the absence of any hybrid evo-
lution. Nevertheless, we can still ask the following question: Assuming
the two trees correctly describe the history of the two genes, and their
incongruence is due to hybrid evolution, what is the smallest number
of hybrid events required to explain this? The study is complicated
slightly by the fact that neither tree is binary. In this case, we took a
conservative approach and allowed non-binary subtrees to be resolved
in any way that helped minimize the required number of hybridization
events. Also, for the sake of illustration in this paper, we will restrict
attention to a subgroup (“Group I”) of the sequences consisting of 20
sequences. This group is a candidate for reticulate evolution, since
the F1 progeny of hybrid origin are known to be fertile (Fisher, 1965).
The two trees for these 20 sequences are shown in Fig. 8, with T1 the
nuclear, and T2 the chloroplast tree.

For T1 and T2, one can identify five clusters (denoted l1 to l5 in
Fig. 8) shared by these two trees; this allows us to apply Theorem 1.
In this way we reduce the problem from comparing two 20-taxon trees
to one of comparing two 5-taxon trees (each having leaf set l1, . . . , l5),
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Figure 8. The tree T1 for nuclear ITS sequences and T2

for chloroplast JSA sequences from Lockhart et al. (2001)
restricted to Group I.
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Figure 9. Two hybrid phylogenies that display T1 and
T2, and requiring three hybridization events (the fewest
possible for these two trees).

together with the trees on the shared clusters (in fact these latter trees
do not contribute to the h score, since all these pairs of cluster subtrees
are compatible). Now using Theorem 2, one can show using a detailed
case analysis that h(T1, T2) = 3. Fig. 9 shows one hybrid phylogeny (H)
that displays the five clusters shared by T1 and T2 with three hybrid
events. Note that this is not the only such phylogeny. Similarly, for
the full set of 46 sequences it can be shown (by hand) that the h value
lies between 7 and 12 (Baroni, 2004). Thus, assuming the trees are
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H1

d, f(d) = 4a, f(a) = 3
b, f(b) = 2 c, f(c) = 1

v, f(v) = 2

ρ, f(ρ) = 0

t, f(t) = 1

u, f(u) = 2

s, f(s) = 1

Figure 10. A temporal labelling of a hybrid.

correct we require at least 3 hybrid events to describe the evolution
of the Group I sequences, and at least 7 hybrid events to describe the
evolution of the entire group of 46 sequences. We should stress that
this analysis is to illustrate the techniques, rather than to formally
show that there has been this degree of hybrid evolution in the taxa
described—as we mentioned there are other reasons why trees may
disagree, and these need to be considered (these other processes often
leave different statistical signatures from hybridization, see Holder et
al., 2001; Huson et al. 2005).

Using an argument similar to that used to show that H′ in Fig. 3 has
no real-time realization (in the sense described in ), it is easily checked
that the hybrid phylogeny H shown in Fig. 9 also has no real-time
realization. However the hybrid phylogeny H′ in Fig. 9 allows for a
‘real-time’ hybrid evolution scenario, with just two extra taxa y1 and
y2. Although the analysis of deciding a real time realization could be
resolved for this small-scale example by an ad-hoc case analysis, it is
clear that such a task could be complicated for a large and complex
hybrid phylogeny. In the next section, we present an algorithm to
determine whether an arbitrary hybrid phylogeny can be realized by
hybrid evolution between contemporaneous ancestral taxa.

An Algorithm for ‘Real-Time’ Hybrids

The concept of a ‘real-time hybrid’ has been briefly and informally
mentioned already; now we formalize this notion, and provide an al-
gorithm to determine whether an arbitrary hybrid phylogeny can be
realized in this way. Some of the more technical parts of this section
have been moved to an Appendix to assist readability.
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Figure 11. (a) A hybrid phylogeny H2 with no tempo-
ral representation and (b) its associated digraph DH2

.

Let H be a hybrid phylogeny with node set V and arc set A. We
say that H has a temporal representation if there exists a map f : V →
N = {0, 1, 2, . . . , } with the following properties:

(i) If v is a node of H with d−(v) = 1, then f(u) < f(v) for the
(only one) immediate ancestor u of v.

(ii) If v is a node of H with d−(v) ≥ 2, then f(u) = f(v) for all
immediate ancestors u of v.

Such a map is a called a temporal labelling of H. To illustrate, a
temporal labelling of a hybrid phylogeny is shown in Fig. 10, where,
for each node, the first element is the node and the second element is
the element of N assigned under the temporal representation f . All
rooted phylogenetic trees have a temporal representation. However,
not all hybrid phylogenies have such a representation. For example,
the hybrid phylogeny shown in Fig. 11(a), which has the same shape
as H′ shown in Fig. 3, has no temporal representation.

The main result of this section (Theorem 3) is to characterize exactly
when an arbitrary hybrid phylogeny has a temporal representation. To
this end, we next describe a particular digraph DH associated with a
fixed hybrid phylogeny H with node set V . This graph is not designed
to depict the evolutionary relationships, instead it summarizes prop-
erties of H. The node set for this new graph will be denoted [V ] and
will consist of nodes [v] which represent either a single node in H, or a
subset of nodes in H that must have been contemporaneous (because
they are nodes involved in the same hybridization event, as parental
species or as the child species). In particular, let V and A be the node
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Figure 12. (a) A hybrid phylogeny H1 and (b) its as-
sociated digraph DH1

.

and arc sets of H, respectively. Let

AT = {(u, v) ∈ A : d−(v) = 1}

and
AH = {(u, v) ∈ A : d−(v) ≥ 2}.

Any arc in AT is called a tree arc and any arc in AH is called a hy-

bridization arc. Note that the sets AT and AH partition A. Ignoring
the direction of the arcs of H, an equivalence relation on V is now
defined by setting

[v] = {v}∪{u ∈ V : there is a path of hybridization arcs from u to v in H}.

Observe that if v is not incident with a hybridization arc, then [v] =
{v}. Set

[V ] = {[v] : v ∈ V }.

We describe our associated digraph DH as follows. The node set of DH

is [V ], and [u] and [v] are joined by an arc ([u], [v]) if there exists a ∈ [u]
and b ∈ [v] such that (a, b) is a tree arc in A. It is easily seen that
DH is connected. To illustrate, consider Figs 11 and 12. Figure 11(b)
shows the digraph DH2

, where H2 is shown in Fig. 11(a) with

[V ] =
{

{r}, {s, c, v}, {u, b, t}, {a}, {d}
}

.

Furthermore, for the hybrid phylogeny H1 shown in Fig. 12(a), the di-
graph DH1

is shown in Fig. 12(b). To provide some intuition for DH,
we note that the arcs in DH represent the direction of time. Thus a di-
rected cycle means that a descendant species is older than its ancestors,
which is not possible.

Let H be a hybrid phylogeny and suppose that f : V → N is a
temporal labelling of H. Let f be the map from [V ] to N that is
defined by setting f([v]) = f(v) for all v ∈ V . To see that this map is
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well-defined, first observe that if [u] = [v], then there is an (undirected)
path from u to v consisting of hybridization arcs. Since the end nodes
of any arc on this path are assigned the same natural number under
f , it follows that all nodes in this path are assigned the same natural
number under f . Hence, for all w, w′ ∈ [v], we have f(w) = f(w′).
Thus f is well-defined. Moreover, as f is a temporal labelling of H,
there is no u and v in the same equivalence class such that (u, v) is a
tree arc.

The following result provides a concise characterization for when a
hybrid phylogeny has a temporal representation; its proof is given in
the Appendix.

Theorem 3. A hybrid phylogeny H has a temporal representation if

and only if DH is acyclic.

Theorem 3 is the basis for a polynomial-time algorithm (TempRep)
for determining whether or not a hybrid phylogeny has a temporal
representation and, if so, providing a temporal labelling.

Algorithm: TempRep(H)
Input: A hybrid phylogeny H with node set V .
Output: A temporal labelling f of H or the statement H has no temporal

representation.

1. Construct DH.
2. Set i = 0 and D0 = DH.
3. Choose Si to be any non-empty set of nodes of Di that have indegree

zero. If there are no such nodes, then halt and return H has no temporal

representation.
4. Set Di+1 to the digraph resulting from Di by deleting the nodes Si and

all arcs incident with these nodes. If Di+1 is the empty graph, then go
to Step 5. Otherwise, increment i by 1 and go to Step 3.

5. Define f : V → N by setting f(v) = i for all v ∈ V , where [v] ∈ Si.
6. Return the map f .

The correctness of this algorithm is guaranteed by the following re-
sult, whose proof is given in the Appendix.

Theorem 4. Let H be a hybrid, and suppose that TempRep is applied

to H.
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(i) If H has a temporal representation, then TempRep returns a

temporal labelling of H.

(ii) If H has no temporal representation, then TempRep returns

the statement H has no temporal representation.

Moreover, the running time of TempRep is quadratic in the size of the

node set of H.

For example, if one takes the hybrid phylogeny H1 in Fig. 12(a) and
apply the algorithm TempRep, we can reconstruct the temporal rep-
resentation shown in Fig. 10. Note that there is some choice as to the
assignment of numbers for the leaves a and d. Such choices will gener-
ally arise for any hybrid phylogeny that has a temporal representation.
Observe that it is the relative ordering of the nodes and not the ac-
tual values assigned by a temporal labelling that is important. We can
make this idea more precise as follows.

Let H be a hybrid phylogeny with node set V that has a temporal
representation, and let f1 and f2 be two temporal temporal labellings
of H. We say that f1 and f2 are ordering isomorphic if, for all u, v ∈ V ,
the following hold:

(i) f1(u) < f1(v) if and only if f2(u) < f2(v);
(ii) f1(u) = f1(v) if and only if f2(u) = f2(v).

Using the results in this section (and the Appendix) one can con-
struct an algorithm that lists, up to ordering isomorphism, all temporal
labellings of H so that each such labelling is outputted in polynomial
time. An outline of this algorithm is given in the Appendix. It is im-
portant to note that, as this list may be exponential in the size of V ,
the algorithm itself is not guaranteed to run in polynomial time.

We end this section by noting that, although a hybrid phylogeny may
have a temporal labelling, this does not mean that unsampled lineages
could not have been involved in the event.

Concluding Remarks

The reconstruction and analysis of hybrid phylogenies gives rise to
many challenging mathematical and computational problems. We have
described some results that can help set lower bounds on the extent
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of hybridization required to explain the conflict between two phyloge-
netic trees. This is currently an active area of research in bioinformatics
(see e.g., Huydn et al., 2005; Huson et al., 2005). Ultimately statistical
questions will also need to be addressed – for example, how can one use
differing bootstrap (or Bayesian posterior probability) support values
for different trees to quantify and distinguish genuine reticulate evolu-
tion from other phenomena (eg. lineage sorting) that can give rise to
conflicting phylogenies? In the classical phylogenetic analysis on trees,
a combinatorial analysis often lays the foundation for later statistical
approaches (for example, Peter Buneman’s work in the early 1970s con-
cerning the four-point condition provided a basis for now widely-used
distance-based approaches in phylogenetics such as neighbor-joining
with model-corrected distances). Combinatorial insights into hybrid
phylogenies are likely also to help in developing statistically-based ap-
proaches to the study of reticulate evolution.

We have also explored the issue of determining whether a hybrid phy-
logeny has a real-time realization, and provided a simple characteriza-
tion (and algorithm) for this task. This algorithm runs in polynomial-
time; and a naive implementation would allow a running time that is
quadratic in the number of nodes, though it is possible that a more
clever implementation could improve this.

Lastly, in general, a hybrid phylogeny on X that displays a collection
of rooted binary phylogenetic X-trees need not be unique. Deciding
whether there exists such a hybrid phylogeny is an interesting question
and one that may have an attractive combinatorial solution.
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Appendix

Proof of Theorem 1. It is clear that the inequality holds if A = X.
Therefore we may assume that A 6= X. We first show that

h(T , T ′) ≤ h(T |A, T ′|A) + h(Ta, T
′

a).(1)

Let FA be a maximum-acyclic-agreement forest for T |A and T ′|A,
and let Fa be a maximum-acyclic-agreement forest for T |a and T ′|a.
Let Ti,a be the unique tree in Fa with a node labelled a, and let Tρ,A

be the unique tree in FA with a node labelled ρ. Let TA,a be the tree
obtained by adjoining Tρ,A to Ti,a via an edge joining ρ and a, removing
the labels ρ and a, and then suppressing any degree-two nodes. Because
of the acyclic conditions on FA and Fa, we have that

F =
(

FA ∪ Fa − {Ti,a, Tρ,A}
)

∪ {TA,a}

is an acyclic-agreement forest for T and T ′ with |F| = |FA|+ |Fa| − 1.
It now follows by Theorem 2 that

h(T |A, T ′|A) + h(Ta, T
′

a ) = |FA| − 1 + |Fa| − 1

= |F| − 1

≥ h(T , T ′).

This establishes (1).

We next show that

h(T , T ′) ≥ h(T |A, T ′|A) + h(Ta, T
′

a).(2)

Let F be a maximum-acyclic-agreement forest for T and T ′. There
are two cases to consider:

(i) there exists Ti ∈ F such that L(Ti) ∩A 6= ∅ and L(Ti) ∩
(

(X −

A) ∪ {ρ}
)

6= ∅, and

(ii) for all Ti ∈ F , either L(Ti) ⊆ A or L(Ti) ⊆
(

(X − A) ∪ {ρ}
)

.

Case (i). Assume that Ti is a such a tree in F . Then the minimal
subtree of T (and T ′) that contains the label set of Ti includes the root
of T |A (and T ′|A). Since F is an agreement forest, this implies that
Ti is the unique tree in F with the properties described in (i).

Let x ∈ L(Ti) ∩ A, and let Ti,a be the tree obtained from Ti|
(

(X −

A)∪{ρ}∪ {x}
)

by relabelling x as a. Furthermore, let Ti,A be the tree
obtained from Ti|A by adding ρ at the end of a pendant edge adjoined
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to the root of Ti|A. Then, as F is an acyclic-agreement forest for T
and T ′,

FA = {Tj ∈ F : L(Tj) ⊆ A} ∪ {Ti,A}

is an acyclic-agreement forest for T |A and T ′|A, and

Fa =
{

Tj ∈ F : L(Tj) ⊆
(

(X − A) ∪ {ρ}
)}

∪ {Ti,a}

is an acyclic-agreement forest for Ta and T ′
a . Since |F| = |FA|+|Fa|−1,

we have that

h(T , T ′) = |F| − 1

=
(

|FA| + |Fa| − 1
)

− 1

≥ h(T |A, T ′|A) + h(Ta, T
′

a).

This establishes (2) for (i).

Case (ii). Since GF does not contain any directed cycles, it follows
that the sub-digraph of GF induced by the set {Ti ∈ F : L(Ti) ⊆ A}
does not contain any directed cycles. This means that this sub-digraph
has a node, T0 say, of indegree zero. Let T0,ρ be the tree obtained from
T0 by adding ρ at the end of a pendant edge adjoined to the root of T0.
Since F is an acyclic-agreement forest for T and T ′, it is easily seen
that

FA =
(

{Ti ∈ F : L(Ti) ⊆ A} − {T0}
)

∪ {T0,ρ}

is an acyclic-agreement forest for T |A and T ′|A, and

Fa =
{

Tj ∈ F : L(Tj) ⊆
(

(X − A) ∪ {ρ}
)}

∪ {a}

is an acyclic-agreement forest for Ta and T ′
a , where a is used denote the

tree consisting of a single node labelled a. Thus |F| = |FA|+ |Fa| − 1,
and so, by Theorem 2,

h(T , T ′) = |F| − 1

=
(

|FA| + |Fa| − 1
)

− 1

≥ h(T |A, T ′|A) + h(Ta, T
′

a).

This establishes (2) for (ii). Combining (1) and (2) completes the proof
of the theorem.

Proof of Theorem 3. Let D be a digraph with node set V and
arc set A, and suppose that D is acyclic. In an earlier section, we
described the concept of an acyclic ordering of D. It is easily seen that
this is equivalent to there being a map g : V → N such that, for all
(u, v) ∈ A, we have g(u) < g(v). Such a map g will prove useful in
proving Theorem 3.
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The following lemma is well-known and easily proved (for example,
see Bang-Jensen and Guitin, 2001).

Lemma 1. A digraph is acyclic if and only if it has an acyclic ordering.

Proposition 2. Let H be a hybrid phylogeny with node set V and

suppose that f : V → N is a temporal labelling of H. Then f induces

an acyclic ordering of [V ]. In particular, DH is acyclic.

Proof. Let f : V → N be a temporal labelling of H, and consider DH.
Let ([u], [v]) be an arc of DH. To prove the proposition it suffices to
show by Lemma 1 that f([u]) < f([v]). Now, by definition, there exists
elements a ∈ [u] and b ∈ [v] such that (a, b) is a tree arc of H. Since f

is a temporal labelling of H, we have that f(a) < f(b), which in turn
implies that f([u]) < f([v]) as required. �

Proposition 3. Let H be a hybrid phylogeny with node set V , and

suppose that DH is acyclic. Let g be an acyclic ordering of [V ]. Let f

be the map from V into N defined by setting f(v) = g([v]). Then f is

a temporal labelling of H.

Proof. Let (u, v) be an arc of H. First assume that (u, v) is a tree
arc. Then u and v are in different equivalence classes; otherwise, DH

contains a loop contradicting the fact that DH is acyclic. Furthermore,
there is an arc from [u] to [v] in DH. It now follows that f(u) < f(v).

Now assume that (u, v) is a hybridization arc of H. Then [u] = [v],
and so f(u) = f(v). Hence, by definition, f is a temporal labelling of
H. �

Combining Propositions 2 and 3, we obtain Theorem 3.

Proof of Theorem 4. To see that TempRep does indeed work, we
begin with the following well-known and easily proved lemma.

Lemma 2. Let D be a digraph that contains no directed cycle. Then

there exists a node of D whose indegree is zero.

To prove part (i) of Theorem 4, suppose that H has a temporal
representation. Then, by Theorem 3, DH has no directed cycles. By
Lemma 2, this implies that every subdigraph obtained from DH by
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deleting nodes (and their incident arcs) contains at least one node of
indegree zero. It now follows that TempRep applied to H returns a
map f : V → N. To see that f is a temporal labelling of H, define
g : [V ] → N by setting g([v]) = Si, where [v] ∈ Si. Because of the way
in which S0, S1, S2, . . . are constructed, g is an acyclic ordering of the
nodes of DH. Therefore, by Proposition 3, the map f is a temporal
labelling of H.

For the proof of part (ii) of Theorem 4 suppose that H has no tem-
poral representation. Then, by Theorem 3, DH contains a directed
cycle. Let {[v1], [v2], . . . , [vk]} be the nodes in this cycle, where we may
assume that ([vj ], [vj+1]) for all j and ([vk], [v1]) are arcs of this cycle. It
is now easily seen that beginning with DH, and selecting and removing
only nodes with indegree zero none of the nodes in this cycle can ever
be removed. Thus at some iteration i of TempRep when applied to
H, no node of Di has indegree zero, in which case TempRep halts and
returns H has no temporal representation. This completes the proof of
(ii).

We leave the straightforward check that the running time of Tem-

pRep applied to H is quadratic in the size of the node set of H to the
reader.

Outline of an algorithm to output all temporal labellings of a
hybrid phylogeny, up to order isomorphism. By Proposition 2,
each temporal labelling of H induces an acyclic ordering of the node
set [V ] of DH. Conversely, by Proposition 3, each acyclic ordering
of [V ] induces a temporal labelling of H. It follows that if H has
a temporal representation, then all temporal labellings of H can be
found by finding all acyclic orderings of [V ]. Using the first part of the
proof of Theorem 3, it is easily checked that all such orderings can be
obtained by considering all possible ways of reducing DH to the empty
graph by sequentially selecting and then deleting subsets of nodes of
indegree zero. Since it is only the relative ordering of the nodes of H
that are of interest, it follows that it is only the order in which these
subsets are chosen that is important. Each possible way of reducing DH

to the empty graph gives rise to a unique sequence of chosen subsets of
nodes of DH. In TempRep, this corresponds to all possible choices for
the sequence S0, S1, S2, . . .. Furthermore, each such sequence induces,
up to ordering isomorphism, a unique temporal labelling of H. Hence
to list, up to ordering isomorphism, all temporal labellings of H one



28 MIHAELA BARONI, CHARLES SEMPLE, MIKE STEEL

simply needs to systematically find all possible choices for selecting
S0, S1, S2, . . . in TempRep.

2


