Energy Levels and Dynamics of Tm\(^{2+}\) Doped into AMX\(_3\) Salts

by

Sophie Koster

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

Supervisors: Professor Mike Reid, Associate Professor Jon-Paul Wells
Assistant Supervisor: Professor Roger Reeves

University of Canterbury
2014
Abstract

Divalent thulium has been doped into CsCaI$_3$, CsCaBr$_3$, CsCaCl$_3$ and RbCaI$_3$ - a series of AMX$_3$ salts. Using previously published optical spectra, a series of parameterised energy level calculations have been performed. The calculated energy levels, optimised crystal field parameters and simulated optical absorption spectra are presented. Theoretical predictions yield excellent approximation to the experimental data.

Temperature dependent fluorescent lifetimes from the (3F$_4$,t$_{2g}$) and (3H$_6$,t$_{2g}$) excited (emitting) states have been measured using a pulsed dye laser. For CsCaBr$_3$ and RbCaI$_3$ doped with Tm$^{2+}$, visible emission for the (3F$_4$,t$_{2g}$) state yields 10 K and 28 K lifetimes of 1.7 µs and 0.40 µs respectively. In both cases no emission is observed at room temperature. Considering direct multiphonon relaxation to the lower lying (3H$_6$,t$_{2g}$) levels, a simple energy gap law well accounts for the measured data with effective phonon energies in the range 100-200 cm$^{-1}$ - consistent with the phonon density of states in these low phonon energy hosts. Monitoring infrared emission from the (3H$_6$,t$_{2g}$) states, 14 K and 10 K lifetimes of 301 µs and 250 µs are found for CsCaBr$_3$ and CsCaCl$_3$ respectively. For CsCaBr$_3$ this value reduces to 270 µs at 200 K and is not quenched until 300 K, whilst for CsCaCl$_3$ emission is quenched by 170 K. This temperature dependent behavior is interpreted in terms of internal conversion via configurational crossing between the excited and ground state potential energy surfaces. Fitting the fluorescence lifetime data to a modified Mott equation, it is inferred that the potential barrier for non-radiative relaxation is five times larger in CsCaBr$_3$ compared to CsCaCl$_3$. This explains the fact that emission is still observable in the bromide host at room temperature.
Contents

Abstract i

Figures v

Tables vii

1 Introduction 1

1.1 Motivation 1

1.2 Thesis Outline 2

2 Theory 5

2.1 Energy Level Calculations 5

2.1.1 4f^n Hamiltonian 5

2.1.2 4f^n-15d Hamiltonian 6

2.1.3 The Crystal Field 7

2.1.4 Zero Phonon Lines and Vibronic Sidebands 8

2.1.5 Simulating Absorption Spectra 12

2.2 The Thermal Dependence of Fluorescent Lifetimes 14

2.2.1 Direct Multiphonon Relaxation 15

2.2.2 Non-Radiative Relaxation via Configurational Crossing 18

3 Background Review 21

3.1 Host Materials 21
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Crystal field splitting of the d orbital of an octahedrally coordinated ion.</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Charge distribution lobes of t_{2g} and e_g states.</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Electronic and vibrational energy levels with zero phonon and vibronic sideband transitions indicated.</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Shape and relative positions of the zero phonon line and vibronic sideband.</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of Huang-Rhys factor, or electron-lattice coupling on shape of spectrum.</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Response of radiative (τ_r) and non-radiative (τ_{nr}) lifetimes to temperature.</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Multiphonon Relaxation</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Rectangular potential barrier</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Barrier energy for non-radiative processes.</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>The perovskite lattice structure.</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>The fluorite lattice structure.</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Configurational coordinate diagram of energy levels within Tm$^{2+}$.</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Absorption and emission spectra of CsCaBr$_3$:Tm$^{2+}$ taken at 10K and excited at 21,834 cm$^{-1}$</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Downconversion versus upconversion.</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Ground State Absorption/Excited State Absorption (GSA/ESA)</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Ground State Absorption/Energy Transfer Upconversion (GSA/ETU)</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Crystal samples sealed in quartz ampoules.</td>
<td>33</td>
</tr>
</tbody>
</table>
4.2 Experimental setup for measuring fluorescence decay.

5.1 A simple representation of the energy levels within the Tm$^{2+}$ ion.

5.2 The simulated absorption spectra for CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$ compared to the experimentally obtained absorption spectra.

5.3 Energy levels corresponding to the absorption features for CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$.

6.1 Decay curves for CsCaCl$_3$:Tm$^{2+}$ from 10 K to 300 K.

6.2 Lifetime as a function of temperature determined from decay data measured for CsCaCl$_3$:Tm$^{2+}$.

6.3 A configurational coordinate diagram of the energy levels within the Tm$^{2+}$ ion with the processes involved in multiphonon modelling indicated.

6.4 Multiphonon model fitted to lifetime data for CsCaBr$_3$:Tm$^{2+}$.

6.5 Multiphonon model fitted to lifetime data for RbCaI$_3$:Tm$^{2+}$.

6.6 A configurational coordinate diagram of the energy levels within the Tm$^{2+}$ ion with the processes involved in the barrier modelling indicated.

6.7 Multiphonon model fitted to lifetime data for CsCaCl$_3$:Tm$^{2+}$.

6.8 Multiphonon model fitted to lifetime data for CsCaBr$_3$:Tm$^{2+}$ IR.

6.9 Energy levels involved in spontaneous emission to describe Einstein A coefficients.
<table>
<thead>
<tr>
<th>Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Hamiltonian parameter values for SrCl₂:Yb²⁺, SrCl₂:Tm²⁺, CsCaI₃:Tm²⁺, CsCaBr₃:Tm²⁺, CsCaCl₃:Tm²⁺, and CsCaBr₃:Yb²⁺</td>
</tr>
<tr>
<td>5.2 Calculated energies of the first 55 states of CsCaCl₃:Tm²⁺, CsCaBr₃:Tm²⁺, and CsCaI₃:Tm²⁺. Shown along with the energy levels are the isotropic dipole strengths of absorption into each state.</td>
</tr>
<tr>
<td>6.1 Fitted values of parameters in the multiphonon model described by equation 6.3 for visible emission from CsCaBr₃:Tm²⁺ and RbCaI₃:Tm²⁺.</td>
</tr>
<tr>
<td>6.2 Fitted values of parameters in the barrier model described by equation 6.4 for IR emission from CsCaCl₃:Tm²⁺ and CsCaBr₃:Tm²⁺.</td>
</tr>
<tr>
<td>6.3 Calculated and experimentally determined lifetimes for emissions from CsCaCl₃:Tm²⁺, CsCaBr₃:Tm²⁺, and CsCaI₃:Tm²⁺.</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Motivation

Phosphors, or luminescent materials, are used widely in lighting, display, and imaging applications [2]. Lanthanide ions play a crucial part in phosphor materials as the ions often efficiently emit visible light. Thulium is a lanthanide element with electron configuration $4f^{13}6s^2$, and the divalent form of this atom, the Tm$^{2+}$ ion, has the electron configuration $4f^{13}$ [3]. Far fewer studies have been done of Tm$^{2+}$ than of many other lanthanide ions due to the difficulty in stabilising this ion in an oxide or fluoride environment [4]. Some research has however been done into Tm$^{2+}$ doped CsCaI$_3$, CsCaBr$_3$, CsCaCl$_3$, RbCaI$_3$ [1, 2, 4, 5].

While aspects of the spectroscopy of Tm$^{2+}$ are understood, the dynamics of these systems are not fully understood. Performing calculations [6] and fitting the output simulated spectra to the data will allow parameters to be determined and give quantitative physical insight into processes occurring within the ion. Analysing the lifetime of different emissions in these materials will also give more information about these materials. Employing models to fit to lifetime data as a function of temperature allow more output parameters, to give more quantitative information about the different materials.

In Tm$^{2+}$ an upconversion process has been observed, giving visible emission from near infra-red excitation, making this a particularly interesting ion to study. Phosphors are an essential part of creating energy efficient fluorescent lighting, and so this investigation of new materials which can efficiently emit visible light is important and can lead to clues to new technologies.
1.2 Thesis Outline

Chapter 2 outlines and explains the underlying physics to this research. The energy level calculations to be undertaken are explained, including the form of the Hamiltonians used and the simulation of absorption spectra from these. The nature of fluorescence lifetimes is then explored. Two methods of modelling the lifetime as a function of temperature are explained: a direct multiphonon relaxation model, and a model of non-radiative relaxation via configurational crossing.

Chapter 3 provides an overview of previous understanding of the divalent thulium and the host materials in which it is to be studied. First the host materials and the integration of Tm$^{2+}$ into them is discussed. Then previous research of emission and absorption processes in Tm$^{2+}$ is presented. Upconversion processes are then explained, including details of those processes observed in Tm$^{2+}$.

Chapter 4 gives a description of the experimental method. First by detailing the synthesis of the materials being used, then by outlining the procedure for measuring the decay of emission from the samples, including a detailed description of the experimental setup and equipment used.

Chapter 5 presents the results from the parametric energy level calculations used to simulate processes within CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaI$_3$:Tm$^{2+}$. The energy structure of the Tm$^{2+}$ ion is briefly explained, along with the process of performing the calculation. The simulated absorption spectra are then compared to experimental spectra, and the parameters used to achieve the fit are presented and discussed. The energies of the first 55 energy levels are calculated and presented, along with their isotropic dipole strengths, and these are used to identify absorption bands in the experimental spectrum.

Chapter 6 presents the results of fitting two different models to lifetime data as a function of temperature. First a multiphonon model, considering the competition between radiative emission and a cascade of phonons as depopulation methods from a state is considered. Secondly a model considering phonon assisted barrier hopping and radiative emission as competing depopulation methods is considered. For both of these models the fits to the data are presented along with the output parameters. The final part of this...
1.2. Thesis Outline

Chapter discusses radiative lifetimes calculated as a result of the procedure in chapter 5. These calculated lifetimes are compared to those output from the multiphonon model.

Chapter 7 presents conclusions drawn about the results obtained in chapters 5 and 6, providing an overview of analysis undergone in this thesis.
Chapter 2

Theory

2.1 Energy Level Calculations

Parametric modelling has been successfully employed to describe the energy levels of many lanthanide systems [3, 7]. To calculate energy levels, Hamiltonians are constructed for different configurations, taking into account many physical parameters, and the energy levels within the states are output as the eigenvalues of the Hamiltonian. In this investigation the states of interest are $4f^N$ and $4f^{N-1}5d$, so the Hamiltonians for these states are explained. The energy levels calculated here can then be used to simulate absorption spectra, which can be fit to experimental data to determine physical parameters.

2.1.1 $4f^n$ Hamiltonian

The Hamiltonian of the $4f^n$ levels is given by equation (2.1) [8]. It consists of various parameters which determine the positions of the energy levels.

\[
H = E_{\text{avg}} + \sum_{k=2,4,6} F_k f_k + \zeta f A_{so} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{i=2,3,4,6,7,8} T^i t_i + \sum_{h=0,2,4} M^h m_h + \sum_{k=2,4,6} P^k p_k + \sum_{k,q} B_q^k C_q^{(k)} (2.1)
\]

The first term, E_{avg} is an offset which serves the purpose of allowing the ground state energy to be set to zero.

The next term parametrises the Coulomb interaction between the 4f electrons with the radial electrostatic integrals F_k which multiply the angular part of the electrostatic in-
The spin orbit coupling constant, ζ_f, represents the energy shift due to the electromagnetic interaction between the electrons spin and the magnetic field generated by the electrons orbit around the nucleus. It multiplies the angular part of the spin orbit interaction A_{so}.

Two electron Coulomb correlation contributions are accounted for with the terms $\alpha L(L + 1)$, $\beta G(G_2)$ and $\gamma G(R_7)$. Three electron correlation contributions are accounted for by the term T^it_i [6].

Magnetically correlated interactions are accounted for by $M^h m_h$, and electrostatically correlated spin-orbit contributions are given by $P^k p_k$ [6].

All of the parameters so far mentioned are called free ion parameters because they have the same form in a free ion as they do in a crystal environment. The terms that represent the non-spherical interaction with the crystal are modelled using the crystal field Hamiltonian, which is the final term in equation ??2. Crystal field splitting involves breaking degeneracies of the electronic levels due to the electrostatic field produced by the negative charges of the surrounding anions, and is described in more detail in section 2.1.3.

2.1.2 $4f^{n-1}5d$ Hamiltonian

The $4f^{n-1}5d$ Hamiltonian is the same as the $4f^n$ Hamiltonian for the $4f^{n-1}$ ‘core’ electrons, and the parameter values are expected to be similar. Additional terms arise due to the 5d electron, and these are shown in equation 2.2

$$
H_d = \Delta_E(fd) + \sum_{k=2,4} F^k(fd)f_k(fd) + \sum_{j=1,3,5} G^j(fd)g_j(fd) + \zeta(dd)A_{so}(d) + \sum_{k=2,4} B^k_q(d)C^{(k)}_q(d) \quad (2.2)
$$

The first term $\Delta_E(fd)$ is the energy difference between the $4f^n$ and $4f^{n-1}5d$ levels. The
\(F^k \) and \(G^j \) account for the Coulomb interaction of the 5d electron with the 4f\(^{n-1}\) core. \(\varsigma(dd)A_{so}(d) \) is the spin-orbit interaction of the 5d electron, and the final term represents d-electron crystal field effects [6].

2.1.3 The Crystal Field

Crystal field theory is a model that describes the breaking of degeneracies of electronic orbital states. A free ion has spherical symmetry, with degenerate levels. When an ion is placed in a crystal environment, the spherical symmetry is destroyed, and each level splits under the influence of the electric field produced by the environment [3]. The environment around the ion will usually possess a well-defined symmetry (lower symmetry than spherical.) The degree to which the degeneracy of the states are removed will depend on the point group symmetry in which the ion is located.

The Hamiltonian for a free ion placed in a crystal environment can be written as in equation (2.3) where the total Hamiltonian, \(H \), is found by adding the free ion Hamiltonian, \(H_F \), to the potential provided by the crystal environment about the ion of interest, \(V \).

\[
H = H_F + V
\]

(2.3)

\(V \) can be regarded as a perturbation to \(H_F \). The potential can be expanded in terms of the tensor operators \(C^{(k)}_q \) to give the expression in equation (2.4) [3]. The sum involving \(i \) is over all electrons on the ion of interest, and \(B^{(k)}_q \) can be considered a coefficient of expansion. This potential is the crystal field part of the Hamiltonian as seen in equations 2.1 and 2.2.

\[
V = \sum_{k,q,i} B^k_q(d)C^{(k)}_q(d)
\]

(2.4)

The specific case of the d orbital in an octahedrally coordinated ion will now be consid-
ered, as this is the case for the Tm$^{2+}$ ions in this study. Figure 2.1 shows the 5d level being split into t_{2g} and e_g states, separated by an energy Δ_O \cite{9}. This splitting occurs in Tm$^{2+}$, as seen in figure 3.3, with the t_{2g} states being involved in many optical transitions.

![Diagram](Image)

Figure 2.1 Crystal field splitting of the d orbital of an octahedrally coordinated ion. The 5d state is split into t_{2g} and e_g states, separated by an energy Δ_O.

The boundary surfaces of the d orbitals in each of these split states is shown in figure 2.2. This is a two dimensional representation and the lobes represent regions of electron density, or regions where it is probable to find the electron. The primary lobes in the e_g states are along the major cubic symmetry axes. Ligands in octahedral symmetry lie along the direction of these axes, meaning there is a strong interaction for these orbitals. The lobes of the t_{2g} states are along directions between the major symmetry axes. There is therefore a weaker interaction for these orbitals. This means that the e_g level is of higher energy than the t_{2g} level \cite{10}.

Octahedral symmetry is a relatively high symmetry, and because of this fewer crystal field parameters are required to describe this situation. As the Tm$^{2+}$ ions are approximately octahedrally coordinated, this means that some crystal field parameters can be expressed in terms of others, and not all crystal field parameters are needed in the calculations.

2.1.4 Zero Phonon Lines and Vibronic Sidebands

With the positions of the energy levels established, the next step is to consider transitions between these levels. There are two ways electrons can transition between energy
2.1. Energy Level Calculations

Figure 2.2 Charge distribution lobes of t_{2g} (bottom) and e_g (top) states. The lobes are shown with respect to the major symmetry axes.

levels, by absorption or emission of photons, quanta of electromagnetic radiation, or by absorption or emission of phonons, quanta of vibrations. Transitions involving photons are called radiative, and transitions involving phonons are called non-radiative. In interpreting absorption and emission spectra the effects of both must be considered to get a realistic physical picture of what is going on.

Figure 2.3 shows two electronic energy levels, a ground and an excited state. The solid horizontal lines represent the phonon energy levels. The horizontal axis is the configurational coordinate, which is proportional to bond length. The zero phonon absorption transition is that from the ground vibrational state of the ground electronic state to the ground vibrational state of the excited electronic state. The energy at which this occurs is the position of the zero phonon band.
Figure 2.3 Electronic and vibrational energy levels with zero phonon and vibronic sideband transitions indicated. When electrons are excited to high vibrational levels of the excited electronic excited state, higher energy photons are require than when exciting to the ground vibrational level.

Zero phonon transitions however are not the only type of transitions which can occur. There is vibrational energy in the lattice, and the ions are not always excited to the ground vibrational state of the excited electronic state, they can also be excited into higher energy vibrational states, resulting in higher energy photons being required to excite the electrons into these states, and so a broad absorption band at higher energies than the zero phonon line is observed in absorption spectra. The relative intensities of the zero phonon line and the vibronic sideband are determined by a few factors. Firstly the change in bond length between two configurations plays a role. The bigger the change in bond length, the more likely vibronic transitions are. Large changes in bond length involve the electrons becoming further from the ion and incurring a stronger coupling with the lattice. So transitions involving large changes in bond length have less prominent zero phonon lines. Temperature can also play a role, increasing thermal vibrations in the lattice. It should be noted that the absorption spectra analysed in this report do not have visible zero phonon lines.
As can be seen in figure 2.4, in an emission spectrum the vibrational band is on the opposite side of the zero phonon band than in an absorption spectrum. In this situation the availability of higher energy vibrational states decreases the energy of the emitted photons compared to the transition between ground vibrational states from the excited to ground electronic state.

![Figure 2.4](image)

Figure 2.4 Shape and relative positions of the zero phonon line and vibronic sideband in absorption (top) and emission (bottom) spectra.

The shape of the vibration band is largely dependent upon the electron-lattice coupling in the crystal, or the difference between electron lattice coupling of the ground and excited state. This difference in electron lattice coupling is quantified with the Huang-Rhys parameter given by equation \(2.5 \) \[11\], where \(\omega \) is the vibrational frequency and \(E_{\text{dis}} \) is defined in figure 2.3

\[
S = \frac{E_{\text{dis}}}{\hbar \omega}
\]

(2.5)

A larger \(S \) value corresponds to a larger difference in electron lattice coupling between
the two states. This results in a broader vibrational band, as greater interaction between an excited electron and the lattice (possessing vibrational energy) means more phonon effects present in the transitions between electronic energy levels. This dependence of the absorption band shape upon the Huang-Rhys parameter can be observed in figure 2.5. The vertical lines corresponding to different possible transitions with their lengths proportional to the probability of the transition. The peak of the vibrational band is the energy at which photons are excited from the minimum of the ground state parabola to the intersection of the excited state parabola [12]. This energy is denoted E_{peak} in figure 2.3.

![Figure 2.5](image)

Figure 2.5 Effect of Huang-Rhys factor, or electron-lattice coupling on shape of spectrum. Greater coupling involves excited electrons interacting more with the surrounding lattice, giving broader vibrational bands

2.1.5 Simulating Absorption Spectra

The Hamiltonians of the 4fn and 4f$^{n-1}$5d configurations output the electronic energy levels of these states. The positions of the zero phonon lines can be determined from this as the difference in energy for allowed transitions between 4fn and 4f$^{n-1}$5d states. The intensity of a transition is determined by its oscillator strength, which can be thought of as a transition probability. The absorption oscillator strength is defined in equation 2.6 [6].
Here $f_{FI,q}^{ED}$ is the oscillator strength, ω is the frequency of the transition, h is Planck's constant, n is the refractive index, χ_L is the local correction to the electric field, g_I is the degeneracy of the initial state, and $S_{FI,q}^{ED}$ is the dipole strength for the transition. The dipole strength accounts for the electric dipole moment for the transition between the two states and is shown in equation (2.7). This is the electronic dipole strength for a particular polarisation q. $D_{q}^{(1)}$ is the transition matrix of the electric dipole operator, and sums are over components of the initial and final states.

$$S_{FI,q}^{ED} = \sum_{i,f} e^2 | < F_f | D_{q}^{(1)} | I_i > |^2$$

Once these positions and strengths are determined, absorption spectra can be simulated by plotting Gaussians or Pekarians offset to the zero phonon lines. Gaussians for high S values, for lower S values a Pekarian curve is needed. The sum of the Gaussians (or Pekarians) from all the zero phonon lines forms a simulated absorption spectra, which can be fit to experimental data to determine physical parameters.
2.2 The Thermal Dependence of Fluorescent Lifetimes

When an ion is excited, it remains in an excited state for a time before decaying back to the ground state. When a single ion is considered, the time taken for it to decay is probabilistic. When an ensemble of ions in a lattice are considered, it is possible to determine a mean amount of time for the ion to decay for a given material. This is called the mean lifetime, or just the lifetime. The decay of electrons within an ensemble of ions is an exponential decay, as described by equation 2.8 where $I(t)$ is the intensity of emission at time t, I_0 is the intensity of emission at time $t = 0$, and τ is the mean lifetime of the emission. This expression is the Fourier transform of the emitted electric field.

$$I(t) = I(0) \exp(-t/\tau) \quad (2.8)$$

Sometimes multiple decay processes are simultaneously present, and the decay curve observed will then be described by equation 2.9 which is an N^{th} order exponential decay curve.

$$I(t) = \sum_{i=1}^{N} I_i(0) \exp(-t/\tau_i) \quad (2.9)$$

From equations 2.8 and 2.9 the lifetime of a particular emission can be determined by fitting these equations to measured decay data. The lifetime of an emission can be dependent on temperature, so this procedure can be applied to emission data over a variety of temperatures, and a profile of lifetime as a function of temperature can be built up. Two different models for analysing these temperature dependent lifetime profiles will be explored.
2.2.1 Direct Multiphonon Relaxation

By considering multiphonon relaxation it is possible to construct a model of the temperature dependence of emission lifetime. To understand this model, the differences between radiative and non-radiative relaxation must first be considered. Radiative relaxation involves an electron in an excited state decaying to a lower energy state by emitting a photon. This process is independent of temperature and the lifetime of this process is characteristic of the material involved. Non-radiative relaxation involves an electron in an excited state decaying to a lower energy state by emitting a phonon. This process is very much dependent on temperature. Increased heat energy in the lattice means more vibrations in the lattice and so more phonon related, non-radiative relaxations. The difference is visually displayed in figure 2.6.

\[\tau_r \]

\[\tau_{nr} \]

\[\text{Temperature} \]

\[\text{Lifetime} \]

Figure 2.6 Response of radiative (\(\tau_r \)) and non-radiative (\(\tau_{nr} \)) lifetimes to temperature. Increased heat energy in the lattice shortens the non-radiative lifetime, while the radiative lifetime remains unchanged.

The experimentally measured lifetime of a material is a result of the combination of these two factors. At higher temperatures the non-radiative lifetime can be sufficiently long for there to be time for radiative decay to occur. As the temperature increases, the increased phonon presence in the lattice shortens the non-radiative lifetime so that radiative decay becomes less prevalent.
Next the scheme presented in figure 2.7 must be considered. There are three energy levels, a ground state and two excited states. There are two emissions, a higher energy emission A and a lower energy emission B.

![Figure 2.7](image)

Figure 2.7 Multiphonon relaxation. Emission A is the result of a simple radiative transition, emission B involves a multiphonon relaxation process followed by a radiative transition from a lower lying state.

The multiphonon relaxation process can be seen to consist of multiple phonons bridging an energy gap ΔE. If the energy of a single phonon is said to be $\hbar \omega$ and there are N phonons required to bridge the gap ΔE, then it can be stated that $\Delta E = N\hbar \omega$.

Emissions A and B are competing processes. Emission A is a simple radiative relaxation from the higher excited state. Emission B is more complicated, involving a multiphonon relaxation process to the lower excited state, followed by a radiative relaxation to the ground state. As the lattice gets warmer the phonon presence in the lattice shortens the purely non-radiative lifetime, making phonon processes more prevalent and causing the emission B to dominate. This means that the ratio of the intensity of emission of A to B can give information as to which process is dominant.
2.2. The Thermal Dependence of Fluorescent Lifetimes

The purpose of investigating this multiphonon process here is to acquire a model with which quantitative information about Tm$^{2+}$ can be determined. The non-radiative lifetime as a function of temperature is given by equation 2.10. Here $\tau_{nr}(T)$ is the non-radiative lifetime as a function of temperature, $\tau_{nr}(0)$ is the non-radiative lifetime at 0 K, $\hbar \omega_{eff}$ is the energy of the effective phonon modes involved, k_B is Boltzmann’s constant, T is the temperature in Kelvin, and N is the number of phonons needed to bridge the energy gap (or the order of the process.)

$$\tau_{nr}(T) = \tau_{nr}(0) \left[1 - \exp \left(\frac{\hbar \omega_{eff}}{k_B T}\right)\right]^N \tag{2.10}$$

An equation with the total, experimental lifetime (τ_{exp}) as the subject is desired, so the relationship between τ_{exp}, τ_{nr} and τ_r is shown in equation 2.11.

$$\frac{1}{\tau_{exp}} = \frac{1}{\tau_{nr}} + \frac{1}{\tau_r} \tag{2.11}$$

Combining equations 2.10 and 2.11 then allow an equation to be formed with τ_{exp} as the subject. This is presented as equation 2.12.

$$\tau_{exp}(T) = \frac{1}{\left(\tau_{nr}(0) \left[1 - \exp \left(\frac{\hbar \omega_{eff}}{k_B T}\right)\right]^N\right)^{-1}} + \frac{1}{\tau_r} \tag{2.12}$$

This equation can then be used to fit to experimental data. Quantitative results in the form of parameters can be taken from this, allowing information on Tm$^{2+}$ to be gathered. Parameters from different host materials can be compared, and physical conclusions about Tm$^{2+}$ can be drawn.
2.2.2 Non-Radiative Relaxation via Configurational Crossing

A second model of temperature dependence of the fluorescence lifetime can be derived by considering potential barriers. A rectangular potential barrier is shown in figure 2.8. This potential barrier has height V_0 and width x. If an electron has an energy less than V_0, then in order to overcome this barrier it must either gain energy (via phonons) to jump over the barrier, or it may tunnel through the barrier. In a real physical system like an ion the barrier is not rectangular, but the same general rules apply for traversing the barrier.

![Figure 2.8 Rectangular potential barrier. For an electron to pass the barrier it must either gain the energy to jump over the barrier or tunnel through it.](image)

When an electron is in an electronic state within an ion, it is in a potential well, as can be seen by the parabolas in the configurational coordinate diagram in figure 2.9. The parabolas represent the potential energy of the states as a function of bond length. Without phonon presence an electron will settle into the energy at the minimum of a parabola, but phonons give the electron extra vibrational energy, allowing it to move along the parabola. When a non-radiative relaxation occurs, an electron needs to gain enough vibrational energy to move up along the parabola of the excited state, to the point where the parabolas cross over, at which point it can relax down along the ground state parabola, releasing phonons of energy to settle into the minimum.

The vibrational energy required for the electron to reach the crossing point between the two parabolas is called the non-radiative energy barrier, and the barrier height is represented by E_{nr}, as shown in figure 2.9.
This situation occurs due to the energy levels involved being from different orbitals. This results in a configurational shift seen in figure 2.9. In the case of intraconfigurational transitions, there is no configurational shift between the states, and the parabolas in 2.9 do not intersect, or intersect in such a way that E_{nr} is so large that it can not be overcome, making this sort of relaxation impossible in those cases. Another way to consider this is that when a configurational shift occurs, the electron is displaced further into the lattice, incurring a stronger electron-lattice coupling. This renders the electron more prone to the effects of phonons in the lattice, such that the configurational shift has made the barrier able to be overcome.

![Figure 2.9](image)

Figure 2.9 Barrier energy for non-radiative processes. In order for an electron to non-radiatively decay from the excited to ground state, it needs to gain enough vibrational energy to move up along the parabola of the excited state, to the point where the parabolas cross over. This energy is the energy E_{nr}.

The purpose of understanding these concepts is to utilise them in building a model of lifetime as a function of temperature. The dependence of the non-radiative lifetime as a function of temperature is shown in equation 2.13 [15, 16]. Here $\tau_{nr}(T)$ is the non-radiative lifetime of emission as a function of temperature, W_0 is the rate of non-radiative
depopulation of the zero phonon level of the emitting state (and can be considered the probability of tunneling through the potential barrier, \(W_1 \) is the rate of phonon assisted barrier hopping, \(E_{nr} \) is the barrier height, \(k_B \) is Boltzmanns constant, and \(T \) is the temperature in Kelvin.

\[
\tau_{nr}(T) = \frac{1}{W_0 + W_1 \exp \left(\frac{-E_{nr}}{k_B T} \right)}
\]
(2.13)

To get the equation in the form of having \(\tau_{exp} \) as the subject, the relationship in equation 2.11 in section 2.2.1 is again implemented to establish the result in equation 2.14.

\[
\tau_{exp}(T) = \frac{1}{W_0 + W_1 \exp \left(\frac{-E_{nr}}{k_B T} \right) + \frac{1}{\tau_r}}
\]
(2.14)

From this equation it can be noted that the constants \(W_0 \) and \(\frac{1}{\tau_r} \) can simply be grouped together, as they cannot be meaningfully discerned in fitting this equation to experimental data. Redefining \(W_0 = W_0 + \frac{1}{\tau_r} \) the expression is altered as in equation 2.15.

\[
\tau_{exp}(T) = \frac{1}{W_0 + W_1 \exp \left(\frac{-E_{nr}}{k_B T} \right)}
\]
(2.15)

This equation can then be used to fit to experimental measurements of the lifetime, allowing physical conclusions to be drawn about Tm\(^{2+}\) as parameters are compared between different samples.
Chapter 3

Background Review

3.1 Host Materials

The host materials in which the divalent thulium is studied in this report are a series of AMX$_3$ salts - CsCaCl$_3$, CsCaBr$_3$, CsCaI$_3$ and RbCaI$_3$. Additionally, Tm$^{2+}$ doped into SrCl$_2$ is also studied to a lesser degree. CsCaCl$_3$, CsCaBr$_3$ and CsCaI$_3$ have a perovskite lattice structure, which is shown in figure 3.1. Here the green ions represent the Cs$^+$, the red ions represent the Ca$^{2+}$ and the blue ions represent the I$^-$, Br$^-$ or Cl$^-$ ions. When the Tm$^{2+}$ is doped into the material, it takes the place of some Ca$^{2+}$ ions, at the red sites.

![Figure 3.1 The perovskite lattice structure. Here the green ions represent the Cs$^+$, the red ions represent the Ca$^{2+}$ and the blue ions represent the I$^-$, Br$^-$ or Cl$^-$ ions. When the Tm$^{2+}$ is doped into the material, it takes the place of some Ca$^{2+}$ ions, at the red sites.](image)

The SrCl$_2$ host has a fluorite structure, as shown in figure 3.2. Here the green ions represent the Sr$^{2+}$ and the blue ions represent the Cl$^-$ ions. When the Tm$^{2+}$ is doped into
the material, it takes the place of some Sr2+ ions, at the green sites.

CsCaBr\textsubscript{3} is a cubic perovskite at room temperature, with space group \textit{Pm\textoverline{3}m} and with distorted \(O_h\) symmetry on the Ca2+ site. The lattice undergoes a phase transition at lower temperatures and crystalises as orthorhombic, with space group \textit{Pnma} \cite{1}.

Like CsCaBr\textsubscript{3}, CsCaCl\textsubscript{3} is a cubic perovskite at room temperature, with space group \textit{Pm\textoverline{3}m} and with distorted \(O_h\) symmetry on the Ca2+ site. This lattice also undergoes a phase transition at lower temperatures and in this case crystalises as tetragonal, with space group \textit{P4/mbm} \cite{1}.

CsCaI\textsubscript{3} is also a perovskite, stable in the orthorhombic \textit{Pbnm} space group at all temperatures \cite{1}. At 10 K this material is isomorphous to CsCaBr\textsubscript{3}. The Ca2+ ion is also octahedrally coordinated with a distortion.

RbCaI\textsubscript{3} has a smaller singly charged cation (Rb+) compared to CsCaI\textsubscript{3} (Cs+). This leads to a change in structure of the lattice. Here, there is a ‘double chain’ lattice structure. The lattice is orthorhombic with space group \textit{Pbnm}, and Ca2+ ion is octahedrally coordinated like in CsCaI\textsubscript{3}. The distortion from \(O_h\) symmetry is bigger in this case \cite{17 18}.

SrCl\textsubscript{2} crystallises in the fluorite structure in space group \textit{Fm\textoverline{3}m}. The Sr2+ site has \(O_h\) symmetry \cite{5}.

Equation \textit{3.1} is the dispersion relation for phonons in a one dimensional lattice, which is an expression for the vibrational frequency \(\omega\) in a lattice. It is considering an alternating array of two types of ion or atom with masses \(m_1\) and \(m_2\) repeated periodically at distance \(a\) and connected by springs of spring constant \(K\). Although this expression describes a one dimensional system, it can be used to draw conclusions about real three dimensional lattices.

\[
\omega^2 = K \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \pm K \sqrt{\left(\frac{1}{m_1} + \frac{1}{m_2} \right)^2 - \frac{4 \sin^2(ka/2)}{m_1m_2}}
\]

\textit{(3.1)}
3.1. Host Materials

Figure 3.2 The fluorite lattice structure. Here the green ions represent the Sr$^{2+}$ and the blue ions represent the Cl$^{-}$ ions. When the Tm$^{2+}$ is doped into the material, it takes the place of some Sr$^{2+}$ ions, at the green sites.

From equation 3.1 it can be noted that the vibrational frequency is inversely proportional to the square root of the mass of the ions ($\omega \propto \frac{1}{\sqrt{m_1 m_2}}$). It can also be noted that the vibrational frequency is proportional to energy $E \propto \omega$. From these relations it can be concluded that heavier atoms/ions in a lattice result in a lower vibrational energy for the lattice.

The materials being studied are known to have low phonon energies [5]. This can be explained by considering that the anions (Br$^{-}$, Cl$^{-}$, I$^{-}$) involved in these lattices are relatively heavy, which via the reasoning in the preceding paragraph results in lower vibrational energy. This means that fewer non-radiative processes occur, meaning there is less competition for radiative processes and so there are ideal conditions to study radiative processes within the ion.

These materials are very hygroscopic, meaning they absorb water out of the air. For this reason the samples are in an inert atmosphere and sealed within quartz ampoules containing inert atmospheres.
3.2 Tm$^{2+}$ Emission

Thulium is a lanthanide element with electron configuration $4f^{13}6s^2$, and the divalent form of this atom, the Tm$^{2+}$ ion, has the electron configuration $4f^{13}$ [3]. Far fewer studies have been done of Tm$^{2+}$ than of many other lanthanide ions due to the difficulty in stabilising this ion in an oxide or fluoride environment [4]. Some research has however been done into Tm$^{2+}$ doped CsCaI$_3$, CsCaBr$_3$, CsCaCl$_3$ and RbCaI$_3$ [1, 2, 5, 19]. These materials are very hygroscopic, and so are held within inert atmospheres in quartz ampoules.

Emission and absorption spectra have been taken of these divalent thulium doped crystals. From examination of the intensities and positions of the transition peaks, insight into the energy level structure of the ion has been achieved [1], along with an understanding of non-radiative relaxation processes [4].

Figure 3.3 is a configurational coordinate diagram showing the energy levels within Tm$^{2+}$ which are relevant to understanding the transitions which have been observed. This model was derived from measurements from CsCaBr$_3$:Tm$^{2+}$ [1], but the general structure has been shown to be true for CsCaI$_3$:Tm$^{2+}$ [5], CsCaCl$_3$:Tm$^{2+}$ [5], SrCl$_2$:Tm$^{2+}$ [19] and RbCaI$_3$:Tm$^{2+}$ [18]. The $(4f)^{13}$ and $(4f)^{12}(5d)^1$ configurations can both be seen, with a change in bond length between them being present due to the electron being promoted. This results in the emissions between the configurations being broader than the emission A within the $(4f)^{13}$ configuration. Coulomb repulsion and spin-orbit coupling split the $(4f)^{12}$ configuration into a Tm$^{3+}$ like pattern of terms. The crystal field splitting causes the 5d orbital to be split into t_{2g} and e_g, with t_{2g} states being the only relevant states in considering observed emissions. The isotropic exchange part of the 4f-5d repulsion splits the $(^3H_6,t_{2g})$ state into high and low spin components [1]. It should be noted that although in figure 3.3 an increase in bond length is shown between the $(4f)^{13}$ and $(4f)^{12}(5d)^1$ states, some studies suggest it may actually be a contraction [20].

The emission A is 4f-4f emission from $^2F_{5/2}$ to $^2F_{7/2}$ states. The emission is very weak up to about 200 K. This is because at low temperatures the higher lying f-d states are metastable and emitting radiatively. Above 200 K the increased thermal energy causes the higher lying states to non-radiatively relax, feeding energy into the $^2F_{5/2}$ state so that
Figure 3.3 Configurational coordinate diagram of energy levels within Tm$^{2+}$ which are relevant to understanding the transitions which have been observed. Radiative relaxation is indicated with straight arrows and non-radiative relaxation is indicated with curly arrows.
the A emission can occur [1].

The emission B is a ‘spin forbidden’ 5d-4f transition from \((^3H_{6,t_{2g}})S=3/2\) to \(^2F_{7/2}\). This emission is weak at low temperatures but at around 100 K it becomes the dominant emission. This is because at around 100 K, the higher \((^3F_4,t_{2g})\) state stops radiating (emission D) and instead it non-radiatively relaxes, feeding energy into \((^3H_{6,t_{2g}})S=1/2\) which then in turn feeds energy to \((^3H_6,t_{2g})S=3/2\), so that this state now has energy to emit radiatively in the form of the B emission. [1]

The emission C is a ‘spin allowed’ 5d-4f transition from \((^3H_6,t_{2g})S=1/2\) to \(^2F_{7/2}\). The low vibrational energy of the lattice and spin allowed nature of the radiative transition to the ground state mean that the emission C will occur. The photon ratio of emissions C/B is 1/10 at around 10 K and decreases with increasing temperature. This means that the non-radiative depopulation of \((^3H_6,t_{2g})S=1/2\) is dominant at all temperatures [1].

The emission D is a higher excited state 5d-4f transition from \((^3F_4,t_{2g})\) to \(^2F_{7/2}\). This emission dominates below 100 K. At low temperatures the \((^3F_4,t_{2g})\) state is metastable and the radiative emission is competitive, but above about 100 K non-radiative relaxation becomes dominant. (This is true of CsCaBr\(_3\):Tm\(^{2+}\), in CsCaCl\(_3\):Tm\(^{2+}\) the emission is weaker and rapidly quenched [1].)

The emission E is an inter-excited state 5d-4f transition from \((^3F_4,t_{2g})\) to \(^2F_{5/2}\). This transition has the same temperature dependence and originating state as the D emission. The photon ratio of emissions E/d however is only 1/800. This can be attributed to the \(\Delta J = 1\) selection rule [10]. The lowest energy state of the \((^3F_4,t_{2g})\) multiplet has dominantly \(J = 9/2\) character, thus the transition to \(^2F_{7/2}\) is allowed, while the transition to \(^2F_{5/2}\) is forbidden [1].
3.3 Tm\(^{2+}\) Absorption

Absorption spectra have been taken of CsCaBr\(_3\):Tm\(^{2+}\), CsCaI\(_3\):Tm\(^{2+}\), CsCaCl\(_3\):Tm\(^{2+}\) [19], RbCaI\(_3\):Tm\(^{2+}\) [17] [18], and SrCl\(_2\):Tm\(^{2+}\) [21]. The measured absorption spectrum is shown in figure 3.4(c) for CsCaBr\(_3\):Tm\(^{2+}\). For all the samples in this report, the energies of particular features are different, but the general features are similar.

![Absorption and emission spectra](image)

Figure 3.4 Absorption and emission spectra of CsCaBr\(_3\):Tm\(^{2+}\) taken at 10K and excited at 21,834 cm\(^{-1}\).

Figure 3.4 (a) and (b) are emission spectra, and the five emissions detailed in section 3.2 can be seen here. There are both 4f-4f and 4f-5d features present.
The 4f-4f features in the absorption spectrum are the lowest energy, sharp lines seen at around 8800 cm$^{-1}$ [4]. They are sharp because they are due to transitions occurring between the $^2F_{7/2}$ and $^2F_{5/2}$ states, both within the 4f13 configuration, not experiencing the bond length changes and subsequent broadening which the interconfigurational absorption bands are subject to. This line is found to be split by about 8 cm$^{-1}$. In octahedral coordination, the lowest energy crystal field components of $^2F_{7/2}$ and $^2F_{5/2}$ are Γ_8 and Γ_6 respectively. The 8 cm$^{-1}$ splitting is attributed to a splitting of $^2F_{5/2}$ (Γ_8) into two Kramer doublets [1, 19].

The 4f-5d features of the absorption spectrum are much broader due to the change in configuration involved in the transitions. The change in configuration also corresponds to Stokes shifts in these absorption bands, while there was no Stokes shift in the 4f-4f absorption features. The weak absorption band centred around 13500 cm$^{-1}$ is absorption into the ($^3H_t, t_{2g}$)S=1/2 state [1]. The absorption band centred on about 15000 cm$^{-1}$ is associated with absorption into the ($^3H_t, t_{2g}$)S=1/2 state [19]. The absorption band which begins at around 20000 cm$^{-1}$ is associated with absorption into the ($^3F_{4}, t_{2g}$) state.

It is indicated in figure [3.4] which multiplet, ($^3H_{6}, t_{2g}$) or ($^3F_{4}, t_{2g}$), the absorption bands are associated with.
3.4 Upconversion Processes

Normally in phosphor materials a sample is excited with higher energy photons than those it is emitting. Upconversion is a process involving a sample emitting photons at a higher energy than those it is being excited with \[22\], so lower energy photons are being ‘converted’ to higher energy photons. The comparison between these two processes can be seen in figure 3.5. Here, the left part shows that a single higher energy photon can cause the emission of a photon \(A\). In the right part of figure 3.5 two lower energy photons are used to cause the emission \(A\), upconverting them from a lower to higher energy.

![Figure 3.5](image)

Figure 3.5 Downconversion versus upconversion. Left: Downconversion, emission ‘A’ achieved by excitation with higher energy photons. Right: Upconversion, emission ‘A’ achieved by excitation of multiple lower energy photons.

There are two main types of upconversion process. Ground state absorption/excited state absorption (GSA/ESA) and ground state absorption/energy transfer upconversion (GSA/ETU). Both of these processes require a metastable state to exist between the ground and emitting states \[18\]. These processes are depicted in figures 3.6 and 3.7. Here we consider upconversion of NIR to UV photons.

The GSA/ESA process is shown in figure 3.6. This process involves an incident NIR photon on the system exciting an electron from the ground to metastable intermediate state. A second NIR photon then excites the electron from the intermediate state to the emitting state, and the system then relaxes radiatively, emitting the upconverted UV photon \[18\].
The GSA/ETU process is shown in figure 3.7. This process involves two emitting sites within the lattice (in this study, two Tm$^{2+}$ sites.) The first step involves two incident NIR photons exciting two electrons on nearby sites so that both are in the metastable intermediate states. The energy from one of the electrons is then transferred to the other, causing one electron to return to the ground state and the other electron to be promoted to the emitting state. The electron in the emitting state then radiatively relaxes, emitting the upconverted UV photon [18].

An efficient upconversion process is found in Tm$^{2+}$ [2, 5]. It is interesting because although upconversion processes are widespread through the lanthanide series within 4f energy levels [2], in Tm$^{2+}$ upconversion emission is observed from a higher 5d state [2]. This is
aided by the low phonon energies of the host lattice, meaning non-radiative emission takes longer to happen and intermediate states in the upconversion process can persist for long enough to be excited to higher energy states, as well as the higher 5d states persisting for long enough to radiatively emit.
Chapter 4

Experimental Method

4.1 Synthesis of Crystals

All of the crystal samples used (RbCaI$_3$, CsCaBr$_3$, CsCaCl$_3$ and SrCl$_2$) were supplied by the research group of Prof. H. U. Güdel at the University of Bern in Switzerland.

![Figure 4.1](image)

Figure 4.1 Crystal samples sealed in quartz ampoules with partial He pressure due to their hygroscopic nature. From right to left they are RbCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$, CsCaCl$_3$:Tm$^{2+}$ and SrCl$_2$:Tm$^{2+}$.

The crystals were grown by the Bridgman technique. This involves heating the materials above their melting point in a container and slowly cooling them back down to room temperature. The cooling is done in such a way so that there is a temperature gradient
across the volume of material present, and the sample is cooled from one end to the other. This allows the crystal structure to slowly build across the entire mass as it cools.

The samples being produced are very hygroscopic which means they absorb water out of the air. This means that during and after synthesis precautions must be taken to prevent the sample having contact with the air. The starting materials were enclosed in tantalum ampoules under partial pressure of He. After being prepared the samples are stored in quartz ampoules with partial pressure of He. The reason for the two types of ampoules is that during synthesis the Tm$^{2+}$ can be oxidised by quartz at high temperatures, which are involved in the synthesis. However quartz is ideal for housing the samples while they are being studied. The ampoules can be seen in figure 4.1.

The crystals sealed in the ampoules in figure 4.1 can be seen to be dark green (with SrCl$_2$·Tm$^{2+}$ slightly darker than the others.) The CsCaBr$_3$·Tm$^{2+}$ and CsCaCl$_3$·Tm$^{2+}$ crystals are about 2 mm in diameter, and the RbCaI$_3$·Tm$^{2+}$ and SrCl$_2$·Tm$^{2+}$ crystals are about 0.5 mm to 1 mm in diameter. They all have a concentration of 1% Tm$^{2+}$.
4.2 Fluorescent Lifetime Measurements

Measurements of fluorescence decay were taken after the samples were optically excited by a pulsed laser. From these measurements the lifetimes could be found. For each observed band, measurements were taken at a range of temperatures to see how temperature affected the transitions. The experimental setup for taking these measurements is shown in figure 4.2.

![Experimental setup for measuring fluorescence decay.](image)

Figure 4.2 Experimental setup for measuring fluorescence decay. A pulsed dye laser is used to generate the beam needed to excite the sample. This dye laser is pumped with a Nd:YAG laser. This beam is then incident on the sample. The sample is contained within a cryostat cooled with liquid helium. The light emitted from the sample is collimated then focused onto the opening of the spectrometer. A longpass filter is placed within the collimated beam. After the beam has passed through the spectrometer, it is incident upon either a PMT or a silicon detector, depending on the wavelength of emission being investigated. The PMT/Si detector then sends a signal to the oscilloscope, which is being externally triggered by the Nd:YAG laser.

A pulsed dye laser is used to generate the beam needed to excite the sample. This dye laser is pumped with a Nd:YAG laser. This beam is then incident on the sample, it was not necessary to focus the beam onto the sample as plenty of light was emitted without focusing. The sample is contained within a cryostat cooled with liquid helium. The light
emitted from the sample is collimated then focused onto the opening of the spectrometer. A longpass filter is placed within the collimated beam, with a cutoff wavelength such that emission from the sample is able to pass through but any reflected laser light is not. After the beam has passed through the spectrometer, it is incident upon either a photomultiplier tube (PMT) or a silicon detector, depending on the wavelength of emission being investigated. The PMT/Si detector then sends a signal to the oscilloscope, which is being externally triggered by the Nd:YAG laser. Here the measurements of intensity as a function of time are recorded. The temperature is controlled by balancing the flow of helium into the cryostat with the right amount of heating.

For all measurements, a Quanta-ray pro-series pulsed Nd:YAG laser, a Sirah pulsed dye laser, an Oxford Instruments Microstat cryostat, an Acton Spectrapro 2150i spectrometer, and a tektronix TDS 2022 oscilloscope were used.

Infrared emission from CsCaCl\(_3\):Tm\(^{2+}\) was detected at 12,000 cm\(^{-1}\) (833 nm.) The decay was measured from 14 K to 320 K. The detector used for these measurements was a PDA 100A Silicon detector and a 600 nm longpass filter was used to cut out the laser light. The sample was excited with 28,940 cm\(^{-1}\) (345 nm) laser light. An attempt was made to measure visible emission from CsCaCl\(_3\):Tm\(^{2+}\), exciting the sample at 28,940 cm\(^{-1}\) (345 nm), however no emission intense enough to be detected was observed.

Visible emission from CsCaBr\(_3\):Tm\(^{2+}\) was detected at 19,070 cm\(^{-1}\) (524 nm) and The decay was measured from 9 K to 270 K. The detector used for these measurements was a Hamamatsu R1547 PMT with a 50 Ω load resistor and a 400 nm longpass filter was used to cut out the laser light. The sample was excited with 28,940 cm\(^{-1}\) (345 nm) laser light. Infrared emission from CsCaBr\(_3\):Tm\(^{2+}\) was detected at 12,270 cm\(^{-1}\) (815 nm.) The decay was measured from 10 K to 300 K. The detector used for these measurements was a PDA 100A Silicon detector and a 600 nm longpass filter was used to cut out the laser light. The sample was excited with 28,940 cm\(^{-1}\) (345 nm) laser light.

Visible emission from RbCaI\(_3\):Tm\(^{2+}\) was detected at 17,240 cm\(^{-1}\) (580 nm.) The decay was measured from 28 K to 230 K. The detector used for these measurements was a Hamamatsu R1547 PMT with a 50 Ω load resistor and a 400 nm longpass filter was used to cut out the laser light. The sample was excited with 28,940 cm\(^{-1}\) (345 nm) laser light.
An attempt was made to measure Infrared emission from RbCaI$_3$:Tm$^{2+}$. The presence of emission at 955 nm when exciting at 28,940 cm$^{-1}$ (345 nm) was noted, however due to equipment problems the fluorescent decay was not able to be recorded.

An attempt was made at measuring visible emission from SrCl$_2$:Tm$^{2+}$, exciting the sample at 28,940 cm$^{-1}$ (345 nm), however no emission intense enough to be detected was observed. An attempt was also made at measuring infrared emission from this sample. The presence of the emission at 715 nm while exciting at 28,940 cm$^{-1}$ (345 nm) was noted, however due to equipment failure the fluorescent decay was not able to be measured.
Optical Properties and Crystal-Field Calculations for Tm$^{2+}$ in CsCaCl$_3$, CsCaBr$_3$ and CsCaI$_3$

The energy structure of the Tm$^{2+}$ ion was examined by performing parametric calculations to simulate absorption spectra of Tm$^{2+}$ in the different materials. These calculations output energy levels and dipole strengths within the ion, allowing insight to the structure. The parameters used to generate the spectra can also provide physical information about the ion. Crystal-field calculations are performed for CsCaCl$_3$, CsCaBr$_3$ and CsCaI$_3$, but not for RbCaI$_3$ as no absorption data was available for comparison.

5.1 Energy Level Calculations

Figure 5.1 shows a basic representation of the lower energy levels within the ion. The energy levels of the 4f13 configuration and the lower levels of the 4f125d1 configuration are shown. The 4f13 configuration is seen to be split into $^2F_{5/2}$ to $^2F_{7/2}$ states. The 4f125d1 is seen to be split into $(^3F_4,t_{2g})$ and $(^3H_6,t_{2g})$ states, where the latter is further split into $S=1/2$ and $S=3/2$ states. The d orbital experiences a crystal field splitting into e_g and t_{2g} states, but only t_{2g} states are shown in figure 5.1.

There are five radiative emissions occurring in the Tm$^{2+}$ ion. Two of them much more intense than the others. These are indicated by the arrows in figure 5.1. Visible emission is observed as a result of a radiative relaxation from $(^3F_4,t_{2g})$ and infrared emission is observed as a result of radiative relaxation from $(^3H_6,t_{2g})S=3/2$.

Energy levels within the ion are found for the ground (4f13) and excited (4f125d1) configuration by finding the eigenvalues of the Hamiltonians given in equations 5.1 and 5.2. H is the 4f12 ‘core’ Hamiltonian and H_d is the Hamiltonian describing the 5d and f-d
Figure 5.1 A simple representation of the energy levels within the Tm$^{2+}$ ion. Energy levels within both the 4f^{13} and 4$f^{12}5d^1$ configurations are shown. The arrows represent radiative emission between some levels.
The eigenvalues of both Hamiltonians are calculated to output theoretical energy levels within the ion. These are listed in table 5.2.

\[H = E_{\text{avg}} + \sum_{k=2,4,6} F_k f_k + \zeta_f A_{\text{so}} + \alpha L(L + 1) + \beta G(G_2) + \gamma G(R_r) \]

\[+ \sum_{i=2,3,4,6,7,8} T_i t_i + \sum_{h=0,2,4} M_h m_h + \sum_{k=2,4,6} P_k p_k + \sum_{k,q} B_q C_q^{(k)} \] (5.1)

\[H_d = \Delta E(fd) + \sum_{k=2,4} F_k(fd) f_k(fd) + \sum_{j=1,3,5} G^j(fd) g_j(fd) + \zeta(dd) A_{\text{so}}(d) \]

\[+ \sum_{k=2,4} B_q^{(k)}(d) C_q^{(k)}(d) \] (5.2)

The zero phonon lines of absorption transitions are taken as the energy differences between levels. These allow a simulated spectrum to be constructed by plotting Gaussians offset from the zero phonon lines. The intensities of the transitions are taken from the dipole strength of each transition. In this thesis, the simulated spectrum is taken from the experimental spectrum. This means that the position of the zero phonon lines is found in the process of fitting.

The different parameters involved in constructing the Hamiltonians are described in detail in section 2.1. The parameters for each material are determined by inspecting how each of them changes the simulated absorption spectrum. The simulated and experimental spectra are compared, and the parameters changed until the two spectra match as closely as possible. These parameters are listed in table 5.1

These calculations are performed for the three different materials being considered. The primary difference between these materials is the atomic radii of the anions involved. The ionic radii of Cl\(^-\), Br\(^-\) and I\(^-\) are 167 pm, 182 pm and 206 pm respectively. This change in the lattice environment has an effect on the doped ion, so examining it in these different environments can be useful.
Chapter 5. Optical Properties and Crystal-Field Calculations for Tm$^{2+}$ in CsCaCl$_3$, CsCaBr$_3$ and CsCaI$_3$

5.2 Simulations of the Optical Spectra

As mentioned previously, experimentally acquired absorption spectra are required as a way of measuring the accuracy of the calculated values and simulated spectra. Absorption data for CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$, and CsCaI$_3$:Tm$^{2+}$ were provided by the research group of Prof. H. U. Güdel at the University of Bern in Switzerland.

This absorption data has a background present, increasing with energy. This is likely due to scattering and absorption in the host, and so not related to the physics of the Tm$^{2+}$ ion. This background intensity was removed by fitting polynomials to the data, and then subtracting these polynomials in order to get the spectra which are used.

When the calculation is performed, the dipole strengths are calculated. The relative strengths of these for different transitions are used to simulate the spectra. The oscillator strength is a more accurate measure of absorption band intensity. Oscillator strength is proportional to the dipole strength multiplied by the energy. This means that if oscillator strengths were used, the simulated spectra would experience an increase in intensity of absorption features at higher energies. This would ordinarily mean an adjustment is required to the simulated spectra in order for it to agree with the experimental data. The scattering background previously mentioned appears to have decreased the intensity of the absorption peaks at high energies, so subtracting this background also accounted for the difference between the dipole and oscillator strengths.

Absorption spectra were simulated for CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaI$_3$:Tm$^{2+}$. The simulations were limited to these materials as they were the only materials for which experimental absorption data was available for comparison.

To produce the spectra, Gaussians of width 700 cm$^{-1}$ were used, displaced from the zero phonon lines by 300 cm$^{-1}$. The simulated spectra were qualitatively fitted to the experimental data. The parameters for each material were determined by observing the effect of changing them on the shape of each simulated spectrum, then making the appropriate changes to the parameters.
Comparisons between simulated and experimental spectra are shown in figure 5.2. Simulated and experimental spectra are shown for CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaI$_3$:Tm$^{2+}$.

In CsCaCl$_3$:Tm$^{2+}$ very good agreement was achieved between the experimental and simulated spectra. The major features can all be seen in both, although there are slight differences in the shapes and relative intensities of some features. In CsCaBr$_3$:Tm$^{2+}$ the main features are again present in both the simulated and experimental spectra, however in this case the relative intensities and precise energies of some features are not quite so similar as in CsCaCl$_3$:Tm$^{2+}$. In CsCaI$_3$:Tm$^{2+}$ once again the main features are all present in both spectra, but some of the relative intensities and precise positions of features do not quite agree. In all cases the best fit as a whole, throughout all energies was sought.

The parameter values for the effective Hamiltonians of Tm$^{2+}$ doped into the host materials CsCaI$_3$, CsCaBr$_3$ and CsCaCl$_3$ are listed in table 5.1 along with the parameters for SrCl$_2$ [23]. The CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$ parameters were determined by making changes to those of SrCl$_2$. Parameters for ab initio calculations for CsCaBr$_3$ and SrCl$_2$ with Yb$^{2+}$ doped into it are also shown [24, 25]. There are fewer parameters for the Yb$^{2+}$ doped materials because in this case there is only one hole present in the f orbital when the ion is in its excited state (4f135d1). This can be seen as equivalent to only one electron being present, so that there are no terms for interactions between f electrons.

The main changes between the CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$ spectra came from the parameters E_{exc}, $F^2(fd)$, $\zeta(ff)$ and $B^4_0(dd)$.

Many of the parameters were left the same between the three materials. This is due to those parameters having a negligible effect on the shape of the simulated spectra, making selecting the most appropriate values in each of the materials not physically meaningful.

When compared to SrCl$_2$:Tm$^{2+}$, the parameters for CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$ are generally quite similar. A notable difference is that the sign of the parameters B^4_0, B^6_0, $B^4_0(fd)$, $B^6_0(fd)$ and $B^4_0(dd)$ are opposite to those of SrCl$_2$. This is because Tm$^{2+}$ in SrCl$_2$ has a coordination number of 8, meaning that it has 8 nearest
Figure 5.2 The simulated absorption spectra (grey) for CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$ compared to the 10 K experimentally obtained absorption spectra (blue, green and red respectively.) Good agreement of prominent features between the experimental and simulated spectra can be observed for all three materials.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>SrCl$_2$:Yb$^{2+}$</th>
<th>SrCl$_2$:Tm$^{2+}$</th>
<th>CsCa$_3$:Tm$^{2+}$</th>
<th>CsCaBr$_3$:Tm$^{2+}$</th>
<th>CsCaCl$_3$:Tm$^{2+}$</th>
<th>CsCaBr$_3$:Yb$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{exc}</td>
<td>41802</td>
<td>36674</td>
<td>33000</td>
<td>31800</td>
<td>32600</td>
<td>39793</td>
</tr>
<tr>
<td>ζ</td>
<td>2501</td>
<td>2508</td>
<td>2508</td>
<td>2508</td>
<td>2508</td>
<td></td>
</tr>
<tr>
<td>B^0_4</td>
<td>-194</td>
<td>-725</td>
<td>616</td>
<td>616</td>
<td>616</td>
<td>1381</td>
</tr>
<tr>
<td>B^0_6</td>
<td>-592</td>
<td>292</td>
<td>-238</td>
<td>-238</td>
<td>-238</td>
<td>-187</td>
</tr>
<tr>
<td>$F^2(ff)$</td>
<td>100429</td>
<td>103743</td>
<td>105743</td>
<td>100743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F^4(ff)$</td>
<td>66810</td>
<td>71009</td>
<td>71009</td>
<td>71009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F^6(ff)$</td>
<td>56140</td>
<td>59669</td>
<td>59669</td>
<td>59669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\alpha(ff)$</td>
<td>17.7</td>
<td>18.78</td>
<td>18.78</td>
<td>18.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta(ff)$</td>
<td>-626</td>
<td>-665.7</td>
<td>-665.7</td>
<td>-665.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma(ff)$</td>
<td>1825</td>
<td>1940</td>
<td>1940</td>
<td>1940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T^2(ff)$</td>
<td>401</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F^2(fd)$</td>
<td>18303</td>
<td>14480</td>
<td>15805</td>
<td>13805</td>
<td>13805</td>
<td>16795</td>
</tr>
<tr>
<td>$F^4(fd)$</td>
<td>13099</td>
<td>6680</td>
<td>6371</td>
<td>6371</td>
<td>6371</td>
<td>9489</td>
</tr>
<tr>
<td>$G^1(fd)$</td>
<td>5408</td>
<td>5912</td>
<td>4343</td>
<td>4243</td>
<td>4243</td>
<td>4331</td>
</tr>
<tr>
<td>$G^3(fd)$</td>
<td>8901</td>
<td>4740</td>
<td>2463</td>
<td>2463</td>
<td>2463</td>
<td>6947</td>
</tr>
<tr>
<td>$G^5(fd)$</td>
<td>7165</td>
<td>3589</td>
<td>1882</td>
<td>1882</td>
<td>1882</td>
<td>7511</td>
</tr>
<tr>
<td>$\zeta(ff)$</td>
<td>2939</td>
<td>2674</td>
<td>2358</td>
<td>2408</td>
<td>2558</td>
<td>2939</td>
</tr>
<tr>
<td>$\zeta(dd)$</td>
<td>1166</td>
<td>1050</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
<td>1166</td>
</tr>
<tr>
<td>$M^0(ff)$</td>
<td>3.81</td>
<td>3.81</td>
<td>3.81</td>
<td>3.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P^2(ff)$</td>
<td>695</td>
<td>695</td>
<td>695</td>
<td>695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^4_3(ff)$</td>
<td>-725</td>
<td>616</td>
<td>616</td>
<td>616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^6_6(ff)$</td>
<td>292</td>
<td>-238</td>
<td>-238</td>
<td>-238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0_3(dd)$</td>
<td>-20100</td>
<td>-19333</td>
<td>20000</td>
<td>17200</td>
<td>17800</td>
<td>39639</td>
</tr>
</tbody>
</table>

Table 5.1: Hamiltonian parameter values. Fitted parameters listed for CsCa$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$, and CsCaCl$_3$:Tm$^{2+}$ as determined in this thesis. Fitted parameters for SrCl$_2$:Tm$^{2+}$ [23]. Ab initio parameters listed for SrCl$_2$:Yb$^{2+}$ and CsCaBr$_3$:Yb$^{2+}$ [24, 25]. Due to the approximately octahedral coordination of the Tm$^{2+}$ ion, not all the crystal parameters are listed, as $B^4_4 = \sqrt{5/14}B^4_0$ and $B^6_4 = -\sqrt{7/2}B^6_0$.

5.2 Simulations of the Optical Spectra
neighbour atoms within the material. \(\text{Tm}^{2+} \) in \(\text{CsCaI}_3 \), \(\text{CsCaBr}_3 \), and \(\text{CsCaCl}_3 \) however has a coordination number of 6 meaning that it has 6 nearest neighbour atoms within the material. This can be seen in figures 3.2 and 3.1. The different geometries are of importance when calculating the crystal field parameters, and result in crystal field parameters of opposite signs for the different types of materials.

When compared to \(\text{CsCaBr}_3:Yb^{2+} \), the parameters for \(\text{CsCaI}_3: \text{Tm}^{2+} \), \(\text{CsCaBr}_3: \text{Tm}^{2+} \) and \(\text{CsCaCl}_3: \text{Tm}^{2+} \) should be similar, however there is the difference of the parameter \(B_0^4(\text{dd}) \) being approximately twice as big in the ab initio calculation. The ab initio and fitted parameters for \(\text{SrCl}_2 \) with \(\text{Yb}^{2+} \) and \(\text{Tm}^{2+} \) however, are quite similar indicating that the two processes can give similar results.

The first 55 energy levels calculated for all three materials are listed in table 5.2. Along with the energy levels, the dipole strengths associated with absorption into these levels is listed. The energy levels are shown up to just above 20,000 cm\(^{-1} \), and experimentally measured absorption bands can be identified by these calculated energy levels.

![Energy Levels](image-url)

Figure 5.3 The numbered energy levels from table 5.2 corresponding to absorption features for \(\text{CsCaI}_3: \text{Tm}^{2+} \), \(\text{CsCaBr}_3: \text{Tm}^{2+} \) and \(\text{CsCaCl}_3: \text{Tm}^{2+} \) are indicated on the experimental spectra. The position of visible and IR emissions is also indicated for the case of \(\text{CsCaCl}_3: \text{Tm}^{2+} \).
Figure 5.3 shows the experimental absorption spectra for CsCaI$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and CsCaCl$_3$:Tm$^{2+}$. Marked on each of the absorption peaks are the numbered states from table 5.2 which correspond to these absorption bands.

The lowest energy absorption bands seen start at around 15,000 cm$^{-1}$, however in table 5.2 it can be seen that there exist states at lower energy than this. Absorption is not seen into these states on the spectra as it is very weak.

The lowest absorption band marks the beginning of absorption into the (3H_6,t$_{2g}$) states. This is seen at 14,160 cm$^{-1}$ in CsCaI$_3$:Tm$^{2+}$, 15,070 cm$^{-1}$ in CsCaBr$_3$:Tm$^{2+}$, and 15,050 cm$^{-1}$ in CsCaCl$_3$:Tm$^{2+}$. It corresponds to states 10-12 in table 5.2. These states are associated with high dipole strengths up to 24×10^{-20}.

The next absorption band, at 15,260 cm$^{-1}$ in CsCaI$_3$:Tm$^{2+}$, 16,160 cm$^{-1}$ in CsCaBr$_3$:Tm$^{2+}$, and 16,160 cm$^{-1}$ in CsCaCl$_3$:Tm$^{2+}$ corresponds to state 20 in table 5.2. This transition has much weaker dipole strengths of up to 6×10^{-20}. The strength of this absorption band is underestimated by the calculation.

The next absorption band marks the end of absorption into the (3H_6,t$_{2g}$) states. It is seen at 16,650 cm$^{-1}$ in CsCaI$_3$:Tm$^{2+}$, 17,570 cm$^{-1}$ in CsCaBr$_3$:Tm$^{2+}$, and 17,510 cm$^{-1}$ in CsCaCl$_3$:Tm$^{2+}$ and corresponds to states 23-31 in table 5.2. These levels are associated with very strong dipole strengths up to 60×10^{-20}.

The final labeled absorption band is marking the beginning of absorption into the (3F_4,t$_{2g}$) state. It occurs at 19,560 cm$^{-1}$ in CsCaI$_3$:Tm$^{2+}$, 20,100 cm$^{-1}$ in CsCaBr$_3$:Tm$^{2+}$, and 20,120 cm$^{-1}$ in CsCaCl$_3$:Tm$^{2+}$. It corresponds to states 32-38 in table 5.2. These levels are associated with dipole strengths of up to 12×10^{-20}.

Also shown in figure 5.3 are the energies at which both visible and IR emission are observed. These energies correspond to the gaps in table 5.2. They occur at places where there is a large enough energy gap between two states such that the relaxation between them will not be purely non-radiative.
<table>
<thead>
<tr>
<th>No.</th>
<th>CsCaCl$_3$:Tm$^{2+}$</th>
<th>CsCaBr$_3$:Tm$^{2+}$</th>
<th>CsCaI$_3$:Tm$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculated Energy (cm$^{-1}$)</td>
<td>Isotropic Dipole Strength ($\times 10^{-20}$)</td>
<td>Calculated Energy (cm$^{-1}$)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.01083</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.01579</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>233</td>
<td>0.14709</td>
<td>233</td>
</tr>
<tr>
<td>4</td>
<td>8780</td>
<td>0.00764</td>
<td>8780</td>
</tr>
<tr>
<td>5</td>
<td>8961</td>
<td>0.00212</td>
<td>8961</td>
</tr>
<tr>
<td>6</td>
<td>12366</td>
<td>0.00558</td>
<td>11638</td>
</tr>
<tr>
<td>7</td>
<td>12516</td>
<td>0.00223</td>
<td>11787</td>
</tr>
<tr>
<td>8</td>
<td>12534</td>
<td>0.00573</td>
<td>11803</td>
</tr>
<tr>
<td>9</td>
<td>13621</td>
<td>4.03893</td>
<td>12882</td>
</tr>
<tr>
<td>10</td>
<td>13721</td>
<td>7.69955</td>
<td>12980</td>
</tr>
<tr>
<td>11</td>
<td>13779</td>
<td>21.1693</td>
<td>13038</td>
</tr>
<tr>
<td>12</td>
<td>13937</td>
<td>15.6287</td>
<td>13196</td>
</tr>
<tr>
<td>13</td>
<td>14009</td>
<td>1.36844</td>
<td>13266</td>
</tr>
<tr>
<td>14</td>
<td>14034</td>
<td>0.10623</td>
<td>13307</td>
</tr>
<tr>
<td>15</td>
<td>14082</td>
<td>0.88878</td>
<td>13353</td>
</tr>
<tr>
<td>16</td>
<td>14100</td>
<td>0.43669</td>
<td>13372</td>
</tr>
<tr>
<td>17</td>
<td>14310</td>
<td>0.35676</td>
<td>13580</td>
</tr>
<tr>
<td>18</td>
<td>15019</td>
<td>0.42036</td>
<td>14290</td>
</tr>
<tr>
<td>19</td>
<td>15135</td>
<td>0.77999</td>
<td>14404</td>
</tr>
<tr>
<td>20</td>
<td>15347</td>
<td>5.88935</td>
<td>14614</td>
</tr>
<tr>
<td>21</td>
<td>15391</td>
<td>0.01608</td>
<td>14658</td>
</tr>
<tr>
<td>22</td>
<td>15489</td>
<td>4.41224</td>
<td>14751</td>
</tr>
<tr>
<td>23</td>
<td>16324</td>
<td>8.4287</td>
<td>15587</td>
</tr>
<tr>
<td>24</td>
<td>16434</td>
<td>3.90678</td>
<td>15703</td>
</tr>
<tr>
<td>25</td>
<td>16438</td>
<td>0.00196</td>
<td>15709</td>
</tr>
<tr>
<td>26</td>
<td>16457</td>
<td>3.33089</td>
<td>15729</td>
</tr>
<tr>
<td>27</td>
<td>16565</td>
<td>10.3966</td>
<td>15841</td>
</tr>
<tr>
<td>28</td>
<td>16575</td>
<td>10.3742</td>
<td>15856</td>
</tr>
<tr>
<td>29</td>
<td>16620</td>
<td>24.0828</td>
<td>15896</td>
</tr>
<tr>
<td>30</td>
<td>16989</td>
<td>59.7435</td>
<td>16263</td>
</tr>
<tr>
<td>31</td>
<td>17117</td>
<td>10.1696</td>
<td>16382</td>
</tr>
<tr>
<td>32</td>
<td>19494</td>
<td>6.60925</td>
<td>18925</td>
</tr>
<tr>
<td>33</td>
<td>19581</td>
<td>3.14366</td>
<td>18988</td>
</tr>
<tr>
<td>34</td>
<td>19718</td>
<td>3.03317</td>
<td>19077</td>
</tr>
<tr>
<td>35</td>
<td>19824</td>
<td>0.01856</td>
<td>19258</td>
</tr>
<tr>
<td>36</td>
<td>19841</td>
<td>1.37293</td>
<td>19366</td>
</tr>
<tr>
<td></td>
<td>19923</td>
<td>1.35072</td>
<td>19425</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>38</td>
<td>19964</td>
<td>3.00721</td>
<td>19552</td>
</tr>
<tr>
<td>39</td>
<td>20206</td>
<td>0.05895</td>
<td>19612</td>
</tr>
<tr>
<td>40</td>
<td>20217</td>
<td>3.35677</td>
<td>19616</td>
</tr>
<tr>
<td>41</td>
<td>20256</td>
<td>1.29247</td>
<td>19816</td>
</tr>
<tr>
<td>42</td>
<td>20459</td>
<td>0.36675</td>
<td>19825</td>
</tr>
<tr>
<td>43</td>
<td>20468</td>
<td>0.20242</td>
<td>20157</td>
</tr>
<tr>
<td>44</td>
<td>21204</td>
<td>1.83043</td>
<td>20185</td>
</tr>
<tr>
<td>45</td>
<td>21247</td>
<td>0.8507</td>
<td>20190</td>
</tr>
<tr>
<td>46</td>
<td>21291</td>
<td>0.08314</td>
<td>20212</td>
</tr>
<tr>
<td>47</td>
<td>21304</td>
<td>7.58175</td>
<td>20247</td>
</tr>
<tr>
<td>48</td>
<td>21352</td>
<td>4.94543</td>
<td>20296</td>
</tr>
<tr>
<td>49</td>
<td>21470</td>
<td>0.0698</td>
<td>20424</td>
</tr>
<tr>
<td>50</td>
<td>21493</td>
<td>5.89375</td>
<td>20542</td>
</tr>
<tr>
<td>51</td>
<td>21642</td>
<td>5.37585</td>
<td>20847</td>
</tr>
<tr>
<td>52</td>
<td>21714</td>
<td>4.95773</td>
<td>20976</td>
</tr>
<tr>
<td>53</td>
<td>21939</td>
<td>1.06488</td>
<td>21086</td>
</tr>
<tr>
<td>54</td>
<td>21945</td>
<td>0.00723</td>
<td>21173</td>
</tr>
<tr>
<td>55</td>
<td>21964</td>
<td>4.89009</td>
<td>21231</td>
</tr>
</tbody>
</table>

Table 5.2 Calculated energies of the first 55 states of CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$, and CsCaI$_3$:Tm$^{2+}$. Shown along with the energy levels are the isotropic dipole strengths of absorption into each state.
Chapter 5. Optical Properties and Crystal-Field Calculations for Tm$^{2+}$ in CsCaCl$_3$, CsCaBr$_3$ and CsCaI$_3$
Chapter 6

Temperature Dependent Fluorescence Lifetimes

Examining the relationship between fluorescence lifetime and temperature in a crystal system can give insight into relaxation processes. Here a multiphonon model and a phonon assisted barrier hopping model will be explored, and applied to experimental data obtained. This analysis was performed on CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$ and RbCaI$_3$:Tm$^{2+}$, but as no crystal sample of CsCaI$_3$:Tm$^{2+}$ was available, it could not be analysed in this way.

The multiphonon model examines the relationship between emissions from the same state. Radiative emission, and non-radiative relaxation in the form of a cascade of phonons are the types of emissions considered here. The interplay of these factors at varying temperature will be explored. The phonon assisted barrier hopping model again examined the interplay of radiative emission and non-radiative relaxation, this time in the form of phonons overcoming a potential barrier in order to non-radiatively relax. The parameters output from fitting these models to experimental data will give insight into the systems being examined.

Before the lifetime can be analysed as a function of temperature, it is required that lifetimes be extracted from the data collected. At each temperature, the intensity of emission as a function of time immediately after excitation was recorded. The decay curves which resulted from this can be seen in figure 6.1 for all temperatures in CsCaCl$_3$:Tm$^{2+}$.

In figure 6.1 the decay curves are plotted with both a linear and a log intensity scale. The value of the log scale is that given the straight line nature of the curves on this scale, it can be deduced that a single exponential can reasonably be fit to the data to obtain the lifetime of the emission.
Figure 6.1 Decay curves for CsCaCl$_3$:Tm$^{2+}$ from 10 K to 300 K. Curves are displayed with both a linear (top) and a log (bottom) intensity scale. IR emission band at 12,000 cm$^{-1}$ (833 nm) being monitored. Sample excited at 28,940 cm$^{-1}$ (345 nm.)

Figure 6.2 Lifetime as a function of temperature determined from decay data measured for CsCaCl$_3$:Tm$^{2+}$. IR emission band at 12,000 cm$^{-1}$ (833 nm) is being monitored. Sample excited at 28,940 cm$^{-1}$ (345 nm.)
Equation [6.1] a single exponential, is fit to the experimental data. The lifetime obtained for each temperature is shown in figure [6.2] along with the uncertainties for each point.

\[I(t) = I(0) \exp(-t/\tau) \]

(6.1)

The data was fit using a least squares fitting regime. This means that the sum of the squares of the residuals between the data and the model, \(S \) in equation [6.2] were minimised. The uncertainties seen were calculated from the Hessian matrix.

\[S = \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

(6.2)

This process was applied to all emissions measured. The data in the form seen in figure [6.2] is now able to have further analysis performed on it. Both the multiphonon and barrier models discussed in section [2.2] will be fit to data acquired for lifetime as a function of temperature.
6.1 Direct Multiphonon Relaxation

The first model to be implemented is the multiphonon model described in section 2.2.1. This model considers a cascade of phonons of energy $\hbar \omega$ bridging an energy gap ΔE. In the case of Tm$^{2+}$ this is the energy gap between the $(3F_4,t_{2g})$ and $(3H_6,t_{2g})$ states, as seen by the curly arrows in figure 6.3.

The model of experimental lifetime changing with temperature derived from this idea.
explores the competition between the radiative emission and the multiphonon relaxation from the \((^3F_4,t_{2g})\) level. The equation which describes this, and which is fitted to experimental data is equation 6.3:

\[
\tau_{\text{exp}}(T) = \frac{1}{\left(\tau_{nr}(0) \left[1 - \exp \left(\frac{\hbar \omega_{eff}}{k_B T} \right) \right] \right)^N - 1 + \frac{1}{\tau_r}}
\]

(6.3)

Here \(\tau_{nr}(T)\) is the non-radiative lifetime as a function of temperature, \(\tau_{nr}(0)\) is the non-radiative lifetime at 0 K, \(\tau_r\) is the radiative lifetime, \(\hbar \omega_{eff}\) is the energy of the effective phonon modes involved, \(k_B\) is Boltzmann’s constant, \(T\) is the temperature in Kelvin, and \(N\) is the number of phonons needed to bridge the energy gap.

Experimental data was available for both visible and IR emission. Equation 6.3 describes a radiative relaxation and a multiphonon cascade as competing processes from the same original state. In the case of visible emission this can be clearly seen to be the case in figure 6.3, with the two processes originating from the \((^3F_4,t_{2g})\) state, and so this multiphonon model is applied successfully to this emission. In the case of the IR emission however, the radiative emission is originating from the \((^3H_6,t_{2g})S = 3/2\) state, which is the lowest state of the excited configuration. This means that any multiphonon relaxation would involve a configurational shift, which is not well modelled by equation 6.3. IR emission is therefore not modelled using this method.

As with the fitting of the decay curves, equation 6.3 was fit to the lifetime data as a function of temperature using a least squares fitting regime. The parameters allowed to vary were \(\tau_{nr}(0), \tau_r, \hbar \omega_{eff}\), and \(N\). The output parameters are listed in table 6.1. The fitted model is compared to experimental data in figures 6.4 for CsCaBr\(_3\):Tm\(^{2+}\) and 6.5 for RbCaI\(_3\):Tm\(^{2+}\).

In the case of CsCaBr\(_3\):Tm\(^{2+}\), in figure 6.4 a very good fit to the experimental data is achieved. The lifetime can be seen to be steady at around 1.7 \(\mu\)s up until 50 K where the lifetime begins to decrease. The emission is completely quenched by 125 K. In the case of RbCaI\(_3\):Tm\(^{2+}\), in figure 6.5 a good fit is achieved for most temperatures, but not so
Figure 6.4 Multiphonon model fitted to lifetime data for CsCaBr$_3$:Tm$^{2+}$. Visible emission band at 19,070 cm$^{-1}$ (524 nm) being monitored. Sample excited at 28,940 cm$^{-1}$ (345 nm.)

Figure 6.5 Multiphonon model fitted to lifetime data for RbCaI$_3$:Tm$^{2+}$. Visible emission band at 17,240 cm$^{-1}$ (580 nm) being monitored. Sample excited at 28,940 cm$^{-1}$ (345 nm.)
well for very low temperatures. The lifetime at the lowest temperature measured (28 K) is 0.40 μs, however the low temperature region of steady lifetime seen for CsCaBr$_3$:Tm$^{2+}$ does not appear to be present so strongly in this data. The lifetime again has almost completely died away by 225 K.

The size of the energy gap being bridged (ΔE) can be determined by multiplying the energy of the phonons ($\hbar \omega$) by the number of phonons N. This results in a value of $\Delta E = 2486$ cm$^{-1}$ for CsCaBr$_3$:Tm$^{2+}$ and $\Delta E = 2448$ cm$^{-1}$ for RbCaI$_3$:Tm$^{2+}$. The size of this gap can be determined from the absorption spectrum of CsCaBr$_3$:Tm$^{2+}$ as the gap between the highest energy absorption band corresponding to ($^3\text{H}_6$,t$_{2g}$) states and the lowest energy absorption band corresponding to ($^3\text{F}_4$,t$_{2g}$) states. This value is found to be $\Delta E = 2630$ cm$^{-1}$, so the values from the model are consistent with measured data. The notable difference between the two materials here is that in CsCaBr$_3$:Tm$^{2+}$ there were 22 phonons of energy 113 cm$^{-1}$, and in RbCaI$_3$:Tm$^{2+}$ there were 12 phonons of energy 204 cm$^{-1}$. So RbCaI$_3$:Tm$^{2+}$ has half the phonons, of twice the energy.

The relative sizes of the radiative, τ_r, and non-radiative (at 0 K), $\tau_{nr}(0)$, lifetimes is an important factor. In CsCaBr$_3$:Tm$^{2+}$ $\tau_r = 1.73$ μs and $\tau_{nr}(0) = 41$ μs. This indicates that at low temperatures, the radiative lifetime is shorter than the non-radiative lifetime, meaning that radiative emission dominates. This can be seen in figure 6.4 with the fitted parameter $\tau_r = 1.73$ μs matching the lifetime seen at low temperatures. As the temperature rises the non-radiative lifetime shortens, and at some point becomes shorter than the radiative lifetime, the non-radiative relaxation then begins to dominate and radiative emission is quenched. In RbCaI$_3$:Tm$^{2+}$ the situation is very different, $\tau_r = 3.80$ μs and $\tau_{nr}(0) = 0.42$ μs. Here, even at very low temperatures the non-radiative lifetime is shorter than the radiative lifetime, indicating that the emission is already somewhat

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Parameter & CsCaBr$_3$:Tm$^{2+}$ & RbCaI$_3$:Tm$^{2+}$ \\
\hline
$\hbar \omega$ (cm$^{-1}$) & 113 & 204 \\
N & 22 & 12 \\
τ_r (μs) & 1.73 & 3.80 \\
$\tau_{nr}(0)$ (μs) & 41 & 0.42 \\
\hline
\end{tabular}
\caption{Fitted values of parameters in the multiphonon model described by equation 6.3 for visible emission from CsCaBr$_3$:Tm$^{2+}$ and RbCaI$_3$:Tm$^{2+}$.}
\end{table}
quenched at this temperature. This is indicated in figure 6.5 where the lifetime seen at low temperatures is much shorter than the fitted parameter $\tau_r = 3.80 \, \mu s$. The observed lifetime is much closer to the non-radiative lifetime at this temperature, $\tau_{nr}(0) = 0.42 \, \mu s$. This supports the idea that the observed lifetime is limited by the non-radiative lifetime already at very low temperatures. This also explains why no low temperature plateau of lifetimes is observed, as the quenching process has already begun.
6.2 Internal Conversion via Configurational Crossing

The next model to be implemented is the barrier model described in section 2.2.2. This model describes an electron in an electronic state as being in a potential well, with a potential barrier which must be overcome with phonons before non-radiative emission can occur from a state. This model is applied to analysis of the IR emission, from the \((^3H_6,t_{2g})S=3/2\) to the \(^2F_{7/2}\) state as seen in figure 6.6.

Here competition between the phonon assisted barrier hopping and the radiative emission is explored to give an expression for experimental lifetime as a function of temperature. This relationship is shown in equation 6.4. Here \(\tau_{nr}(T)\) is the non-radiative lifetime as a function of temperature, \(W_0\) is the rate of non-radiative depopulation of the zero-phonon level of the emitting state (and can be considered the probability of tunneling through the potential barrier,) \(W_1\) is the rate of phonon assisted barrier hopping, \(E_{nr}\) is the barrier height, \(k_B\) is Boltzmann’s constant, and \(T\) is the temperature in Kelvin.

\[
\tau_{nr}(T) = \frac{1}{W_0 + W_1 \exp\left[-\frac{E_{nr}}{k_B T}\right]}
\]

(6.4)

As with the fitting of the multiphonon model, equation 6.4 was fit to the lifetime data as a function of temperature using a least squares fitting regime. The parameters allowed to vary were \(W_0\), \(W_1\), and \(E_{nr}\) and the fitted values of these for the IR emission from CsCaCl\(_3\):Tm\(^{2+}\) and CsCaBr\(_3\):Tm\(^{2+}\) are listed in table 6.2 along with \(\tau_0 = 1/W_0\) and \(\tau_1 = 1/W_1\) which are lifetimes corresponding to the rates \(W_0\) and \(W_1\). The fitted model is compared to experimental data in figure 6.7 for CsCaCl\(_3\):Tm\(^{2+}\) and figure 6.8 for CsCaBr\(_3\):Tm\(^{2+}\).

In the case of CsCaCl\(_3\):Tm\(^{2+}\), in figure 6.7, a very good fit to the experimental data is achieved, with the model and experiment agreeing within uncertainties at all values except a couple of data points at 150 K and 170 K. The lifetime can be seen to have a gradual decline from 0 K to 50 K centering on 250 \(\mu s\), then a sharp decline beginning at 50 K with the emission quenched by 150 K. In the case of CsCaBr\(_3\):Tm\(^{2+}\) a good fit is
Figure 6.6 A configurational coordinate diagram of the energy levels within the \(\text{Tm}^{2+} \) ion. Energy levels within both the \((4f)^{13}\) and \((4f)^{12}(5d)^{1}\) configurations are shown. The radiative emission being monitored here is shown with a straight arrow between bold levels. The competing phonon assisted barrier hopping process is indicated with the curly arrows.
Figure 6.7 Barrier model fitted to lifetime data for CsCaCl$_3$:Tm$^{2+}$. IR emission band at 12,000 cm$^{-1}$ (833 nm) being monitored. Sample excited at 28,940 cm$^{-1}$ (345 nm.)

Figure 6.8 Barrier model fitted to lifetime data for CsCaBr$_3$:Tm$^{2+}$. IR emission band at 12,270 cm$^{-1}$ (815 nm) being monitored. Sample excited at 28,940 cm$^{-1}$ (345 nm.)
also achieved, again with the model and experimental values agreeing within uncertainties at all but two data points, this time at 300 K and 325 K. Here the lifetime is seen to be fairly steady at around 300 µs, up until a much higher temperature of 175 K. After 175 K a sharp decline in lifetime begins and emission is completely quenched by 325 K.

The relative sizes of the rates W_0 and W_1, or the lifetimes τ_0 and τ_1 is an interesting factor to consider. In section 2.2.2 when equation 6.4 was developed W_0 was defined to be the sum of the rate of non-radiative relaxation arising from tunneling through the barrier and of radiative relaxation. As the rate of radiative emission is much greater than the rate of tunneling, it can be thought of as the rate of radiative emission, and the lifetime τ_0 can be thought of as the lifetime of radiative emission. The rate W_1 is the rate of phonon assisted barrier hopping, or of non-radiative relaxation, and τ_1 can be thought of as the non-radiative lifetime at 0 K. In CsCaCl$_3$:Tm$^{2+}$ $\tau_0 = 250$ µs and $\tau_1 = 0.254$ µs. In figure 6.7 the low temperature lifetime measured agrees with the radiative lifetime calculated, so the non-radiative emission does not seem to be quenching the radiative emission at low temperatures despite having a much shorter lifetime. This is because at low temperatures there is not yet sufficiently high phonon energy in the lattice to overcome the potential barrier. At 50 K the phonon energy reaches a critical point and the potential barrier is able to be overcome, causing the longer lifetime radiative emission to be rapidly quenched. In CsCaBr$_3$:Tm$^{2+}$ $\tau_0 = 301$ µs and $\tau_1 = 0.00124$ µs. The behaviour here is similar to CsCaCl$_3$:Tm$^{2+}$, although in this case the potential barrier is overcome at a higher temperature, around 175 K.

The other parameter to be considered is E_{nr}, the potential barrier height. In CsCaCl$_3$:Tm$^{2+}$
this is $E_{nr} = 420 \text{ cm}^{-1}$ and in CsCaBr$_3$:Tm$^{2+}$ $E_{nr} = 2033 \text{ cm}^{-1}$. The barrier height is much bigger in the case of CsCaBr$_3$:Tm$^{2+}$. This explains why the radiative emission persists to a much higher temperature. More thermal energy is required to overcome the bigger potential barrier in this case.

Applying the phonon assisted barrier hopping model to the temperature dependence of lifetime of IR emission of CsCaCl$_3$:Tm$^{2+}$ and CsCaBr$_3$:Tm$^{2+}$ has allowed physical information to be determined. Both materials have shorter lifetimes for non-radiative than radiative emission, but with the radiative emission persisting at low temperatures because a critical phonon energy must be present in the lattice to overcome the potential barriers. CsCaBr$_3$:Tm$^{2+}$ has a much larger potential barrier than CsCaCl$_3$:Tm$^{2+}$, which allows the radiative emission to persist to much higher temperatures in the former than the latter, as more thermal vibrational energy is needed to overcome the barrier.
6.3 Comparison of Calculated and Experimentally Determined Lifetimes

Theoretical lifetimes for the emissions being examined can be output from the calculation performed in chapter 5. This is achieved by considering the calculated Einstein A coefficients of the visible and IR transitions in these materials.

The Einstein A coefficient is a coefficient of spontaneous emission, with units s\(^{-1}\). If a pair of energy levels are considered, \(E_1\) and \(E_2\) in figure 6.9 the \(A_{21}\) coefficient is the probability per unit time that an electron in state \(E_2\) will spontaneously emit a photon \(h\nu\) and undergo a transition to energy state \(E_1\).

![Figure 6.9 Energy levels \(E_2\) and \(E_1\). The Einstein \(A_{21}\) coefficient is the probability per unit time that an electron in state \(E_2\) will spontaneously emit a photon \(h\nu\) and undergo a transition to energy state \(E_1\)](image)

When expressed mathematically, if there are \(n_2\) particles per unit volume in state \(E_2\), then the rate of change of the number density is given by equation 6.5:

\[
\frac{dn_2}{dt} = -A_{21}n_2
\] (6.5)

In order to obtain lifetimes from these, the Einstein A coefficients for spontaneous emission between all states involved in the given emission are added together, the lifetime for
that emission is then simply the inverse of the sum of the Einstein A coefficients.

These lifetimes were calculated for both visible and IR emission for each of the materials for which the calculation was run, and the resulting lifetimes are displayed in table 6.3 along with the experimentally determined lifetimes.

<table>
<thead>
<tr>
<th></th>
<th>CsCaCl$_3$:Tm$^{2+}$</th>
<th>CsCaBr$_3$:Tm$^{2+}$</th>
<th>CsCaI$_3$:Tm$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{Vis} (µs)</td>
<td>Theory: 0.8999</td>
<td>Experiment: -</td>
<td>Theory: 0.8766</td>
</tr>
<tr>
<td>τ_{IR} (µs)</td>
<td>Theory: 628.6</td>
<td>Experiment: 250</td>
<td>Theory: 569.3</td>
</tr>
<tr>
<td></td>
<td>Theory: 709.7</td>
<td>Experiment: -</td>
<td>Theory: 0.4783</td>
</tr>
</tbody>
</table>

Table 6.3 Calculated and experimentally determined lifetimes for emissions from CsCaCl$_3$:Tm$^{2+}$, CsCaBr$_3$:Tm$^{2+}$, and CsCaI$_3$:Tm$^{2+}$.

Not all the lifetimes calculated were able to be experimentally measured, but those that were agree with the calculations within a factor of two or three of the lifetime. This is a good indication that both the energy level calculation and the experimentally determined lifetimes are reasonable.
Chapter 6. Temperature Dependent Fluorescence Lifetimes
Chapter 7

Conclusion

Divalent thulium is one of the lesser researched lanthanide ions. In this thesis it has been studied doped into a series of AMX$_3$ salts: CsCaI$_3$, CsCaBr$_3$, CsCaCl$_3$ and RbCaI$_3$.

The energy structure of the Tm$^{2+}$ ion was examined by performing parameterised energy level calculations for CsCaI$_3$, CsCaBr$_3$ and CsCaCl$_3$. Optimisation of the parameters was achieved by comparing simulated spectra generated by the calculation to experimental spectra. The calculated energy levels, optimised crystal field parameters and simulated optical absorption spectra are presented. Theoretical predictions yield excellent approximation to the experimental data.

The decay profile of emission from CsCaCl$_3$, CsCaBr$_3$, and RbCaI$_3$ has been measured using a pulsed dye laser for the (3F$_4$,t$_{2g}$) and (3H$_6$,t$_{2g}$) excited (emitting) states. The temperature dependence of this decay from 10 K up to room temperature was recorded. Two methods of modeling this relationship have been examined.

First a multiphonon model, considering the competition between radiative emission and a cascade of phonons as depopulation methods from a state is considered. Visible emission from the (3F$_4$,t$_{2g}$) state is modelled in this way, and multiphonon relaxation to the (3H$_6$,t$_{2g}$) levels is considered. This model is used for CsCaBr$_3$ and RbCaI$_3$ doped with Tm$^{2+}$, as these were the materials from which this visible emission could be observed. The 10 K and 28 K lifetimes yielded are 1.7 μs and 0.40 μs for CsCaBr$_3$ and RbCaI$_3$ respectively. In both cases no emission is observed at room temperature. This model provides a good fit to the data, and effective phonon energies in the range 100-200 cm$^{-1}$ are output, which is consistent with the phonon density of states in these low phonon energy hosts.
Secondly a model considering phonon assisted barrier hopping and radiative emission as competing depopulation methods is considered. Infrared emission from the $(^3H_6, t_{2g})$ states is modelled this way. This model is used for CsCaBr$_3$ and CsCaCl$_3$ doped with Tm$^{2+}$, as these were the materials from which this infrared emission could be observed. The 14 K and 10 K lifetimes yielded are 301 μs and 250 μs for CsCaBr$_3$ and CsCaCl$_3$ respectively. For CsCaBr$_3$ this value reduces to 270 μs at 200 K and is not quenched until 300 K, whilst for CsCaCl$_3$ emission is completely quenched by 170 K. This temperature dependent behavior is interpreted in terms of internal conversion via configurational crossing between the excited and ground state potential energy surfaces. The potential barrier for non-radiative relaxation is found to be five times larger in CsCaBr$_3$ compared to CsCaCl$_3$. This explains the fact that emission is still observable in the bromide host at room temperature.

Theoretical radiative lifetimes were determined from the energy level calculations, and compared to those output by the multiphonon and barrier models. Lifetimes from each of these methods were found to agree within an order of magnitude of the lifetime. This is a good indication that both the energy level calculation and the experimentally determined lifetimes are reasonable.
Acknowledgements

I have been fortunate enough to have the support and advice of many very clever people throughout the process of completing this thesis. Thank you to my supervisors Mike Reid and Jon-Paul Wells who have provided me with invaluable guidance through the entire procedure. The help of Konstantin Ivanovskikh and Alex Neiman in completing experimental work was crucial and much appreciated. The advice of Roger Reeves and his ability to make lab equipment seemingly magically work was also invaluable. The constant willingness to help of Pubudu Senanayake, Rosa Hughes-Currie and Alex Salkeld is also gratefully acknowledged. Finally thanks to Emil, for his support and for enduring me throughout the entire process.
References

[13] K.V. Ivanovskikh, M.F. Reid, and A. Meijerink. Spectroscopy and relaxation dynamics of high-energy $4f^{15}d$ states of Tm$^{3+}$ ions doped into CaF$_2$. *Manuscript in Preparation - Private Communication*.

