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Abstract 

Len Lye was born in Christchurch, New Zealand, in 1901.  Lye was an 

avid enthusiast of kinetic sculpture and experimental film.  In 1965 Lye built a 

prototype for a kinetic sculpture called Blade that he intended would be a much 

larger work. 

 

In 1996, Dr. Shayne Gooch of the University of Canterbury embarked on a 

research contract that saw the fruition of Lye�s Blade at a scale previously 

unachieved.  This work was given the name Big Blade. 

 

This thesis provides a study into the maximum realisable scale of Blade 

using technology and materials available today.  A new pivoting clamp design is 

tested and assessed using a small scale Blade sculpture built at the University of 

Canterbury and used as a test rig.   

 

Advancements in technology, material availability and manufacturing 

techniques lead to a comprehensive fatigue study of the new clamp design.  

Stresses are measured at the critical stress location in the blade material and a 

new maximum economic scale of Blade is suggested.  The new sculpture 

requires a blade material that measures 10024mm x 1080mm x 22mm.  The 

visible blade length is 8424mm.  The new sculpture is called Giant Blade. 

 

A critical aesthetic component for Len Lye�s performance of Blade is the 
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mode shapes formed by the blade material.  Specifically, the second and third 

bending modes (Lye�s single and double harmonic) and the first torsional bending 

mode (Lye�s shimmering frequency).  These frequencies are calculated using the 

new pivoting clamp design to ensure that these sections of the performance are 

maintained in Giant Blade.   

 

An important requirement of the new sculpture drive mechanism is the 

capability to reduce the amplitude of shuttle oscillation dynamically during Blade 

performances.  This capability allows bending stresses in the blade material to be 

reduced in the third bending mode of vibration without halting the performance to 

adjust the shuttle oscillation amplitude.  Four dynamically adjustable variable 

stroke mechanisms are presented and compared using the methods of Pahl and 

Beitz.  A suitable mechanism for Giant Blade is selected and a proposed 

arrangement for the new sculpture is provided. 

 

An embodiment design is presented for Giant Blade.  This embodiment 

design consists of a new pivoting clamp design and the proposed variable stroke 

mechanism.  Further work includes the design of a mechanism to support the ball 

and wand assembly. 
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1 Introduction 

1.1 Motivation 

The purpose of this work is to investigate the feasibility of manufacturing 

Len Lye�s sculpture, Blade, at a larger size than previously achieved. 

 

�Today we have access to new forms of technology that can further 

enlarge the scope and potential of kinetic art.  The powers of the computer can 

be used for� the production of large-scale versions  of the sculptures Lye 

designed but could not realise during his lifetime� � Roger Horrocks, (Horrocks, 

2009) 

 

The Len Lye foundation is an entity in New Zealand that was formed to 

ensure that Len Lye�s artwork has a place in the future of New Zealand citizens 

and that the artwork he envisaged materialises as technological advances permit.  

The Len Lye foundation is today responsible for bringing Len�s visions for kinetic 

sculpture to life. 

 

This thesis follows an earlier study by Gooch (S. D. Gooch, 2001) who 

designed and commissioned a large size version of Lye�s Blade.  The work was 

called Big Blade and was, according to Gooch, the largest economically possible 

size of Blade at the time of its completion.   
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Figure 1.1:  Big Blade at the Christchurch Botanical Gardens in 1998 [courtesy of The Len 

Lye Foundation] 

 

Gooch found that a constraining factor in increasing the scale of Blade 

was the reversed bending stress in the blade material at the clamp exit.  This 

reversed bending stress increases with the scale of Blade and eventually results 

in fatigue failure of the blade material after a number of performances.  This 

number of performances reduces as the scale of Blade increases, resulting in 

increasing cost per performance for the sculpture.  Gooch suggested various 

avenues of further study for making Blade larger in the concluding comments of 

his thesis.  One research avenue that was suggested involved the investigation of 

a pivoting (Figure 1.2), as opposed to rigidly vertical, base clamp for the blade 

material to reduce stress in the blade material.   
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Figure 1.2:  Pivoting clamp concept suggested by (S. D. Gooch, 2001) 

 

Gooch also found that a significant constraining factor in building Blade at 

the largest economic size was the availability of the chosen material for the blade 

material.  In the case of Big Blade this material was titanium alloy 6Al-4V.  Since 

Big Blade was completed there have been significant advances in the demand for 

titanium alloy 6Al-4V resulting in larger and more readily available options for 

blade material.  Therefore, this thesis will attempt to answer, among others, two 

key questions: 

1. Will a pivoting base clamp in the artwork Blade reduce the stress 

induced at the base of the blade material sufficiently to increase the 

Blade material 
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size of the artwork whilst maintaining the artistic intentions of the 

piece? 

2. Is there a piece of titanium 6Al-4V available that is sufficiently large 

enough to be suitable as the blade material, should the pivoting 

base clamp (or any alternative design) reduce the reversed bending 

stress enough to allow for a larger Blade artwork? 

 

1.2 Historical Background 

1.2.1 Len Lye 

Len Lye was born in Christchurch, New Zealand in 1901.  Lye was an 

exuberant man, his interests in avant-garde art and culture led him to Sydney, 

Samoa, London, and finally New York.  Lye�s interests lay in kinetic sculpture and 

experimental film techniques, both areas in which he is now considered a 

pioneer.  The kinetic sculptures Len designed were rarely completed to the scale 

he intended they would exist � by Lye�s own admissi on, it was a belief at the time 

of his ideas that the technology required for the sculptures to be built would not 

be available until the 21st century (Lye, 1968).  Today, many of Len�s visions are 

coming to fruition in New Zealand courtesy of the Len Lye Foundation and the 

advancements of manufacturing technology.  Examples of Len�s visions today 

can be seen as the �Wind Wand� in New Plymouth and �Water Whirler� on 

Wellington�s waterfront. 

 

1.2.2 Lye�s Blade Prototype 

Lye was inspired when he held a carbon steel wood saw with the blade 

orientated vertically and shook the blade into its natural vibratory modes.  Lye 
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wanted to harness and amplify the same light and sound in a kinetic sculpture.  

The prototype, Blade, seen in Figure 1.3 was the result and consists of a large 

vertically standing rectangular carbon steel strip that is excited into various 

modes of vibration by a vibrating clamp at the base of the strip.  A vertical wand, 

with a cork ball attached, is then enticed into contact with the blade when the 

amplitude of vibration reaches a sufficient level.  The base platform of the work 

also rotates to complete the work giving viewers a mechanically composed 

symphony of sound and light.  Lye envisaged that Blade would stand 50-100ft 

high (Horrocks, 2001), sufficient to intimidate and instil a sense of awe among its 

spectators.  Other sources (Raine & Gooch, 1998) suggest a desired free blade 

length of 9m.  The kinetics of this sculpture make Lye�s wish of scale difficult to 

achieve, due to the large reversed stresses that occur at the base of the blade 

material where it is clamped during its motion. 

 
Figure 1.3:  Len Lye�s Blade prototype kinetic sculpture [courtesy of The Len Lye 

Foundation] 
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Blade was first exhibited at Lye�s �Bounding Steel Sculptures� exhibition at 

the Howard Wise Gallery in New York from March to April in 1965.  The blade 

material in the original prototype consists of a 1730 x 200 x 1.85mm carbon steel 

strip, commonly used in band saws for cutting timber.  100 mm of the strip length 

is clamped.  The blade material in this prototype has failed and been 

subsequently replaced multiple times since its conception, due to the high 

reversed bending stresses at the clamp exit in the carbon steel blade material.  

Fatigue cracks tend to initiate and propagate in a direction parallel to the width 

dimension of the blade material at the clamp exit.   

 

 

 
Figure 1.4:  Len Lye�s Blade prototype drive mechanism [courtesy of The Len Lye 

Foundation] 

 

The drive mechanism, seen in Figure 1.4, consists of a rigid clamp in 

which 100mm of the blade material is clamped.  The clamp is driven on 4 linear 

bearings by a 300mm connecting rod through a 5:1 reduction gearbox attached 

Linear bearings 

Clamp Wand mount 
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to a Bodine 0.05hp DC electric motor.  The crank offset is 5.58mm.  Lye set the 

length of blade material protruding out of the rigid clamp (the unclamped length) 

by experimentally finding the scenario where buckling stability no longer exists 

due to self weight of the blade.  Lye then reduced the unclamped length until the 

blade material would just remain standing vertically in the clamp under its own 

strength.  Adjacent to the blade material is a vertical pendulum made up of a 

5mm diameter stainless steel wand and a 75mm cork sphere with a mass of 85g.  

Lye controlled the electric motor using a Veriac type rheostat. 

 

Modifications were made to Lye�s prototype to aesthetically complete the 

sculpture for use in exhibitions and to optimise mechanical operation.  These 

modifications were made by the Len Lye Foundation and were based on the 

artist�s wishes before he died.  The following list summarises these changes as 

explained by Gooch (S. D. Gooch, 2001). 

• An electronic control system utilising PLC technology was added to 

control the system remotely. 

• The control mechanism was concealed by a black cylindrical 

housing. 

• The drive mechanism was repowered with a 0.125hp permanent 

magnet permanent magnet DC electric motor. 

• The entire work was mounted on a vertical steel axle as in Figure 

1.5 to provide the rotational aspect of the sculpture that Lye 

stipulated it should have. 
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• Copper slip rings and carbon brushes were installed into the 

sculpture to transmit power to the oscillation drive.  These have 

since proven to be a problematic solution for power transmission to 

the electric motor. 

• A mechanical spring actuated disc brake reduces the occurrence of 

whipping in the chain drive as a result of the twisting vibration mode 

of the blade material. 

 

 
Figure 1.5:  Vertical steel axle addition to Lye�s Blade prototype [courtesy of The Len Lye 

Foundation] 

 

The PLC control system was programmed to give the required output 

(Figure 1.6) to Blade remotely. 

  

Oscillation 
drive motor 

Slip rings 
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Figure 1.6:  Control system program for Original Blade (S. D. Gooch, 2001) 

 

The modifications listed above result in the kinetic sculpture which will, 

from this point onwards, be referred to as the original Blade. 

 

1.2.3 Big Blade 

Big Blade was the result of a research contract completed by Dr. Shayne 

Gooch at the University of Canterbury from 1996 to 1998.  Gooch summarised 

his work in a thesis submitted in 2001 for a Doctor of Philosophy in Mechanical 

Engineering.  This work will be frequently referred to in this thesis.   

 

Gooch used Buckingham�s Pi Theorem to develop scaling laws for the 

sculpture Blade and predict structural properties, system dynamics, life and cost 

of the blade material as the scale of the sculpture increases.  Important results of 

this work that affect the scaling of Blade are listed as follows: 
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• The reversed bending stress at the clamp exit increases with the 

scale of the sculpture.  Fatigue life therefore reduces until the blade 

material will only last one performance.  Cost per performance 

based on blade material cost increases with scale and therefore is a 

constraining factor on the realisable size of Blade. 

• Titanium alloy 6Al-4V is the preferred choice for blade material.  

The low elastic modulus compared to carbon steel results in a 

significant reduction in reversed bending stress in the blade 

material for equal scale blade materials made of titanium and steel.  

Titanium also has the advantage of maintaining the aesthetic and 

acoustic characteristics of carbon steel which are an important 

aspect of the kinetic sculpture. 

• The availability of 6Al-4V in the plate size required for a larger 

sculpture also restricts scaling of the sculpture. 

 

Big Blade was manufactured at a scale approximately twice that of the 

original Blade.  The visible blade material measured 3355 x 430 x 5.53mm with 

an extra 200mm of blade material inside the clamp.  The steel axle base rotation 

mechanism was replaced by a combination of tapered roller bearings, similar to 

the arrangement in the stub axle of a car, with a synchronous belt driven by a 

0.25kW 4-pole induction motor as shown in Figure 1.7.   
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Figure 1.7:  Base rotation mechanism of Big Blade f rom (S. D. Gooch, 2001) 

 

The rigid clamp design of the original Blade is retained in Big Blade as 

shown in Figure 1.8. 






























































































































































































































































































































































































































































































































































































