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ABSTRACT

In this paper we consider the forecasting performance
of a range of semi- and non-parametric methods
applied to high frequency electricity price data.
Electricity price time-series data tend to be highly
seasonal, mean reverting with price jumps/spikes and
time- and price-dependent volatility. The typical
approach in this area has been to use a range of tools
that have proven popular in the financial econometrics
literature, where volatility clustering is common.
However, electricity time series tend to exhibit higher
volatility on a daily basis, but within a mean reverting
framework, albeit with occasional large ’spikes’.
In this paper we compare the existing forecasting
performance of some popular parametric methods,
notably GARCH ARMAX, with approaches that are
new to this area of applied econometrics, in particular,
Artificial Neural Networks (ANN); Linear Regression
Trees, Local Regressions and Generalised Additive
Models. Section 2 presents the characteristics of
the data used which in this case are spot electricity
prices from the Californian market 07/1999-12/2000.
This period includes the ’crisis’ months of May-
August 2000 where extreme volatility was observed.
Section 3 presents the results and ranking of methods
on the basis of forecasting performance. Section
4 concludes. JEL CLASSIFICATIONS: C14, C45,
C53
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1 INTRODUCTION

Concerns over climate change, spiralling crude oil
prices and security of electricity supply, have led
to a resurgence of interest in energy-related issues.
Electricity market modelling and forecasting has been
given a particular boost following deregulation in
many countries and the highly publicised Californian
experiences of 2000 and more locally, the effects of
two dry years in New Zealand, 2001 and 2003 and the
Auckland cable failures of 1998 see, Weron (2006).
Analysis of the electricity market has been facilitated
by accessibility to high frequency load and price data
which, in the case of New Zealand and Australia, is
available at intervals as frequent as every 5 minutes.

Research into the operations and characteristics of
electricity markets can be categorised into four main
areas. Firstly, the modelling and forecasting of
electricity load. This area has been predominately
the domain of electrical or systems engineers
concerned to minimise risks to supply. Modelling
and forecasting here has involved both parametric,
often simple multivariate regression, ARIMA time
series approaches and smoothing methods see eg.,
and semi/non-parametric neural networks see eg.,
Hippert, Pedreira, and Souza (2001). Much of this
literature has been published in electrical engineering
outlets and has generally not entered the mainstream
economics/econometrics literature. Secondly, there
has been growing interest in forecasting spot and
forward electricity prices. This interest has been
fuelled by both the needs of a deregulated market
to understand ’how the market works’ and how
best (most profitably) to respond to any system-
atic, forecastable events. Californian experiences,
including widespread bankruptcy of some of the
players see eg., Knittel and Roberts (2005), has added
extra impetus. This area of research has typically
been the realm of economists and econometricians
who have used parametric time series tools from
financial econometrics, and applied them to electricity
data see eg., Worthington, Kay-Spratley, and Higgs
(2005), Misiorek, Trueck, and Weron (2006), Conejo,
Contreras, Espnola, and Plazas (2005), and Escribano,
Peña, and Villaplana (2002). These methods typically
comprise simple ARIMA or GARCH models whereas
others have attempted to model some of the specific
characteristics of electricity data. In particular,
electricity price time series data tend to be highly
seasonal, mean reverting with price jumps/spikes and
time- and price-dependent volatility see Weron and
Przybylowicz (2000), Huisman and Mathieu (2003),
Goto and Karolyi (2003). Furthermore, as noted by
Knittel and Roberts (2005) the data tend to exhibit
large values of higher order moments relative to a
Gaussian distribution which render models based on
normality and log-normality of limited use. Mount,
Ning, and Cai (2006) explain why price spikes

are a typical feature of a deregulated market for
electricity and argue in favour of a regime-switching
model. Papers that have specifically considered the
modelling of non-linearities and/or spikes include
Huisman and Mathieu (2003) who argue that a
regime jump process performs better in modelling
jumps in combination with mean-reversion than a
stochastic jump model. Moral-Carcedo and Vicens-
Otero (2005) model the non-linearity of the response
of demand to temperature using Smooth Transition
(STR), Threshold Regression (TR) and Switching
Regression (SR) models. They conclude that the
Logistic Smooth Transition (LTSR) offers advantages
over other models and is their model of choice when
applied to Spanish electricity data.

The third level of interest in electricity markets has
come from those interested in modelling the behaviour
of firms within a newly deregulated market. Here
game theory and operations control methods have
been applied with or without empirical validation
see eg. Batstone (2000), Wolfram (1999), Newberry
(1998) and Harvey and Hogan (2000).

Finally, there has been significant discussion of the
legal and political implications of the consequences
of deregulation particularly related to market power,
volatile prices and security of supply see eg., Barton
(2003).

In this paper we will present a comparison of the
forecasting performance of a range of parametric
and semi/non-parametric models as applied to spot
electricity prices using data from the Californian
market from 07/1999 to 12/2000. Results for the
parametric models are taken from Misiorek, Trueck,
and Weron (2006), where they found that including
a GARCH component did not improve the forecast
performance of the ’best’ model – an autoregressive
model formulated with exogenous variables. Here
we take the ARX formulation as the best parametric
specification for the California CalPX market clearing
prices

The motivation for the paper comes from several
sources. The first is to increase our understanding of
the drivers and sources of predictability in electricity
markets. The second is as a response to the
current perceptions regarding the applicability of non-
parametric methods to the forecasting of electricity
prices. Misiorek, Trueck, and Weron (2006) state that:

”AI-based models tend to be flexible and
can handle complexity and non-linearity.
This makes them promising (emphasis
added) for short term predictions.”

However, they then present a somewhat sceptical view
on such methods when stating:
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”We have to note, however, that the
advocated models have generally been
compared only to other AI-based tech-
niques or simple statistical methods (em-
phasis added). . . The results of Conejo,
Contreras, Espnola, and Plazas (2005),
compared three time series specifica-
tions; a wavelet multivariate regression
technique, and a multilayer perceptron
with one hidden layer. . . . the ANN
technique was the worst of the five
tested models. . . .It would be interesting
to evaluate representatives from both sta-
tistical and AI-based models. However,
a comprehensive comparison of models,
even from one class is a laborious task.”
(Misiorek, Trueck, and Weron 2006).

These same authors support regime switching models,
which, ”by construction should be well suited for
modelling the non-linear nature of electricity prices”
(Misiorek, Trueck, and Weron 2006).In this paper we
seek to test whether this assumed inferiority of these
techniques is supported by the data. We will compare
the ’best; models for Misiorek, Trueck, and Weron
(2006) with a range of semi- and non-parametric
approaches discussed in section ??. however, it is
worth stressing at this point that the tournament, as
it stands, should favor existing approaches as the
’best’ parametric models were constructed to be just
that. Here we are not attempting to create the
(potentially) ’best’ non-parametric alternative, but to
take the covariates (and lags) found optimal for the
parametric approach and find the best subset for each
non-parametric formulation.

The plan of the paper is as follows. In section
2 we describe the data and the modeling strategy
adopted for each of the models that will be
used to compare to forecast (Californian) electricity
price data. The specific models under scrutiny
include a range of parametric models; ARIMA, and
multiple regime (STAR)and non(semi)-parametric
approaches including Artificial Neural Networks;
Local regression; Linear Regression Trees and
Generalised Additive Models. Section 3 presents the
empirical results. Section 4 concludes.

2 CALIFORNIAN MARKET AND DATA

The California market was deregulated in 1998 and
opened April 1st 1998. By May 1 2000 the market was
in crisis which ended August 31, 2000. By that time
Pacific Gas and Electric had gone bankrupt; the other
two major power companies had amassed huge debts.
Why did this happen? When the market was initially
designed, two rules were put in place that left the
utility companies unable to hedge against volatility.

They were not permitted to sign long term contracts
for wholesale electricity; retail rates were largely fixed
and hence the companies were unable to pass-on any
wholesale price increase onto customers.

Knittel and Roberts (2005) fit a range of traditional
models to an hourly time series of real-time
Californian electricity prices and find that the
forecasting performance of traditional models is
’poor’ and can be improved when they address
”the unique features of electricity data in particular,
volatility clustering and higher order autocorrelation”.
Contreras, Espnola, Nogales, and Conejo (2003)
utilise an ARIMA model to forecast Californian
next-day electricity prices for the week of April 3,
2000, being the week is prior to the beginning of
the dramatic price volatility period that took place
May-August 2000. Their preferred ARIMA model
predicts price better before the May-August crisis and
only requires the previous 2 hours of data and three
differentiations. Average errors in the pre-crisis period
were around 5%, whereas they jump to 11% when this
volatile period is included. For more on the California
market, see also Moulton (2005) and Weron (2006).

In this study we forecast the day-ahead and week-
ahead hourly Californian market clearing prices from
the period preceding and including the market crisis
cited above. We split the dataset into estimation and
evaluation sets. The estimation set comprises the
period from July 5, 1999 to April 2, 2000; the day
before starting the crisis. Consequently, the period
from April 3, 2000 to December 3, 2000 is used for
evaluation purposes. The test scheme is the same used
by Misiorek, Trueck, and Weron (2006) for the linear
model; however, we specify the models weekly to
capture changes in the model specification, i.e. a new
regime.

The variable set used to forecast the prices is: last
two days log-price (pt−24 and pt−48), last week log-
price (pt−168), dummy variable for Saturday (dSat),
Sunday (dSun) and Monday (dMon), the logarithm
transformation of the next day forecasted load (lt) and
the minimum of previous day’s 24 hourly log-prices
(mpt). The logarithm transformation of price and load
is used to attain more stable variances.

We forecast the clearing price in a day-based
framework (24 hours of the day in a turn) and we
re-estimate the models every day, re-specifying1 the
models every week. Note that we use the model
estimated on Sunday to forecast the whole week to
evaluate the week-ahead performance.

As noticed by Misiorek, Trueck, and Weron
(2006) and Cuaresma, Hlouskova, Kossmeier, and

1In re-specify the model we mean grow the model when it is
needed, e.g. number of regimes in a multiple regime models.
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Obersteiner (2004), modeling each hour of the day
separately performs better than one specification for
whole day. Then, we decide to model each hour of the
day separately for all classes of models.

The variable selection procedure2 used for the
parametric models consist in select the subset of
variables which minimizes the Bayesian Information
Criteria (BIC). For the linear and tree-based models,
the selected set contains all the variables. For the non-
linear models with smooth transition (i.e. Multiple
STAR and Artificial Neural Networks) we select
the variables using a technique proposed by Rech,
Teräsvirta, and Tschernig (2001). The idea is to
approximate the non-linear model by a polynomial of
sufficient high order and then apply some well-know
variable selection technique to this approximation.
We select all variables as they are significant for most
models.

For the local regression and GAM we choose a subset
of real-valued variables, which seems to present a
non-linear relationship with pt or a local behavior,
to model non-parametrically. The selection of these
variables is carried out using the an information
criteria (Hastie, Tibshirani, and Friedman 2001,
Hastie and Tibshirani 1990, Eubank 1988), where the
effective number of parameters is given by the trace
of the hat matrix3. We choose the Corrected AIC
(AICc) (Hurvich, Simonoff, and Tsai 1998) which
are not affected by significant problems of over-fitting
(Manzan 2004). The AICc is shown below.

AICc = log SSE +
N + df

N − df − 2
, (1)

where SSE is the sum of squared errors, N is the
sample size and df = Tr(H) is the effective number
of parameters.

For both GAM and local regression, we calculated
the AICc of a number of models and select the
one which minimizes the information criteria. The
estimated models were the following: the dummy
variables modeled linearly and all the models with
1, 2, . . . , 5 non-parametric responses. In the GAM
selected all five real-valued variables are modeled
non-parametrically. For the local regression model the
selected variables were only pt−24, pt−168 and lt.

Following Misiorek, Trueck, and Weron (2006) and
Conejo, Contreras, Espnola, and Plazas (2005), we
use the naive method as a benchmark for all models.
The naive method can be described as follows: the
price on hour t on Sundays, Mondays and Saturdays
are equal to the same hour of the previous week; the
price on hour t on Tuesdays to Fridays are equal to the

2All the model/variable selection procedures were carried out
using only the in-sample observations.

3The hat matrix H is defined as ŷ = Hy, where ŷ is the
forecasted outcome and y the actual outcome.

same hour of the previous day. For the week-ahead
forecast, the price is the same as last week. The naive
test is passed if the errors for the model are smaller
than the errors obtained for the naive method.

3 RESULTS

To assess the forecasting performance of each
model, we use different statistical measures. This
performance can be evaluated once the true market
prices are available. For every day and all the weeks
three types of average prediction errors (typically used
in the electricity price forecasting literature, see e.g.
Weron (2006)) were computed: one corresponding to
the 24 hours of each day and two to the 168 hours of
each week.

The Mean Daily Error (MDE) is computed as

MDE =
1
24

24∑

h=1

|ph − p̂h|
p̄24

, (2)

where ph and p̂h are respectively the actual price and
the forecasted price for hour h and p̄24 is the mean
hourly price for a given day. The use of p̄24 avoid the
adverse effect of prices close to zero.

Analogous to the MDE, the Mean Weekly Error
(MWE) is computed as:

MWE =
1

168

168∑

h=1

|ph − p̂h|
p̄168

, (3)

where ph and p̂h are respectively the actual price and
the forecasted price for hour h in the week and p̄168 is
the mean hourly price for a given week. Additionally,
we compute the Weekly Root Mean Square error
(WRMSE). The WRMSE is calculated as the square
root of the 168 square differences between the actual
and forecasted price:

MDE =

√√√√ 1
168

168∑

h=1

(ph − p̂h)2. (4)

The WRMSE puts more weight to differences in
the high-price range than MDE and MWE. Such
measures are important because price spikes may lead
to financial losses in electricity trading. However,
both measures are not robust against outliers.

3.1 Forecast Results

Table 1 below, refer to the daily forecasts presented as
a weekly measure. The entry ”Linear” refers to the
preferred model from Misiorek, Trueck, and Weron
(2006) and entries for this model in Tables ??, ??
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and ?? replicate his results for this approach and
likewise for ”Nave”. The other entries (GAM; Local
Regression; ANN and Tree) presented below and in
the Appendix are new. Table 1, below, summarises the
results and demonstrate the following; for the MWE
both GAM and Local Regression dominate Linear
with Nave fourth. For WRMSE GAM followed by
Local Regression with Linear and Nave joint third.
Looking at the ’calm’ (weeks 1-10) versus ’volatile
periods’ (weeks 11-35); Linear seems to forecast
better in the early periods, less so in the more volatile
episodes.

Table 1. WEEKLY BEST MODEL SUMMARY - DAY
AHEAD FORECAST

Model MWE WRMSE
Local Regression 8 10

GAM 9 7
ANN 1 2
Naive 6 6

Tree 4 4
Linear 7 6

This table contains the weekly ’best model’ (model with smallest
error) summary in a Day-Ahead forecasting framework. For
each model we show how many times it was be best model in
each error measure (MWE and WRMSE), where ’GAM’ aims for
the Generalised Additive Model, ’ANN’ for the Artificial Neural
Networks, ’Naive’ the Naive method for week ahead forecast,
’Local Regression’ for Local Regression Model, ’Tree’ the Linear
Regression Tree model and ’Linear’ the ARX model.

Table 2 below, refer to week ahead forecasts. These
are new including the columns headed ”Linear” and
”Naive”. Table 2 summarise these results and shows
that Local Regression and GAM dominate all other
approaches for both MWE and WRMSE. Also new is
Table 3 which relate to day-ahead forecasts. Table 3
shows the models with smaller MDE sorted by day
of week. The naive method is the best ”forecasting
method” in a day ahead forecast, followed by GAM
and Local Regression. The linear, ANN and linear
regression tree models have the worst performance.

4 CONCLUSION

Interest in modelling and in particular, forecasting,
electricity prices is growing globally. Much interest
has been focussed on modelling a small number of key
markets including CalPX and NordPool, with British,
Spanish and Australasian markets being included as
high frequency data becomes available.

In this study we have analysed the CalPX data as a
precursor to a more wide-ranging testing programme.
In particular, we have sought to formally investigate
the potential for using a range of non- (semi-)
parametric methods that have proven useful in other
areas of applied statistics. The particular nature of the

Table 2. WEEKLY BEST MODEL SUMMARY - WEEK
AHEAD FORECAST

Model MWE WRMSE
Local Regression 14 16

GAM 19 16
ANN 2 2
Naive 0 1

Tree 0 0
Linear 0 0

This table contains the weekly ’best model’ (model with smallest
error) model summary in a Week-Ahead forecasting framework.
For each model we show how many times it was be best model in
each error measure (MWE and WRMSE), where ’GAM’ aims for
the Generalised Additive Model, ’ANN’ for the Artificial Neural
Networks, ’Naive’ the Naive method for week ahead forecast,
’Local Regression’ for Local Regression Model, ’Tree’ the Linear
Regression Tree model and ’Linear’ the ARX model.

Table 3. DAILY BEST MODEL - DAY-AHEAD
FORECAST

Model Total
Local Regression 20.8%

GAM 21.6%
ANN 11.4%

NAIVE 29.0%
TREE 8.6%

LINEAR 8.6%

This table contains summary of the models with smallest MDE
in each day of week. ’GAM’ aims for the Generalised Additive
Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the
Naive method for week ahead forecast, ’Local Regression’ for
Local Regression Model, ’Tree’ the Linear Regression Tree model
and ’Linear’ the ARX model.
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electricity data eg., highly seasonal, mean reverting
with occasional jumps/spikes and time- and price-
dependant volatility, appears on the face of it to be
a prima facie case for using a range of parametric
methods developed for financial data. Weron et.
al. (various) have demonstrated with the CalPX data
the apparent dominance of linear ARX and ’Nave’
forecasting methods. Incorporating GARCH-type
effects apparently does not enhance the performance
of these simple methods (see Weron (2006)) although
these results relate to a small range of cases and would
appear to contrast with those of Garcia, Contreras, van
Akkeren, and Garcia (2005) who used both CalPX and
Spanish data.

In this study we have contributed to the literature
by formally testing the proposition on page 4 that
casts doubt on the assumed poor performance of AI-
based techniques. Our results fall into two groups.
For the experiments undertaken by Weron; daily
forecasts - weekly measure - the Linear (ARX) model
performs well, but is dominated by Local Regression
and GAM. ANN does not perform well, as postulated
by Misiorek, Trueck, and Weron (2006), nor do
Trees. However, ’Nave’ works very well - the
simplest and often ’best’ way to forecast electricity
prices is to assume your forecast tomorrow is simply
informed by the same hour of the previous day (or
week for Saturday, Sunday and Monday)! New
results presented here, however, are somewhat more
encouraging for the benefits of using non-parametric
methods. Week ahead forecasts are dominated by
Local Regression and GAM formulations and day
ahead forecasts show a strong role for these two
approaches and also the ANN. Linear models have
somewhat less success. In addition it must be
stressed that these comparisons were made within
the constraints of the best linear model formulation
where the covariates were chosen to maximise the
performance of that formulation.

Future work in this area will involve; application of
the parametric and non- (semi-) parametric methods
to a range of alternate data sets and to include a
number of other co-variates, i.e., NordPool and New
Zealand data sets and the inclusion of weather and
hydrological data.
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