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Abstract

Acute Respiratory Distress SyndromdRDYS) is associated with lung inflammation and fluid
filling, resulting in a stiffer lung with reduced intrapulmonary gas volukRDS patients are
admitted to thelntensiveCare Unit (ICU) and requireMechanicalVentilation (MV) for
breathing supportPositive End Expiratory Pressure (PEEPs applied toaid recovery by
improving gas exchangand maintainng recruiied lung volumeHowever high PEEP risk
further lung injury due tooverstretchingof healthy lung unitsandlow PEEPrisks further
lung injury due b the repetitive opening and closinglohg units. Thus,selectingPEEPIs a
balance betweervoiding overstretching and repetitive opening of alvedfurthermore
specific protocols to determine optimal PEE® not currentlyexist, resulting invariable
PEEP selectionThus ensuring an optimal PEHE would have significant impach@atient

mortality, and theost andduration of MVtherapy

Two important metrics that can be used to aid MV therapy are the elastance of the lungs as a
function of PEEP, and the quantity of recruited lung volume as a function of PH&S.

thesis describeseveralmodels and modddased methodthat can be used telectoptimal

PEEPIn the ICU. Firstly,a single compartment lung model is investigated foaligity to
capturethe respiratory mechanics ofraechanically ventilated ARDfatient This model is

then expanded upon, leading tonavel method ofmapping andvisualising dynamic
respiratory system elastandeonsidering how elastanobanges, bothvithin a breath and
throughout the course of care, prase rew clinical perspectiveNext, a modelusingonly

XV



the expiratory portion of the breathing cyclées developedand presentedproviding an
alternative means to track changes in disease state toaigV therapy Finally, four
modelbased methodare compared basexh their capability of estimatinghe quantity of

recruited lung volume due to PEEP

The models and moddlased methodslescribed in this thesis enable rapid parameter
identification from readily available clinical dataproviding a meansof tracking lung
condition and selecting optimal patiesgecific PEEPEach model is validated using data

from clinical ICU patients ardr experimental ARDS animal models.

XVi
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Chapter 11 Introduction

11 RESPIRATORY SYSTEM ANATOMY AND PHYSIOLOGY

Cells are the basic structural and functional units of an orgaamghnequire a continuous
supply of oxygen (@ to perform metabolic reactiort® release energy. These reactions
producecarbon dioxide (Cg), which, in excessive amounts, can be toxic to @i$ must be
removedquickly. The respiratory system provides theeans for gas exchange to ogcur
while the cardiovascular system transports the blood containirsg tjases between the
lungs and the body cellsThus, therespiratory systemand the cardiovascular system
cooperateto efficiently supply cells with O, and eliminate CQ (Tortora and Derrickson,

2008.

The respiratory system can be divided into two physiological zones. The first is the
conducting zongeconsisting of a series of interconnecting cavities and tubes thatvitiem,

and moisten air as it is transported to the lungs. The second is the respiratpwteyaeyas
exchange occurs between the air #melblood. The respiratory system catsobe divided

into two anatomical regions. The first is the upper respiragsyem consisting of the nose,
pharynx, and associated structures. The second is the lower respiratory system consisting of
the larynx, trachea, bronchi, and lun@®rtora and Derrickson, 20D6T hese structuresare

shownin Figurel.1.
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Figure 1.17 Anterior view of the respiratory system(Tortora and Derrickson, 2006.

The lungs are paiceorgans situated within the thoracic cavity which is formed by the ribs,
the muscles of the chest, the sternum, the thoracic portion of the vertebral column, and the
diaphragm. The two lungs are located laterah®mheart with the left lung smaller thahe

right lung due to a concavity to accommodate the heart. Each lung is enclosed and protected
by two layers of serous membrane, one lining the inner wall of the thoracic cavity, and the
other lining the outer surface of each lung. Between tivesenemlyanes is a small space,
known as the pleural cavity, containing pleural flthet acts to reduce friction between the

two membranes during breathi{iortora and Derrickson, 206



During inspiration air travels into the nasal cavity or oral cavityyoughthe pharynxand
larynx, and into the trache@he trachea is surrounded by horizontal hoops of cartilage, as
shown inFigure 1.2, which act to supportie tracheal wall from collaps&he inferior end of
the trachedifurcatesinto two primary bronchione for each lundJpon enteringthe lungs,
eachprimary bronchibranchego form smallerseondary bronchione for each lohewvhere
the right lung has three lobesdthe leftlung has twolobes Secondary bronahbranchto
form smallertertiary bronchithat branchinto smaller bronchioles which, in turn, branch
repeatedly, ultimately branching to form terminal bronchiolBse cartilage hoops are
gradually replaced by cartilage plates in the primary broactidisappear completely in the
distal bronchioles The trminal bronchioles branch to form micropa respiratory
bronchioles finally branching to form alveolar ducts.Approximately 25 generations of

branching occurs between the trachea and the alveolar(@octsra and Derrickson, 2006
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Figure 1.27 Major proximal airways (Sebel, 198h



Surrounding the alveolar ducts are numerous alvaodl alveolar sacshich consistof two

or more alveolisharinga common openingClusters of alveoli, known aking units are
shown inFigure1.3. The walls of alveolconsistof two types ofepithelialcells. Type | cells

are the primary sites of gas exchanghile type Il cells secrete alveolar fluthatkeeps the
surface between the cells and the air moist. Included in the alveolar fluid is surfactant
mixture of phospholipids and lipoproteitigtlowers the surface tension of the alveolar fluid
Surface tension produces a force directed inwmaadiiang the diameter of the alveoli, and
must be overcome to expand the lungs dumsgiration Therefore a lower surface tension
reduce the inspiratoryeffort by reducing théendency of alveolto collapse(Tortora and

Derrickson, 200k

Terminal bronchiole

Respiratory bronchiole

Lung unit Alveolar ducts

. | Alveolar sac

Alveoli

Figure 1.37 Alveoli, alveolar sacs, and lung units(Tortora and Derrickson, 200§.

The lungs receiveleoxygenated bloodia the pulmonary arteries amygenated blood via
the bronchial arteries. Return of oxygenated blood to the heart occurs via four pulmonary

veins.The exchange of £and CQ between the air in the lungs and the blood takes phace
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available, or recruited, alveoltas exchange is dgtmined by the respective partial pressures
of O, and CQ on either side of the alveolar and capillary walls, which together them
respiratory membrand he respiratory membrane is very thin to allow for rapid diffusion of

gasegTortora and Derrickson, 2006

1.2 PULMONARY VENTILATION

Pulmamary ventilation results in diow between the atmosphere and the alveoli of the lungs

due to pressure differences created by contraction and relaxation of respiratory riiscles.

rate of airflow and the amount of effort required for breathing is also influenced by alveolar
surface tensiorstiffnessof lung tissugand airway resistancAir travels into the lungs when

the pressure inside the lungs is less than atmospheric pressure. Air trawaisheutungs

when the pressure inside the lungs is greater than atmospheric pressure. These two scenarios

define inspirabn and expiratiojrespectively.

Pressure changes within the lungs are generated by changing the volume of the thoracic
cavity. For inspiration, the lungs must expand in volume, thereby decreasingvei
pressure below atmospheric pressiit@s negative pressure gradias generated primarily

by thediaphragmwhich formsthe base of the thoracic cavityhile the remaindeis due to
contracton of the external intercostalghich elevate the ribs and increase the anteroposterior
and lateral diameters of the thoracavity. There is no physical connection between the
lungs and the diaphragm or rib cage a negative pressure gradient must be created across

the pleural cavityThus,movement othe lungis completely passive.



Expiration begins whe the inspiratory mscles relax. e recoil ofelastic fibers stretched
during inspiration, and the inward force of the surface tension due to the alveolar fluid
causes a decrease in lung voluniéus, during quiet breathing, expiration is a passive
procesgTortora and Derrickson, 2006-igure 1.4 shows how movement of the diaphragm

and ribs results in airflow between the atmospheretantlings.
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Rib pair positions during
inspiration and expiration

Figure 1.47 Movement of the diaphragm and ribs during inspiration and expiration(Sebel,
1985.

1.3 ACUTE RESPIRATORY DISTRESS SYNDROME

Acute Respiratory Distress Syndrome (ARDEhe ARDS Definition Task Force, 20)1% a
condition where the lung isflamed and fills with fluid, thereby losing the ability to
exchange gas effectivelyinflammation leads to reduced surfactant production causing

alveoli and/or bronchial passages to qmka and fill with fluid(Gattinoni and Pesenti, 2005



Additional alveohr collapseis facilitated by an increase pressure caused liie excess
fluid in the lung(Ware and Matthay, 20Q00Furthermore, injury to alveolar epithelial walls
results in increasegermeability between the blood and airspdeadng to pulmonary

oedemawherethe lungslood due to excesiuild upof fluid.

ARDS affects the lungs heterogeneously, causiibgrations ina p at i e fAcbéesth br ea't
respiratorymechanic§Puybasset et al., 200Gattinoni et al., 2001Stenqvist et al., 2008

Injured lung tissue, combined with a build up of fluid, results stiféer, or lesscompliant

lung (Gattinoni and Pesenti, 2005Thus, an ARDS affected lung requires a higher pressure
gradient to inflate, resulting in increased breathing effort, or WarBreathing (WoB)

(Chiew et al., 201)1 Furthermore, dss of functional lung units reducthe intrapulmonary

gas volumend resultsn O, deficient blood reducingO, supply to tissues and increasing the

risk of further organ failure and death

Direct lung injury in the form opneumoniapulmonary aspirationkar drowninginhalation
lung injury, or lung contusioncan lead to the onset of ARDS. Indirectly, ARDS damelop
from a number of causes includiegpsisshock, majotrauma, omassive blood transfusion
(Ware and Matthay, 2000Burleson and Maki 2005. The annual number of ARDS
incidencess reported to be betwe@&weand74 cases per 100,000 peopléheoverallmortality
rate ha been reported to be betwegh% and66 % (Reynolds et al., 199&uhr et al., 1999
Bersten et al., 200Manzano et al.2005 andincreasesignificantly with age(Manzano et

al., 2003.



There are no specific criteria or tests to diagnose ARDS becauseatieane uniquely
distinguishable disease symptoifArtigas et al., 1998Chew et al., 2012 However, he
severity of ARDS istypically measured as the ratio of the arterial partial pressuf@, of
divided by the fraction of inspire@, (PaQ/FiO, or PFratio). The PF ratio assesses the
ability of the lungsto oxygenate bloodARDS is defined into three categories of severity
(The ARDS Definition Task Force, 20127 PF ratioO 300 mmHg but > 200 mmHgs
characteriseés mild ARDS. APF ratioO200 mmHg but > 100 mmHds characteriseds
moderate ARDSanda PF ratioO 100 mmHg is characterised as severe ARO®e acute
time frame is also specified to be within one wekvere hypoxemiéor low PF ratio)can
prove fatal to vital organs if not treated immediatéPetty and Ashbaugh, 197Dunkel,

2008.

1.4 MECHANICAL VENTILATION

Patients suffering from ARD&re admitted to thintensiveCareUnit (ICU) where dinicians

offer a supportive environment tid recovery Mechanical Ventilation (MV)is applied to
partially or completely s Mguerovertilatordsuehagsthe i ent s
Puritan Bennett 840mechanical ventilator shown Figure 1.5, usea wide range opositive

pressure ventilatiomodes Air is delivered to the lurgginvasivelythrough an endotracheal

(ET) tubeor aface mask.



Figure 1.57 Puritan Bennett 840mechanical ventilator.

1.4.1 Mechanical Ventilation Parameters

There are severamportant parameters that definine breathing cycle of anechanically

ventilatedpatient These parametensclude

1. Positive End Expiratory Pressure(PEEP)is the remainingpressure within the
lungs at the end of expiratiomnd is an important parameter in MYerapy
ARDS affected alveoli are vulnerable to collapse dumflammation andouild
up of fluid. Thus PEEPmaintains recruited lung unjtsnproving gas exchange
(Amato et al., 1998The Acute Respiratory Distress Syndrome Network, 2000
McCann et al.,2001, Halter et al., 2008 However there is a risk of
overstretchindgnealthy lung units during high PEEBersten, 1998 Furthermore,

if the PEEP is too low, injury is induced by the repetitive opening and closing of
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