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Abstract 
 

Honeybees are used as a major agricultural input around the world and their pollination services 

have been valued at US$14.6 billion to the United States alone. Dramatic declines in honeybee 

populations around the globe, however, questioned the sustainability of this reliance on a single 

pollinator species. In this study, I investigated the response of wild pollinator communities to 

declining honeybee density and changing land use intensity to determine the potential of wild 

pollinators to compensate for honeybee loss in increasingly human-modified environment. I 

generated a gradient of declining honeybee density using increasing distances from commercial bee 

hives, and conducted flower observations on experimentally-grown plants across this gradient. I 

investigate how declining honeybee densities and intensifying land use combine to influence the 

composition of the pollinator community as a whole, then go on to explore individual trends in the 

most common pollinator species. I then analyze how this impacts the transport of viable pollen by 

the pollinator community and determine how these changes alter seed set in several common plant 

species. I then change my focus away from the composition of the pollinator community, and 

instead investigate how declining honeybee densities and land-use intensification influence the 

structuring of interactions between plants and pollinators within the community. I identify the 

pollen species carried by pollinators, and use this to construct a network of pollination interactions. I 

then use this network to analyze how changes in the way species interact influences the pollination 

services delivered by the pollinator community to different plant groups (weeds, native plants, and 

crop species). 

My findings show that honeybee declines may have a large impact on community structure and 

interactions within pollination systems. I observed a significant shift in the wild pollinator community 

composition as honeybee densities declined, from a generally bee/hoverfly dominated community 

to one more dominated by large flies. This was associated with a significant decline in the total 

pollen load transported by the community, indicating that pollination services may suffer in the 

absence of honeybees. As honeybee densities declined, however, I also observed a shift toward 

greater specialisation of pollinators on abundant resources, increased pollinator constancy, and a 

higher viability rate of the pollen transported. These findings show that although the total amount of 

pollen transported by the community declined as honeybee densities decreased, the probability of 

this pollen transport resulting in effective pollination likely increased. Thus, I observed no decrease 

in seed set with honeybee declines in any of the three plant species tested, and one of these even 

showed a significant increase. Finally, I also demonstrated that this change differentially affected 

different plant types, and that the extent of changes to each plant species differed between land-use 

types. This reflected changes in the relative abundance of pollen types in different land uses, with 

greater specialisation in the absence of honeybees disproportionately benefiting common species. 

These findings have strong implications for several contemporary issues in pollination biology, both 

locally within New Zealand and on a global scale. These are discussed in the following sections. 

Finally, I conclude by discussing the implications of this research on several contemporary issues in 

pollination biology, namely the ability for wild pollinators to compensate for honeybee declines, the 

impact of honeybees on natural New Zealand ecosystems, the contribution of honeybees to invasive 

weed pollination and finally the management of surrounding land use types to maximize the 

effectiveness of wild pollinators. 
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Chapter 1: Introduction 

 

1.1 The importance of pollination  

 

It is rumoured that Albert Einstein once may have claimed, “If the bee disappeared off the surface of 

the globe then man would only have four years of life left. No more bees, no more pollination, no 

more plants, no more animals, no more man” (Benjamin & McCallum 2009). While this view 

represents an extreme of current scientific views, pollination is none-the-less extremely important 

for plant reproduction. Nearly 90% of flowering plant species worldwide depend on insect 

pollination (Ollerton et al. 2011). Similarly, three quarters of commercial crop species depend to 

some extent on insect pollinators and these are critical to global food security (Klein et al. 2007). 

Although a few species of wind pollinated crops (such as grains) and pollination independent crops 

(such as tubers) comprise a large proportion of global food consumption (Klein et al. 2007), insect-

pollinated crops are critical to the supply of many essential oils, proteins and vitamins people require 

as part of a balanced diet (Thrupp 2000; Frison et al. 2011) and pollination therefore directly impacts 

human welfare (Meffe 1998; Carpenter et al. 2006; Díaz et al. 2006). Although modern crop 

breeding programs are attempting to reduce the reliance of agriculture on insect pollinators through 

the development of seedless or self-fertile crops, global food demands are increasing at such a rate 

that our reliance on insect pollinators is deepening (Aizen et al. 2008a; Aizen & Harder 2009). In the 

United States alone, honeybee pollination has been valued at USD$14.6 billion (Morse & Calderone 

2000), with wild insect pollinators contributing a further USD$3 billion to the national economy 

(Losey & Vaughan 2006). 

 

1.2 Honeybees as pollinators  

 

The domesticated western honeybee (Apis mellifera) is by far the largest contributor to pollination 

services globally. Honeybees, native to Europe, Asia and Africa, have been spread worldwide by 

humans both because of their value as pollinators(Vanengelsdorp & Meixner 2010), and due to their 

capacity to produce honey(Vanengelsdorp & Meixner 2010). As honeybees are easily domesticated, 

form large colonies (up to 50,000 bees in a single hive) and are easily transportable (hives can easily 

be trucked for hundreds of kilometres), they are easily manipulated on an as-required basis by 

farmers (Morse & Calderone 2000). Thus, millions of colonies worldwide are commercially rented to 

farmers, and these are often considered essential to ensure maximal crop yields (Morse 1991b; 

Morse & Calderone 2000). Contributing to their success as crop pollinators, honeybees have a 

complex communication system between workers, allowing the transfer of accurate information 

about floral resources (Von Frisch 1967). As a result, foragers can recruit more workers to large 

resource supplies, such as mass flowering crop fields, on which workers focus their foraging efforts.  
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1.3 Honeybee declines 

 

While honeybees are undoubtedly convenient pollinators, high reliance on any single species carries 

inherent risk, and recent honeybee declines are making this risk increasingly obvious. In the United 

States, the number of managed honeybee colonies has declined by nearly 60% over the last half 

century (Potts et al. 2010b), with over 30% of overwintering colonies perishing annually in recent 

years (Hayes et al. 2008). Similar trends have been recorded globally (Potts et al. 2009; Potts et al. 

2010a). While the precise causes of these declines are unknown, a wide range of factors have been 

implicated; including pesticides, pathogens (particularly the mite Varroa destructor), monocultural 

agricultural methods and commercial beekeeping practices (Bromenshenk et al. 2010; Johnson et al. 

2010; Le Conte et al. 2010; Potts et al. 2010a). While none of these factors alone is solely responsible 

for the decline, these causes are likely to interact synergistically (Potts et al. 2010a). For example, 

while agricultural monocultures may provide abundant floral resources which may be beneficial to 

healthy beehives, a diet low in pollen diversity has been shown to impede honeybee immune 

systems (Alaux et al. 2010). This, may not necessarily detrimental in isolation, however when 

exposed to harmful viruses, honeybees raised on a monoculture diet can be more susceptible to 

virus-induced mortality(Cox-Foster et al. 2007).  Similarly, the parasitic mite Varroa destructor 

(Figure 1.1) can be treated by beekeepers and is seldom the exclusive cause of mortality in 

commercial hives(Le Conte et al. 2010). Varroa mites, however, feed on the haemolymph of bees, 

and can be important vectors for the spread of viral diseases(Shen et al. 2005). Thus, this can 

interact synergistically with both monoculture crop methods and viral diseases to contribute to the 

global decline of honeybees.  

  

 

Figure 1.1. A Varroa destructor mite on the head of a honeybee. As well as directly killing bee larvae, Varroa mites 
spread viruses between bees and can weaken bee immune systems 
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1.4 Wild pollinators  

 

Given the current uncertainty regarding the future sustainability of our reliance on honeybees, an 

increasing number of studies are investigating the contribution of unmanaged pollinators to 

pollination (Corbet et al. 1991; Kremen et al. 2002; Kremen et al. 2004; Hoehn et al. 2008; Tylianakis 

2008; Winfree et al. 2008; Garibaldi et al. 2013). Of the diversity of other animals that are capable of 

performing pollination, the most often recognised are wild bee species (Figure 1.2) (Bohart 1972), 

although a wide variety of other insect groups (Heine 1937), birds (Clout & Hay 1989), bats 

(Pattemore & Wilcove 2012), lizards (Olesen & Valido 2003) and even rodents (Pattemore & Wilcove 

2012) can also be important pollinators. While the importance of conserving wild pollinators has 

been argued(Ghazoul 2005, 2007), there is increasing recognition that these may contribute greatly 

to pollination (Winfree et al. 2008; Garibaldi et al. 2013). Many species of wild pollinators have been 

shown to be equally efficient as honeybees at transporting pollen between flowers (Rader et al. 

2009), and these may help to compensate for honeybee declines by ensuring pollination (Ricketts et 

al. 2004; Winfree et al. 2007; Rader et al. 2012). A recent global study investigating pollination in 

over 600 field sites of 40 different crop systems worldwide, revealed that wild pollinators are 

capable of effectively pollinating a wider variety of crop species than honeybees, and that these 

boost crop yields, independently of honeybee visits to the flower (Garibaldi et al. 2013). This shows 

that, while honeybees may provide some pollination services to farmers, wild pollinators in many 

cases may be equally, if not more, capable of providing this service. 

 

 

Figure 1.2. A wild solitary bee Lassioglossum mataroa feeds from a yarrow (Achillea millefolium) inflorescence. Wild 
pollinators, such as this, are becoming increasing recognised for their role in pollination 
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1.5 Impact of honeybees on wild pollinators 
 
As with any species sharing similar resources, there is potential for honeybees to compete with 

other pollinators. Numerous studies have provided anecdotal evidence showing honeybees to affect 

a diverse array of wild pollinators(Badano & Vergara ; Gross & MacKay 1998; Kato et al. 1999; Gross 

2001; Goulson et al. 2002; Dupont et al. 2004). Reviews on the subject, however, have found 

evidence to be inconclusive regarding widespread or long-term reductions in pollinator populations 

in the presence of honeybees (Goulson 2003b; Paini 2004). This is generally considered to be due to 

the difficulties of conducting large-scale studies capable of detecting competition and changing 

abundances of pollinators, rather than a lack of any underlying trends (Goulson 2003b; Paini 2004). 

As pollinator communities can be highly diverse, and pollinators are highly mobile and frequently 

generalist foragers, population-level studies on pollination have struggled to detect widespread 

changes in wild pollinator communities as a result of competition with exotic pollinators. Thus, 

whether pollinator communities change as a result of competition with honeybees, and how this 

effects the actual pollination of plant communities, remain unknown. The recent expansion of 

network-analytical approaches, however, may provide a powerful means to understand these direct 

and indirect competitive effects (Forup & Memmott 2005; Tylianakis 2008; Bascompte 2009), By 

directly analysing changes in the interactions between plants and pollinators that result in 

pollination, network approaches to this question also provide information about structure that 

relates to emergent properties such as stability (Olesen et al. 2002; Bascompte et al. 2003) 

1.6 Land-use intensification and its effect on pollinators 

 

Wild pollinators have shown some capacity to compensate for declining honeybee densities 

(Goulson 2003a; Winfree et al. 2007; Rader et al. 2012; Garibaldi et al. 2013), however, their ability 

to do so may depend on surrounding land uses (Ricketts et al. 2004; Klein et al. 2007; Kremen et al. 

2007). Land-use intensification has been shown to negatively impact a variety of wild pollinators 

(Klein et al. 2007), both through the alteration of floral resource supplies, and the destruction of 

native habitat requirements, such as viable nesting sites (Kremen et al. 2007). Changes in floral 

resource supplies, for example the decreased flower diversity in agricultural systems, have been 

shown to reduce pollinator diversity and abundance (Kremen et al. 2007). Similarly, many bee 

species are severely limited by bare ground, hollow plant stems and other nesting requirements in 

agricultural systems (Greenleaf & Kremen 2006; Kim et al. 2006; Morandin et al. 2007).  

Pollination services provided by wild pollinators have been shown to decrease with distance from 

natural habitats, and are often negatively correlated with agricultural intensity (Klein et al. 2003; 

Greenleaf & Kremen 2006; Kim et al. 2006). If the promotion of wild pollinators has any potential for 

reducing our dependence on managed honeybees and compensating for their decline, land-use 

management may become increasingly important as a tool to manipulate pollinator communities 

and manage pollination. The importance of this is clearly demonstrated in several regions of China, 

where intensive agriculture, particularly the excessive use of pesticides, has resulted in pollinator 

declines to such an extent that crop pollination routinely fails, and it is not uncommon for 

orchardists to employ workers to hand pollinate fruit trees(Partap et al. 2000). 
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1.7 Pollination in NZ 

 

In New Zealand, pollination systems are unique in that there are no native social bee species, the 

butterfly fauna is highly depauperate, and dipteran flies compose an unusually high proportion of 

pollinators (Heine 1937). The pollinating fauna historically consisted primarily of solitary bee species 

(Colletidae and Halictidae), flies, and a number of moth, parasitoid wasp and beetle species (Heine 

1937; Primack 1983). Native birds, and possibly short tailed bats, have also had a high historical 

importance in pollination (Thomson 1927; Anderson 2003; Anderson et al. 2011; Pattemore & 

Wilcove 2012), however due to predation by introduced mammals, these are now depleted across 

much of the mainland (Anderson 2003; Anderson et al. 2011; Pattemore & Wilcove 2012). In 

addition to these native pollinators, New Zealand has eight species of exotic bee deliberately 

introduced to aid in the pollination of crops (only four of these, Apis mellifera and three Bombus 

species, are widespread) (Howlett & Donovan 2010), and a number of other introduced insects that 

regularly perform pollination. 

Because of this historically diverse but unspecialised pollinator guild, most native plant species in 

New Zealand are adapted to pollination by a large range of generalist pollinators (Heine 1937; 

Primack 1983), and consequently have predominantly small, white flowers (Heine 1937; Lloyd 1985). 

In contrast, many invasive and/or introduced plant species in New Zealand have brightly coloured, 

showy flowers and are adapted to attract exotic pollinator species, like introduced social bees 

(Goulson 2003b). While pollination provided by exotics is generally of great benefit to society, there 

is some concern that these may facilitate the spread of invasive weeds (Butz-Huryn 1997). Although 

the evidence for this has been debated (Huryn & Moller 1995; Butz-Huryn 1997), exotic pollinators 

have been shown to preferentially visit exotic plant species (Goulson & Hanley 2004; Webber et al. 

2012), and in some cases these are the primary pollinators of exotic weeds (Paynter et al. 2010), a 

pattern congruent with overseas findings(Aizen et al. 2008b).  

In New Zealand, the bee mite Varroa destructor has recently spread to the South Island and is 

currently having an enormous impact on honey bee (Apis mellifera) populations throughout the 

country (Donovan 2007). In the near future, Varroa is expected to almost completely eliminate feral 

bee populations and reduce numbers of commercial hives nationwide (Donovan 2007). Treatment is 

possible in commercial hives, however, this is costly and requires extensive management (Simpson 

2003). Even with Varroa management, honey production is significantly lowered, and the 

commercial viability of bee keeping is reduced (Simpson 2003). This is expected to result in the 

removal of commercial hives from many less-productive ecosystems, such as high-country grassland, 

and is likely to have an enormous effect on pollination systems within the high-country ecosystem. 

This could potentially lead to significant impacts on both insect pollinators and plant communities in 

this environment. 

 

1.8 Study Location 

 

To understand the combined impacts of honeybee declines and land use on wild pollinator 

communities, I conducted a manipulative field experiment in the Mackenzie basin; a large subalpine 
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river basin in New Zealand’s Southern Alps. Prior to European settlement, there is evidence that the 

area was at least partially covered with subalpine scrub(McGlone & Moar 1998), however upon 

European arrival, the basin was almost exclusively vegetated with native grasslands(Connor & 

Vucetich 1964). This change probably resulted from fires initiated by Polynesians(McGlone & Moar 

1998). Since European settlement, the basin has undergone further land-use change. The discovery 

of its grazing potential in 1855 by the outlawed sheep rustler James Mackenzie, led to the 

establishment of many renowned high country sheep stations (Connor & Vucetich 1964). As a result 

of this grazing, the tussock landscape has suffered repeated burning, overgrazing, and the 

introduction of many exotic grass, tree and herbaceous weed species (Connor & Vucetich 1964; 

Norton et al. 2006). Despite this grazing pressure, however, the Mackenzie basin has had historically 

low agricultural intensity(Norton et al. 2006). The impacts of sheep grazing in the Mackenzie basin 

have been minimal compared with other regions of NZ(Norton et al. 2006), and the basin still 

harbours high native biodiversity of both plant and animal species. A survey in the basin in 1984, 

revealed the presence of ten native bee species (Quinn 1984), giving it among the highest bee 

diversity in the country. Additionally, five species of exotic bee (Apis mellifera and four Bombus 

species), and a diverse range of both native and exotic pollinating flies, wasps, butterflies and moths 

are also present, diving the basin a diverse pollinator assemblage. 

In recent decades, however, there has been a rapid shift toward more intensive agriculture (Figure 

1.3). Modern technology, particularly large centre-pivot irrigation systems, have led to the 

encroachment of intensive cropping and dairy farming into historic tussock grasslands, and this is 

alleged to be causing widespread environmental degradation (Lee et al. 2008).  

This combination of high pollinator diversity and rapidly-intensifying agriculture makes the 

Mackenzie basin an ideal study location to investigate the interacting effects of declining honey bee 

densities and land use intensification. Furthermore, the open, predominantly grassland landscape is 

severely limited in honeybee nesting cavities, making feral honeybee colonies rare and allowing 

honeybee sources to be easily identified and manipulated. 
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Figure 1.3 A view across the western edge of the Mackenzie basin, from the Benmore Range looking toward lake Ohau 
(upper left) and Ben Ohau peak (upper central). Installation of centre pivot irrigators (centre), has allowed intensive 
agriculture to encroach into native tussock grasslands (lower).  

 

1.9 Objectives and Study Outline 

 

This research aims to determine the response of pollinator communities to the simultaneous 

influences of declining honeybee densities and intensifying land use. While the effects of these 

changes have been studied in isolation, little is currently known about simultaneous effects of these 

even though agricultural intensification is increasing our reliance on honey bees. The potential for 

these multiple drivers to interact synergistically to modify pollination interactions has been 

suggested in the literature; however until now this has been untested. Further, given our 

dependence on pollination, it is imperative to understand how changes in the way plants and 

pollinators interact directly impact the pollination success and seed set of plants. 

To begin, I investigate in Chapter Two how declining honeybee densities and intensifying land use 

combine to influence the composition of the pollinator community as a whole, then go on to explore 

individual trends in the most common pollinator species. I then analyze how this impacts the 

transport of viable pollen by the pollinator community and determine how these changes alter seed 

set in several common plant species. 

In Chapter Three, I change my focus away from the composition of the pollinator community, and 

instead investigate how declining honeybee densities and land-use intensification influence the 

structuring of interactions between plants and pollinators within the community. I identify the 
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pollen species carried by pollinators, and use this to construct a network of pollination interactions. I 

then use this network to analyze how changes in the way species interact influences the pollination 

services delivered by the pollinator community to different plant groups (weeds, native plants, and 

crop species). 

Finally, in chapter four I summarize findings and discuss how these relate to the existing literature. I 

then discuss the implications of my findings for several major contemporary questions facing 

pollination biology. Finally I conclude by discussing potential gaps in our knowledge which may be 

lucrative avenues for further research.  
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Chapter 2: Changes in pollinator community composition and 

resulting pollination rates 
 

2.1 Introduction 
 

Three quarters of global food crop species rely to some extent on animal pollination (Klein et al. 

2007), and this dependence on animal pollinators is increasing (Aizen & Harder 2009). Meanwhile, 

pollinator populations around much of the globe are facing catastrophic declines (Holden 2006; 

Potts et al. 2010a; Burkle et al. 2013; Tylianakis 2013). Honeybees, in particular, are suffering in 

much of the world from a combination of diseases and syndromes attributed to anything from 

pathogens and pesticides to land-use change and electromagnetic radiation (Holden 2006; Ratnieks 

& Carreck 2010; Williams et al. 2010). As a result, the number of managed honeybee hives in the 

United States dropped by 59% between 1950 and 2007, with similar trends seen globally (Potts et al. 

2010a).  

While many species of wild insects frequently visit flowers and are often highly-efficient pollinators 

(Winfree et al. 2007; Rader et al. 2009; Rader et al. 2012), high managed honeybee densities are 

often maintained during crop flowering periods to ensure pollination should wild pollinators be 

absent or insufficient to ensue maximal yields (Morse 1991a; Morse & Calderone 2000). Honeybee 

densities can be easily manipulated and large numbers can be transported to fields of mass-

flowering crops specifically to coincide with the flowering season (Morse 1991a; Howlett & Donovan 

2010), thus they are frequently relied upon as a major agricultural resource (Howlett & Donovan 

2010). 

This high reliance on a single pollinator species is concerning for the effectiveness and resilience of 

pollination services (Winfree et al. 2007).  Recent studies have shown that diversity of pollinators is 

more important than the overall abundance of pollinators for predicting seed set in crops (Hoehn et 

al. 2008; Brittain et al. 2013a), and that honeybees may be less effective pollinators than other wild 

pollinating insects (Winfree et al. 2007; Garibaldi et al. 2013). A large recent analysis of pollination of 

over 40 crop systems worldwide, showed that visits from wild pollinators across the world result in, 

on average, double the increase in seed set produced by the equivalent number of honeybee visits, 

and benefit a much wider diversity of plants  (Garibaldi et al. 2013). Further, wild pollinators seem to 

act complementarily to honeybees, with wild pollinators enhancing pollination rates even in flowers 

frequently visited by honeybees (Garibaldi et al. 2013).  

Many wild pollinator populations, however, have been negatively affected by anthropogenic land-

use change, and the associated habitat degradation, loss of nesting habitats and insecticide use 

(Steffan‐Dewenter 2003; Biesmeijer et al. 2006; Greenleaf & Kremen 2006; Ricketts et al. 2008).This 

may make wild pollinators less able to compensate for declining honeybee densities in areas of 

intensive land use. Although several studies have investigated the effects of either changing land use 

or honeybee declines on pollination(Butz-Huryn 1997; Goulson 2003b; Dupont et al. 2004; Kremen 

et al. 2004; Ricketts et al. 2008; Whittingham 2011), the interactive effects of these are unknown.  

Given the potential value of wild pollinators, it is imperative to understand how wild pollinator 
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communities will respond to current and future numbers of honeybees, particularly in an 

increasingly human-modified environment (Morse 1991a; Holden 2006). 

In this study I address this question using a manipulative field experiment comprising 

experimentally-exposed plants across a gradient of honeybee density and land-use types. In 

particular, I focus on three main hypotheses:  

1) The composition of the wild pollinator community will respond to changes in the local density of 

honeybees. 

2) Any change in the observed pollinator community may impact the pollination effectiveness of the 

community, altering pollen transportation patterns, potentially affecting pollen viability, and 

ultimately the seed set rates of plants. 

3) The surrounding land-use type may affect the ability of the wild pollinator community to 

compensate for declining honeybee density. 

2.2 Methods 

2.21 Study site locations and characteristics 

The study was conducted using a manipulative field experiment based in the Mackenzie Basin, South 

Canterbury, New Zealand. The Mackenzie Basin, a large subalpine river basin in New Zealand’s 

Southern Alps, was selected as the focus for this study both because of its high native plant and 

insect-pollinator diversity (Quinn 1984), and its valuable agricultural industry (Butcher 1997). Also, 

because of the relatively open, predominantly grassland landscape, feral honeybee colonies are 

likely to be severely limited by the availability of nest cavities. This, combined with the effects of the 

invasive mite Varroa destructor (Simpson 2003), means that feral honeybee colonies are rare, 

making honeybee source populations easy to identify and manipulate. 

Table 2.1. Location, distance from bee hives and surrounding land-use type for each site  

Site 

number 

Distance from 

nearest bee 

hive (m) 

Land-use type Latitude  (WGS84) Longitude (WGS84) 

1 6330 Degraded tussock  44   25'0.29"S 170   12'15.18"E 

2 200 Riverbed  44   20'1.00"S 170   10'25.86"E 

3 1650 Degraded tussock  44   20'24.26"S 170    8'37.36"E 

4 4650 Riverbed  44   18'26.79"S 170   13'21.17"E 

5 570 Riverbed  44   18'22.08"S 170    8'14.19"E 

6 6790 Riverbed  44   15'23.29"S 170   11'49.71"E 

7 4280 Degraded tussock  44   12'0.30"S 170    6'10.43"E 
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2.22 Honeybee density gradient 

To determine the effects of honeybees on pollinator communities and pollination success, I used a 

naturally-occurring gradient of honeybee density, which was generated by selecting 18 sites (Table 

2.1) at increasing distances from all known managed hives. All commercial apiaries (beehive 

locations) around the Twizel area were mapped following communication with local bee keepers. 

Study sites ranged from 20m to 7800m away from the nearest commercial apiary (Table 2.1). 

Apiaries each contained 18-22 individual hives. Although honeybees have been recorded foraging up 

to 10 km from their source hive (Beekman & Ratnieks 2000), the possible foraging area scales 

exponentially as the distance from a hive increases, and thus bee densities would be expected to 

decline exponentially with increasing distance from the hive. To confirm this, two pan traps (plastic 

containers, 170mm x 170mm wide, 85mm deep) were placed at each site for a 3 month sampling 

period and honeybee trap rates were recorded. One trap was white and one yellow, to get a 

representative sample of the entire pollinator community because colour preference varies between 

species (Leong & Thorp 1999; Wilson et al. 2008). These were filled with one litre of liquid mix, 

containing two parts water to one part propylene-glycol preservative, and a drop of fragrance-free 

dishwashing liquid to act as a surfactant.  

To determine the pattern of honeybee decline across the putative distance gradient (Figure 2.1), I 

modelled change in honeybee pan trap catch rates with increasing distance using a generalized 

linear model (GLM), with Poisson errors, a log link function, and fitted with quasi-likelihood to deal 

with over dispersion. This was conducted using the glm function in the base package of the R 

Statistical Software (R Development Core Team 2011).  

Figure 2.1 Relationship (+/- 95% confidence interval) between observed bee density at the sites, and 

the distance from commercial bee hives. While an occasional bee was caught foraging at high 

8 5180 Tussock  44   12'33.69"S 169   57'36.56"E 

9 7430 Tussock  44   15'1.96"S 169   49'16.76"E 

10 2810 Tussock  44   17'10.76"S 169   56'27.28"E 

11 820 Riverbed  44   15'51.02"S 169   59'17.03"E 

12 940 Riverbed  44   16'25.08"S 170    1'13.55"E 

13 100 Crop  44   18'6.14"S 170    4'46.95"E 

14 350 Crop  44   19'1.33"S 170    4'44.74"E 

15 2000 Degraded tussock  44   20'3.57"S 170    5'38.36"E 

16 20 Crop  44   20'14.04"S 170    3'20.19"E 

17 1325 Crop  44   20'51.26"S 170    3'53.68"E 

18 2760 Degraded tussock  44   22'19.98"S 170    4'48.88"E 
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distances, bee densities at over 4000 m from the hive were not significantly different from zero (95% 

CI  includes zero). A possible outlier at site 5 (4700m) may be caused by a wild bee hive in the 

vicinity. 

 

Figure 2.1 Relationship (+/- 95% confidence interval) between observed bee density at the sites, and the distance from 

commercial bee hives. While an occasional bee was caught foraging at high distances, bee densities at over 4000 m from 

the hive were not significantly different from zero (95% CI  includes zero). A possible outlier at site 5 (4700m) may be 

caused by a wild bee hive in the vicinity. 

 

Honeybee catch rates in pan traps declined with increasing distance from the nearest hive (Figure 

2.1, F = 9.51 P = 0.007), suggesting that distance from commercial hives was a good proxy for 

honeybee density in my study region. As distance from honeybee hives was the underlying driver 

behind the changing abundance of honeybees at the sites, I used this distance as an explanatory 

variable in analyses rather than honeybee abundance from the traps. Furthermore, as day to day 

honeybee foraging patterns are variable, I decided that distance from hives was more likely to 

correlate with long-term honeybee densities.  Although an occasional bee was caught foraging at 

large distances, the majority of foraging occurred within 2km from the nearest hive (Figure. 2.1), and 



 

22 
 

trap rates more than 4000m from the nearest hive were not significantly different from zero (a 95% 

confidence interval includes zero at greater distances) (Figure 2.1).  

2.23 Land-use categories 

To determine the effects of land use on wild pollinators, I categorised the predominant land-use 

type within a 50m radius surrounding each site into one of four categories that reflected the 

predominant habitats in the region and comprised an approximate gradient of land-use intensity. 

These categories were:  1) Tussock Grassland - predominantly native vegetation, stock absent or at 

very low densities and with generally few exotic plant species. 2) Riverbed scrub – stock absent but 

patchy vegetation cover with a lot of bare gravel/sand. Vegetation primarily a mix of native and 

exotic shrubs. 3) Degraded tussock - Historically native tussock grasslands, but with high grazing 

intensity (>100 sheep/ha) and significant invasion of introduced pasture species and exotic weeds to 

give a mix of native and exotic ground vegetation. 4) Crop/pasture - High stock density, little (if any) 

native vegetation, often with irrigation and fertiliser input. These four land-use categories (Figure. 

2.2) reflected an approximate gradient of intensifying agricultural land use; with crop and pasture 

fields having highly intensive agriculture, degraded tussock areas having less, but still significant 

agricultural intensity, and riverbed and tussock areas having very little or no agriculture (although 

riverbed areas had other forms of human disturbance, for example vehicle damage, and were highly 

prone to weed invasion). As some pollinator guilds (particularly blowflies) are dependent on 

livestock during their larval stages, sheep density within an approximate 500m radius surrounding 

each site was also calculated, using stocking data obtained from farmers.  

 

Figure 2.2 Typical land-use types in the study area, from left to right:  Pasture; Degraded tussock grassland; Riverbed; 
Tussock grassland. 

 

As bee hive locations were beyond my control, and tended to be placed by bee keepers in areas with 

abundant floral resources to maximise honey yield (Peter Bell, personal communication), intensive 

land uses were generally associated with close proximity to bee hives (Figure 2.3). As a result, my 

two predictor variables of interest (honeybee density, measured as distance from hives, and land-

use intensity) were collinear, with tussock grassland tending to be more common at large distances, 

and more sites falling within the crop/pasture category at shorter distances (Figure 2.3). To account 

for this collinearity, I tested each effect after controlling for the possible effects of other variables in 

the model. That is, for all results presenting effects of bee density or land use, I used adjusted (Type 

III) sums of squares in linear models and tested partial coefficients in mixed effects models. 
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2.24 Selection of plant species for pollinator observations 

Common plant species were noted at each site and, excluding wind-pollinated species, these were 

categorised as natives, crop plants or exotic weeds. Of these, a total of eight species were selected 

as focal study species based on their abundance at the sites and availability. These were - Natives: 

Leptospermum scoparium, Epilobium melanocaulon; Crops: Trifolium repens, Medicago sativa, 

Brassica napus; Weeds: Echium vulgare, Cirsium vulgare, Achillea millefolium.  

Echium vulgare, A millefolium, M. sativa and B. napus were grown from seed, with E. vulgare and A. 

millefolium sourced from local wild populations and M. sativa and B. napus from seed donated by 

PGG Wrightson seeds, Christchurch, New Zealand. Trifolium repens was produced asexually from 

cuttings taken from the University of Canterbury Cass field station, and C. vulgare and E. 

melanocaulon were cultivated from overwintering root cultures also collected from the Cass field 

station. Two-year-old L. scoparium saplings were purchased from Wai-ora nurseries Limited, 

Christchurch, New Zealand. All plants were cultivated in glasshouses on the University of Canterbury 

campus for at least 4 months prior to flowering, and acclimatised to outdoor conditions for one 

month prior to transport to the Mackenzie Basin at the commencement of the study.  

 

Figure 2.3 Land uses across the honeybee density gradient.  

There is a significant correlation between agricultural intensity 

and honeybee density, with beehives generally found in close 

proximity to crop and pasture fields. 
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2.25 Observation of flower visitations by pollinators 

To determine the pollinator community present at each site, I conducted monthly flower 

observations at each site using the eight plant species listed above. Standardised experimental 

plants were used to eliminate variation in flower attractiveness due to site-specific environmental 

factors; for example, changes in nectar quality due to water stress or nutrient deficiencies, which 

would hinder interpretation of pollinator community differences across sites. I transported three 

individuals of the above-named flowering species to all sites and placed them in a square array 

approximately 0.5 m apart. I then observed the potted flowers for a two hour period, during which I 

caught all insects interacting with the flowers, and noted the flower species from which each insect 

was collected. An interaction was defined as any contact between the flower and the insect where 

pollen was potentially collected from the anthers or deposited on the stigma (Engel & Irwin 2003). 

Temperature was recorded at the beginning of each observation period, and observations were only 

conducted in temperatures greater than 14°C, from 10am-6pm to cover optimal insect foraging 

times, and were not conducted in the rain. 

Observed insects were caught and stored individually in collection jars to avoid pollen contamination 

until they were frozen and any pollen was removed. Insects were later identified to species level 

(with the assistance of taxonomists where required) or grouped into morphospecies where 

morphological characteristics were insufficient to differentiate species accurately. A reference 

collection of these was deposited at the University of Canterbury. 

2.26 Community composition analysis 

To test for compositional changes in the pollinator community (excluding honeybees, as these were 

experimentally manipulated) across the honeybee density and land-use gradient, I used a 

multivariate permutation analysis of variance (PERMANOVA) (Anderson 2001), conducted in the 

PERMANOVA+  add-on for the statistical program PRIMER. Community similarity was incorporated 

using a Bray-Curtis similarity matrix, as this integrates information on both abundance and 

composition of the community (Magurran 2004).  Both distance from hive and surrounding land-use 

type (tussock grassland, non-farmed riverbed, degraded tussock, crop/pasture), and the interaction 

between these were included as predictor variables. As bee hive locations and surrounding land use 

were correlated (Figure 2.2), there was potential for distance from hive effects to be confounded by 

surrounding land-use variation (or vice versa) rather than any effect of honeybees. To control for this 

collinearity, I incorporated surrounding land-use categories as a cofactor in the statistical models, 

and partitioned out any variation in the pollinator communities due to land-use effects before 

testing distance from hive effects (and vice versa). To test whether additional site variables helped 

to explain any community shifts, I also incorporated surrounding sheep density and temperature 

during the observations as covariates in the PERMANOVA analyses. Sheep density surrounding the 

site was incorporated because several common fly species that appeared to be important pollinators 

are dependent on stock animals and their dung during larval life stages. Temperature was included 

because pollinator behaviour can change with increasing temperature (Roubik 1992), and 

temperature may have differentially affected visitation rates in different species during the 

observations. This maximal model was then simplified using step-wise model simplification based on 

minimising the Akaike Information Criterion (AIC). Temperature and sheep density both increased 

the AIC value when incorporated into the model, so were removed from the final model. 
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To understand which species were driving the overall change in community composition, I examined 

the separate responses of the most abundant pollinator species to declining honeybee densities 

(distance from hive) and local land use. I ran a GLM (with poisson errors, fitted with quasilikelihood 

where necessary to deal with overdispersion) on all species present at more than half (nine or more) 

of my sites (Table 2.1). The response variable was the abundance of a given species, and the 

predictors were distance from hive, surrounding land-use type, and their interaction. Stocking 

density and average temperature while sampling were not included as the previous permanova 

analysis found these to have no significant effect on community composition.  

 

2.27 Pollen load and viability 

To determine how changes in the pollinator community influenced pollen transportation, I analysed 

the pollen load being carried by insects. The total number of pollen grains being carried was counted 

for ten insects of every species (to give a standardised samples size per species), from every site, for 

each sampling round, excluding pollen carried in the Corbiculae (pollen baskets) of bees as this is 

unlikely to be deposited on flowers (Dafni et al. 2005). For this, pollen was removed from the insects 

using the fuchsin gel method detailed in (Dafni et al. 2005), whereby a sticky cube of fuchsin gel was 

dabbed over the surface of the insect to collect pollen, then melted onto a microscope slide. The 

slides were then photographed at 100x magnification using fluorescence microscopy, and the 

number of pollen grains in each resulting photo was counted electronically using the ‘Analyse 

Particles’ function on the image processing program Image J (Rasband 1997).  

As the viability of pollen grains decreases over time (Dafni & Firmage 2000), pollen grains being 

transported may not be viable when they reach a stigma. To control for this, I tested the viability of 

pollen transported by a subset of the insects within 24 hours of collection of each insect while still in 

the field, as pollen viability decreases with age Twenty pollen grains from one insect of every 

species, from every site, from every sampling round were tested for viability using the 

Diaminobenzidine (DAB) test protocol described in Dafni et al. (2005). For this, pollen was rinsed off 

the insect using 70% ethanol, and dried onto a microscope slide prior to application of the reagent. 

The slides were then scanned visually under a dissecting microscope and the proportion of the first 

20 pollen grains to come into view that were viable was recorded. 

As larger pollinators have a greater surface area exposed to pollen, and thus, should theoretically 

accumulate greater pollen loads, I measured the intertegular span (distance between wing bases) for 

every single insect as a proxy for body size. This was measured using digital callipers and was 

included in the analysis as a predictor of pollen load and viability. 

Changes in both pollen load (Poisson errors) and proportion viability (binomial errors) across the 

honeybee density and land-use gradient were analysed using linear mixed effects models, conducted 

using the lmer function in the lme4 package (Bates et al. 2011) of the R Statistical Software (R 

Development Core Team 2011). The models used pollen load or pollen viability as response 

variables, and, distance from hive, surrounding land use and intertegular span as predictor variables. 

To determine if any potential changes were caused by changes were due to shifts in species 

behaviour or changes in species composition we also compared this model with and without species 

identity as a random effect. Site was also included as a random effect to control for the non-
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independence of insects from a given site. Stock density, observed honeybee density and 

temperature were not included in the analysis, as these had no clear mechanism of affecting pollen 

transport other than through altering pollinator abundance or behaviour, and this was the subject of 

the previous analyses. 

I calculated the dispersion parameter for glmms as the ratio of sum of squared Pearson residuals to 

the residual degrees of freedom, and comparison of this parameter to a Chi squared distribution 

provided evidence of significant overdispersion (Bolker et al. 2009). To deal with this, I incorporated 

an observation-level random effect into each model (Elston et al. 2001). 

 

2.28 Seed set 

To link the pollinator community to pollination, I intended to test how the pollination success of my 

eight focal plant species responded as community composition changed across the honeybee 

density gradient. For each sampling round, three individuals of each flowering plant species were 

taken to the field sites, and five freshly-opened flowers on each were marked with a small tag 

around their stem. The plants were left at the sites for 3 days to be exposed to pollination, and then 

collected. Their marked flowers were bagged with a fine mesh bag to prevent further pollination, 

and the plants were returned to a communal ‘shade house’, where they were left until the resulting 

seeds were mature. The use of experimental plants developing under the same conditions meant 

that differences in seed set across sites could be attributed to differing pollination success during the 

exposure period, rather than differences in plant quality or environmentally-driven fruit abortion 

rates across sites (Bos et al. 2007). Seeds were then collected and counted.  

Due to rabbit browsing and harsh environmental factors in the Mackenzie Basin, many plants failed 

to survive the three day exposure period and many replicates were lost. Consequently, sufficient 

replicate numbers remained to allow analysis only for three of my original nine plant species- C. 

vulgare, B. napus and A. millefolium. 

In C. vulgare flowers, seed set was measured as the proportion of seeds in each flower head to 

develop endosperm, indicating pollination success. This was not possible for all species, however, as 

undeveloped seeds were difficult to identify for those species with small seeds, so seed set in  B. 

napus and A. millefolium was recorded as the number of seeds produced per flower. Seed set was 

tested in relation to distance from hive using a GLM with Poisson errors for B. napus and A. 

millefolium seed production (count data), and a binomial GLM for C. vulgare seed (proportion data). 

All generalized linear and mixed models used the canonical link function for the error distribution 

stated. 

 

2.3 Results 
 

A total of 3778 insects, across 79 species, were captured visiting flowers over the 3 month sampling 

period. These were composed primarily of solitary bees (26% - Families Colletidae and Halactidae) 
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and large-bodied flies (62% - mostly Syrphidae, Calliphoridae, Sarcophagidae, Stratiomyidae and 

Tachinidae), with the remainder of insects split among 7 orders and 20+ families.  

2.31 Pollinator community 

Less than 1% of visitors across all sites were honeybees (Apis mellifera), but despite their low 

visitation rates, PERMANOVA analysis revealed that increasing distance from beehives was 

correlated with a significant shift in the composition of the wild pollinator community (Pseudo-F = 

1.67, p = 0.047). Surrounding land use had no significant effect on the composition of the overall 

pollinator community (Pseudo-F = 1.33, p= 0.081), but was correlated with significant changes in the 

abundance of some particular species (see below). Overall flower visitation frequency did not 

change significantly across the bee density gradient (F = 0.07 p = 0.794), nor between land-use types 

(F = 0.36 p = 0.783). 

2.32 Individual species 

Of the 12 common pollinator species examined separately, most showed no significant change in 

abundance across the honeybee density gradient (Appendix 1), although there were some notable 

exceptions. After controlling for variation due to surrounding land use, the solitary bee Leioproctus 

fulvescens, and the most common syrphid species, Melangyna novaezelandiae, were both 

significantly more abundant in close proximity to bee hives (Appendix 1). The trend in L. fulvescens 

however, was apparently driven by a strong outlier at site 16 and if this data point was removed the 

trend became non-significant.  

In contrast, blowflies, particularly Lucilla sericata, and green soldier flies (Odontomyia spp.) became 

significantly more abundant as honeybee density declined (after controlling for variation due to 

surrounding land use) (Appendix 1). The decline in Odontomyia spp. with decreasing honeybee 

density was most strongly pronounced in areas of less intensive land use (land use x distance 

interaction, Appendix 1). The trend in Lucilla sericata was partially driven by particularly high 

abundances at site 8, however this point did not have high enough leverage to be considered a true 

statistical outlier (Cook’s distance < 1), so was not removed for analysis. However, if this data point is 

removed the trend becomes marginally non-significant (p=0.065). 

The trends in M. novaezelandiae, L. sericata and Odontomyia spp. were initially highly significant, 

however only L. sericata remained significant after a Bonferroni correction to control for Type I error 

following the large number of individual tests (one model per species). Bonferroni corrections have 

been argued to often be overly conservative (Moran 2003), however, the trends observed for M. 

novaezelandiae and Odontomyia spp. should be interpreted with caution. 

Although changing land use did not significantly affect the overall composition of the community, it 

is worth noting that this did have an impact on the abundance of many individual species (Appendix 

1). These included the bees Bombus terrestris, Lassioglossum mataroa, Leioproctus fulvescens, the 

flies Lucilla sericata, Melangyna novaezelandiae, Odontomyia spp, and the butterfly Zizina labradus. 

The direction and intensity of this change across land-use types differed between species and in 

some species a significant interaction between intensifying land use and distance from hives was 

observed. The coefficients for each land-use type and interaction are presented in Table 2. 
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2.33 Pollen Load and Viability 

Total pollen transport by the community decreased significantly across the gradient of declining 

honeybee density (Z = -7.03, p < 0.0001). This remained significant (Z = -6.88 p < 0.0001) when 

controlling for species identity as a random effect in the model, showing that this effect is not simply 

due to changes in the species composition toward a less effective pollinator community, but rather 

that individual insects within each species carry less pollen at greater distances from beehives. 

Surrounding land use had no significant effect on total pollen load (Appendix 2). Some insect species, 

particularly frequent flower visitors, such as bees (e.g., Bombus species, Lassioglossium species) and 

hoverflies (e.g., Eristalis tenax, Helophyllus hochetterii, Melangyna novaezelandiae), carried 

significantly more pollen than other, more opportunistic flower visitors (Appendix 2), and pollen load 

scaled with body size (intertegular span), with larger insects carrying significantly more pollen 

(Appendix 2).  

Pollen viability increased significantly across the gradient of declining honeybee density (Appendix 

3). A few species (Allograpta spp, Eristalis tenax, Helophyllus hochetteri, Lassioglossum mataroa, 

Oxysarcodexia varia and Apis mellifera) carried significantly more viable pollen than others 

(Appendix 3) and the overall trend in viability  became non-significant when a species level random 

effect was added to the model (Z = 0.20   p = 0.842), showing that the change in viability across the 

honeybee density gradient is due to a  shift in the species composition toward species that tend to 

carry more viable pollen, rather than changes in pollen viability between individuals within given 

species across the gradient. Pollen viability was significantly higher in degraded tussock than in other 

land-use types, but there was no significant interaction between distance from hive and land use 

(Appendix 4).  

 

2.34 Seed set 

For the three species tested, GLMs showed no significant change in seed set for either Brassica 

napus (Figure5a, F = 1.08 p = 0.307) or Cirsium vulgare (Figure5b F = 0.68 p = 0.425) as distance from 

hive increased. However, Achillea millefolium showed a strong positive relationship between seed 

set and distance from hive (Figure 5c, F = 15.79 p = 0.002). Surrounding land use had no significant 

effect on any of the plant species (B. napus F = 0.11 p = 0.954; C. vulgare F= 0.23 p = 0.872; A. 

millefolium, F = 0.77 p = 0.558) 
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Figure 2.4 Seed set in plants exposed to pollination across the honeybee density gradient a) Brassica napus b) Achillea 
millefolium c) Circium vulgare. 

 

 

2.4 Discussion 

2.41 Impact of honeybees on the composition of the wild pollinator community 

Supporting my first hypothesis, I observed a significant shift in the composition of the wild pollinator 

community as honeybee density declined.  This result remained significant after controlling for 

surrounding land use, showing that the trend is not simply due to the correlation between 

agricultural intensity and honeybee density. This supports a growing bulk of literature demonstrating 

that the competitive effects of honeybees can influence populations of other pollinators (Gross & 

MacKay 1998; Kato et al. 1999; Goulson et al. 2002; Dohzono & Yokoyama 2010). While the bulk of 

these studies investigate interactions between only a few species (Stout & Morales 2009), several 

reviews on the subject have demonstrated the diversity and widespread nature of these effects 

(Goulson 2003b; Stout & Morales 2009). Thus, this finding came as no surprise, however, detecting 

this effect despite honeybees composing less than 1% of the observed visitations suggests that the 

impact of honeybees on wild pollinators may be strong, even at relatively low honeybee densities. 

Alternatively, honeybees may have been more abundant than their low visitation to my 

experimental plants suggests, as their communication and group foraging may mean that they visit 

certain abundant resources and ignore isolated plants(Visscher & Seeley 1982). 

Analysis of this change in community composition at an individual species level revealed that 

different pollinator species responded differently to honeybee declines. Of the common pollinator 

species, the wild bee Lieoproctus fulvescens and syrphid Melangyna novaezelandiae were 

significantly more abundant in close proximity to honeybee hives, whereas the blowfly Lucilla 

sericata and soldierfly Odontomyia spp. were more abundant further from honeybee hives. This 

indicates that a general shift occurred from a bee and hoverfly dominated community close to 

commercial hives, to one more dominated by large bodied flies as honeybees declined. This 

conclusion is largely speculative as the trends in three of these species became non-significant after 

a Bonferroni correction, however, the vulnerability of large bodied flies in New Zealand to the 

A) B) C) 
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competitive effect of honeybees has been demonstrated previously in the literature (Murphy & 

Robertson 2000; Bennik 2009). 

 

2.42 Impact of honeybees on pollen transport patterns and pollination rates 

Pollen transport 

To link the change in the wild pollinator community to changes in pollen transportation, I analysed 

both the quantity and quality (viability) of pollen being carried by insects. Some insect species (such 

as bees and syrphid flies) carried significantly more pollen than other, more opportunistic flower 

visitors. Of more interest, however, is that the wild pollinator community in close proximity to bee 

hives carried more pollen than that at greater distances. This remained significant when controlling 

for species identity as a random effect in the model, showing that this effect is not simply due to 

changes in the species composition toward species less effective at transporting pollen as honeybee 

densities declined, but rather that individual insects within each species carry less pollen at greater 

distances from beehives. Surrounding land-use type had no effect on pollen loads, suggesting that 

changes in flower type or abundance were unlikely to have been a driving mechanism behind this 

trend. Therefore, the trend appears to be due to a change in behaviour of wild pollinators as 

honeybee density declined. (Brittain et al. 2013b) demonstrated that competition between bee 

species can result in such behavioural changes, resulting in increased pollen transport efficiency of 

particular species. While this study was in the context of wild bees influencing the behaviour and 

efficiency of honeybees, the inverse could potentially also occur. This mechanism would explain the 

trend I observed in pollen transport, and it would be interesting to test this possibility in the future.  

Another possible mechanism which may explain the higher pollen loads closer to beehives, is a 

higher frequency of flower visitation in wild pollinators at high honeybee densities. While honeybees 

feed on both nectar and pollen, nectar harvests are proportionally much greater than their pollen 

consumption (Rortais et al. 2005). This is partially because a large honey store is required for 

honeybee colonies to remain active during winter, but this is also probably exaggerated by the 

extraction of large quantities of honey from commercial bee hives. This possibly leads to nectar, but 

not pollen, becoming a limiting resource at high honeybee densities (Bennik 2009). This heavy 

consumption and reduction of available nectar by honeybees may result in nectar-feeding insects 

needing to visit more flowers to obtain a given quantity of nectar, and thus higher pollen loads per 

insect in the presence of honeybees. This mechanism could also partially explain the greater 

abundance of solitary bees and syrphid flies (both groups rely on pollen as a major protein source 

(Haslett 1989; Donovan 2007)) relative to other large-bodied flies (exclusively nectar feeders), at 

high honeybee densities, although further testing would be required to confirm this. 

Pollen viability 

In terms of the viability of pollen carried by the wild pollinator community, the opposite pattern was 

observed. Pollen viability carried by the community significantly increased as distance from bee 

hives increased (Appendix 3). As pollen viability decreases over time (Dafni & Firmage 2000), this 

implies a faster pollen turnover rate in areas of low honeybee density. Such a pattern could occur via 

one of two scenarios. Firstly, as honeybee hive locations tended to be concentrated around areas 

with abundant flower supplies, pollinators may become satiated in areas close to bee hives. As 
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flower abundance increases, visitation rates per flower could be predicted to decline if pollinators 

cannot aggregate rapidly enough to utilise the abundant resource. This would result in pollen 

accumulating on the anthers for longer periods and thus decreasing in viability as it ages, before 

being collected by pollinators. Alternatively, a shift in pollinator composition or behaviour due to 

competition with honeybees may have led to a change in the community toward insects that more 

effectively collect pollen. This could result in a shorter pollen standing time and greater viability on 

the flowers or on the insect as new pollen is continuously collected and deposited. As pollen viability 

did not differ between land use types, nor did flower visitation rates did not change significantly 

across the bee density gradient, it seems unlikely that this result was due to increased flower 

abundance as predicted by the first hypothetical mechanism. In addition, my finding that the trend 

in viability became non-significant when a species level random effect was added to the model 

suggests that a shift in the species composition toward species that carry more viable pollen is 

possible, though further experiments would be needed to untangle these and other potential 

mechanisms.  Nevertheless, together these results imply that, despite declines in the total pollen 

load being transported as honeybee densities decreased, pollen deposition and actual pollination 

rates may compensate by being greater than expected at low honeybee densities, and my seed set 

results were congruent with this hypothesis. 

Seed set 

Honeybees are commonly viewed as being important pollinators for many crop species. If this were 

the case for the three plant species investigated, seed production would be expected to decline 

along the bee density gradient. No such pattern was observed in any of the three plant species 

tested. Cirsium vulgare and B. napus plants showed no significant change in seed production across 

the bee density gradient. These are both commonly cited as honeybee pollination dependent 

species (Williams et al. 1987; Michaux 1989; Hanley & Goulson 2003; Hayter & Cresswell 2006), so 

no significant decline in the absence of honeybees was an interesting result, which indicates that 

sufficient pollination may still occur at low honeybee densities.  Achillea millefolium (considered to 

be predominantly fly pollinated, and primarily visited by native New Zealand insects(Primack 

1983))interestingly showed a significant increase in seed production as honeybee densities declined. 

These results show that wild pollinators are capable of compensating for honeybee declines, such 

that pollination rates of these species can be maintained in the absence of honeybees. The different 

effects of the changing pollinator community on different plant species may in the future enable 

management of the wild pollinator community to be targeted toward pollination of particular plant 

species of interest. 

 

2.43 Impact of surrounding land use on pollination by wild pollinators 

With the sustainability of our agricultural reliance on honeybees in question (see Chapter 1), 

management of wild pollinator communities is becoming increasingly important. My results show 

that the ability of the wild pollinator community to compensate for honeybee declines can depend 

on land use. In contrast to previous studies(Aguilar et al. 2006; Winfree 2010; Rands & Whitney 

2011), I found that surrounding land use had no direct effect on the overall pollinator community, 

possibly because I used standardised flowers (rather than different plants in each land-use type, 

which would partly generate land-use effects). However, land use did significantly affect the 
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abundance of many individual pollinator species, and in some species a significant positive 

interaction between intensifying land use and distance from hives was observed (Appendix 1). 

Manipulation of surrounding land-use practices could therefore be a useful tool to manipulate the 

wild pollinator community, as particular pollinator species responded differently to changing land 

use. Blowflies, for example, and particularly Lucilla sericata, were significantly more abundant at low 

honeybee densities and were frequent flower visitors. Thus, they could be increasingly economically 

valuable pollinators as honeybee densities decline. The abundance of these was affected by 

surrounding land-use type, as they rely on stock and stock dung during larval stages (Holdaway 

1930).  

By maintaining agricultural systems as a matrix of crop and pasture fields, thus keeping stock in close 

proximity to pollinator-dependent crops, it may be possible to maintain adequate pollination rates in 

the absence of honeybees. Similarly, it has been shown that maintaining natural areas and nesting 

habitats in close proximity to crops can be beneficial for maintaining diverse wild pollinator 

communities, and this may compensate for short- or long-term honeybee declines. 
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Chapter 3: Changes in plant-pollinator interactions  
 

3.1 Introduction 
 

Human-induced global environmental change is driving species extinctions and ecosystem 

degradation at unprecedented rates (Sala et al. 2000; Tilman et al. 2001; Foley et al. 2005). This 

global environmental change is a complex issue driven by many different but interacting factors 

(Didham et al. 2007; Tylianakis et al. 2008). Among these, land-use intensification and the spread of 

exotic species are having particularly devastating effects on natural ecosystems (Sala et al. 2000), 

which are threatening many ecosystem services valuable to society (Chapin et al. 2000; Daily et al. 

2000), such as the pollination of crops by wild insects (Schweiger et al. 2010). (Sala et al. 2000) 

Three quarters of crop species around the world are dependent on animal pollination to some 

extent (Klein et al. 2007), and any reduction in this valuable service may ultimately reduce global 

food supplies (Garibaldi et al. 2011a; Tylianakis 2013). Despite our dependence on pollination, wild 

pollinator populations are considered by many researchers to be declining worldwide (Potts et al. 

2010b; Cameron et al. 2011; Burkle et al. 2013) and land-use intensification has been strongly 

implicated in this decline (Björklund et al. 1999; Kremen et al. 2004; Klein et al. 2007; Kremen et al. 

2007; Ricketts et al. 2008; Tylianakis et al. 2008) 

It has been argued that commercially-managed honeybees may compensate for the loss of wild bees 

(Morse 1991b; Carreck & Williams 1998; Aebi et al. 2012), but commercial beekeeping faces a 

number of threats (Holden 2006; Ratnieks & Carreck 2010; Williams et al. 2010). Recent studies also 

suggest that honeybees may be less efficient pollinators of many crops than previously thought, and 

therefore that they may provide poor compensation for a diverse wild pollinator community 

(Garibaldi et al. 2011b; Garibaldi et al. 2013). Even if honeybees are effective, complementary 

behaviour of different pollinator species means that diverse pollinator assemblages can nevertheless 

be more effective than any single species(Hoehn et al. 2008; Tylianakis 2008; Brittain et al. 2013b). 

Given this doubt about the ability of commercial beekeeping to compensate for wild pollinator 

losses, it is imperative that we develop an understanding of how exotic honeybees integrate into 

communities of wild pollinators in order to predict how these networks might respond to declining 

honeybee densities and global environmental change. 

While the impacts of exotic bees or land-use intensification on any particular plant or pollinator 

species may at times be apparent, predicting changes in pollination at the community scale has been 

a major challenge to scientists (Traveset & Richardson 2006). Effective pollination depends not only 

the on the diversity and abundance of plants and pollinators within the community, but also on the 

ways in which species interact (Tylianakis et al. 2008). Therefore, to accurately determine changes in 

pollination across the entire community, we must analyse changes to both the species themselves 

and the interactions between them. The recent expansion of network-analytical approaches may 

provide a powerful means to achieve this goal (Bascompte 2009)(Forup & Memmott 2005; Tylianakis 

2008), exposing emergent properties of the community that cannot be predicted from the pairwise 

interactions alone, such as the existence of different functional guilds within the community or the 
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stability of pollination services they provide (Bascompte et al. 2003; Bascompte et al. 2006; 

Bascompte 2009; Thébault & Fontaine 2010). Consequently, a surge of recent publications have 

examined the effects of exotic species or changing land-use on pollination networks 

(e.g.,(Lopezaraiza-Mikel et al. 2007; Aizen et al. 2008b; Hagen et al. 2012; Pocock et al. 2012; 

Traveset et al. 2013).  

One consistent pattern to emerge from the network literature is that exotic species are often 

extreme generalists, and by interacting with many other species they increase the overall 

connectivity of pollination networks (Aizen et al. 2008b; Traveset et al. 2013). For example, the 

indiscriminant foraging behaviour of honeybees makes them an extremely generalist exotic (in much 

of their global range) species (Butz-Huryn 1997), which consequently affects the structure of 

pollination networks in which they are present (Aizen et al. 2008b). Therefore, if honeybees decline 

in their range or abundance, we may expect pollination networks to become less connected, unless 

generalist wild pollinators move in to fill their role. The ability of generalist wild pollinators to fill this 

role, however, is unknown. As changing land use has been shown to have strong effects on wild 

pollinator communities (Björklund et al. 1999; Kremen et al. 2002; Kremen et al. 2004; Klein et al. 

2007; Kremen et al. 2007; Ricketts et al. 2008; Tylianakis et al. 2008), the response of wild 

pollinators to declining honeybee densities will likely differ between land-use types (Kremen et al. 

2002). While no studies have specifically investigated the interactive effects of exotic honeybees and 

land-use change, Didham et.al (2007) discuss two broad types of interaction effects between exotic 

species invasion and land-use change that may occur: interaction chain effects, whereby one driver 

alters the propensity of another driver to occur, but does not change its effect; and interaction 

modification effects, where one driver changes the per-unit or per-capita effect of the other driver. 

Both these mechanisms are likely to occur in pollination systems.  For example, competition for 

pollinators by the exotic weed Impatiens glandulifera has been shown to alter interactions between 

the native plant communities and their pollinators (Lopezaraiza-Mikel et al. 2007). As weed invasion 

is frequently facilitated by land-use intensification(Tsai et al. 2012; Peltzer & MacLeod 2013) and 

human disturbance, interaction chain effects are also likely. 

In this study, I use a pollination-network approach to investigate the interactive impacts on 

communities of the declining abundance of a key exotic pollinator, the European honeybee (Apis 

mellifera), and land-use intensification. I investigate changes in network structure to determine the 

role of honeybees in the wider pollination network, and to determine how this changes with altered 

land use.  I then determine how changes in community structure impact the pollination services 

carried out by species in the pollination network. Specifically, I test for changes in the pollen 

transport patterns of native, crop and weed species in these networks, and discuss their implications 

for pollination services.   

3.2 Methods 

3.21 Insect collection  

This study used pollen transport networks constructed from samples collected from the Mackenzie 

Basin, South Canterbury, New Zealand (See Chapter 2 methods). Flower-visiting insects were 

collected at 18 field sites in the Mackenzie basin, across gradients of declining honeybee density 

(manipulated by selecting sites at increasing distances from commercial hives) and changing land 

use (classified into one of four levels, based on predominant land uses in the landscape - tussock 
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grassland, riverbed scrub, degraded tussock grassland or pasture/crop fields) (See Chapter 2 

methods). These insects were collected during flower observations on arrays of experimentally 

grown plants at the sites from December 2011 to February 2012. (See “flower observations” Chapter 

2 Methods). After capture, insects were stored individually to prevent pollen contamination 

between insects until pollen was later removed, quantified and identified. The insects were then 

identified to species level with the help of taxonomists where possible, or grouped to 

morphospecies where morphological characteristics were insufficient to differentiate species 

accurately. A reference collection of these was deposited at the University of Canterbury.  

3.22 Pollen counts and identification 

To determine the presence of interactions between the pollinator and plant communities, I analysed 

the pollen load carried by each insect (excluding pollen carried in the scopae or corbiculae of bees, 

as this is unlikely to be deposited on flowers). I removed pollen samples from each insect and 

mounted this on microscope slides using the fuchsin gel method detailed in (Dafni et al. 2005). From 

these, pollen samples were identified for a standardised number of pollinator individuals of every 

species (4 individuals from each sampling round at every site). These pollen samples were 

systematically examined and the first twenty pollen grains on each slide were identified to species, 

based on a reference collection of pollen grains collected from the observed flowers and 

surrounding vegetation at each site.  

3.23 Network construction 

To analyse the impact of honeybee declines and changing land use on pollination interactions at the 

community level, I constructed a network of pollen transport interactions (Lopezaraiza-Mikel et al. 

2007). I constructed binary pollen transport networks for each site using the identities of pollen 

grains carried by a standardised number of insects from every species (see “Pollen counts and 

Identification” above). An interaction (i.e. a network ‘link’) was deemed to occur between a plant 

and pollinator species if pollen of this plant species was identified on any members of an insect 

species. However, the amount of pollen carried by a pollinator may not be representative of the 

importance of that species for the plant’s reproduction. In fact, the quantity of pollen transported by 

pollinators was highly variable, differing by over three orders of magnitude between insects. As high 

pollen loads can result from a single visitation, and thus depend highly on pollinator morphology and 

behaviour as well as visitation rates, I decided that pollen load was not directly comparable between 

pollinator species as a measure of pollination effectiveness. Therefore, I opted to construct more 

conservative binary networks, whereby interactions are present or absent depending on the 

presence or absence of pollen transport by pollinators, rather than quantitative links weighted by 

the amount of pollen carried. However, because morphology and behaviour should be more 

consistent within species, and because one objective of this study was to examine how the pollen 

preferences of pollinator species change, when calculating metrics at the species level to make 

within-species comparisons, I incorporated quantitative link weights based on the proportion of 

each pollen species being transported. Individual networks were compiled for each of the 18 sites, 

and properties of these (Connectance  and Nestedness) were calculated using the “bipartite” 

package (Dormann et al. 2008) within R Statistical Software (R Development Core Team 2011). 

Connectance and nestedness were selected as metrics of community structure because these closely 

relate to underlying biological properties. Connectance, the proportion of the total possible links 
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between species in the network that are realised, is a measure of species specialisation (Jordano 

1987). Specialist pollinators visit only a few of the possible flower species, thus leading to networks 

with low connectance, whereas generalist pollinators visit a wide range of flowers and therefore 

generate high connectance. I hypothesised that the generalist pollination strategy of honeybees 

would cause a decline in overall network connectedness when they are absent from the network. 

Nestedness measures the extent to which specialist species (those with few links) interact with 

species that also interact with generalists (Bascompte et al. 2003). It is known to be important for 

the stability of mutualist networks (Bascompte et al. 2003; Thébault & Fontaine 2010) and has been 

shown to increase with the presence of exotic generalists (Traveset et al. 2013). Nestedness was 

calculated using the algorithm “BINMATNEST” (Rodríguez‐Gironés & Santamaría 2006) in R. Both of 

these metrics were calculated using binary interactions, i.e. I did not incorporate any measure of link 

strengths between plant and pollinator species.  

 

3.24 Analysis Methods 

To determine how the overall network structure changed with declining honeybee density and 

changing land use, I analysed the response connectance and nestedness to each gradient. These 

were tested using a general linear model (GLM) for each metric (the response variable), and 

honeybee density, surrounding land-use type and the interaction between these as predictors. This 

analysis was conducted using the lm() function in the base package of R, and the maximal model was 

simplified to the best-fitting model based on minimising the value of the Akaike Information 

Criterion (AIC). The residuals of these models were checked to be normally distributed and to 

conform to the assumption of homoscedasticity, and the response variable was transformed 

appropriately where these assumptions were not met.  

As honeybees are an integral part of the pollinator community, I included honeybees in the 

networks, despite manipulating their densities using the distance to the nearest hive. However, to 

differentiate between changes in network structure simply due to the absence of honeybees, as 

opposed to changes in the interactions between other species throughout the wider community 

induced by the presence of honeybees, I re-ran these analyses with honeybees removed from the 

network and compared these models. To control for the known relationship between connectance 

and species diversity (as diversity increases, there are more possible links between species and a 

lower probability of these being realised)(Dunne et al. 2002), I incorporated the number of possible 

links (plant diversity x pollinator diversity) at each site as a covariate in the model testing for changes 

in connectance. Connectance between species within a network can also be influenced by sample 

size (abundance of individuals), as increasing sample size increases the probability of observing rare 

interactions (Dunne et al. 2002). To control for this, I also added the sample size (number of 
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pollinator individuals) at each site as a covariate in the model. 

 

Figure 3.1 Change in network connectance at increasing distances from commercial bee hives.  

To untangle the mechanisms driving any changes in network structure, I analysed connectivity at the 

species level. If community-level connectedness were to change according to any of my predictor 

variables, this could be caused by a shift in species composition toward a more generalist 

community, or alternatively by individual species becoming more generalist. To distinguish between 

these possibilities I analysed changes in the connectedness of each species (measured as normalised 

species degree) with changing land use and honeybee density. Normalised species degree (the 

number of links per species, scaled by the number of possible links) was calculated for every 

pollinator species at each site (i.e. each network) using the “species level” function of the bipartite 

package in R.  This was tested against the distance and land-use gradients using a linear mixed 

effects model, conducted using the lmer function of the lme4 package (Bates et al. 2011) in R. For 

this model, normalised species degree was the response variable, land use and distance from bee 

hives (and their interaction) were fixed predictors. Species identity was included as a random factor 

to test for within-species changes in connectedness across sites (i.e. to test whether each species 

was behaviourally specialising more on fewer plant species, rather than the community changing to 

include species that differed in their inherent specialisation). Site was also included as a random 

factor to account for the non-independence of multiple species within a network (site). This maximal 

model was simplified to the best-fitting model based on minimising the value of the Akaike 

Information Criterion (AIC). Because the calculation of error degrees of freedom in mixed effects 

models is the subject of debate, I followed (Bolker et al. 2009) by testing hypotheses within this 

model using Monte Carlo Markov Chain (MCMC) resampling, which was conducted using the 

pvals.fnc() function in the languageR package (Baayen 2008) in R. If any of my predictors remained 
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significant, it would indicate that the generality of each species were changing, rather than a 

community shift towards more generalist species. 

To determine the effect of any changes in connectivity on the pollination services carried out by the 

community, I analysed how the transport of different pollen types (crop vs. native or weed pollen) 

changed with species-level connectivity of pollinators in the network. Crops were defined as exotic 

plant species of which the spread or cultivation is intentionally facilitated by farmers, whereas 

weeds were defined as exotic plants not meeting this criterion. Pollen transport was analysed using 

a linear mixed effects model with a binomial distribution, with the proportion of each pollen type 

carried by each species as a response variable, and the type of pollen (factor with three levels: crop, 

native or weed pollen) and the normalised degree for each species (including their interaction term) 

as predictors. Species identity and site were also included as random factors to control for the non-

independence of different pollen types from a given bee species, and of different species from a 

given site. Obviously bees with lower connectivity by definition carry fewer species of pollen, 

however, this model tested whether any behavioural specialisation (reduced connectivity of a 

species) favoured a particular type of pollen. 

3.3 Results 
 

Connectance of the pollen transport network decreased significantly as honeybee densities declined 

(F = 8.79 p = 0.011). Land-use intensification and the land use x honeybee density interaction had no 

significant effect on connectance, and were not included in the best-fitting model. Similarly, the 

number of possible links between species and the sample size both had no significant effect on 

connectance and were removed from the best-fitting model. The observed change in connectance 

remained significant when data for honeybees were removed from the network (F = 9.84 p = 

0.0079), showing that this change was at least partially due to changes in the interactions between 

other species in the community. Despite the change in connectance, there was no significant change 

in nestedness  across either gradient,  and this was best predicted by a null model with only the 

intercept and not incorporating either honeybee density or changing land use. 

To untangle the mechanisms driving this change in connectance, I analysed connectivity at the 

species level using the normalised degree (the number of observed links, scaled by the number of 

possible links per species) of each species. As with connectance at the network level, normalised 

species degree decreased significantly as honeybee densities declined (pMCMC = 0.022), but did not 

change significantly between land-use types or with the distance x land use interaction, which were 

both removed from the best-fitting model. However, this honeybee density effect on individual-level 

connectedness became non-significant when species identity was removed from the model as a 

random factor (pMCMC = 0.253), indicating that changes in the behavioural specialisation of individual 

species drove the change in connectedness, rather than a community shift towards generalist 

species. Despite changes in connectivity, the diversity of plant species carried by the community 

showed no significant change (F = 0.9892 p = 0.3347) across the honeybee density gradient as 

connectivity decreased, indicating that pollinators did not simply become more specialised because 

there were fewer plants on which to feed. 
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The proportion of the different pollen types (crop, weed or native pollen) carried by insects changed 

across the different land uses, which would be expected based on differing availability of plant 

species. For example, in crop/pasture sites, significantly more weed pollen was carried than any 

other pollen type (Z = 5.27, p < 0.001), and the proportions of each pollen did not differ significantly 

from this in degraded tussock. In contrast, this ratio changed significantly in riverbeds, where the 

proportion of crop pollen increased (Z = 3.07, p = 0.002) and both native (land use (riverbed) x native 

pollen interaction: Z = -2.18, p = 0.029) and weed (land use (riverbed) x weed pollen interaction: Z = -

3.80, p = 0.0001) pollen proportionately decreased.  

However, changing connectedness (normalised degree) of species in the network was associated 

with dramatic changes in the proportion of each pollen type they carried, and how this changed with 

land use. There was a highly significant 3-way interaction between normalised degree, pollen type 

transported, and land use (Appendix 5). Specifically, normalised degree was significantly negatively 

associated with the proportion of weed pollen carried in pasture sites (normalised degree x weed 

pollen interaction: Z = -3.02, p = 0.003), but this effect was reversed in all other land-use types (land 

use types x normalised degree x weed pollen interactions: Z > 2.32, p < 0.020 in all cases). The non-

crop/pasture habitats were also associated with an increased positive association between 

normalised degree and the proportion of native pollen carried (land use x normalised degree x 

native pollen interactions: Z > 2.68, p < 0.007 in all cases). Normalised degree was not associated 

with changes in the proportion of crop pollen in crop/pasture sites, but it was negatively related 

with the proportion of crop pollen carried in all other land uses (land use x normalised degree 

interactions: Z < -2.46, p < 0.014 in all cases).   

 

3.4 Discussion 
 

In pollination networks, network structure can reveal emergent properties of the system that are 

not apparent by investigating pairwise interactions alone (Bascompte 2009). I investigated the 

change in several measures of network structure across gradients of declining honeybee density and 

changing land use, and my results show that network structure changed as honeybee density 

declined. Specifically, I observed a significant decrease in connectance at both network and species 

level across the pollen transport networks as honeybee densities decreased.  

Obviously, as honeybees are a highly generalist pollinator, their removal from the community would 

be expected to result in a decrease in network connectance. Honeybee visits, however, composed 

less than 1% of the total number of visitations and the observed change in connectance remained 

significant when honeybees were removed from the network. This change also remained significant 

after controlling for the number of possible links between species, showing that this was not due to 

an increase in species diversity as honeybee densities declined, but rather due to a shift in the 

foraging behaviour of pollinator species toward a higher degree of specialisation on certain plant 

species. 

As honeybee densities declined, other pollinators tended to visit a narrower selection of flowering 

plants. Theoretically, this change could be caused by a shift in community composition from a 

predominantly generalist community toward a guild of more specialist pollinator species. However, 
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my mixed model with species included as a random factor indicated a change in the behaviour of the 

species themselves, as individuals within a given species tended to visit a narrower diversity of plant 

species. Interestingly, the diversity of plant species carried by the entire community showed no 

significant change across the bee density gradient as connectivity decreased. This implies that 

foraging preferences between pollinator species allowed diversity of pollen transport to be 

maintained throughout the community, yet each pollinator species had a higher degree of fidelity to 

particular plant species in the absence of honeybees.  

This increasing specialisation would theoretically result in more efficient pollination, as transported 

pollen has a higher probability of being deposited on a flower of the same species (Waser 1986). 

Therefore, the reduced connectivity of other species with declining honey bee density would 

theoretically result in more efficient pollination of the plant species that are visited. Other recent 

studies have shown that honeybees can be less efficient pollinators than wild pollinators, and may 

provide poor compensation for declining wild pollinators(Winfree et al. 2007; Hoehn et al. 2008; 

Garibaldi et al. 2013). My result expands on this, showing an association between high honeybee 

density and generalist visitation behaviour by other species in the network. This indicates that rather 

than simply being less efficient pollinators themselves, honeybees may also reduce the pollination 

efficiency of wild pollinators in the surrounding landscape.  

Although my experimental design was not designed to test the mechanisms causing this change in 

network connectance, it is possible that increased competition for floral resources at high honeybee 

densities drives wild pollinators to forage more opportunistically. In an optimal, competition-free 

world, pollinator species might be expected to specialize to a high degree on the flower species that 

give them the greatest reward (Abrol 2006). However, as competition for floral resources increases, 

the maximal rewards from any single species would decrease and these specialists might be forced 

to become more opportunistic, scavenging resources from a wider array of flower species. As 

honeybees are highly efficient foragers, partially due to their complex communication systems 

(Visscher & Seeley 1982), they might be better able to dominate optimal resource supplies than wild 

pollinators, and thereby induce greater generalism in competing insect species (Roubik & Villanueva‐

Gutierrez 2009). This displacement of wild pollinators by honeybees has been frequently 

demonstrated to occur on an individual species basis (e.g. (Roubik 1980; Roubik et al. 1996; Stout et 

al. 2002a; Dupont et al. 2004), but to my knowledge this has never been shown at a community 

wide scale. 

The decreasing network connectance observed with declining honeybee abundance had 

consequences for the transport of pollen throughout the network. I found a significant three-way 

interaction between a species’ connectivity, the proportion of different pollen types it carried, and 

surrounding land use. Significantly more weed pollen than native or crop pollen was carried by 

pollinators across all of my sites, and the proportion of weed pollen was higher in crop and pasture 

than all the other land-use types. However, the proportion of weed pollen relative to native or crop 

pollen changed with decreasing connectedness. Reduced connectedness was associated with an 

increase in the proportion of weed pollen carried by the community in crop and pasture areas where 

weeds were abundant, but a decrease in the proportion of weed pollen in all less intensive land uses 

where weed pollen was significantly less abundant 



 

41 
 

As the proportion of weed pollen carried was significantly higher in crop/pasture than other land use 

types, this may be explained by changes in weed abundance in these landscapes, combined with the 

greater specialisation of pollinators on more abundant resources in the absence of honeybees.  In 

land-use types where weeds were less common, specialisation appears to be toward the more 

abundant native and crop species, resulting in reduced transport of weed pollen. Where weeds were 

more abundant, however, this greater specialisation was associated with higher levels of weed 

pollen transport. This is consistent with my above hypothesis; suggesting that that, as competition 

between pollinators increases, pollinators are forced to forage on less-rewarding flower species. I 

hypothesise that in areas where flowers of a particular type are abundant, wild pollinators are able 

to specialise on these in the absence of honeybees. As honeybee densities increase, wild pollinators 

are out-competed on these species and forced to switch to foraging on marginal species.  

Combined with my findings of greater pollen-species constancy in the absence of honeybees, this 

has significant implications for the impact of honeybees on pollination systems. Exotic pollinators, 

particularly social bees, have often been reported to favour exotic flower species over natives 

(Goulson & Hanley 2004; Hingston 2005; Aizen et al. 2008b; Webber et al. 2012). As a result, exotic 

pollinators have been implicated in spread of many weed species (Huryn & Moller 1995; Simberloff 

& Von Holle 1999; Barthell et al. 2001; Goulson 2003b; Hanley & Goulson 2003; Simpson et al. 2005; 

Gross et al. 2010). My results show that this effect not only applies to honeybees themselves, but 

that they may also indirectly influence weed pollination through their influence on the 

connectedness of other pollinator species in the network.  

Finally, this study emphasises the importance of investigating the many drivers of global 

environmental change simultaneously. While land use had no direct effect on network structure in 

this pollination system, it affected pollination services delivered by the community when faced with 

declines in the abundance of honeybees and resulting changes in the pollination network structure. 

This change would not be detectable when investigating either driver in isolation, demonstrating the 

importance of testing these simultaneously.  
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Chapter 4: Discussion 
 

4.1 Effects of honeybee declines in changing landscapes  
 

Pollination, as an ecosystem service, is directly linked to global food security and human welfare 

(Meffe 1998; Carpenter et al. 2006; Díaz et al. 2006; Klein et al. 2007), and much of this service is 

provided through the globalisation of the western honeybee, Apis mellifera (Morse & Calderone 

2000). However, a broad suite of inflictions are currently having adverse effects on honeybee 

colonies around the globe, and the future sustainability of beekeeping has been questioned 

(Johnson et al. 2010; Le Conte et al. 2010; Potts et al. 2010a). Simultaneously, global population 

growth has increased human food demands, resulted in rapidly-increasing agricultural intensity in 

many areas worldwide (Tilman et al. 2011), increased demand for pollination services (Aizen et al. 

2008a; Aizen & Harder 2009), but these changes potentially threaten the ability of ecosystems to 

provide these services (Kremen et al. 2002; Greenleaf & Kremen 2006; Kremen et al. 2007).   

In this study, I investigated the combined impacts of honeybee declines and land-use intensification 

on pollination services, showing that honeybee declines may have a large impact on community 

structure and interactions within pollination systems. I observed a significant shift in the wild 

pollinator community composition as honeybee densities declined, from a generally bee/hoverfly 

dominated community to one more dominated by large flies (Chapter Two). This was associated 

with a significant decline in the total pollen load transported by the community (Chapter Two), 

indicating that pollination services may suffer in the absence of honeybees. As honeybee densities 

declined, however, I also observed a shift toward greater specialisation of pollinators on abundant 

resources (Chapter Three), increased pollinator constancy (the tendency of pollinators to show high 

fidelity to a single species (Waser 1986), Chapter Three), and a higher viability rate of the pollen 

transported (Chapter Two). These findings show that although the total amount of pollen 

transported by the community declined as honeybee densities decreased, the probability of this 

pollen transport resulting in effective pollination likely increased. Thus, I observed no decrease in 

seed set with honeybee declines in any of the three plant species tested, and one of these even 

showed a significant increase. Finally, I also demonstrated that this change differentially affected 

different plant types, and that the extent of changes to each plant species differed between land-use 

types. This reflected changes in the relative abundance of pollen types in different land uses, with 

greater specialisation in the absence of honeybees disproportionately benefiting common species. 

These findings have strong implications for several contemporary issues in pollination biology, both 

locally within New Zealand and on a global scale. These are discussed in the following sections. 

4.2 Compensation of wild pollinators for honeybee declines 
 

Given current uncertainty regarding the sustainability of our reliance on honeybees, understanding 

the ability of wild pollinators to compensate for honeybee declines may become crucial to ensuring 

global food security (Klein et al. 2007; Winfree et al. 2007; Garibaldi et al. 2011a). Recent studies 

have shown that wild pollinators may be more important than once thought for crop pollination 
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(Winfree et al. 2008; Garibaldi et al. 2013), and my findings support this claim. I found that wild 

pollinators were responsible for 99% of all pollen transport in the area studied; however, this trend 

may have been exaggerated by my experimental design. Due to the communication systems of 

honeybees, they tend to recruit to large resource supplies and forage primarily on a few high-quality 

flower patches (Visscher & Seeley 1982). My pollinator observations were conducted on small, 

temporary, experimental flower patches, and therefore may have under represented the 

importance of honeybees in areas close to hives.  

Nevertheless, the Mackenzie basin is known for its high native bee diversity (Quinn 1984) and semi-

natural landscape, therefore wild pollinators are likely to be more abundant than national (and 

perhaps global) averages. Consequently, I observed high visitation rates and no decline in the seed 

set of a range of plant species at large distances from bee hives, suggesting that wild pollinators do 

indeed compensate for the loss of honeybees. Furthermore, I observed increases in pollinator 

constancy and pollen viability in the absence of honeybees, which suggests that the pollination 

efficiency of wild pollinator species may even increase as honeybee abundances decline. Therefore, 

the ability of wild pollinators to compensate for pollination loss in the absence of honeybees may be 

greater than predicted based on their abundance alone or their contribution to pollination in the 

presence of honeybees.  

4.3 Impact of honeybee declines on NZ ecosystems 
 

While wild bees are frequently the focus of studies and conservation efforts (e.g.(Banaszak 1992; 

Goulson et al. 2008; Brown & Paxton 2009), fly species can be equally important pollinators (Chapter 

2)(Rader et al. 2009; Rader et al. 2011; Rader et al. 2012; Rader et al. 2013). In New Zealand, 

pollination systems are unique in that there are no native social bee species, and that dipteran flies 

comprise an unusually high proportion of pollinators (Heine 1937; Primack 1983). In fact, a high 

proportion of New Zealand native plants have small, colourless and often scented flowers, which is 

considered to be an adaptation to pollination by the diverse fly fauna (Heine 1937; Primack 1983; 

Lloyd 1985). However, my findings that large-bodied flies increased most in the absence of 

honeybees suggests that they may be particularly vulnerable to competition from honeybees 

(Chapter 2), and this has implications for the management of honeybees near native ecosystems. As 

honeybee densities declined, I observed a shift in the pollinator community from a generally bee- 

and hoverfly-dominated community, to one more composed of large flies (particularly blowflies 

(Calliphoridae) and soldierflies (Stratomyiidae), Chapter 2). Greater flower visitation rates by flies in 

the absence of honeybee competitors would be expected to result in greater pollination rates and 

seed set in plants adapted to fly pollination, and indeed I observed increased seed set in a common 

fly-adapted plant (Achillea millefolium). Although this was an introduced plant, its floral 

characteristics are similar in many respects to many native, fly-pollinated species and it has been 

shown to be primarily visited by native insects in New Zealand (Primack 1983). This indicates that 

high honeybee densities may possibly alter interactions between native plants and their fly 

pollinators, potentially reducing seed set.  

While the results of Chapter 2 provide evidence for some benefits associated with honeybee 

declines in indigenous ecosystems, this conclusion is based only on data from a single (exotic) fly-

pollinated plant, and further study would be required to extrapolate these results to other species. 
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Finally, although a large proportion of native plants are apparently adapted to fly pollination, birds 

have historically also been important pollinators, and a number of indigenous plant species have 

specialised ornithophilous (bird-adapted) flowers (Anderson et al. 2011). Pollinating birds however, 

have suffered drastic declines on the New Zealand mainland, as a result of habitat loss and predation 

by introduced mammals (Anderson 2003; Anderson et al. 2011), and several ornithophilous flower 

species are now severely pollen limited (Montgomery et al. 2001; Anderson 2003; Anderson et al. 

2011). While some native insects do visit these flower species, their deposition of pollen is highly 

ineffective due to their small size (Robertson et al. 2005). Given the much larger body size of exotic 

bees, and their introduction into New Zealand coinciding with bird declines, it is possible that these 

may be important to the remaining pollination of some ornithophilous flowers and partially 

compensate for the functional loss of pollinating birds. Therefore, the impact of honeybees on 

native ecosystems is a complex issue, and further study is required before the impacts of honeybee 

declines on pollination of New Zealand’s native plant species can be fully understood.   

4.4 Weed invasion 
 

It has been widely speculated that exotic bees may facilitate the invasion of exotic weeds (Huryn & 

Moller 1995; Goulson 2003b; Aizen et al. 2008b; Howlett & Donovan 2010). While many studies 

have shown that exotic pollinators often preferentially visit exotic plant species (Goulson & Hanley 

2004; Webber et al. 2012), and that many invasive weed species are highly dependent on exotic 

pollinators (Stout et al. 2002b; Gross et al. 2010; Paynter et al. 2010; Beavon & Kelly 2012), other 

studies have concluded that facilitation of exotic weeds by honeybees is unlikely (Huryn & Moller 

1995). In addition to my above findings of increased pollination of a weed (A. millefolium) in the 

absence of honeybees, Chapter 3  investigated the effects of changing pollination interactions on the 

transport of weed pollen by the pollinator community as honeybee densities declined.  I found that, 

as honeybee densities declined, there was a shift in the network structure of the pollinator 

community toward decreased connectance. This reduced connectivity of the network was 

associated with an increase in the proportion of weed pollen carried by the community in crop and 

pasture areas where weeds were abundant, but a decrease in the proportion of weed pollen in all 

less intensive land uses where weed pollen was significantly less abundant. This shows that weed 

facilitation by pollinators may be a complex issue. Firstly this shows that facilitation may occur both 

directly and indirectly, with honeybees not only pollinating weeds themselves, but also altering the 

propensity of wild pollinators to visit weeds. Secondly, the propensity of pollinators to pollinate 

weeds depended on the surrounding land-use, possibly as a result of increased behavioural 

specialisation on available flowers. Wild pollinators became more specialised (i.e. they interacted 

with fewer plant species) as honeybee densities declined. In land-use types where weeds were less 

common (e.g. native tussock grasslands), this specialisation appears to have been toward the more 

abundant native and crop species, resulting in reduced transport of weed pollen. Where weeds were 

more abundant (e.g. in crops and pastures), however, this greater specialisation was associated with 

higher levels of weed pollen transport. Overall, this suggests that honeybees may facilitate the initial 

invasion of invasive weeds, increasing their weed reproductive rates when they are rare, however 

once weed populations reach a critical density this benefit to weed pollination is lost. Conversely, if 

honeybees decline, weed pollination may benefit, particularly in areas where weeds are common. 
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4.5 Land-use management as a tool to manage pollination 
 

Wild pollinators have shown some capacity to compensate for declining honeybee densities, both in 

the present study and in others (Goulson 2003a; Winfree et al. 2007; Rader et al. 2012; Garibaldi et 

al. 2013), however their ability to do so may depend on surrounding land uses (Klein et al. 2007; 

Kremen et al. 2007; Cariveau et al. 2013; Scheper et al. 2013). Land-use intensification has been 

shown to negatively impact a variety of wild pollinators (Klein et al. 2007; Cariveau et al. 2013), both 

through the alteration of floral resource supplies, and the destruction of native habitat 

requirements, such as viable nesting sites (Kremen et al. 2007).  

My results show that, although land-use type did not have a direct impact on the pollinator 

community composition, it did influence several aspects of pollination. A major change in the 

pollinator community as honeybees declined was the importance of blowflies as pollinators. During 

their larval life stages, these blowflies are highly dependent on stock and animal dung (Holdaway 

1930). While I did not detect significant changes in the abundance of these with changes in the 

surrounding land use or stocking rates, this is likely a result of the high mobility of these adult flies 

and their dispersal from source populations (Smith & Wall 1998). Therefore, it may be less important 

which land use is sampled, provided there is stock grazing somewhere in the landscape.  Land-use 

intensification in the Mackenzie basin is leading to a complex mosaic of natural, semi natural and 

intensive agricultural systems in close proximity to one another (Figure 1.3). The increasing value of 

these blowflies as pollinators when honeybees are absent demonstrates the value of this habitat 

complexity for pollination. By maintaining high stock densities within dispersal range of crop or 

natural landscapes, the spill over of dung-dependent pollinators may allow greater pollination 

success in adjacent habitats. Thus, maintaining high stock densities in close proximity to crop fields 

during flowering periods may allow farmers to compensate for honeybee declines and ensure 

pollination, and the practical application of this possibility warrants further exploration. 

4.6 Future research 
 

While this research contributes to our understanding of how pollinator communities may respond to 

honeybee declines in increasingly human-modified landscapes, my findings also open several 

avenues which may prove lucrative for future research on both local and global scales. The first of 

these is on the management of honeybees in New Zealand’s conservation estate. Commercial 

beekeeping is widely permitted in close proximity to many protected natural areas (Huryn & Moller 

1995), primarily due to the high value of honey produced from these hives. This study indicates that 

high honeybee densities might influence wild pollinators, potentially adversely affecting the 

pollination of the many fly-pollinated native plants. This result, however, is highly speculative and 

based on extrapolation from a limited portion of our data. In contrast to this, it is also possible that 

honeybees may partially compensate for declines in bird pollinators on the New Zealand mainland, 

providing valuable pollination to species dependent on this. Further research into the relative costs 

or benefits of honeybees to both fly- and bird-pollinated plants in New Zealand will be required 

before advice can be given on the management of bee keeping in natural areas.  
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Secondly, my findings show that different pollinator species respond differently to both honey bee 

declines and changing landscapes.  It is known that different insect guilds have visitation preferences 

toward different flower characteristics. Therefore, further research into the differential responses of 

pollinators to management solutions, such as changing land-use practices at landscape scales, may 

allow promotion of specific pollinator taxa, providing targeted delivery of pollination services to 

particular plant species of interest while reducing the reproductive success of others. 

Finally, this study clearly demonstrates the potential value of wild pollinators to society, particularly 

when faced with potential declines in the viability of honeybee pollination. While the benefits of 

promoting wild pollinator species are becoming increasingly obvious, little is currently known on 

how best to maximise this at landscape scales. My findings indicate that simple modifications of 

land-use practices, such as maintaining a matrix of diverse land use types in close proximity, may 

provide a tool for land managers to sustain wild pollinators. Further research into the resources 

provided to pollinators by differing land-use practices, and the complementarity between these, 

may allow for greater utilisation of these findings, thereby maximising the potential of wild 

pollinators to compensate for honeybee declines in our changing world. 



 

47 
 

Appendix 
 

Appendix 1.   Poisson GLM results for effect of distance from hive site and land use type, for all 

species present at more than half of the sites. Where there is a significant land use effect or 

interaction, co-efficients are given for individual land use types 

 

Species  β F P 

Allograpta spp. Land use   2.60 0.11 

 Distance 0.00 0.80 0.39 

 Interaction   0.18 0.91 

Phasia Campbelli Land use   1.64 0.24 

 Distance 0.00 2.06 0.18 

 Interaction   0.71 0.57 

Bombus terrestris Land use   43.22 0.00 

 Crop -0.16     

 Degraded tussock 
 

-1.09     

 Riverbed 
 

1.39     

 Tussock 
 

4.06     

 Distance 0.00 1.53 0.22 

 Interaction   7.63 0.00 

 Crop x Distance -0.16   

 Degraded tussock x 
Distance 

-1.09   

 Riverbed x Distance -0.16     

 Tussock x Distance -1.09     

Eristalis tenax Land use 1.39 0.70 0.57 

 Distance 4.06 0.02 0.89 

 Interaction   0.30 0.83 

Lassioglossum mataroa Land use 0.00 3.81 0.05 

 Crop 2.30     

 Degraded tussock -0.23     

 Riverbed 4.62     

 Tussock 3.30     

 Distance 0.00 0.12 0.74 

 Interaction   0.86 0.49 

Lassioglossum sordidum Land use   2.02 0.17 

 Distance 0.00 3.68 0.08 

 Interaction   1.44 0.29 

Leioproctus fulvescens Land use   30.07 0.00 

 Crop -25.05     

 Degraded tussock 2.52     

 Riverbed -0.04     

 Tussock -58.11     
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 Distance 0.02 30.07 0.00 

 Interaction   12.27 0.00 

 Crop x Distance -25.03     

 Degraded tussock x 
Distance 

2.52     

 Riverbed x Distance -0.04   

 Tussock x Distance -58.10     

Lucilla sericata Land use   6.36 0.01 

 Crop 2.56     

 Degraded tussock 1.47     

 Riverbed 0.20     

 Tussock 3.48     

 Distance 0.00 19.25 0.00 

 Interaction   1.64 0.24 

Melangyna novaezelandiae Land use   5.37 0.02 

 Crop 2.90     

 Degraded tussock 3.75     

 Riverbed 2.14     

 Tussock 2.47     

 Distance 0.00 6.74 0.03 

 Interaction   1.86 0.20 

Odontomyia spp. Land use   5.77 0.01 

 Crop 2.95     

 Degraded tussock 1.90     

 Riverbed 3.32     

 Tussock 7.67     

 Distance 0.00 7.83 0.02 

 Interaction   4.59 0.03 

 Crop x Distance 2.95     

 Degraded tussock x 
Distance 

1.90     

 Riverbed x Distance 3.32     

 Tussock x Distance 7.67     

Oxysarcodexia varia Land use   1.75 0.22 

 Distance 0.00 0.21 0.66 

 Interaction   0.09 0.97 

Platycheirus spp. Land use   1.75 0.22 

 Distance 0.00 0.05 0.83 

 Interaction   1.12 0.39 

Zizina labradus Land use   4.23 0.04 

 Crop 3.19   

 Degraded tussock 2.06   

 Riverbed 1.00     

 Tussock 3.40     

 Distance 0.00 0.826 0.384 

 Interaction   3.547  0.055 
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Appendix 2. Coefficients and P values for the analysis of pollen load across all species total 

pollen load across all species 

 

 Estimate Std. Error z value P 

(Intercept) 2.624 0.249 10.548 < 2e-16 

Adalia_bipunctata -2.560 1.261 -2.031 0.042 

Allograpta_spp. 0.025 0.275 0.091 0.927 

Apis_mellifera 0.560 0.408 1.372 0.170 

Bethylidae -0.129 1.194 -0.108 0.914 

Birconidae 0.237 1.668 0.142 0.887 

Bombus_hortorum 1.697 0.482 3.521 0.000 

Bombus_ruderatus 1.882 0.507 3.713 0.000 

Bombus_terrestris 1.810 0.331 5.461 0.000 

Bruchidius_villosus 1.461 1.657 0.882 0.378 

Calcigeria_incidens 1.921 1.653 1.162 0.245 

Calliphora_vicina 0.075 0.640 0.117 0.907 

Calliphoridae_spp. -0.696 0.782 -0.890 0.373 

Campylia_spp. 0.454 0.980 0.463 0.643 

Chaetophthalmus_bicolor -0.572 1.690 -0.339 0.735 

Chalcidae 0.080 1.672 0.048 0.962 

Coccinella_leonina 0.096 1.666 0.058 0.954 

Coccinella_undecimpunctata 0.139 1.195 0.116 0.907 

Dilophus_nigostigma -1.097 1.031 -1.064 0.287 

Eristalis_tenax 2.292 0.444 5.166 0.000 

Helophilus_antipodes 0.285 1.280 0.223 0.824 

Helophilus_hochstetteri 2.143 0.564 3.799 0.000 

Heteria_appendiculata 0.336 0.889 0.378 0.706 
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Heteria_plebia -0.860 1.702 -0.505 0.613 

Heteria_punctigera -0.917 0.819 -1.120 0.263 

Heteria_sp_1 1.084 1.659 0.653 0.514 

Hylaeus_asperithorax -2.795 1.947 -1.435 0.151 

Hylaeus_capitosus -0.795 0.521 -1.525 0.127 

Hylaeus_relegatus -2.101 1.802 -1.166 0.244 

Lassioglossum_mataroa 0.876 0.245 3.575 0.000 

Lassioglossum_sordidum 1.247 0.251 4.963 0.000 

Leioproctus_fulvescens 2.163 0.421 5.140 0.000 

Leioproctus_maritimus 0.593 1.660 0.357 0.721 

Lucilla_sericata -0.104 0.275 -0.380 0.704 

Lycaena_boulderanum -0.606 0.469 -1.291 0.197 

Lycaena_salustius 0.269 0.488 0.550 0.583 

Melangyna_novaezelandiae 0.623 0.254 2.451 0.014 

Muscidae_sp._1 -0.129 0.881 -0.147 0.883 

Muscidae_sp._2 -0.099 0.481 -0.206 0.837 

Muscidae_sp._3 -1.603 0.969 -1.655 0.098 

Muscidae_sp._6 -2.635 1.955 -1.348 0.178 

Muscidae_sp._7 -2.066 1.817 -1.137 0.255 

Muscidae_sp._8 -3.134 2.114 -1.482 0.138 

Muscidae_sp_2 -3.292 2.052 -1.604 0.109 

Odontomyia_spp. 0.597 0.254 2.355 0.019 

Orocrambus_flexuosellus 1.202 1.657 0.725 0.468 

Oxysarcodexia_varia 0.371 0.244 1.522 0.128 

Pales_sp_1 -3.123 2.092 -1.493 0.135 

Pales_sp_3 -0.046 0.988 -0.046 0.963 
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Pales_sp_4 -0.197 0.731 -0.270 0.787 

Pales_sp_6 0.306 1.185 0.258 0.796 

Peremptor_spp 0.562 0.979 0.574 0.566 

Phasia_campbelli 0.144 0.307 0.468 0.640 

Pieris_rapae 1.350 1.182 1.142 0.254 

Plagiomyia_spp. -0.402 1.211 -0.332 0.740 

Platycheirus_spp. -0.045 0.365 -0.123 0.902 

Poecilohetaerella_bilineata 0.084 0.578 0.145 0.885 

Pollenia_spp. 0.529 0.672 0.788 0.431 

Proscissio_sp_3 1.713 1.654 1.035 0.301 

Psilota_decessum -0.014 0.545 -0.027 0.979 

Tachinidae 0.166 0.357 0.464 0.643 

Xanthocnemis_zealandica -1.343 1.728 -0.777 0.437 

Zizina_labradus 0.539 0.272 1.979 0.048 

Land.usedegraded tussock 0.004 0.184 0.019 0.984 

Land.useriverbed 0.125 0.184 0.679 0.497 

Land.usetussock -0.095 0.234 -0.407 0.684 

Distance..m. 0.000 0.000 -5.518 0.000 

 

Appendix 3. Pollen viability coefficients and P values across all species, and across land-use 

and bee density gradients 

 Estimate Std. Error z value P 

(Intercept) 0.927 0.405 2.292 0.022 

Adalia_bipunctata 0.033 1.567 0.021 0.983 

Allograpta_spp. 1.222 0.619 1.974 0.048 

Apis_mellifera 1.247 0.634 1.966 0.049 

Beris_spp. -0.993 1.873 -0.530 0.596 
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Bethylidae 15.190 4139.000 0.004 0.997 

Birconidae 14.870 3569.000 0.004 0.997 

Bombus_hortorum 1.342 0.824 1.629 0.103 

Bombus_ruderatus 1.537 1.199 1.281 0.200 

Bombus_terrestris 0.300 0.512 0.585 0.559 

Bruchidius_villosus -2.170 1.460 -1.486 0.137 

Calliphora_vicina -0.256 1.092 -0.234 0.815 

Calliphoridae_spp. -0.664 1.471 -0.451 0.652 

Campylia_spp. 1.817 1.408 1.290 0.197 

Chaetophthalmus_bicolor 16.740 3671.000 0.005 0.996 

Chalcidae -0.344 1.523 -0.226 0.821 

Coccinella_leonina 14.470 4596.000 0.003 0.997 

Coccinella_undecimpunctata -0.892 1.583 -0.564 0.573 

Dilophus_nigostigma 0.310 0.967 0.321 0.748 

Eristalis_tenax 1.870 0.710 2.633 0.008 

Helophilus_antipodes -1.412 1.747 -0.809 0.419 

Helophilus_hochstetteri 2.855 0.953 2.994 0.003 

Heteria_appendiculata -1.013 1.324 -0.765 0.445 

Heteria_punctigera -0.297 0.963 -0.308 0.758 

Heteria_sp._2 -0.676 1.809 -0.374 0.709 

Heteria_sp_1 16.700 3584.000 0.005 0.996 

Hylaeus_asperithorax 17.460 3506.000 0.005 0.996 

Hylaeus_capitosus -0.721 0.962 -0.750 0.453 

Hylaeus_relegatus 15.400 4149.000 0.004 0.997 

Lassioglossum_mataroa 1.434 0.559 2.564 0.010 

Lassioglossum_sordidum 0.738 0.559 1.319 0.187 
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Leioproctus_fulvescens 0.827 0.713 1.161 0.246 

Leioproctus_hudsonii 1.891 1.981 0.955 0.340 

Leioproctus_imitatus 0.648 1.810 0.358 0.720 

Leioproctus_maritimus 0.652 2.035 0.320 0.749 

Lucilla_sericata 0.595 0.533 1.117 0.264 

Lycaena_boulderanum 0.265 0.982 0.270 0.787 

Lycaena_salustius 0.646 1.100 0.587 0.557 

Melangyna_novaezelandiae 0.628 0.448 1.400 0.161 

Muscidae_sp._1 16.970 2849.000 0.006 0.995 

Muscidae_sp._2 1.350 0.925 1.460 0.144 

Muscidae_sp._3 0.247 1.439 0.172 0.864 

Muscidae_sp._6 16.260 3061.000 0.005 0.996 

Muscidae_sp._7 16.720 2845.000 0.006 0.995 

Muscidae_sp._8 15.250 4224.000 0.004 0.997 

Muscidae_sp_2 0.390 1.312 0.297 0.766 

Neoitamus_melanopogon 1.607 1.438 1.118 0.264 

Odontomyia_spp. 0.499 0.457 1.092 0.275 

Orocrambus_flexuosellus 16.540 3208.000 0.005 0.996 

Oxysarcodexia_varia 2.109 0.589 3.583 0.000 

Pales_sp_1 -0.318 1.278 -0.249 0.804 

Pales_sp_3 -0.162 1.273 -0.127 0.899 

Pales_sp_4 2.042 1.614 1.265 0.206 

Phasia_campbelli 0.216 0.625 0.345 0.730 

Pieris_rapae 16.770 2098.000 0.008 0.994 

Plagiomyia_spp. 15.160 6651.000 0.002 0.998 

Platycheirus_spp. 0.668 0.719 0.930 0.352 
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Poecilohetaerella_bilineata 15.970 1695.000 0.009 0.992 

Pollenia_spp. 0.473 0.939 0.504 0.614 

Protohystricia_sp_1 0.106 1.844 0.057 0.954 

Protohystricia_sp_2 0.458 1.777 0.258 0.797 

Psilota_decessum 0.264 0.778 0.339 0.734 

Pteromalidae 15.960 4304.000 0.004 0.997 

Pyronota_festiva -0.953 1.771 -0.538 0.590 

Sapropogon_sp. -0.747 1.755 -0.425 0.671 

Tachinidae 0.418 0.515 0.813 0.416 

Therevidae -0.594 1.741 -0.341 0.733 

Xanthocnemis_zealandica 1.945 1.984 0.980 0.327 

Zizina_labradus 2.295 0.838 2.738 0.006 

Land.usedegraded tussock 1.015 0.388 2.612 0.009 

Land.useriverbed 0.115 0.391 0.294 0.769 

Land.usetussock 0.385 0.523 0.736 0.462 

Distance..m. 0.000 0.000 3.430 0.001 

 

Appendix 4.  Coefficients showing overall effects of declining bee density (distance) and 

land use types on the pollen load pollen load carried by pollinators 

 Estimate Std. Error z value P 

(Intercept) 2.72 0.21 12.90 < 2e-16 

Intertegular distance 0.29 0.06 4.59 0.000 

Land use: degraded 

tussock 

-0.15 0.20 -0.77 0.442 

Land use: riverbed -0.08 0.20 -0.40 0.689 

Land use: tussock -0.14 0.25 -0.56 0.574 

Distance 0.00 0.00 -3.95 0.000 
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Appendix 5. Table of coefficients and P values showing the relationship between connectedness, 

pollen type and land use as predictors of the proportion of pollen carried by insects. 

 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) 0.40034 0.55981 0.715 0.474524 

normalised degree -1.1225 1.12676 -0.996 0.319142 

Pollen typeNative 0.09069 0.67089 0.135 0.892474 

Pollen typeWeed 3.00698 0.57072 5.269 1.37E-07 

land usedegraded tussock 0.06954 0.76288 0.091 0.927365 

land useriverbed 2.12234 0.69162 3.069 0.00215 

land usetussock 0.6096 0.68639 0.888 0.374479 

normalised degree x Pollen type Native -0.23633 1.36114 -0.174 0.862158 

normalised degree x Pollen type Weed -3.70761 1.22646 -3.023 0.002503 

normalised degree x land use Degraded tussock -3.70789 1.5017 -2.469 0.013544 

normalised degree x land use Riverbed -6.8807 1.42654 -4.823 1.41E-06 

normalised degree x land use Tussock -3.57713 1.42983 -2.502 0.012357 

Pollen typeNative x land use Degraded tussock -0.83107 0.89073 -0.933 0.350811 

Pollen typeWeed x land use Degraded tussock 0.33881 0.799 0.424 0.671537 

Pollen typeNative x land use Riverbed -1.77027 0.81303 -2.177 0.029452 

Pollen typeWeed x land use Riverbed -2.71193 0.71462 -3.795 0.000148 

Pollen typeNative x land use Tussock -1.92956 0.85926 -2.246 0.024729 

Pollen typeWeed x land use Tussock -0.57899 0.73096 -0.792 0.428299 

normalised degree x Pollen type Native x land use 
Degraded tussock 5.0447 1.75102 2.881 0.003964 

normalised degree x Pollen typeWeed x land 
usedegraded tussock 3.77018 1.62154 2.325 0.020069 

normalised degree x Pollen typeNative x land 
useriverbed 4.51404 1.68321 2.682 0.007323 

normalised degree x Pollen typeWeed x land 
useriverbed 8.79414 1.54087 5.707 1.15E-08 

normalised degree x Pollen typeNative x land 
usetussock 5.55052 1.75934 3.155 0.001606 

normalised degree x Pollen typeWeed x land 
usetussock 3.98826 1.58872 2.51 0.012061 
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