Solving Dirichlet’s Problem Constructively

Maarten McKubre-Jordens

“To find oneself lost in wonder at some manifestation is frequently the half of a new discovery.”

– J.P.G. Lejeune Dirichlet
Throughout, we work in the Bishop-style constructive mathematical framework (\textbf{BISH}), which is mathematics using intuitionistic logic and some appropriate constructive foundation (e.g. Aczel’s CZF or Martin-Löf type theory).

Occasionally we may refer to classical mathematics (\textbf{CLASS}) for comparison purposes.
BHK Interpretation

Intuitionistic logic is positively characterized by the Brouwer-Heyting-Kolmogorov interpretation of the logical connectives. We emphasize:

\[P \Rightarrow Q \quad \text{We have an algorithm which turns proofs of } P \text{ into proofs of } Q. \]

\[\exists x \in A P(x) \quad \text{We have an algorithm which}
\]

(i) computes an object, \(x \), belonging to \(A \), and

(ii) shows that \(P(x) \).
Observations:

Some points to note about mathematics using intuitionistic logic:

- Classical theorems often become more enlightening when given constructive proof.

- Often there are multiple classically identical theorems that are constructively distinguishable.
Observations:

Some points to note about mathematics using intuitionistic logic:

- Classical theorems often become more enlightening when given constructive proof.

- Often there are multiple classically identical theorems that are constructively distinguishable.

- Constructive proofs embody (in principle) an algorithm for computing objects.

- A constructive proof also proves that the algorithm it embodies is correct (i.e. meets its design specification).
Here we present conditions which ensure that if we can construct weak solutions to the Dirichlet problem on arbitrary close internal approximations to a domain $\Omega \subset \mathbb{R}^n$ then we can construct a (unique) weak solution on Ω also.

We give some Brouwerian examples to show that, even on geometrically quite reasonable domains in \mathbb{R}^2, existence of (weak or strong) solutions is an essentially nonconstructive result.
The Dirichlet Problem
asks us to identify a function u (with some suitable regularity conditions) such that

$$\Delta u = f \text{ on } \Omega, \quad u(x) = 0 \text{ for all } x \in \partial \Omega,$$

where Ω is a domain in \mathbb{R}^n and $f \in L_2(\Omega)$.

Alternatively we may consider

$$\Delta u = 0 \text{ on } \Omega, \quad u(x) = f(x) \text{ for all } x \in \partial \Omega$$

for some uniformly continuous f.

By a weak solution we mean an element $u \in H^1_0(\Omega)$ such that

$$\langle u, v \rangle_{H^1_0(\Omega)} \equiv -\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv$$

for all $v \in C^1_0(\Omega)$.
The Dirichlet problem

Associated is the minimisation problem for the Dirichlet energy functional:

Find a twice-differentiable continuous function u which minimises

$$J(u) = \int_{\Omega} (\| \nabla u \|^2 + 2uf) \, dx.$$

(the classical proof of equivalence is essentially constructive)
Why are classical approaches not constructive?

Classical approach for finding a weak solution:

- Define a linear functional on $H^1_0(\Omega)$ by

 $$\varphi(v) = -\int_{\Omega} vf \, dx.$$

 This is a bounded functional.
Why are classical approaches not constructive?

Classical approach for finding a weak solution:

- Define a linear functional on $H_0^1(\Omega)$ by
 \[\varphi(v) = -\int_\Omega vf \, dx. \]
 This is a bounded functional.

- Apply the Riesz representation theorem to get $u \in H_0^1(\Omega)$ with
 \[\varphi(v) = \langle u, v \rangle \]
 for all $v \in H_0^1(\Omega)$; then u is what we want.
Why are classical approaches not constructive?

Classical approach for finding a weak solution:

- Define a linear functional on \(H^1_0(\Omega) \) by

 \[
 \varphi(v) = - \int_{\Omega} vf \, dx.
 \]

 This is a bounded functional.

- Apply the Riesz representation theorem to get \(u \in H^1_0(\Omega) \) with

 \[
 \varphi(v) = \langle u, v \rangle
 \]

 for all \(v \in H^1_0(\Omega) \); then \(u \) is what we want.

This is not constructive!
Why are classical approaches not constructive?

Classical approach to minimising $J(u)$:

- Compute the infimum of $J(u)$, guaranteed to exist since $J(u)$ is bounded below.

 It can be shown that $J(u) \geq -2\gamma^2 \int_{\Omega} |f|^2 \, dx$.

 ■ Compute the infimum of $J(u)$, guaranteed to exist since $J(u)$ is bounded below.

 It can be shown that $J(u) \geq -2\gamma^2 \int_{\Omega} |f|^2 \, dx$.

 ■ Construct a minimising sequence $(u_n)_{n \geq 1}$.

 $(u_n)_{n \geq 1}$ is uniformly bounded in $H^1_0(\Omega)$.

 ■ Use weak sequential compactness of bounded sets in $H^1_0(\Omega)$.

 We get weak convergence to the solution u.

 This is also not constructive!
Why are classical approaches not constructive?

Classical approach to minimising $J(u)$:

- Compute the infimum of $J(u)$, guaranteed to exist since $J(u)$ is bounded below.

 It can be shown that $J(u) \geq -2\gamma^2 \int_{\Omega} |f|^2 \, dx$.

- Construct a minimising sequence $(u_n)_{n \geq 1}$.

 $(u_n)_{n \geq 1}$ is uniformly bounded in $H^1_0(\Omega)$.

Why are classical approaches not constructive?

Classical approach to minimising $J(u)$:

- **Compute the infimum of $J(u)$, guaranteed to exist since $J(u)$ is bounded below.**

 It can be shown that $J(u) \geq -2\gamma^2 \int_{\Omega} |f|^2 \, dx$.

- **Construct a minimising sequence $(u_n)_{n \geq 1}$.**

 $(u_n)_{n \geq 1}$ is uniformly bounded in $H^1_0(\Omega)$.

- **Use weak sequential compactness of bounded sets in $H^1_0(\Omega)$.**

 We get weak convergence to the solution u.
Why are classical approaches not constructive?

Classical approach to minimising $J(u)$:

- Compute the infimum of $J(u)$, guaranteed to exist since $J(u)$ is bounded below.

 It can be shown that $J(u) \geq -2\gamma^2 \int_{\Omega} |f|^2 \, dx$.

- Construct a minimising sequence $(u_n)_{n \geq 1}$.

 $(u_n)_{n \geq 1}$ is uniformly bounded in $H^1_0(\Omega)$.

- Use weak sequential compactness of bounded sets in $H^1_0(\Omega)$.

 We get weak convergence to the solution u.

This is also not constructive!
It turns out a whole lot depends on the domain. The condition that Ω is open, bounded, and integrable is not \textit{constructively sufficient}.
A subset S of a metric space X is *well contained* in $\Omega \subset X$ if there exists $r > 0$ such that $x \in \Omega$ whenever $\rho(x, S) < r$.

A subset Ω of a metric space X is:

- *located* if $\rho(x, \Omega) = \inf\{\rho(x, y) : y \in \Omega\}$ exists (i.e. can be computed) for each $x \in X$.
- *totally bounded* if for each $\varepsilon > 0$ it has a finite ε-approximation.
- *edge coherent* if $x \in \Omega$ whenever $x \in \overline{\Omega}$ and $\rho(x, \partial \Omega) > 0$,

Further, by a *complemented set* Ω in X we mean an ordered pair $(\Omega^1, \Omega^0) \subset X \times X$ such that $\rho(x, y) > 0$ for all $x \in \Omega^1, y \in \Omega^0$.

If the characteristic function of a (complemented) set Ω is integrable then we call Ω an integrable set with measure $\mu(\Omega) = \int \chi_{\Omega}$.

A subset S of a metric space X is *well contained* in $\Omega \subset X$ if there exists $r > 0$ such that $x \in \Omega$ whenever $\rho(x, S) < r$.

A subset Ω of a metric space X is:

- *located* if $\rho(x, \Omega) = \inf\{\rho(x, y) : y \in \Omega\}$ exists (i.e. can be computed) for each $x \in X$.
- *totally bounded* if for each $\varepsilon > 0$ it has a finite ε-approximation.
- *edge coherent* if $x \in \Omega$ whenever $x \in \overline{\Omega}$ and $\rho(x, \partial \Omega) > 0$,

Further, by a *complemented set* Ω in X we mean an ordered pair $(\Omega^1, \Omega^0) \subset X \times X$ such that $\rho(x, y) > 0$ for all $x \in \Omega^1, y \in \Omega^0$.

If the characteristic function of a (complemented) set Ω is integrable then we call Ω an integrable set with measure $\mu(\Omega) = \int \chi_{\Omega}$.

A subset S of a metric space X is *well contained* in $\Omega \subset X$ if there exists $r > 0$ such that $x \in \Omega$ whenever $\rho(x, S) < r$.

A subset Ω of a metric space X is:

- *located* if $\rho(x, \Omega) = \inf\{\rho(x, y) : y \in \Omega\}$ exists (i.e. can be computed) for each $x \in X$.
- *totally bounded* if for each $\varepsilon > 0$ it has a finite ε-approximation.
- *edge coherent* if $x \in \Omega$ whenever $x \in \overline{\Omega}$ and $\rho(x, \partial \Omega) > 0$,

Further, by a *complemented set* Ω in X we mean an ordered pair $(\Omega^1, \Omega^0) \subset X \times X$ such that $\rho(x, y) > 0$ for all $x \in \Omega^1, y \in \Omega^0$.

If the characteristic function of a (complemented) set Ω is integrable then we call Ω an integrable set with measure $\mu(\Omega) = \int \chi_{\Omega}$.

A subset S of a metric space X is *well contained* in $\Omega \subset X$ if there exists $r > 0$ such that $x \in \Omega$ whenever $\rho(x, S) < r$.

A subset Ω of a metric space X is:

- *located* if $\rho(x, \Omega) = \inf\{\rho(x, y) : y \in \Omega\}$ exists (i.e. can be computed) for each $x \in X$.
- *totally bounded* if for each $\varepsilon > 0$ it has a finite ε-approximation.
- *edge coherent* if $x \in \Omega$ whenever $x \in \overline{\Omega}$ and $\rho(x, \partial \Omega) > 0$,

Further, by a *complemented set* Ω in X we mean an ordered pair $(\Omega^1, \Omega^0) \subset X \times X$ such that $\rho(x, y) > 0$ for all $x \in \Omega^1, y \in \Omega^0$.

If the characteristic function of a (complemented) set Ω is integrable then we call Ω an integrable set with measure $\mu(\Omega) = \int \chi_{\Omega}$.
We define a subset Ω of \mathbb{R}^n a *Wang domain* if:

- It is edge coherent, totally bounded and open in \mathbb{R}^n.
- The boundary $\partial \Omega$ is compact.
- The (complemented) set $\Omega \equiv (\Omega, -\Omega)$ is Lebesgue integrable and, together with $\partial \Omega$, subject to the divergence theorem.
- There exists $c_0 > 0$ such that if

$$
(\partial \Omega)_r = \{ x \in \overline{\Omega} : \rho(x, \partial \Omega) \leq r \}
$$

is integrable, then

$$
\int_{(\partial \Omega)_r} |u|^2 \leq c_0 r^2 \int_{(\partial \Omega)_r} \| \nabla u \|^2 \quad (u \in H^1_0(\Omega))
$$

(a Poincaré-like inequality—this gives control over u near the boundary).
Theorem
Let Ω be a Wang domain in \mathbb{R}^n and let $f \in L_2(\Omega)$. Suppose there exists a sequence $(\Omega_n)_{n \geq 1}$ of edge coherent, totally bounded, open subsets of Ω, each having compact boundary, such that for each n,

- $\overline{\Omega}_n \subset \subset \Omega_{n+1}$,
- Ω_n and $\partial \Omega_n$ are Lebesgue integrable, with $\mu(\partial \Omega_n) = 0$,
- $\max \{ \rho(\overline{\Omega}_n, \overline{\Omega}), \rho(\partial \Omega_n, \partial \Omega) \} \to 0$ as $n \to \infty$, and
- the Dirichlet problem has a weak solution u_n in $H^1_0(\Omega_n)$.

Then the sequence $(u_n)_{n \geq 1}$ converges in $H^1_0(\Omega)$ to a weak solution of the Dirichlet problem.
Outline of proof

• Compute $\kappa > 0$ such that if $\varepsilon > 0$ and $K \subset \mathbb{R}^n$ is compact there is a C^∞ cutoff function $\eta : \mathbb{R}^n \to [0, 1]$:

$$\| \nabla \eta(x) \| \leq \frac{\kappa}{\varepsilon}$$

almost a characteristic function but nicer.
Outline of proof

- Compute $\kappa > 0$ such that if $\varepsilon > 0$ and $K \subset \mathbb{R}^n$ is compact there is a C^∞ cutoff function $\eta : \mathbb{R}^n \to [0, 1]$:\
 \[\|\nabla \eta(x)\| \leq \frac{\kappa}{\varepsilon} \] almost a characteristic function but nicer.

- Approximate Ω_n with well-contained compact subset K_n.

- Estimate $\int \|\nabla u_n\|^2$ (and hence $\int |u_n|^2$) on $\Omega_n - K$ appropriately, and show that $(u_n)_{n \geq 1}$ is Cauchy.
Outline of proof

- Compute $\kappa > 0$ such that if $\varepsilon > 0$ and $K \subset \mathbb{R}^n$ is compact there is a C^∞ cutoff function $\eta : \mathbb{R}^n \to [0, 1]$:
 \[\|\nabla \eta(x)\| \leq \frac{\kappa}{\varepsilon} \]
 almost a characteristic function but nicer.

- Approximate Ω_n with well-contained compact subset K_n.

- Estimate $\int \|\nabla u_n\|^2$ (and hence $\int |u_n|^2$) on $\Omega_n - K$ appropriately, and show that $(u_n)_{n \geq 1}$ is Cauchy.

- Use completeness of $H^1_0(\Omega)$ to compute its limit, u.
Outline of proof

- Compute $\kappa > 0$ such that if $\varepsilon > 0$ and $K \subset \mathbb{R}^n$ is compact there is a C^∞ cutoff function $\eta : \mathbb{R}^n \to [0, 1]$:

$$\|\nabla \eta(x)\| \leq \frac{\kappa}{\varepsilon}$$

almost a characteristic function but nicer.

- Approximate Ω_n with well-contained compact subset K_n.

- Estimate $\int \|\nabla u_n\|^2$ (and hence $\int |u_n|^2$) on $\Omega_n - K$ appropriately, and show that $(u_n)_{n \geq 1}$ is Cauchy.

- Use completeness of $H^1_0(\Omega)$ to compute its limit, u.

The function u solves the Dirichlet problem.
Intermission : Dirichlet (1805–1859)

* Last name: Lejeune Dirichlet.
Constructive Mathematics
Dirichlet’s Problem
Measure & Geometry
Sufficient conditions
Nonconstructive Principles
Weak Solvability implies LPO
Solvability implies WLPO
Summary

Intermission: Dirichlet (1805–1859)

* Last name: Lejeune Dirichlet.

* Awarded an honorary doctorate. (1927)
Intermission: Dirichlet (1805–1859)

* Last name: Lejeune Dirichlet.

* Awarded an honorary doctorate. (1927)

* Supported 1848 revolution. (The revolution failed.)
Intermission: Dirichlet (1805–1859)

* Last name: Lejeune Dirichlet.

* Awarded an honorary doctorate. (1927)

* Supported 1848 revolution. (The revolution failed.)

* Gauss’s successor at Göttingen.
Intermission: Dirichlet (1805–1859)

* Last name: Lejeune Dirichlet.

* Awarded an honorary doctorate. (1927)

* Supported 1848 revolution. (The revolution failed.)

* Gauss’s successor at Göttingen.

His brain is preserved at the University of Göttingen.
Intermission: Dirichlet (1805–1859)

* Last name: Lejeune Dirichlet.

* Awarded an honorary doctorate. (1927)

* Supported 1848 revolution. (The revolution failed.)

* Gauss’s successor at Göttingen.

His brain is preserved at the University of Göttingen.

He is credited with in part establishing the modern definition of function.
His wife, Rebecka Mendelssohn.
(1811–1858)

(Youngest sister of Felix Mendelssohn.)
His wife, Rebecka Mendelssohn. (1811–1858)

(Youngest sister of Felix Mendelssohn.)

“My older brother and sister stole my reputation as an artist. In any other family I would have been highly regarded as a musician and perhaps been leader of a group. Next to Felix and Fanny, I could not aspire to any recognition.”
Some important principles

The *Limited Principle of Omniscience*: given any binary sequence \((a_n)_{n \geq 1}\), we can prove

\[
\text{LPO}: \quad \forall n (a_n = 0) \lor \exists n (a_n = 1).
\]

The *Weak Limited Principle of Omniscience*: given any binary sequence \((a_n)_{n \geq 1}\), we can prove

\[
\text{WLPO}: \quad \forall n (a_n = 0) \lor \neg \forall n (a_n = 0).
\]

Markov’s Principle of unbounded search: given any binary sequence \((a_n)_{n \geq 1}\),

\[
\text{MP}: \quad \neg \forall n (a_n = 0) \Rightarrow \exists n (a_n = 1).
\]
Construction 1

Let \((a_n)_{n \geq 1}\) be an increasing binary sequence with \(a_1 = 0\).

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[
T_n = \left\{ x \in \mathbb{R}^2 : \frac{1}{n} < \|x\| < 1 \right\}.
\]
Construction 1

Let \((a_n)_{n \geq 1}\) be an increasing binary sequence with \(a_1 = 0\).

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[T_n = \left\{ x \in \mathbb{R}^2 : \frac{1}{n} < \|x\| < 1 \right\}. \]

- If \(a_n = 0\), set \(\Omega_n = D\).
Construction 1

Let \((a_n)_{n \geq 1}\) be an increasing binary sequence with \(a_1 = 0\).

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[T_n = \left\{ x \in \mathbb{R}^2 : \frac{1}{n} < \|x\| < 1 \right\}. \]

- If \(a_n = 0\), set \(\Omega_n = D\).
- If \(a_n = 1 - a_{n-1}\) set \(\Omega_k = T_n\) for all \(k \geq n\).
Construction 1

Let \((a_n)_{n \geq 1} \) be an increasing binary sequence with \(a_1 = 0 \).

Let \(D \) be the open unit disc in \(\mathbb{R}^2 \) and for each positive integer \(n \) set

\[
T_n = \left\{ x \in \mathbb{R}^2 : \frac{1}{n} < \|x\| < 1 \right\}.
\]

- If \(a_n = 0 \), set \(\Omega_n = D \).
- If \(a_n = 1 - a_{n-1} \) set \(\Omega_k = T_n \) for all \(k \geq n \).

Let \(\Omega \) be the interior of the subset \(\bigcap_{n \geq 1} \Omega_n \) of \(D \).
Construction 1

Ω_n $\frac{1}{n}$

Ω $\ ?$
Weak solutions imply **LPO**

Take Ω from Construction 1, and let $f(x) = \log \|x\|$. It can be shown that f is (uniformly!) continuous on $\partial \Omega$. (Subtlety: we need **MP** for this.)
Weak solutions imply LPO

Take Ω from Construction 1, and let $f(x) = \log \|x\|$.

It can be shown that f is (uniformly!) continuous on $\partial \Omega$. (Subtlety: we need MP for this.)

Suppose that the Dirichlet problem

$$\Delta u = 0 \text{ on } \Omega, \quad u(x) = f(x) \text{ for all } x \in \partial \Omega$$

has a weak solution in $H^1_0(\Omega)$.

If $a_n = 0$ for all n, then $u \equiv 0$ is the (weak and strong) solution of the Dirichlet problem on Ω, and in this case

$$\int_{\Omega} u^2 = 0.$$
But if $a_n = 1$ for some n, then $u \equiv \log \|x\|$ is the (weak and strong) solution, and then:

$$
\int_\Omega u^2 = \pi \left(\frac{1}{2} - \frac{1}{n^2} \log^2 \frac{1}{n} + \frac{1}{n^2} \log \frac{1}{n} - \frac{1}{2n^2} \right).
$$

This is increasing for $n > 0$, its limit as $n \to \infty$ is $\frac{\pi}{2}$, and the case $n = 2$ is larger than $\frac{1}{4}$.

But if \(a_n = 1 \) for some \(n \), then \(u \equiv \log \|x\| \) is the (weak and strong) solution, and then:

\[
\int_{\Omega} u^2 = \pi \left(\frac{1}{2} - \frac{1}{n^2} \log^2 \frac{1}{n} + \frac{1}{n^2} \log \frac{1}{n} - \frac{1}{2n^2} \right).
\]

This is increasing for \(n > 0 \), its limit as \(n \to \infty \) is \(\frac{\pi^2}{2} \), and the case \(n = 2 \) is larger than \(\frac{1}{4} \).

Since we can decide whether

\[
\int_{\Omega} u^2 > 0 \quad \text{or} \quad \int_{\Omega} u^2 < \frac{1}{4}
\]

we have \textbf{LPO}. (again using \textbf{MP})
The following are equivalent over \textbf{BISH}:

(i) \textbf{MP} holds, and for every totally bounded, Lebesgue integrable open subset of \mathbb{R}^n and every uniformly continuous function $f : \partial \Omega \rightarrow \mathbb{R}$ the Dirichlet problem has a weak solution in $H^1_0(\Omega)$.

(ii) \textbf{LPO}.
Outline of proof ((ii) implies (i))

- Define a linear functional

\[
\varphi(v) = -\int_{\Omega} vf
\]

Standard estimates show \(|\varphi(v)| \leq \gamma \|f\|_2 \|v\|_{H_0^1(\Omega)} \).
Outline of proof ((ii) implies (i))

- Define a linear functional

\[\varphi(v) = - \int_{\Omega} vf \]

Standard estimates show \(|\varphi(v)| \leq \gamma \|f\|_2 \|v\|_{H_0^1(\Omega)}\).

- Construct an orthonormal basis \(\{e_1, e_2, \ldots\}\) for \(H_0^1(\Omega)\).

For each \(n\), consider the restriction to \(H_n\) of \(\varphi\):

\[\|\varphi|_{H_n}\| = \sup\{|\varphi(v)| : v \in H_n\} \]

exists.
Outline of proof ((ii) implies (i))

- Define a linear functional

\[\varphi(v) = - \int_{\Omega} vf \]

Standard estimates show \(|\varphi(v)| \leq \gamma \|f\|_2 \|v\|_{H^1_0(\Omega)} \).

- Construct an orthonormal basis \(\{e_1, e_2, \ldots \} \) for \(H^1_0(\Omega) \).

 For each \(n \), consider the restriction to \(H_n \) of \(\varphi \):

 \[\|\varphi|_{H_n}\| = \sup\{|\varphi(v)| : v \in H_n\} \]

 exists.

- Use LPO to obtain the existence of \(\lim_{n \to \infty} \|\varphi|_{H_n}\| \).

 (This gives normability of \(\varphi \).)
Outline of proof ((ii) implies (i))

- Define a linear functional
 \[\varphi(v) = - \int_{\Omega} vf \]

 Standard estimates show \(|\varphi(v)| \leq \gamma \|f\|_2 \|v\|_{H_0^1(\Omega)} \).

- Construct an orthonormal basis \(\{e_1, e_2, \ldots\} \) for \(H_0^1(\Omega) \).

 For each \(n \), consider the restriction to \(H_n \) of \(\varphi \):
 \[\|\varphi|_{H_n}\| = \sup\{ |\varphi(v)| : v \in H_n \} \text{ exists.} \]

- Use LPO to obtain the existence of \(\lim_{n \to \infty} \|\varphi|_{H_n}\| \).
 (This gives normability of \(\varphi \).)

- Apply the Riesz representation theorem to get a function \(u \) that solves the Dirichlet problem.
Observations about Ω

- It satisfies an *exterior cone condition*, but not uniformly (LPO).
- It is edge coherent and (perhaps more importantly) Lipschitz.
- Approximating it internally by compact sets is nonconstructive (WLPO).
- The boundary ∂Ω is not totally bounded (WLPO).
- Although Ω is located, ∂Ω is not.
- (∂Ω)_r is not constructively integrable (WLPO).
Observations about Ω

- It satisfies an *exterior cone condition*, but not uniformly (LPO).
- It is edge coherent and (perhaps more importantly) Lipschitz.
- Approximating it internally by compact sets is nonconstructive (WLPO).
- The boundary $\partial \Omega$ is not totally bounded (WLPO).
- Although Ω is located, $\partial \Omega$ is not.
- $(\partial \Omega)_r$ is not constructively integrable (WLPO).

- We used MP.
Corollary

If every open, Lebesgue integrable domain in \mathbb{R}^n has integrable boundary, then WLPO holds.

So there are subtleties concerning the divergence theorem.
Corollary

If every open, Lebesgue integrable domain in \mathbb{R}^n has integrable boundary, then WLPO holds.

So there are subtleties concerning the divergence theorem.

We may state a suitably modified version (omitted).
Construction 2

Let \((a_n)_{n \geq 1}\) be a binary sequence.

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[P_n = D - \left\{ x \in \mathbb{R}^2 : \|x\| < 1 \land 0 \leq \arg x \leq \frac{1}{n} \right\}. \]
Construction 2

Let \((a_n)_{n \geq 1}\) be a binary sequence.

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[
P_n = D - \left\{ x \in \mathbb{R}^2 : \|x\| < 1 \land 0 \leq \arg x \leq \frac{1}{n} \right\}.
\]

- If \(a_n = 0\), set \(\Omega_n = D\).
Construction 2

Let \((a_n)_{n \geq 1}\) be a binary sequence.

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[
P_n = D - \left\{ x \in \mathbb{R}^2 : \|x\| < 1 \land 0 \leq \arg x \leq \frac{1}{n} \right\}.
\]

- If \(a_n = 0\), set \(\Omega_n = D\).
- If \(a_n = 1\) set \(\Omega_n = P_n\).
Construction 2

Let \((a_n)_{n \geq 1}\) be a binary sequence.

Let \(D\) be the open unit disc in \(\mathbb{R}^2\) and for each positive integer \(n\) set

\[P_n = D - \left\{ x \in \mathbb{R}^2 : \|x\| < 1 \land 0 \leq \arg x \leq \frac{1}{n} \right\}. \]

- If \(a_n = 0\), set \(\Omega_n = D\).
- If \(a_n = 1\), set \(\Omega_n = P_n\).

Let \(\Omega\) be the interior of the subset \(\bigcap_{n \geq 1} \Omega_n\) of \(D\).
Construction 2

- Solvability implies WLPO
- Weak solvability implies LPO
- Non-constructive principles
- Sufficient conditions
Strong solutions imply **WLPO**

Take Ω from Construction 2, and let \(f(x) = 1 - \|x\| \).

Clearly \(f \) is uniformly continuous on \(\partial \Omega \).
Strong solutions imply WLPO

Take Ω from Construction 2, and let $f(x) = 1 - \|x\|$.

Clearly f is uniformly continuous on $\partial \Omega$.

If $a_n = 0$ for all n, then $u \equiv 0$ is the (strong) solution of the Dirichlet problem and so $u(0,0) = 0$.

But if $a_n = 1$ for some n, then $(0,0) \in \partial \Omega$ and the boundary condition forces $u(0,0) = 1$.

Strong solutions imply WLPO

Take Ω from Construction 2, and let $f(x) = 1 - \|x\|$. Clearly f is uniformly continuous on $\partial \Omega$.

If $a_n = 0$ for all n, then $u \equiv 0$ is the (strong) solution of the Dirichlet problem and so $u(0,0) = 0$.

But if $a_n = 1$ for some n, then $(0,0) \in \partial \Omega$ and the boundary condition forces $u(0,0) = 1$.

Thus if this Dirichlet problem has a strong solution, WLPO holds.
Theorem

If for every totally bounded, Lebesgue integrable open subset of \mathbb{R}^n and every (uniformly) continuous function $f : \partial \Omega \to \mathbb{R}$ the Dirichlet problem

$$\Delta u = 0 \text{ on } \Omega, \quad u(x) = f(x) \text{ for all } x \in \partial \Omega$$

has a strong solution then WLPO holds.

Note that the domain from Construction 2 satisfies the same properties as that of Construction 1.
Theorem

If for every totally bounded, Lebesgue integrable open subset of \mathbb{R}^n and every (uniformly) continuous function $f : \partial \Omega \rightarrow \mathbb{R}$ the Dirichlet problem

$$\Delta u = 0 \text{ on } \Omega, \quad u(x) = f(x) \text{ for all } x \in \partial \Omega$$

has a strong solution then WLPO holds.

Note that the domain from Construction 2 satisfies the same properties as that of Construction 1.

The converse is not known to hold.
Lesson

The question of existence of (weak or strong) solutions to Dirichlet problems, as classically conceived, is essentially nonconstructive. In other words,
Lesson

The question of existence of (weak or strong) solutions to Dirichlet problems, as classically conceived, is essentially nonconstructive. In other words,

There is no universal algorithm for computing solutions to the classical Dirichlet problem.
Lesson

The question of existence of (weak or strong) solutions to Dirichlet problems, as classically conceived, is essentially nonconstructive. In other words,

There is no universal algorithm for computing solutions to the classical Dirichlet problem.

(Perhaps surprising, since a 1979 paper by Y.K. Chan constructs Green’s functions for a wide class of domains.)
Lesson

The question of existence of (weak or strong) solutions to Dirichlet problems, as classically conceived, is essentially nonconstructive. In other words,

There is no universal algorithm for computing solutions to the classical Dirichlet problem.

(Perhaps surprising, since a 1979 paper by Y.K. Chan constructs Green’s functions for a wide class of domains.)

We have provided *sufficient conditions* for solutions to be constructible.

Question: What conditions are *necessary*?
A corollary

The Dirichlet problem corresponds to a special stationary case of the Navier-Stokes equations of fluid flow. It is now immediate from the previous result that:
A corollary

The Dirichlet problem corresponds to a special stationary case of the Navier-Stokes equations of fluid flow. It is now immediate from the previous result that:

There is no universal algorithm for computing solutions to the classical Navier-Stokes equations.
Acknowledgements

- Douglas Bridges
- Michael Wang
- University of Canterbury
Acknowledgements

- Douglas Bridges
- Michael Wang
- University of Canterbury

Thank you for listening!