Looking for Permeability: Mass and Heat Flow Assessment Using High Resolution soil CO$_2$ Flux Surveys within the Taupo Volcanic Zone, New Zealand

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Geology

at the

Department of Geological Sciences

University of Canterbury

By

Simon H. Bloomberg

University of Canterbury

2012
Thermal infra-red and true colour images of White Island taken during November 2011.
Abstract

Soil CO2 flux (φCO$_2$) has increasingly become important as a global exploration and monitoring tool in geothermal and volcanic fields. As CO$_2$ is the second most abundant gas in magma-hydrothermal systems, its study is vital for the location or management of those systems. Often one of the only surface expressions is the diffuse gas flux streaming through the soil zone. This thesis reports the investigations into heat and mass at the Rotokawa geothermal field’s thermal area, and White Island volcano’s crater floor hydrothermal system. Surface measurements were taken at high spatial resolution across the fields in a large sampling campaign during the summers of 2010/2011 and 2011/2012. A large dataset was built up which allowed for greater accuracy during geospatial modelling. The models are 2d pixel plots of the soil gas flux and temperature and are used to estimate values of heat and mass flow for the respective magma-hydrothermal systems.

Both field areas have a large anomalous diffuse gas flux through the soil zone and related conductive heat flow anomaly, which indicates relative permeability from the source to the surface in these areas. That the rising fluids from the deep source can be sampled at the surface simply is a powerful tool for the exploration and management of these systems.

Rotokawa has a diffuse gas release of over 600 t d$^{-1}$ and an associated heat flow through soil of 37 MWt while White Island has a diffuse gas release of 116 t d$^{-1}$ and 19.5 MWt of heat flow through the soil. Translating these values to total heat and mass flow values: Rotokawa has a mass flow 125 kg s$^{-1}$ and a heat flow of 314 MWt and White Island’s crater floor has a mass flow of 100 kg s$^{-1}$ and a heat flow of 22 MWt.

Fluid flow pathways are mapped from the surface and show arcuate and hot spot spatiality, controlled by fault related permeability and structure. soil gas and temperature surveying elucidates Shallow structures that otherwise may have been hidden from status quo surface mapping. The method used in this study is applicable to both known thermal areas and blind thermal areas by addressing not only the flux but also the nature of the soil gases.

Further study of White Island has found more evidence for the existence of seawater infiltration of the crater magma-hydrothermal system.
First and foremost I give thanks to my supervisory team: To Dr. Clinton Rissmann, who counselled and trained me in the way of the flux, who even with a young family encouraged me to share his home and bestowed upon me an enthusiasm for collecting data I didn’t think I would ever have. Cheers mate! To Dr. Agnes Mazot, merci de votre patience et pour m’aider avec la vie de GNS Wairakei, I hope you stay in NZ and flux all of the TVZ! To Dr. Travis Horton, you’re a top warlock and a top supervisor; you’re effort in running the gas samples turned my thesis from good to great! To Dr. Christopher Oze, a late comer but a quick learner, and the man with the whip who really got me there, I owe you quite a lot of beer I feel. Meet you at Antonio’s in five? Special thanks to Dr. Cindy Werner for her expert reviews, too little to late is better than none! To Dr. Darren Gravley, word. Thanks for getting me on board all those years ago (2? 3?), you turned an alright university experience into a really great one. I seriously am grateful for all the opportunities you’ve given me. Hopefully I can return the favour at some stage! And finally to Dr. Ben Kennedy, cheers. You got me into to this at Oamaru when I received my drawing of a volcano back with the grade “5/5 Wicked”. I was stoked, I had always struggled with geology as a passion, but from then on I was hooked!

I have learnt so much over the last 3 years: how to be invited to a meeting, how to participate in a meeting, how to not turn up to a meeting, how to meet people in a meeting, how to organise my own meetings, how to organise other people to have meetings. I really learnt the value of meetings. I also really learnt the value of friendship, so I have to shout out to my flatmates, who really were mates and not just people I lived with, you know who you are, heaps of love! Shout out to the Warlocks, for keeping me in the scene even though I’m an old fart. Shout out to Courtney, it was up and down, and on and off… but you were a great friend and I learnt a lot, so for that I’m grateful. Shout out to Gladwin and Josh for getting me surfing, some of the most fun I’ve ever had, I’ll see you at the beach sometime boys! Shout out to my fellow postgraduates, keep it up! Finally, a shoutout to my undergrad class of 2006, you made geology bearable and then alright and then not too bad and now look at me, the last one at UC, well now I’ve finished! I bet captain Jarg would be proud.
Thanks must also be given to all those others who helped me along the way, to those from the University of Canterbury: Dr. Anekant, Dr. Cole, Dr. Quigley, Dr. Bassett, Dr. Reid, Dr. Wilson, Dr. Turbull, Dr. Hampton, Dr. Nobes, Dr. Ring, Dr. Weaver, Dr. Grimshaw, Dr. Shulmeister and even DHB! You all gave me the time of day at one stage and that is all it takes! To those from GNS Science: Jeremy Cole-Baker, Karen Britten, Cindy Werner, Bruce Christenson, Gill Jolly, Brad Scott, Shelley, and Sue! To all those at Mighty River Power Ltd.: Jeremy O’Brien, Simon Addison, Jeff Winick, Tom Powell, Linda Price and Joe Gamman.

To the those who helped with fieldwork: Joanna Paws on, Mark Letham, Jelte Keeman, Heather Bickerton, Johanna Bloomberg, Karen Britten, Agnes Mazot, Clinton Rissmann; big up! You are the bread and butter and gave graciously of your time and energy. A Special big up goes to Jo and Joh, because you’re both so rad, in and out of the field. I had such a good time in Taupo!

Finally I have to give the biggest shoutout to my whanau: the Elliots, the Bloombergs, The Barnfields and the Lawrences, you guys have supported me from day one to day 8945. I love you all so much and dedicate this thesis to you guys. Arohanui, much love!

Chur,

Si.
Table of Contents

111 Title Page i

112 Frontispiece ii

113 Abstract iii

114 Acknowledgements iv

115 List of Tables ix

116 List of Figures ix

117 Prologue 1

118 Chapter 1 2

119 SOIL CO2 EMISSIONS AS A PROXY FOR ASSESSMENT OF HEAT AND MASS FLOW, TAUPO VOLCANIC ZONE, NEW ZEALAND 2

121 1. Abstract 3

122 2. Introduction 4

123 3. Geological Setting 5

124 3.1 Rotokawa (RK) 5

125 3.2 White Island (WI) 6

126 4. Methods & Materials 6

127 4.1 Soil gas flux and temperature measurements 6

128 4.2 Carbon isotopic analysis of soil gas 8

129 4.3 Data Analysis 8

130 4.4 Heat and mass flow from soil temperature 9
4.5 Heat and mass flow and emissions calculations from CO₂ flux

5. Results

5.1 Rotokawa: Diffuse soil gas fluxes, stable isotopes and soil temperatures
5.2 Rotokawa: pH₂S and relationships with φCO₂
5.3 White Island: Diffuse soil gas fluxes, stable isotopes and soil temperatures
5.4 Heat and mass flow based on soil temperature measurements
5.5 Heat and mass flow calculated from CO₂ degassing

6. Discussion

6.1 Interpolation of φCO₂: GSA vs. sGs
6.2 Defining the multisource nature of CO₂
6.3 Rotokawa δ¹³C CO₂ analysis
6.4 White Island δ¹³C CO₂ analysis
6.5 Soil Gas Emissions at Rotokawa
6.6 A sulfur budget for Rotokawa
6.7 White Island CO₂ emissions
6.8 Heat flow from CO₂ emissions
6.9 Rotokawa: Structural and permeability controls on CO₂ emissions
6.10 White Island: Structural and permeability controls on CO₂ emissions

7. Conclusions

8. Acknowledgements

9. References

10. Tables

11. Figures

Future Work

1. Soil gas surveys as a method for quantifying CO₂ emissions
2. Estimates for the TVZ from soil gas data
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Tables and Figures</td>
<td>48</td>
</tr>
<tr>
<td>158</td>
<td>Appendix 1</td>
<td>50</td>
</tr>
<tr>
<td>159</td>
<td>SEAWATER INFILTRATION AT WHITE ISLAND, BAY OF PLENTY, NEW ZEALAND:</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>USING STABLE ISOTOPES OF CO2 AND H2O TO EVALUATE THE FLUID FLOW DYNAMICS</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>1. Introduction</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1.1 Geological Setting</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1.2 Origin of the fluids</td>
<td>51</td>
</tr>
<tr>
<td>165</td>
<td>2. Methods</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2.1 Soil gas and surface water sample collection</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2.2 Stable Isotopic analysis</td>
<td>53</td>
</tr>
<tr>
<td>168</td>
<td>3. Results</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>3.1 Isotopic analysis of soil CO2</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>3.2 φCO2 vs. δ^{13}C
CO2</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>3.3 Surface water analysis</td>
<td>54</td>
</tr>
<tr>
<td>172</td>
<td>4. Discussion</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>4.1 δ^{13}C analysis of DIC and Flux</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>4.2 Evaluation of fluid flow dynamics</td>
<td>55</td>
</tr>
<tr>
<td>175</td>
<td>5. Conclusion</td>
<td>56</td>
</tr>
<tr>
<td>176</td>
<td>6. References</td>
<td>56</td>
</tr>
<tr>
<td>177</td>
<td>7. Tables</td>
<td>58</td>
</tr>
<tr>
<td>178</td>
<td>8. Figures</td>
<td>59</td>
</tr>
<tr>
<td>179</td>
<td>Appendix 2</td>
<td>64</td>
</tr>
<tr>
<td>180</td>
<td>DATA REPOSITORY</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Results from GSA analysis of the raw data and sGs modelled data at RK 34
Table 2: Results from GSA analysis of the raw data and sGs modelled data at WI 35
Table 3: CO\textsubscript{2} emissions for four geothermal fields in the TVZ 48
Table 4: Results from the soil gas flux, composition and temperature survey at WI 58
Table 5: Isotopic composition of WI surface waters 58

List of Figures

Figure 1: Field locations within the TVZ, and sampling locations within each field 36
Figure 2: Plots of Soil Temperature vs. \(\varphi\text{CO}_2\) and \(\delta^{13}C\text{CO}_2\) at RK and WI 37
Figure 3: Histograms and variograms from the raw data of RK and WI 38
Figure 4: Cumulative probability plot for RK 39
Figure 5: Cumulative probability plot for WI 40
Figure 6: Plots of \(\delta^{13}C\text{CO}_2\) vs. \(\varphi\text{CO}_2\) and Cumulative probability for RK 41
Figure 7: \(\varphi\text{H}_2\text{S}\) vs. \(\varphi\text{CO}_2\) at RK 42
Figure 8: Plots of \(\delta^{13}C\text{CO}_2\) vs. \(\varphi\text{CO}_2\) and Cumulative probability for RK 43
Figure 9: Pixel plots of the sGs modelled \(\varphi\text{CO}_2\) and soil temperatures at RK 44
Figure 10: Pixel plots of the sGs modelled ϕCO$_2$ and soil temperatures at RK

Figure 11: International comparison of normalised and total CO$_2$ emissions

Figure 12: Total CO$_2$ emission vs. Heat flow in the TVZ

Figure 13: Map of Sampling at WI

Figure 14: Plot of δ^{13}C$_{CO2}$ vs. ϕCO$_2$ from soil gas in the crater floor

Figure 15: Plots of δ^{18}O vs. δD of crater floor surface waters

Figure 16: Crater floor isoscape of δ^{13}C$_{CO2}$ and δ^{13}C$_{DIC}$

Figure 17: 2d Schematic of the WI magma-hydrothermal system
This thesis represents a significant body of work, detailing the heat and mass flow assessment of two magma-hydrothermal systems using soil gas flux surveys. The thesis objectives were laid out at the beginning of the study as:

1) Define a Total Soil CO$_2$ flux value for White Island using soil surveys within the crater floor.

2) Define a total CO$_2$ Mass value for Rotokawa geothermal field using soil gas flux surveys.

3) Investigate graphical and isotopic techniques to differentiate magmatic, biogenic and atmospheric CO$_2$ in our field areas.

4) Calculate Total heat and mass flow values for both field sites using existing or new geochemical data.

5) Investigate the fluid flow pathways and structural controls governing the surface expression of diffuse soil gas fluxes.

Chapter 1: “Soil CO$_2$ emissions as a proxy for assessment of heat and mass flow, Taupo Volcanic Zone, New Zealand”, will deal with these objective entirely, and composes the bulk of the work for the thesis. Chapter 1 is set to be submitted to G3: Geochemistry, Geophysics, Geosystems. After analysing the results of the surveys at White Island, a sixth objective came out of the data:

6) Investigate the component sources of the soil gas released in the magma-hydrothermal system within the crater floor of White Island for clues into the nature of the shallow-subsurface permeability structures.

This objective is addressed in Appendix 1: “Seawater infiltration at White Island, Bay of Plenty, New Zealand: Using Stable Isotopes of CO$_2$ and H$_2$O to evaluate the fluid flow dynamics”. This section will be formalised into a paper and be submitted in the future.
Chapter 1

Soil CO\textsubscript{2} emissions as a proxy for assessment of heat and mass flow, Taupo Volcanic Zone, New Zealand

11Bloomberg, S, 22Rissmann, C., 33Mazot, A., 44Werner, C., 11Horton, T., 11Oze, C., 11Gravley, D., and 11Kennedy, B.

11University of Canterbury, 20 Kirkwood Avenue, Ilam 8041, NZ
22Environment Southland, 202 Price Road, Waikiwi 9810, NZ
33GNS Science, 114 Karetoto Road, Wairakei 3377, NZ
44Alaska Volcano Observatory, 4200 University Drive, Anchorage, AK

11E-mail: simonhbloomberg@gmail.com

Contributions:
Mr. Bloomberg conducted the literature review, undertook the field work, geospatial mapping and wrote the manuscript. Dr. Rissmann conceived the study, assisted the field work, trained Mr. Bloomberg in CO\textsubscript{2} flux methodologies, geospatial mapping and geostatistical analysis. Dr. Mazot assisted the fieldwork and patiently trained Mr. Bloomberg in CO\textsubscript{2} flux methodologies and provided insight and guidance throughout the field seasons. Dr. Werner contributed unpublished data and reviewed the manuscript. Dr. Horton analysed the soil gas samples for stable isotopes of carbon and reviewed the manuscript. Dr. Oze, Dr. Gravley, and Dr. Kennedy provided reviews of the manuscript and good conversation at the pub. Special thanks also goes to Karen Britten (GNS Science) and Jo Pawson (UC) for assisting with fieldwork. This manuscript benefited greatly from endless reviews from the co-authors and Mighty River Power Ltd. Reviewers Tom Powell and Jeff Winick.
1. Abstract

The quantification of the heat and mass flow between deep reservoir(s) and the surface is a significant challenge to the sustainable development and exploration of magma-hydrothermal systems. Here, we use high resolution measurement of carbon dioxide (CO$_2$) flux and heat flow at the land surface to characterize the mass (CO$_2$ and steam) and heat released from the magma-hydrothermal systems. Statistical and isotopic characterization of background sources of CO$_2$ flux is utilized to reduce the level of uncertainty when deriving mass (emissions) and heat flow estimates from high temperature reservoirs. Soil gas and heat flow surveys at Rotokawa and White Island in the Taupō Volcanic Zone, New Zealand, include over 3,000 direct measurements of CO$_2$ flux, soil temperature, and soil gas carbon isotopes. Results indicate a total CO$_2$ emission rate of 633 ± 16 t d$^{-1}$ (2.5 km2) for Rotokawa and a total CO$_2$ emission rate of 116 ± 2 t d$^{-1}$ for the crater floor (0.3 km2) at White Island. Combining the magmatic-hydrothermal sourced CO$_2$ emission (constrained using stable isotopes) with reservoir H$_2$O:CO$_2$ concentration ratios and the enthalpy of evaporation, the thermal energy release for Rotokawa and White Island is 314 MW$_t$ and 54 MW$_t$, respectively. CO$_2$ emissions are higher than previously published values by up to 570 td$^{-1}$ at Rotokawa and 15 td$^{-1}$ at White Island. Paired assessment of the CO$_2$ source using stable isotopes and statistical analysis of the CO$_2$ flux has reduced the uncertainty when constraining the magma-hydrothermal CO$_2$ emission from the reservoirs and has implications for blind geothermal system exploration.
2. Introduction

Heat and mass transfer through magmatic-hydrothermal systems in the Taupo Volcanic Zone (TVZ) of New Zealand has been evaluated using a variety of surface geophysical, geochemical and geological techniques (Donaldson & Grant, 1978; Lyon & Hulston, 1984; Bibby et al., 1995b; Seward & Kerrick, 1996; Rowland & Sibson, 2004). Surveys of magmatic-hydrothermal emissions are used to (1) better quantify the contribution of emissions to the global carbon cycle (cf. Seward & Kerrick, 1996; Mörner & Etiope, 2002), (2) identify temporal changes for volcano monitoring purposes (Chiodini et al., 1998, 2005, 2008; Brombach et al., 2001; Frondini et al., 2004; Werner et al., 2004a; Mazot et al., 2011) and (3) assess the potential for geothermal power. As the measurement of CO$_2$ flux and its use as a proxy for total heat and total mass transfer has improved, the technique now has applications in geothermal exploration and field management (Sheppard et al., 1990; Werner et al., 2004b; Bergfeld et al., 2006; Fridriksson et al., 2006; Werner & Cardellini, 2006; Werner et al., 2008b; Dereindra & Armansson, 2010; Viveiros et al. 2010; Rissmann et al., 2011, 2012).

Magmatic-hydrothermal systems can be divided into non-volcanic and volcanic types (Kerrick, 2001; Mörner and Etiope, 2002). The CO$_2$ emission from actively degassing volcanoes (i.e. Vulcano; Chiodini et al., 1998) is variable over a wide range of magnitudes. Diffuse degassing of non-volcanic systems (i.e. Reykjanes; Fridriksson et al., 2006), when properly constrained, produces a similar range of emissions to active volcanoes or in some cases higher emissions as exemplified in New Zealand (cf. Seward & Kerrick, 1996; Werner et al., 2004a & 2004b; Werner & Cardellini, 2006; Rissmann et al., 2012). As such, when calculating total CO$_2$ emissions for convergent plate boundary volcanism (like the TVZ), inclusion of non-volcanic systems can only improve the accuracy of these carbon-cycle fluxes.

Here we compare high resolution soil gas flux and heat flow surveys for Rotokawa (RK), a developed high temperature (>200°C) non-volcanic geothermal system, and White Island (WI), an active andesitic stratovolcano, both within the TVZ. In addition to emission estimates, we also determined the sources of CO$_2$ at RK and WI using cumulative probability plots and stable isotopic analysis of 13C and by comparison with CO$_2$ flux and soil temperature. Total heat flow (MWt), total mass flow (Kg s$^{-1}$) and soil gas emission rates (t d$^{-1}$) are quantified for each survey along with detailed maps of the spatial extent and magnitude.
of soil gas flux and heat flow. Normalized to total thermal area and total emission rates are contrasted with values reported for fields within the TVZ and worldwide (Mörner and Etiope, 2002; Werner and Cardellini, 2006; Rissmann, 2010; Inguaggiato et al., 2012) and spatial maps of surface flux and heat flow are used to infer structural controls to fluid flow. Finally, a comparison is made between the observed CO₂ and derived heat flow estimates from this study and previously published estimates.

3. Geological Setting

3.1 Rotokawa (RK)

The geothermal system at RK fits within an 18-26 km² resistivity boundary defined by surveys completed in the 1960’s and 1980’s (Hedenquist et al., 1988). The principal thermal feature is a warm (~24°C, surface) acid (pH ≈2.2) lake (Lake Rotokawa) with an area of ~0.62 km². To the north of the lake lies the RK thermal area with numerous thermal features (steaming ground, hot pools, sink holes, sulfur banks, hydrothermal eruption craters and fumaroles; Krupp & Seward, 1987). Collar and Browne (1985) noted that the hydrothermal explosions craters are less than 20,000 years old and structurally aligned in a NE/SW orientation coincident with deep field faults (Winick et al., 2011). The RK thermal area has been extensively modified by historic sulfur mining and thermal features have been created where the land surface was excavated and/or a confining impermeable cap removed.

Two geothermal power stations generate from the geothermal reservoir (Figure 1), Rotokawa A (34MWₑ) and Nga Awa Purua (140 MWₑ). The maximum fluid temperature is ~320°C, recorded within the Rotokawa andesite deep reservoir rock (Hedenquist et al., 1988). A two-phase fluid flows from the deep reservoir through to the surface along a deep field fault and mixes in a shallow aquifer near the lake (Winick et al. 2011). A local confining layer (a volcaniclastic lake deposit rich in clays, ‘the Huka Falls Formation’) has been removed in the thermal area by both hydrothermal eruptions and dissolution, this has opened the permeability for mixed neutral chloride and acid sulphate fluid to flow through hot springs and steaming ground (Krupp & Seward, 1987).
3.2 White Island (WI)

White Island (Whakaari) is an active andesitic stratovolcano located 50 km to the northeast of Whakatane, on strike with the eastern edge of the TVZ. The volcano is one of New Zealand’s most active volcanoes over historic times; recent activity has been phreatic, phreatomagmatic and magmatic (Houghton and Nairn, 1991; Cole et al., 2000; Wardell et al., 2001). The gas chemistry is typical of active arc volcanism (Giggenbach, 1995).

The lithology of the crater floor is comprised of volcanic sediments and ash from eruptions, a landslide unit in the form of hummocks, and ancestral crater lake deposits (Houghton and Nairn, 1991). The only vascular life forms occur on the seaward flanks of the volcano but there is microbial activity within the crater floor soils and waters (Donachie et al., 2002; Giggenbach et al., 2003). These bacteria (i.e. methanogens) facilitate precipitation of minerals and produce CH\(_4\) and CO\(_2\) (Castaldi and Tedesco, 2005). Thermal features include steaming vents, active fumaroles (100-150°C; Werner et al., 2008a), acid streams and pools, and steaming and boiling mud pots and pools. The western crater is filled with a large boiling acid lake (pH ≈ -0.2) demarking the center of modern day volcanic activity.

Subsurface permeability at WI is mainly controlled by presence/absence of hydrothermally-altered clay. Areas of high permeability create diffuse degassing structures and are often linked with landslide hummocks that have in-filled the crater floor during historic eruptions. Fumarolic activity has been monitored for the last 50 years (Giggenbach 1975a, 1975b, 1987; Rose et al. 1986; Marty and Giggenbach, 1990; Giggenbach and Matsuo, 1991; Werner et al., 2008a).

4. Methods & Materials

4.1 Soil gas flux and temperature measurements

Soil gas flux (φ) surveys and subsoil gas sampling for compositional analysis of fumarolic gases were utilized to evaluate subsurface structural controls regulating fluid/gas flow to the surface. Soil gas flux of CO\(_2\) (φCO\(_2\)) and H\(_2\)S (φH\(_2\)S) and soil temperatures were measured in the thermal areas at RK and at locations within the WI crater floor. The accumulation chamber method was used for assessing φCO\(_2\) (Chiodini et al., 1998; Werner et
al., 2000; Lewicki et al., 2005; Rissmann et al., 2012). \(\Phi \text{CO}_2 \) was measured using a West Systems accumulation chamber and LICOR LI-820 infrared gas analyser for \(\text{CO}_2 \) (Welles et al., 2001) that is calibrated annually and has a sensitivity range of 0-20,000 ppm. Evans et al., (2001) and Giammanco et al. (2007) both tested the accuracy of the accumulation chamber technique with a series of replicate measurements of known \(\text{CO}_2 \) effluxes through a synthetic soil. Evans et al. (2001) found that the accumulation chamber measured a mean flux at ~12.5% below the imposed fluxes while Giammanco et al. (2007) reported an average measurement error of ±5% that they attributed to natural variability, and recorded a mean difference between measured and imposed fluxes of +5%. We used an identical system to that assessed by Giammanco et al. (2007) and assume a similar mean measurement error of approximately +5%. The fieldwork was undertaken in dry and stable conditions in order to minimize the influence of rain, wind, soil humidity and atmospheric pressure changes on \(\Phi \text{CO}_2 \). Sampling of \(\text{H}_2\text{S} \) flux was limited at times due to the poor response of the chemical sensor. Additionally, the purge time (<2 min) between consecutive measurements did not enable the \(\text{H}_2\text{S} \) sensor to recover from previous high measurements. Due to the limited \(\Phi \text{H}_2\text{S} \) measurements, ‘flux’ in this study relates to \(\Phi \text{CO}_2 \) unless otherwise stated.

Soil temperatures were measured to 10 cm depth within ~0.1m of the accumulation chamber footprint using a Yokogawa TX-10 digital thermometer and a K-type thermocouple (measurement accuracy ±0.5°C). Ambient air temperature and barometric pressure were logged at the start of each day and after each 25 consecutive measurements of flux and soil temperature. The flux survey design at RK used a systematic sampling approach (quasi-regular grid spacing of 10 m - 25 m) coupled with an adaptive cluster component (e.g. Thompson, 1990). Deviation from the systematic sampling pattern was guided by sensory cues such as ground alteration and odour with the adaptive component initiated when a measurement exceeded the estimated background flux level (>90 g m\(^{-2}\) d\(^{-1}\), ≥ ambient T°C) at which point the resolution increased to 5 m spacing. Due to time constraints at WI, measurements were based on the systematic sampling approach only (Figure 1).

Two fumaroles were sampled at RK to find the \(\text{H}_2\text{O}:\text{CO}_2:H_2\text{S} \) concentration in steam. They were sampled using the same setup from Rissmann (2010) and analysed in the same laboratory.
4.2 Carbon isotopic analysis of soil gas

In order to define the magma-hydrothermal source, we analyzed the stable isotopic composition of CO\(_2\) (\(\delta^{13}C_{CO_2}\)) by collecting a gas sample concurrently with soil gas flux measurements in the West Systems accumulation chamber. A 5 mL syringe was used to pierce a rubber septum on top of the chamber. A gas sample was drawn and emptied into a helium filled 10mL exetainer vial capped with a pierceable butyl rubber septum. A fresh needle and syringe is used for each sample. Samples were taken direct from the chamber to prevent mixing and contamination from other possible sources of CO\(_2\) (Chiodini et al., 2008).

Values of \(\delta^{13}C_{CO_2}\) were determined using a Thermo Scientific GasBench II connected to a Delta V Plus gas isotope ratio mass spectrometer under continuous flow conditions within 48 hours of collection of the soil gas CO\(_2\). A total of 60 samples at RK and 60 samples at WI were analysed. Stable oxygen and carbon isotopic compositions are accurate to <0.10 \(\%e\) based on replicate analysis of NBS-19 and NBS-22 certified reference materials.

4.3 Data Analysis

Raw \(\phi CO_2\) and \(\phi H_2S\) data were converted from ppm s\(^{-1}\) to g m\(^{-2}\) d\(^{-1}\) to account for the ambient temperature, atmospheric pressure and the area and volume of the accumulation chamber. Additionally, raw soil temperature values were converted from °C to W (watts) m\(^{-2}\) (following the procedure discussed in the next section).

Interpolation of the unsampled area was modelled using the sequential Gaussian simulation (sGs) algorithm within the WinGsLib software toolbox (Deutsch & Journel, 1998), and following the methods of Cardellini et al. (2003). The direct measurement data sets for \(\phi CO_2\) and soil temperature/heat flow (Figures 2a & b) were declustered to remove the sample bias induced by using adaptive clustering and then normally scored prior to interpolation. Each simulation ran for 500 realisations at 10 m cell size using variogram models (Figure 3c & d). Post-processing of the 500 flux grid realizations included computation of mean flux and the probability of high and low fluxes at each location. Emission rates (t d\(^{-1}\)) for each realization were calculated by summing the simulated flux across the grid and multiplying by the grid area using the back-transformed data. The mean and standard deviations of the emission rates were computed from the 500 flux realizations conducted for each grid area.
CO₂ flux and soil temperature models were mapped as 2D pixel plots obtained from a pointwise linear averaging of the 500 realizations (E-type estimation) of each site. Finally, 2D pixel plots of the different flux populations were modeled using various flux cut-offs, set according to the population thresholds identified from isotopic values and log cumulative probability plots of φCO₂. The spatial distribution in soil temperatures were also modeled spatially through 500 sGs realizations using the method described for soil CO₂ flux.

As diffuse CO₂ flux from the soil may originate from multiple sources (i.e. soil-respired, atmospheric, and/or magmatic), flux data was evaluated using Sinclair’s (1974) method by: 1) plotting geochemical data on a log-normal probability plot with a Gaussian distribution (cumulative probability) and 2) then separating the dataset into populations. Log cumulative probability plots were also applied to δ¹³C_CO₂ and φCO₂, respectively, in attempt to better resolve the contribution of soil-respired or background sources to the total CO₂ emission occurring at both RK and WI (Figures 4 and 5).

The Graphical Statistical Approach (GSA) of Chiodini et al. (1998) is based on log cumulative probability plots of flux data and can be used to estimate total emissions. This was accomplished by summing the emission per population (Eᵢ) which is calculated by multiplying the mean (Mᵢ) CO₂ flux of each population (where “ᵢ” stands for each population recognized by cumulative probability plots) by Sᵢ, the corresponding surface area (i.e. Eᵢ=Mᵢ(Sᵢ)). An evaluation of Sᵢ is obtained by multiplying the surface (S) of each study area (RK or WI) by the corresponding proportion (fᵢ) of the population (i.e., Sᵢ = fᵢS). The total CO₂ output from each site results from the summation of each population contribution. The central 95% confidence interval of the mean is used to calculate the uncertainty of the total CO₂ output estimation for each population.

4.4 Heat and mass flow from soil temperature

Soil temperature measurements were taken at RK (2914) and WI (690) at a depth of ~10cm. If the boiling point temperature (RK=98.7°C, WI=100°C) was reached before 10cm this was noted. Soil temperature measurements were converted to equivalent heat flow values using soil-temperature heat flow functions (Equations 1 and 2; Dawson, 1964). Dawson (1964) derived these equations from the relationship between surface heat flow (W m-2) and soil temperature at 15 cm depth at the Wairakei geothermal field. Broadly similar parent
materials and climatic conditions exist at RK and WI and therefore it is assumed that both formulas can be applied without change. Due to 80% of temperature measurements being recorded at the shallower depth of 10 cm we expect the converted heat flow values to be underestimates. Hochstein and Bromley (2005) found a diurnal variation of between 1-3°C at a depth of 10cm at the Karapiti thermal area, due to this minimal variation no diurnal temperature correction was applied to the soil temperature data.

Where soil temperature was below boiling point at 15 cm, Equation (1) is applied:

\[
q_s = 5.2 \times 10^{-6} t_{15}^4 \tag{1}
\]

where \(t_{15} \) is the soil temperature at 15cm depth and \(q_s \) is the soil heat flux in Wm\(^{-2}\).

At sites where soil temperature exceeded boiling point at a depth (\(d_{BP} \)) of 10 or 15 cm, Equation (2) was applied:

\[
q_s = 10^{\left(\log d_{BP} - 3.548\right) / -0.84} \tag{2}
\]

From the transformed soil temperature data heat flow was simulated across each field using the sGs method as described above for CO\(_2\). Total heat flow (MW\(_t\)) for each field was then computed by summing the simulated heat flow across the grid and multiplying by the grid area using the back-transformed data. The mean and standard deviations of the heat flow rates were computed from the 500 realizations conducted for each grid area.

Steam mass flow through the soil (\(F_{S,H_2O} \) in Kg s\(^{-1}\)) for each study area was approximated from heat flow values using the equation of Fridriksson et al. (2006):
where H_s is the calculated heat flow in Watts from Equations (1) and (2), $h_{s,100^\circ C}$ is the enthalpy of steam at $100^\circ C$ (2676 kJ/kg) and $h_{w,t}$ is the enthalpy of water at the mean annual temperature for the field areas (RK=23°C;96kJ/kg, WI=10°C:41.9kJ/kg; NIWA.co.nz, 2011; Schmidt and Grigull, 1979).

4.5 Heat and mass flow and emissions calculations from CO$_2$ flux

An alternative measure of the steam mass flow (or heat release) from the high temperature reservoirs at both fields is made by multiplying the total CO$_2$ emission rate by the representative concentration ratio of CO$_2$ in steam (H_2O:CO$_2$) supplying surface thermal activity (Chiodini et al., 2005; Fridriksson et al., 2006):

$$F_{stm(CO_2)} = F_{CO_2} \cdot \frac{[H_2O]}{[CO_2]}$$ \hspace{1cm} (4)

where F_{CO_2} is the total flux of CO$_2$ in g s$^{-1}$, $\frac{[H_2O]}{[CO_2]}$ is the concentration ratio in g, and $F_{stm(CO_2)}$ is the steam mass flow in g s$^{-1}$. In this way we can calculate the quantity of steam mass flow that is condensed within the subsurface by comparing $F_{stm(CO_2)}$ with the value from heat flow through soil ($F_{s(H_2O)}$), Equation (3), Fridriksson et al., 2006).

An equivalent heat flow (H_s) can be calculated for the steam mass flow ($F_{stm(CO_2)}$) derived from Equation (4) using:

$$H_s = F_{stm(CO_2)} \cdot h_{s,100^\circ C}$$ \hspace{1cm} (5)
where $F_{\text{stm}}(\text{CO}_2)$ is from Equation (4), and is the steam flux in g s$^{-1}$, and $h_{s,100^\circ\text{C}}$ is the enthalpy of steam at 100°C (2676 kJ/kg) and H_s is the heat flow in Watts (Fridriksson et al., 2006).

5. Results

5.1 Rotokawa: Diffuse soil gas fluxes, stable isotopes and soil temperatures

Diffuse soil CO$_2$ fluxes range from <1 to 127,808 g m$^{-2}$ d$^{-1}$ from 2,914 direct measurements (Figure 2a). Across a 1.4 km2 area of the RK field the arithmetic and declustered means were 1146 g m$^{-2}$ d$^{-1}$ and 234 g m$^{-2}$ d$^{-1}$, respectively, while the sGs produced a mean of 246 g m$^{-2}$ d$^{-1}$. Twenty six per cent of the raw fluxes were greater than 100 g m$^{-2}$ d$^{-1}$ and less than 10% were greater than 1000 g m$^{-2}$ d$^{-1}$ (arbitrary bins). The coefficient of variation is 8.4 with the population being approximately log-normal with a positive skew which is consistent with a CV >1 for non-normal data (Figure 3a). Raw (GSA) and sGs total CO$_2$ emission estimates were 1727 and 353 t d$^{-1}$ for the 1.4km2 modeled area (Table 1).

Shallow soil temperatures (Figure 2a) ranged from 9 °C to boiling point (98.7°C at 350m ASL.). The arithmetic and declustered means were 29.5 and 23.4 °C. In terms of high temperatures, 10% of the data had temperatures > 50 °C and < 2% of the data was within error of boiling point (± 0.5 °C). The relationship between CO$_2$ and soil temperature at RK has an r^2 value of 0.26.

$\delta^{13}\text{C}_{\text{CO}_2}$ values (‰) range from -16.5 to -7.3 (n=60). The relationships between $\delta^{13}\text{C}_{\text{CO}_2}$ with soil temperature (Figure 2a) and φCO$_2$ (Figure 6) at RK have an r^2 value 0.08 and 0.3, respectively. The $\delta^{13}\text{C}_{\text{CO}_2}$ values of the CO$_2$ flux at RK can be split into those areas of flux >1,000 g m$^{-2}$ d$^{-1}$ with a mean of -8.5 ± 0.4 ‰ and areas of flux <1,000 g m$^{-2}$ d$^{-1}$ with a mean of -10.3 ± 0.5 ‰. The mean for the whole dataset is -9.7 ± 0.4 ‰.
5.2 Rotokawa: ϕH2S and relationships with ϕCO2

Samples of ϕH2S from 121 sites range from 0.2 to 156 g m$^{-2}$ d$^{-1}$. The r^2 value for CO$_2$ and H$_2$S is 0.65 (Figure 7) though for H$_2$S and soil temperature it is 0.25. In Figure 7 we plot the fluxes comparatively and find a threshold relationship where ϕH$_2$S is below detection until ϕCO$_2$ values exceed a threshold of \sim100 g m$^{-2}$d$^{-1}$ at which point both gaseous species are detected.

Two fumarole samples were used to calculate the CO$_2$:H$_2$S ratio of surface advective steam flow (pipe flow). The range of the ratios (Figure 7) provides an estimate of the distribution of the gas composition for advective degassing. While a few of the soil fluxes fall within this range most of the data show a higher CO$_2$:H$_2$S gas flux ratio.

The CO$_2$:H$_2$S ratio for the fumaroles has a mean of 7.9 while the mean ratio for significant soil gas flux is 241, historic gas data from wells puts the ratio around 45 ($\text{Hedenquist et al. 1988}$).

5.3 White Island: Diffuse soil gas fluxes, stable isotopes and soil temperatures

Fluxes range from <1 to 29,896 g m$^{-2}$ d$^{-1}$ from 691 direct measurements (Figure 2b) with an arithmetic and declustered mean of 619 ± 80 g m$^{-2}$ d$^{-1}$ and 367 ± 40 g m$^{-2}$ d$^{-1}$. Of the raw fluxes, 44% were greater than 100 g m$^{-2}$ d$^{-1}$ and 10% where greater than 1000 g m$^{-2}$ d$^{-1}$. The coefficient of variation is 3.2 with the total population being approximately log-normal with a positive skew which is consistent with a CV >1 for non-normal data (Figure 3b). The raw (GSA) and sGs total CO$_2$ emission rates were modeled for the crater floor (0.31 km2) of 240 ± 4 t d$^{-1}$ and 116 ± 2 t d$^{-1}$, respectively (Table 2).

Shallow soil temperatures (Figure 2b) ranged from 15 °C to boiling point (100°C). The arithmetic and declustered means were 40.3 and 37 °C. In terms of high temperatures, 19% of the data had temperatures > 50 °C and < 2% of the data was within error of boiling point (± 0.5 °C). The relationship between CO$_2$ and soil temperature at has an r^2 value of 0.27.

δ^{13}C$_{CO2}$ values (‰) range from -12.5 to -1.4 (n=60, Figure 8). The δ^{13}C$_{CO2}$ values of the CO$_2$ flux at WI can be split into those areas of flux >1000 g m$^{-2}$ d$^{-1}$ with a mean of -1.9 ± 0.3 ‰ and areas of flux <1000 g m$^{-2}$ d$^{-1}$ with a mean of -7.6 ± 0.5 ‰. The mean for the whole
dataset is $-5.8 \pm 0.8 \%e$. Plotting $\delta^{13}C_{CO_2}$ vs. soil temperature (Figure 2b) and CO$_2$ (Figure 8) produces r^2 values of 0.71 and 0.78.

5.4 Heat and mass flow based on soil temperature measurements

Using Equations 1 and 2, the data was modeled with sGs then converted to heat flow in W m$^{-2}$ and finally into a total megawatt (MW$_t$) value. For RK heat flow measurements ranged between 0.03 – 4526 with a mean of 15 W m$^{-2}$. At WI this ranged from 0.28 – 4526 with a mean of 62 W m$^{-2}$. The total heat flow through soil is estimated to be 37 ± 1.5 MW$_t$ at RK and 19.5 ± 0.5 MW$_t$ at WI.

The total heat flow through soil in watts can be used with Eq.3 to find the equivalent steam mass flow (F_s (H$_2$O)). At RK and WI the surface heat flow values are equivalent to 1267 ± 23 t d$^{-1}$ and 642 ± 10 t d$^{-1}$ H$_2$O, respectively.

5.5 Heat and mass flow calculated from CO$_2$ degassing

Calculating the total heat input to RK was accomplished using Equations (4) and (5), where the total magmatic-hydrothermal CO$_2$ flux (614 t d$^{-1}$, see discussion) is multiplied by the H$_2$O:CO$_2$ ratio in the deep fluid (61 g kg$^{-1}$ or 1:16.6; Hedenquist et al. 1988), to give a steam flux ($F_{stm(CO_2)}$) of $10,204 \pm 255$ t d$^{-1}$ H$_2$O. From this value a heat flow of 315 ± 8 MW$_t$ is calculated. Combining the $10,204$ t d$^{-1}$ H$_2$O and 615 t d$^{-1}$ CO$_2$ equivalent to 125 ± 3 Kg s$^{-1}$ total mass flow which is in good agreement with previously published values for total mass flow of 144 and 105 Kg s$^{-1}$ (Seward & Kerrick, 1996; Bowyer & Holt, 2010).

At WI, the total magmatic-hydrothermal CO$_2$ emission (see discussion) of 114 t d$^{-1}$ is multiplied by the H$_2$O:CO$_2$ (159.5 g kg$^{-1}$ or 1:6.27; Giggenbach & Matsuo, 1991; Werner et al., 2008a), to give a steam mass flow ($F_{stm(CO_2)}$) of 721 ± 10 t d$^{-1}$ H$_2$O and a heat flow total of 22 ± 0.5 MW$_t$. We estimate a total island heat and mass flow using the normalized CO$_2$ flux value for the crater diffuse degassing (230 t d$^{-1}$, 0.6 km2) and the average plume emission during the study period (1,000 \pm 100 t d$^{-1}$ CO$_2$, geonet.org.nz, 2012) of 1,230 \pm 100 t d$^{-1}$ CO$_2$ which converts to a heat flow of 238 \pm 20 MW$_t$ and a steam mass flow of 7,700 \pm 600 t d$^{-1}$ or a total mass flow of 8,900 t d$^{-1}$ or 100 Kg s$^{-1}$.

6. Discussion

6.1 Interpolation of ϕCO$_2$: GSA vs. sGs

Interpreting and discussing the data collected and analyzed in this study for defining the source and emission of CO$_2$, total heat flow, and structural controls at WI and RK is dependent on the interpolation approach. The GSA allows the definition of a confidence interval, though it does not take into account the spatial correlation between the data, resulting generally in an overestimation of the uncertainty (Cardellini et al., 2003). This affect is induced by sampling predominantly in the areas of thermal activity and thus biasing the raw data by having an over represented anomalous flux population. By assuming a solely statistical estimation, the GSA will not accurately represent any unsampled (in this case, non-thermal) areas. For that reason we report the sGs results and use them here for further analysis (Table 1 & 2). It is important to note that GSA is used in this study as a technique for assessing the natural distribution of CO$_2$ and heat flow data, and can be used in conjunction with other data to assess the origins of CO$_2$.

6.2 Defining the multisource nature of CO$_2$

In order to use total CO$_2$ emission values for the estimation of heat and mass flow from a magmatic-hydrothermal system it is necessary to define the contributions from the different ϕCO$_2$ sources. To produce these values, any contribution from non-magmatic-hydrothermal sources (background/atmospheric or soil-respired/biogenic in this case) must be removed from the calculation. Two methods were employed in this study: (1) the GSA method of breaking the flux data into populations and (2) the use of stable isotopic analysis of the ϕCO$_2$ to identify source components.

When using GSA, we assume that low flux populations (<30 g m$^{-2}$ d$^{-1}$) are background for a system in which permeability is constant. The heterogeneity in permeability at our field sites and the large volume and pervasiveness of magma-hydrothermal ϕCO$_2$ population means this method, on its own, may not fully constrain the source populations. The latter became evident when stable isotope analysis was paired with flux data (Figures 4 and 5), and
there were fluxes which had magma-hydrothermal $\delta^{13}\text{C}_{\text{CO}_2}$ values (filled circles, Figures 4 and 5) that had previously been in the low flux populations defined during the GSA. While GSA does not fully constrain a source, it can illustrate the natural variations within the total flux population, which makes it feasible as a method for the quick estimation of a source’s contribution. However, as noted by others the partitioning procedure does not result into a unique solution (Chiodini et al., 2008).

When Chiodini et al. (2008) first applied this method to finding the source populations; GSA populations of the flux data were reduced into two partitions, a low and high flux group. This meant that when they compared their isotopically partitioned populations to the GSA populations, the GSA populations were found to have overestimated the limits of the background flux populations significantly. In this study, the flux data was fully partitioned using GSA into 5 populations and then compared with the 3 isotopically partitioned flux populations (Figures 4 and 5). An overestimation of the low flux GSA populations was not produced, and the two different datasets produced similar thresholds for background fluxes.

While the GSA populations are defined by inflections in the slope and therefore span defined sections of the total flux (Straight Lines, Figures 4 and 5), the stable isotope analysis has provided source populations which in some instances span the whole range of fluxes (Filled circles, Figures 4 and 5). The paired use of stable isotopes and GSA to isolate the source populations is the method used in this study, as it was in Chiodini et al. (2008); however, a complete analysis of the flux data using the paired assessment of sources led to well-defined thresholds for constraining the magmatic-hydrothermal CO_2 emission.

Figures 4 and 5 show the cumulative probability plots of total flux at RK and WI with populations from the GSA and from the stable isotopic analysis superimposed. Though these methods differ in which variable is used to determine the component source, they combine to produce values for the background or non-magma-hydrothermal contribution threshold. The thresholds were set at <30 for RK and $<25 \text{ g m}^{-2} \text{ d}^{-1}$ for WI. The thresholds were derived from averaging the lightest isotopic population (Figures 4 and 5) which fits within the GSA populations 1 & 2 (determined to be “background”). The value at WI is slightly higher than the $15 \text{ g m}^{-2} \text{ d}^{-1}$ threshold found by Werner et al. (2004a) though their study used statistical analysis to constrain the flux population.
6.3 Rotokawa $\delta^{13}C_{CO_2}$ analysis

The maximum $\delta^{13}C_{CO_2}$ of the φCO_2 (-7.3‰) is consistent with the findings of Hedenquist et al. (1988) for RK4 (gas phase CO$_2$ in the well, -7.9‰) and for the Rotokawa fumarole (vent, -7.8‰), and indicates that the deep carbon source is indistinguishable from the soil CO$_2$ samples taken within the thermal area. The contribution to soil CO$_2$ from different sources can be observed in Figure 6 where the maximum isotopic value of -7.3‰ is defined as the magmatic-hydrothermal end-member and the minimum value of -16.5‰ is the background end member. A large area of the thermal area at RK is vegetated by C3 plants (e.g. prostrate Manuka) which yield a $\delta^{13}C_{CO_2}$ of -24‰ (Amundson et al., 1998) during decomposition and root respiration. The other minor contributions to φCO_2 are from litter and humus decomposition and infiltration of the atmospheric CO$_2$, both of which minimally contribute if there is active root respiration occurring (Amundson et al., 1998).

The average $\delta^{13}C_{CO_2}$ value from the sampling at RK is -9.7 ± 0.4‰ though no spatial correlations can be drawn here due to the biased sampling design. In locations of hydrothermal-dominant CO$_2$ (>9.9‰) we also find a good correlation with high φCO_2 (mean of 8000 g m$^{-2}$ d$^{-1}$) while in areas of mixed sources (<10‰) we find a mean φCO_2 of 114 g m$^{-2}$ d$^{-1}$. High water tables can reduce anomalous soil temperatures while not affecting the flux (Figure 9a and b), therefore the correlation between soil temperature and $\varphi CO_2/\delta^{13}C_{CO_2}$ are limited (Figure 2a).

In many areas of low flux (<100 g m$^{-2}$ d$^{-1}$), $\delta^{13}C_{CO_2}$ signatures (>8‰, Figure 6) were relatively positive suggesting that permeability is constraining the soil gas flux of magmatic-hydrothermal CO$_2$, as opposed to the low fluxes from soil-respired or atmospheric CO$_2$. For example, the lowest measured $\delta^{13}C_{CO_2}$ signature is -16.5‰ and corresponds to a φCO_2 of 59 g m$^{-2}$ d$^{-1}$. If the origin of the isotopically lightest soil-respired CO$_2$ is -24‰, then the -16.5‰ value is significantly mixed with hydrothermally-sourced CO$_2$. A flux of 59 g m$^{-2}$ d$^{-1}$ is at least 2 to 4 times as large as natural soil respired background (15 – 30 g m$^{-2}$ d$^{-1}$) measured for un-irrigated pasture in the Taupo Volcanic Zone (pers. comm. Rissmann, 2012). This suggests a significant hydrothermal CO$_2$ input even at low flux sites (<100 g m$^{-2}$ d$^{-1}$) and, therefore, the dominant control on flux is permeability. These types of correlations show that $\delta^{13}C_{CO_2}$ measurements have profound implications for the discovery of blind geothermal systems concealed by low CO$_2$ fluxes.
6.4 White Island \(\delta^{13}C_{CO_2} \) analysis

The samples of soil CO\(_2\) had a maximum \(\delta^{13}C_{CO_2} \) of -1.4‰ which is slightly more positive than the vent samples by Marty and Giggenbach (max -2‰, 1990) but within error of Giggenbach and Matsuo (max -1.5‰, 1991). The \(\delta^{13}C_{CO_2} \) samples measured at high flux sites (>1000 g m\(^{-2}\) d\(^{-1}\)) are stable between the range of -1.4 and -2‰ (mean -1.9‰) which matches those of the historic samples (Figure 8). This indicates that the magmatic-hydrothermal source has been sampled and gives a value for the magma-hydrothermal reservoir end-member.

Isotopically heavy signatures paired to high flux zones (>1000 g m\(^{-2}\) d\(^{-1}\), Figure 8) supports a magma-hydrothermal origin for the \(\varphi CO_2 \). The highest fluxes measured in our study are located along the central sub-crater’s eastern rim (Figure 10a). The correlation of the highest flux with the heaviest \(\delta^{13}C_{CO_2} \) is indicative of an area at depth where the greatest amount of magmatic-hydrothermal CO\(_2\) is released and fluids ascend rapidly to the surface due to high permeability (Werner and Cardellini, 2006; Rissmann et al., 2012).

The minimum value of -10.2‰ occurs at low \(\varphi CO_2 \) of 12.5 g m\(^{-2}\) d\(^{-1}\). The signature in this case is significantly lighter than magmatic but heavier than any pure soil-respired signature and the associated flux is considered low or background. Due to the total lack of vegetation or soil development within the crater floor, the -10.2‰ value must be wholly atmospheric CO\(_2\) and/or from microbial respiration (i.e. methanogenesis) of CH\(_4\) (where \(\delta^{13}C_{CH_4} \) is ~22‰) which is abundant at WI.

The average value of \(\delta^{13}C_{CO_2} \) at WI is -5.8 ± 0.7‰ and indicates a saturation of the soil with a mix of the magma-hydrothermal sourced CO\(_2\) and input from background sources (atmospheric and/or microbial respiration). In locations of magma-hydrothermal-dominant CO\(_2\) (>4‰) we also find a good correlation with high \(\varphi CO_2 \) (mean of 9,216 g m\(^{-2}\) d\(^{-1}\)) while in areas of mixed sources (<-4 ‰) we find a mean \(\varphi CO_2 \) of 86 g m\(^{-2}\) d\(^{-1}\).

6.5 Soil Gas Emissions at Rotokawa

Soil gas flux measurements at RK geothermal field cover a wide range (<1 to 127,808 g m\(^{-2}\) d\(^{-1}\)) with a significant throughput of magmatic-hydrothermal CO\(_2\) within regions of the
thermal ground. The mean for the total CO\textsubscript{2} population when compared with the background removed total (246 vs. 1082 g m-2 d-1) is significantly different. This is reconcilable with the ground cover at RK which is heavily vegetated and indicative of minimal conductive heat flow (i.e. western areas of Figure 9a) as well as shallow clays with low permeability reducing the magnitude of flux (i.e. Figure 6).

The thermal area at RK is actually larger than the area modeled in our study. For the full thermal field (defined by resistivity and vegetation analysis, 2.5km2), a minimum emissions estimate is calculated by normalizing the emission rate by 1.4 km2 (i.e., 8.99 x 104 t yr-1 km-2) and extrapolating to 2.5 km2. Extrapolation provides an emission rate of 633 ± 16td-1. This normalized emission rate is purely for soil zone CO\textsubscript{2} and does not include measurement of gaseous efflux from any other thermal features at RK (Lake Rotokawa, hot pools, fumaroles, mud pools). Applying the magmatic-hydrothermal CO\textsubscript{2} threshold to this total emission value reduces the product to an emission of 614 ± 15 t d-1.

The total CO\textsubscript{2} emissions at RK calculated from the sGs have produced a thermal area normalized (89,963 t yr-1 km-2) value that is one of the largest total CO\textsubscript{2} non-volcanic emissions in New Zealand. The RK value is equivalent 350\% of normalised emission for the Rotorua geothermal system (25,426 t yr-1 km-2; Werner and Cardellini, 2006) and 50\% of the normalised soil gas emissions of WI (139,916 t yr-1 km-2; Figure 11). Historically, measurements at RK indicated a small CO\textsubscript{2} emission; Seward and Kerrick (1996) calculated a total CO\textsubscript{2} emission from RK to be ~55 t d-1 based on a total mass flow of 144 Kg s-1 and a concentration ratio of kgH\textsubscript{2}O:4.4gCO\textsubscript{2}. This H\textsubscript{2}O:CO\textsubscript{2} ratio was the key factor in their underestimation of the CO\textsubscript{2} flux. The high spatial resolution of direct measurements in this study has produced a similar total mass flow to the Seward and Kerrick (1996) value of 144 Kg s-1; however, our CO\textsubscript{2} value of 614 ± 15 t d-1 indicates that the Hedenquist et al. (1988) H\textsubscript{2}O:CO\textsubscript{2} concentration ratio of kgH\textsubscript{2}O:61gCO\textsubscript{2} is more accurate.

6.6 A sulfur budget for Rotokawa

In order to produce a sulfur budget, the CO\textsubscript{2} emissions associated with all fluxes in excess of 100 g m-2 d-1 are multiplied by the molar CO\textsubscript{2}:H\textsubscript{2}S ratio for the soil zone to produce
a total H_2S emission from diffuse soil degassing of 2.6 t d$^{-1}$. Two previous study from Lake Rotokawa found 84.3 and 10.4 t d$^{-1}$ SO_4^{2-}, which equates to 29.9 and 3.67 t d$^{-1}$ H_2S (multiplying by the molar weight ratio, sulfur oxidation), respectively (Krupp and Seward, 1987; Hedenquist et al., 1988; Werner et al., 2008b). This gives a minimum total surface sulfur emission for RK of 6 t d$^{-1}$ with a minimum total emission of H_2S from the reservoir at 80 t d$^{-1}$ (multiplying the total CO_2 by the CO_2:H_2S fumarole ratio). The loss of \sim74 t d$^{-1}$ of H_2S within the subsurface is attributed to being scrubbed by shallow groundwater and/or precipitates (as elemental S) before reaching the surface of the field. This can be reconciled with the large (2.6 Mt) sulfur lode found within cm’s of the surface at RK. At 6 t d$^{-1}$ the lode would take a minimum of 1150 years to accumulate or 100 years at 80 t d$^{-1}$. Krupp and Seward (1987) estimated the deposit accumulated at 5 t d$^{-1}$ over 1420 years which could indicate that RK has been emitting similar rates of H_2S and, therefore, CO_2 for over 6,000 years. Due to the Taupo pumice alluvium capping the area these deposits are now at depth and the current rate of deposition is greatly reduced and is spatially confined to lake Rotokawa (Krupp & Seward., 1987).

$\phi_{\text{H}_2\text{S}}$ occurs in background concentrations until ϕ_{CO_2} becomes advective (Figure 9). Based on interpretations of this phenomenon by Werner et al. (2008b) it is assumed that a similar process is occurring at RK, where during low CO_2 fluxes, diffusion is the main mechanism and H_2S is removed, but when there is high CO_2 flux some H_2S can reach the surface.

6.7 White Island CO_2 emissions

The difference between the total mean ϕ_{CO_2} and magmatic-hydrothermal mean ϕ_{CO_2} for the crater floor diffuse degassing (368 vs. 723 g m$^{-2}$ d$^{-1}$) indicates a significant area has background emission which is consistent with the flux map (Figure 10a). The range of flux values at WI, though not as broad as at RK, does have a higher mean value, which is an indicator of the reduced contribution of background sources to the total gas emissions through the crater floor (4% background at RK vs. 1.3% background WI). Removing the background contribution to the emission gives a value of 114 t d$^{-1}$.
There are obvious flank and crater wall emissions at WI, so for the total island φCO$_2$
an area of 0.6 km2 is multiplied by the normalized rate (1.39×10^5 t yr$^{-1}$ km$^{-2}$) and gives 230 ± 3 t d$^{-1}$CO$_2$. This is a maximum total diffuse degassing emission for WI.

The value of 114 t d$^{-1}$ or 10% of the total emission is consistent with the latest
published study at WI by Werner et al. (2004a) who found an emission of 99 t d$^{-1}$ and 10% of
the total emission from 268 points (<1000 points/km2). Wardell et al. (2001) found an
emission of 10 t d$^{-1}$ and <1% of the total emission, though their survey was less than 20
points (<100 points/km2).

6.8 Heat flow from CO$_2$ emissions

For both RK and WI, measured soil temperature data was converted to equivalent heat
flow using Equations (1) and (2), whereas, heat flow based on CO$_2$ emissions was calculated
using Equations (4) and (5). Both RK and WI display lower observed heat flow than that
estimated from CO$_2$ emissions. The discrepancies in heat flow values likely reflect the
condensation of 88% (37 and 314 MW$_t$, RK) and 12.5% (19.5 and 22 MW$_t$, WI) of the steam
phase within shallow groundwater that overlies the high temperature reservoirs.

Fridriksson et al. (2006) report the condensation of 87% of steam mass flow for the
Reykjanes thermal area in Iceland as based on the discrepancy between observed heat flow
and heat flow estimated from CO$_2$ flux, which matches closely with the discrepancy at RK.
The system at RK probably loses more heat laterally (like Reykjanes) to cooler groundwater
inflows triggering condensation of rising hydrothermal fluids, as well as having a deeper heat
source (4-5km; Winick et al., 2011). Conversely, WI probably loses less heat to the local
groundwaters as the hydrothermal heat source is shallower (<1-2 km depth; Cole et al., 2000;
Wardell et al., 2001; Werner et al., 2008a) and there is a concentrated plume that only opens
to lateral degassing at depths of <300m (Werner et al., 2008a).

Historic heat flow studies at RK presented in Hedenquist et al. (1988) and Seward and
Kerrick (1996) put the thermal energy release between 210 and 236MW$_t$ but also report
numbers as high as 600MW$_t$. Bibby et al. (1995b) estimated a total heat outflow for RK of
300 MW$_t$ which is close to this study’s value of 315 ± 8 MW$_t$. These historic values of heat
flow are all based on chloride measurements, which might be less conservative when it
comes to fluid-rock interaction (Bibby et al., 1995a) and is also less mobile than CO2. For groundwater having reached saturation with respect to CO2, the majority of the gas passes through to the surface. This relatively conservative behavior of CO2 makes it a better proxy of heat release from the shallow reservoir than chloride or measurement of observable heat flow (Chiodini et al., 2005; Rissmann et al., 2011). The main error associated with any CO2 based estimate of reservoir heat release is the correct estimation of CO2 emission and the selection of a representative molar H2O:CO2 ratio. At RK we used a high spatial resolution to reduce the uncertainty in the CO2 emission, and the concentration ratio of 16.6 is considered representative (as discussed in Section 5.3) and therefore the value of 315 ± 8 MW is considered representative.

White Island’s plume was assessed by Giggenbach and Sheppard (1989) as a proxy for the island’s mass and heat flow and found that it depended on the state of volcanic activity. Quieter periods had steam plumes of 5000 t d⁻¹ and 240 MWt, and active periods had plumes of 18,000 t d⁻¹ and 810 MWt. These mass flows were derived using SO2 flux measured aerially with COSPEC-V and H2O:CO2:SO2 mole-ratios, which were higher (kgH2O/240gCO2) than the concentration of CO2 in steam ratio used in this study (kgH2O:159.5gCO2; see Section 4.4). Rose et al., (1986) found a steam degassing rate of 8000-9000 t d⁻¹ which is similar to this study’s value (7700 ± 600 td⁻¹). Werner et al. (2008a) described the H2O:CO2 ratios at WI as stable since a notable decrease in activity since 2000 and therefore the CO2 concentration ratio of 159.5g kg⁻¹ is considered a representative mean value and was used in this study to calculate a heat flow of 238 MWt.

Our data indicates that high spatial resolution φCO2 surveys are sufficient or superior for constraining the heat and mass flows of hydrothermal systems compared to other mechanisms such as, soil temperatures, chloride flux or SO2 emissions.

6.9 Rotokawa: Structural and permeability controls on CO2 emissions

Figure 9a shows the significant flux (>300 g m⁻² d⁻¹) anomalies are quasi-circular in nature but become more diffuse and broadly distributed at lower flux rates. There is a clear correlation of surface thermal features with areas of high flux. Areas of thermal features are concentrated either along lineations that trend NE or within the bounds of historic hydrothermal eruption craters (Figure 9a). The highest flux values occur along the lake shore...
and coincide with lower average soil temperatures (<50°C, Figure 2a) indicating some
decoupling of steam flow likely due to high water tables adjacent to the lake (Figure 9b). To
the north and northwest greater coupling between heat flow (high soil temperatures) and CO₂
flux indicates less scrubbing of the steam phase by cooler lake waters (Figure 9b). The active
thermal area has been mapped previously using resistivity boundaries and thermal anomalies
(Gregg, 1958; Hochstein, 1990) and the flux map does not produce any anomalous flux or
thermal anomalies outside of this mapped boundary.

The location of the thermal area at RK coincides with a series of historic
hydrothermal explosion craters. The largest of which is the site of Lake Rotokawa (Collar
and Browne, 1985). Vigorous surface thermal activity surrounds the explosion craters and
includes boiling acidic SO₄-Cl springs and steaming ground. Most diffuse degassing is
coupled to these thermal features and decreases rapidly in magnitude with distance away
from them. Of note there is a major anomaly along a feature attributed to a hydrothermal
eruption crater rim by Krupp and Seward (1987) which runs E-W for 300m across the
thermal area.

Lake Rotokawa, a depression caused by a hydrothermal eruption crater, has a large
recharge of CO₂-unsaturated meteoric waters to depths of >200m. This depth is enough to
dissolve any fluxing CO₂ and no visible bubbles are present mid lake. Close to the lake shore
it shallows steeply and so that water column can be saturated in CO₂ and any incoming flux
will degas at the surface as bubbles. Some of the highest measured φCO₂ is located close to
the shore line which is indicative of significant permeability related to the rim of a large
hydrothermal eruption crater (Collar & Browne, 1985; Krupp and Seward, 1987).

Historic mining of sulfur has also affected the topography of the thermal area by
creating depressed surfaces which now intersect with the water table allowing hot springs and
steaming ground to form.

Deep field faulting can cause hot spots of high permeability that allows boiling fluids
to rise (Fairley and Hinds, 2004; Rowland and Sibson, 2004; Heffner and Fairley, 2006;
Rissmann et al., 2011). There is a large field fault running through the middle of the RK
thermal area, the Central Field Fault (CFF, Figure 9a) of Winick et al. (2011), which indirectly
influences the diffuse degassing structures with historic eruptions craters that appear to focus
thermal activity, occurring along its strike. The magnitude of the gas fluxes in the vicinity of
these craters and along the strike of the CFF suggests a deep-seated connection between
surface eruption craters and the CFF which is likely channeling fluids from depth.

6.10 White Island: Structural and permeability controls on CO2 emissions

The hydrothermal system at WI is actively degassing through permeable areas of the
crater floor, we show a correlation with surface thermal feature such as mounds and areas
around fumaroles, historic crater margins, and breaks in slope (Figure 10a & 10b). The
mounds host numerous small fumarolic vents that are encrusted with sulfur condensate, are of
high temperature, and comprised of highly altered clays, all of which makes them analogous
to the diffuse degassing structures (DDS) characterized by Chiodini et al., (2005). The vigor,
size and number of DDS along with steaming ground and acidic-Cl outflows increases with
proximity to the Crater Lake and the modern day center of volcanic activity.

Most of the total CO$_2$ emission is exhausted through the Crater Lake (Werner et al.,
2008a) and around its rim there is a high flux zone. In the middle of the crater floor there is
an arcuate channel of high flux and high temperatures that aligns closely with an old crater
rim (Figure 10a & b). This area is one of the most permeable at WI, with boiling mud pots
and steaming ground common, this disproportionate flow of heat and mass is evidence of a
connection at depth as has been suggested by Houghton and Nairn (1991) and Giggenbach et
al. (2003). Diffuse degassing, fumaroles, and steaming ground are present at breaks in slope
(crater floor/wall, crater wall/rim, crater floor/mound) which are generally places of
deposition or erosion, so strata would likely have high permeability as it is less lithified.

Elsewhere on the island there are areas of capping clays at around 1m depth that limit
degassing locally. These are hypothesized to be the remnants of the old crater floor/lake Hope
(Giggenbach et al., 2003), consisting of impermeable and altered volcanioclastic material.

7. Conclusions
1) The hydrothermal systems and their respective surface thermal expressions at RK and WI emit an extraordinary quantity of CO$_2$ and thermal energy per unit area. This study continues with the style and approach of recent soil gas surveys at New Zealand geothermal systems (Rotorua, Werner & Cardellini, 2006; Ohaaki, Rissmann et al., 2012) which couples the use of interpolation (sGs) and extrapolation of φCO$_2$ in order to estimate full field emissions, and then the paired use of GSA and stable isotopic analysis so as to define the non-magmatic-hydrothermal contribution to these emissions. Currently, this appears to be the best approach to constrain the anomalous magma-hydrothermal non-condensable gas release for total heat and mass flow estimations in the Taupo Volcanic Zone.

2) The use of soil gas surveys for blind geothermal exploration is dependent on soil permeability. If there is a magmatic-hydrothermal CO$_2$ flux of <100 g m$^{-2}$ d$^{-1}$ at the surface due to low permeability, a soil gas survey that does not analyze the source of the φCO$_2$ using stable isotopic analysis of the $\delta^{13}C_{CO_2}$ may not delineate areas releasing magma-hydrothermal CO$_2$ from depth. It is therefore appropriate to pair a survey of any φCO$_2$ with analysis of the $\delta^{13}C_{φCO_2}$ as adopted by this study.

3) At Rotokawa the total CO$_2$ emission (633 ± 16 t d$^{-1}$) was evaluated using a high spatial resolution survey, producing a total mass flux (125 ± 3 Kg s$^{-1}$) that matches the upflow rate from numerical models (144 Kg s$^{-1}$ Seward and Kerrick, 1996; 105 Kg s$^{-1}$ Bowyer and Holt, 2010). At White Island the emission rate for diffuse degassing is consistent with previous estimates (~100 td$^{-1}$; Werner et al., 2004a) and finds a total CO$_2$ emission (1230 ± 100 t d$^{-1}$; plume + soil gas) for the island similar to previous estimates (Rose et al., 1986; Marty and Giggenbach, 1990; Wardell et al., 2001; Werner et al., 2004a; Werner et al., 2008a).

4) Areas of high flux are constrained by the use of a high resolution survey and confirm that deep seated permeability as major normal faults and/or crater rim structures are paired with surface thermal features. The magnitude of both heat flow and CO$_2$ flux decrease with distance from each feature. At RK, deep field faults (Winick et al., 2011) appear to have control over the location of thermal activity (in combination with the location of hydrothermal eruption craters) and subsequent gas release at the surface. At WI the greatest concentration of thermal activity is concentrated above the buried crater rim (Houghton and Nairn, 1991) and along the margins of the modern day crater which suggests a connection exists with the shallow magmatic-hydrothermal reservoir that channels fluid along crater rim fault-fracture zones.
5) A mechanism for H₂S fixing exists in areas of diffuse soil degassing, as the concentration of H₂S:CO₂ in fumarole gas is more than is measured in diffuse soil gas emissions.

The culmination of several methods into a detailed soil gas surveys approach that is used here for exploratory assessment and the continued monitoring of non-volcanic and volcanic magma-hydrothermal fields is a powerful tool for contributing to the understanding and further research of these unique and volatile areas.

8. Acknowledgements

Thanks to GNS Science and GeoNet for the use of their equipment, Mighty River Power Limited, Powell Geoscience Ltd., University of Canterbury, D.O.C and Tauhara North No.2 Trust for access to the RK thermal area, pilots and crew from SQDRN 3 RNZAF and Peejay IV and V (White Island Tours) for transport to (and from) White Island, The Buttle Family for access to their private volcano. This study contributes to and is funded by the UC-MRP Source 2 Surface research program. Additional funding is from the Ministry of Science and Innovation’s Foundation for Research, Science, & Technology through a TechNZ Scholarship and the University of Canterbury’s Mason trust.

9. References

http://dx.doi.org/10.1016/j.epsl.2008.07.051

http://dx.doi.org/ 10.1093/petrology/41.6.867

http://dx.doi.org/10.1016/0375-6505(78)90014-7

http://dx.doi.org/ 10.1016/j.apgeochem.2006.04.006

http://dx.doi.org/10.1016/j.jvolgeores.2007.04.010

Hedenquist, J.W., Mroczek, E.K., Giggenbach, W.F., 1988, Geochemistry of the Rotokawa Geothermal System: Summary of Data, Interpretation and Appraisal for Energy Development: DSIR Chemistry Division Technical Note 88/6, 64

Strombolian eruption sequence at White Island volcano, New Zealand. In: Houghton, B.F.,
Nairn, I.A.

of White Island, New Zealand: Eruption and depositional mechanisms at a ‘wet’ volcano:

Inguaggiato, S., A. Mazot, I. S. Diliberto, C. Inguaggiato, P. Madonia, D. Rouwet, and F.
Vita (2012), Total CO$_2$ output from Vulcano island (Aeolian Islands, Italy), Geochem.

http://dx.doi.org/10.2113/gsecongeo.82.5.1109

Lewicki, J. L., Bergfeld, D., Cardellini, C., Chiodini, G., Granieri, D., Varley, N., & Werner,
C., 2005. Comparative soil CO$_2$ flux measurements and geostatistical estimation methods on
http://dx.doi.org/10.1007/s00445-005-0423-9

http://dx.doi.org/10.1016/0016-7037(84)90052-8

Zealand: origin and flux of volatiles. Geophysical Research Letters Volume 17, Issue 3,
1990, Pages 247-250.

Mazot, A., Rouwet, D., Taran, Y., Inguaggiato, S., and Varley, N., 2011. CO$_2$ and He
degassing at El Chichón volcano (Chiapas, Mexico): Gas flux, origin, and relationship with

http://www.jstor.org/stable/2289601

http://www.NIWA.co.nz; accessed during 2011
10. Tables

Table 1: Comparison of sGs and raw total CO$_2$ emission data by population (as described in results section) at RK. Note that for populations 1-3 of the Raw data, the E_i are within error of the sGs data, but Raw populations 4-5 are an order of magnitude overestimated by the GSA method.

<table>
<thead>
<tr>
<th>sGs Popn</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td>3.344</td>
<td>16.289</td>
<td>135.693</td>
<td>2319.688</td>
<td>45051.68</td>
</tr>
<tr>
<td>σ_1</td>
<td>1.681</td>
<td>7.957</td>
<td>110.310</td>
<td>2456.506</td>
<td>63291.78</td>
</tr>
<tr>
<td>CI 95%</td>
<td>0.005</td>
<td>0.012</td>
<td>0.436</td>
<td>18.767</td>
<td>2117.184</td>
</tr>
<tr>
<td>f_i (%)</td>
<td>31.4</td>
<td>46.6</td>
<td>17.1</td>
<td>4.6</td>
<td>0.2</td>
</tr>
<tr>
<td>S_i (m2)</td>
<td>449373</td>
<td>668199</td>
<td>245622</td>
<td>65821</td>
<td>3433</td>
</tr>
<tr>
<td>E_i (t d$^{-1}$)</td>
<td>1.503</td>
<td>10.885</td>
<td>33.329</td>
<td>152.684</td>
<td>154.662</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raw Popn</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td>3.51</td>
<td>17.749</td>
<td>150.808</td>
<td>2877.491</td>
<td>48200.63</td>
</tr>
<tr>
<td>σ_1</td>
<td>1.772</td>
<td>8.282</td>
<td>118.4</td>
<td>3142.717</td>
<td>60240.17</td>
</tr>
<tr>
<td>CI 95%</td>
<td>0.158</td>
<td>0.504</td>
<td>9.227</td>
<td>388.346</td>
<td>18314.69</td>
</tr>
<tr>
<td>f_i (%)</td>
<td>19.8</td>
<td>42.3</td>
<td>25.8</td>
<td>10.3</td>
<td>1.8</td>
</tr>
<tr>
<td>S_i (m2)</td>
<td>284045</td>
<td>605342</td>
<td>369608</td>
<td>147843</td>
<td>25611</td>
</tr>
<tr>
<td>E_i (t d$^{-1}$)</td>
<td>0.997</td>
<td>10.744</td>
<td>55.74</td>
<td>425.417</td>
<td>1234.448</td>
</tr>
</tbody>
</table>
Table 2: Comparison of sGs and GSA total CO₂ emission data by population (as described in results section) at WI. Note that for populations 1-3 of the Raw data, the \(E_i \) are within error of the sGs data, but Raw populations 4-5 are an order of magnitude overestimated by the GSA method.

<table>
<thead>
<tr>
<th>sGs Pop(^n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_i)</td>
<td>0.108</td>
<td>11.159</td>
<td>410.938</td>
<td>5137.417</td>
<td>15008.16</td>
</tr>
<tr>
<td>(\sigma_i)</td>
<td>.201</td>
<td>8.387</td>
<td>568.366</td>
<td>1364.134</td>
<td>9231.363</td>
</tr>
<tr>
<td>CI 95%</td>
<td>.002</td>
<td>.048</td>
<td>2.852</td>
<td>38.575</td>
<td>421.341</td>
</tr>
<tr>
<td>(f_i) (%)</td>
<td>12.7</td>
<td>37.0</td>
<td>48.2</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>(S_i (m^2))</td>
<td>40018</td>
<td>117021</td>
<td>152532</td>
<td>4804</td>
<td>1844</td>
</tr>
<tr>
<td>(E_i (t \text{ d}^{-1}))</td>
<td>.004</td>
<td>1.306</td>
<td>62.681</td>
<td>24.680</td>
<td>27.675</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raw Pop(^n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_i)</td>
<td>.116</td>
<td>11.535</td>
<td>429.216</td>
<td>5157.307</td>
<td>16275.339</td>
</tr>
<tr>
<td>(\sigma_i)</td>
<td>.206</td>
<td>8.436</td>
<td>581.971</td>
<td>1377.843</td>
<td>10874.412</td>
</tr>
<tr>
<td>CI 95%</td>
<td>.002</td>
<td>.038</td>
<td>2.138</td>
<td>27.382</td>
<td>333.593</td>
</tr>
<tr>
<td>(f_i) (%)</td>
<td>9.9</td>
<td>35.0</td>
<td>52.6</td>
<td>1.8</td>
<td>.08</td>
</tr>
<tr>
<td>(S_i (m^2))</td>
<td>31178</td>
<td>110755</td>
<td>166223</td>
<td>5679</td>
<td>2383</td>
</tr>
<tr>
<td>(E_i (t \text{ d}^{-1}))</td>
<td>.006</td>
<td>2.188</td>
<td>122.201</td>
<td>50.165</td>
<td>66.436</td>
</tr>
</tbody>
</table>
Figure 1: Mapped locations of soil gas measurements at RK (C) and WI (B) with respect to the Taupo Volcanic Zone (A), New Zealand. Black boxes show the area of sGs modeling. Grey shading on RK represents extent of thermal area.
Figure 2: Plot of soil temperature at 10cm (°C) vs. φCO$_2$ and δ^{13}C$_{CO2}$ and coefficient of determination (r^2) trend lines are shown in respective colors for A) Rotokawa and B) White Island.
Figure 3: histograms and variograms for RK (a,c) and WI (b,d). Histograms show statistics and log-normal distributions. Variogram models used in sGs are in blue and should match the semi-variograms for the data (red dots and lines)
Figure 4: Cumulative probability plot of the φCO$_2$ from RK. Empty circles are for all flux data points where δ13C$_{CO2}$ was taken (60). Solid lines show the populations partitioned based on flux values and the GSA method. Filled color circles show the same population partitioning but by using the δ13C$_{CO2}$ (per mille, ‰) values.
Figure 5: Cumulative probability plot of the φCO$_2$ from WI. Empty circles are for all flux data points where δ^{13}C$_{CO_2}$ was taken (60). Solid lines show the populations partitioned based on flux values and the GSA method. Filled color circles show the same population partitioning but by using the δ^{13}C$_{CO_2}$ (per mille, $\%e$) values.
Figure 6: Diagrams plotting φCO₂ vs. δ¹³CφCO₂, a) All samples are plotted (filled circles) and show a logarithmic trend when plotted on a linear scale. All samples are plotted (filled triangles) on a cumulative probability plot and show the inflections that were used to break the data into populations; b) due to the clustering of data <1000g m⁻² d⁻¹, a logarithmic scale is used to show the variation of those fluxes. The fumarole values sampled in Hedenquist et al. (1988) for well RK4 is plotted on the diagram to show the reservoir value and best estimate of the pure hydrothermal source.
Figure 7: Distribution of the acid soil gases at RK. The solid grey bar is the estimated fluxes based on fumarolic gas ratios (max=4.5, min=9.6). The red line is the average diffuse $\text{CO}_2:\text{H}_2\text{S}$ ratio of 241. The black line is a trend line (power) where $r^2=0.65$.
Figure 8: Diagrams plotting ϕCO_2 vs. $\delta^{13}C_{CO_2}$. a) All samples are plotted (filled circles) and show a logarithmic trend when plotted on a linear scale. All samples are plotted (filled triangles) on a cumulative probability plot and show the inflections that were used to break the data into populations; b) due to the clustering of data within at low flux (<1000 g m$^{-2}$ d$^{-1}$) range, a logarithmic scale is used to show the variation at low flux. The fumarole values sampled in Matsuo & Giggenbach (1991) for WI-3(G1) is plotted on the diagram to show the reservoir value and best estimate of the pure hydrothermal source.
Figure 9, RK: a) ϕCO$_2$ mapped within the thermal area’s resistivity boundary (Hedenquist et al. 1988), the Central Field Fault (CFF) is the orange dotted line, the inferred rims of hydrothermal eruption craters are outlined in white (Krupp and Seward, 1987). b) Soil Temperatures at 10cm ($^\circ$C) are mapped within the thermal areas resistivity boundary. High flux CO$_2$ anomalies and low temperatures are outlined in white. Surface thermal features are mapped with black dotted lines in each image.
Figure 10, WI: a) φCO$_2$ mapped within the accessible crater floor, historic craters are outlined in white. b) Soil temperatures at 10cm ($^\circ$C) are mapped within the crater floor; surface thermal features are mapped with black dotted lines.
Figure 11: Plot of thermal ground normalized CO2 emissions (blue columns, t yr$^{-1}$ km$^{-2}$) and total daily CO$_2$ emission (grey columns, t d$^{-1}$), this study in graded colours. Modified from Mörner and Etiope, 2002; Rissmann, 2011.
Future Work

1. Soil gas surveys as a method for quantifying CO$_2$ emissions

High Resolution Soil gas surveys in New Zealand (>1000 samples km$^{-2}$; Rissmann et al., 2012; Bloomberg et al., Chapter 1) and even those of moderate resolution (1000>X>100 samples Km$^{-2}$; Werner et al., 2004; Werner and Cardellini, 2006) have increased the values of CO$_2$ flux from four non-volcanic passive degassing systems in the Taupo Volcanic Zone (TVZ). The use of an accumulation chamber is a fast and robust method (Welles et al., 2001; Lewicki et al., 2005; Evans et al., 2001) for the collection of a direct measurement of the soil CO$_2$ flux (φCO$_2$) at fields with permeability from source to surface.

Internationally, φCO$_2$ surveys have been used in Italy (Chiodini et al., 1998, 2001, 2005, 2008; Cardellini et al., 2003; Frondini et al., 2004; Giammanco et al., 2010; Carapezza et al., 2011; Inguaggiato et al., 2012), USA (Werner et al., 2000; Bergfeld et al., 2001; Gerlach et al., 2001; Bergfeld et al., 2006; Werner et al., 2008; Evans et al., 2009), Greece (Brombach et al., 2001) and Iceland (Fridriksson et al., 2006; Derienda and Armansson, 2010). These surveys are all direct measurements of the passive degassing of volcanic and non-volcanic systems.

In New Zealand, White Island and Rotokawa fields provide ideal locations for the measurement of φCO$_2$. Data from a recent high resolution study of both fields indicates that these systems contribute significantly to atmospheric CO$_2$. White Island soil gas emissions are around 10% (40 Kt yr$^{-1}$) of the total island CO$_2$ emission (485 Kt yr$^{-1}$), while Rotokawa emits around 231 Kt yr$^{-1}$.

The last CO$_2$ flux estimation of the Taupo Volcanic Zone, New Zealand was by Seward and Kerrick (1996) which estimated a total TVZ degassing of 1010 mol yr$^{-1}$ (440 Kt yr$^{-1}$) CO$_2$. Their method did not directly sample the φCO$_2$ and instead used measurements of gas contents and mass flows from wells. Recently, other surveys in the TVZ significantly improved on this estimate for the TVZ CO$_2$ flux (Table 1; Werner and Cardellini, 2006; Rissman et al., 2012; GNS unpublished data).
While all these surveys were completed in areas with surface thermal areas, it is assumed that CO₂ flux estimations of all geothermal fields in the TVZ have been gross underestimates (as acknowledged in Seward and Kerrick, 1996).

2. Estimates for the TVZ from soil gas data

Current estimates for the TVZ’s total CO₂ flux have been proven to be an underestimates, initial work to find a more realistic value can start by using the correlation between the non-volcanic systems CO₂ flux and their respective estimated heat flow from chloride flux. In the TVZ this value is CO₂ flux(t d⁻¹) = 2.5 HF (MWt) in round numbers (Figure 12), where HF is the heat flow from chloride (Bibby et al., 1995) and CO₂ flux is that measured by the previously mentioned four studies (Table 3). Despite CO₂ and heat flux from chloride being collected by different methods and from different surface features, Figure 12 shows a close relationship between these two variables with the the correlation of the four fields having an r² value of close to 1. If this relationship were to be applied to all fields in TVZ, a total CO₂ flux of 9400 t d⁻¹ or 3,431 Kt yr⁻¹ is calculated from the 4200 MWt estimated by Bibby et al. (1995). This is a 700% increase on the value of Seward and Kerrick (1996), however perhaps a more conservative estimate based upon the average % increase from the four fields (320%) where φCO₂ has been measured (Table 3), of 1,412 Kt yr⁻¹ is a better minimum estimate for TVZ CO₂ flux.

3. Tables and Figures

Table 3: Comparison of CO₂ flux for non-volcanic systems within the TVZ from Seward and Kerrick (1996) and recent soil gas surveys

<table>
<thead>
<tr>
<th>TVZ System</th>
<th>¹CO₂ t d⁻¹</th>
<th>Soil CO₂ t d⁻¹</th>
<th>% Increase</th>
<th>²Heat Flux (MWt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotorua</td>
<td>40</td>
<td>620ᵃ</td>
<td>1558.5399</td>
<td>420</td>
</tr>
<tr>
<td>Ohaaki</td>
<td>85</td>
<td>111ᵇ</td>
<td>129.6895</td>
<td>70</td>
</tr>
<tr>
<td>Rotokawa</td>
<td>55</td>
<td>633ᶜ</td>
<td>1141.5267</td>
<td>300</td>
</tr>
<tr>
<td>Tauhara</td>
<td>7</td>
<td>242ᵈ</td>
<td>3584.8214</td>
<td>110</td>
</tr>
</tbody>
</table>

Figure 12: shows the relationship between directly measured soil gas fluxes from non-volcanic systems in the TVZ against estimates for heat flow (MW$_t$) for those fields, data from Table 3.
Appendix 1

Seawater infiltration at White Island, Bay of Plenty, New Zealand: Using Stable Isotopes of CO$_2$ and H$_2$O to evaluate the fluid flow dynamics

1University of Canterbury, 20 Kirkwood Avenue, Ilam 8041, NZ
2Environment Southland, 202 Price Road, Waikiwi 9810, NZ
3GNS Science, 114 Karetoto Road, Wairakei 3377, NZ

*E-mail:simonhbloomberg@gmail.com

Contributions:

Mr. Bloomberg conducted the literature review, undertook the field work, geospatial mapping and wrote the manuscript. Dr. Horton undertook the fieldwork, analysed the water samples, and reviewed the manuscript. Dr. Mazot and Dr. Rissmann assisted with the fieldwork and reviewed the manuscript. Dr. Kennedy contributed to the schematic model and reviewed the manuscript. Mr. Blackstock trained Mr. Bloomberg in stable isotope geochemistry and reviewed and contributed to, the manuscript. Dr. Oze and Dr. Gravley enthusiastically reviewed the manuscript. Special thanks also goes to Jelte Keeman and Heather Bickerton (Jan 2011), and Jo Pawson and Mark Letham (Nov 2011) for assisting with fieldwork, and finally to Jim Cole for his keen interest, wealth of knowledge and free perusal of his library over the year!
1. Introduction

Previous investigation of White Island (WI) has described the system as chemically sealed from seawater infiltration (Giggenbach & Sheppard, 1989) by anhydrite precipitation, despite submarine flank vents existing. Giggenbach et al. (2003) investigated acid brines in the crater floor of WI and found cause for infiltration of seawater into the shallow hydrothermal system. Recent work on the Plume and crater lake at WI (Werner et al., 2008) found no evidence for seawater infiltration though there was significant evidence of sea level change forcing cyclicity in the CO$_2$ emission.

1.1 Geological Setting

White Island is an active andesite stratovolcano (Cole et al., 2000) of which <10% of its mass is subaerial due to its location in the Bay of Plenty, 50 km from the nearest landmass. The crater floor is the defining feature of WI and is open to the sea on the SE side where its largely intact crater rim has been breached. The crater floor continues to the W and NW and can be topographically divided into three large subcraters (Figure 13). Within these subcraters, smaller craters existed which were defined by recent studies (Houghton & Nairn, 1991; Mongillo & Wood, 1995).

Current volcanic activity in the island is quiescent. Magmatic degassing and conductive heat flow constitutes the main activity by way of a large vapor plume in the far west of the crater floor that emits from a crater lake (Werner et al., 2008). There is a hydrothermal system that extends along the crater floor to the SE from the plume consisting of; steaming mounds, sulphur banks and pools, boiling mud pots, hot springs and a large diffuse CO$_2$ anomaly (Bloomberg et al. 2012).

1.2 Origin of the fluids

Previous studies on White Island have investigated the nature of the shallow hydrothermal subsystem, where magmatic volatiles permeate the soil zone through faults and fractures and advectively and diffusely degas at the surface. Recently, Giggenbach et al.
(2003) studied the sources of acid brine spring waters emanating in the crater floor. They found that the high Na of the brines could not be solely attributed to magmatic volatile interaction with rocks during alteration and therefore there must be an interaction with infiltrating seawater within the shallow hydrothermal system. Their stable isotopic analysis of the H$_2$O found a signature that was reconcilable with Stewart and Hulston's (1975) analysis of a seawater contribution to the source of steam condensate, which had previously been discounted (Giggenbach & Sheppard., 1989).

Werner et al. (2008) investigated the nature of the degassing fluids from the crater lake plume found cause for an open system at shallow depths due to external forcing on the degassing caused by sea level fluctuations however the chemistry of the lake and plume indicate no contamination from seawater. Therefore, the plume is shielded from contaminating seawaters by its vapour cloud but within the crater floor the external pressure of magmatic volatiles from the plume is reduced as it flows laterally and magmatic volatiles mix with infiltrating seawater at a ratio of 3:1 (Giggenbach et al., 2003).

Despite evidence for the mixing of seawater with magmatic volatiles (as well as meteoric fluids) their presence was left out of the schematic model of crater and conduit fluid flow dynamics at WI by Werner et al. (2008), potentially due to their focus on the crater lake plume, though they did infer input laterally from meteoric waters. It is therefore this studies purpose to investigate the contamination of the hydrothermal system by seawater.

2. Methods

2.1 Soil gas and surface water sample collection

Soil gas samples were taken during the collecting of soil gas flux (ϕCO$_2$) measurements using the West Systems accumulation chamber. A 5 mL syringe was used to pierce a rubber septum on top of the chamber; a gas sample is drawn and emptied into the pierceable butyl rubber septum of a 10mL exetainer vial, pre-conditioned with helium. A fresh needle and syringe is used for each sample. Sampling direct from the chamber was preferred as such surface samples are well-mixed and represent all possible sources of CO$_2$ (Chiodini et al., 2008).
Surface water samples were taken using a 5 mL syringe, a water sample is drawn and emptied through the pierceable butyl rubber septum of a 10mL extainer vial.

2.2 Stable Isotopic analysis

The samples were analysed at the University of Canterbury’s Stable Isotope laboratory using a Thermo Scientific GasBench II connected to a Delta V Plus gas isotope ratio mass spectrometer under continuous flow conditions was used to measure the deuterium, oxygen and carbon isotopic composition. Stable deuterium, oxygen and carbon isotopic compositions are accurate to <0.10 ‰ based on replicate analysis of NBS-19 and NBS-22 certified reference materials.

3. Results

3.1 Isotopic analysis of soil CO2

Sixty soil gas samples (Figure 12) were analysed for the stable isotopes of CO2 ($\delta^{13}C_{CO2}$) which were collected concurrently with the ϕCO_2 and soil temperature. The range of the Stable isotopes and respective soil temperatures and ϕCO_2 are produced in Table 4. Of those samples 45 were part of the crater floor array, while 15 were triplicate samples of 5 high flux (>1000 g m$^{-2}$ d$^{-1}$) sites. In this case the averages of the triplicate samples were used and therefore the sample total comes to 50 (Table 4). The triplicate samples were done in order to attain a sense of the uncertainty measureable by the method at high fluxes which ranged from -0.28 to -0.11‰ with a mean of -0.21‰ for $\delta^{13}C_{CO2}$.

Statistical relationships between variables are considered positive with R^2 values of >0.5 for all variables. The highest R^2 is 0.67 when plotting ϕCO_2 vs. $\delta^{13}C_{CO2}$ and is indicative of a direct connection (Figure 14).
3.2 ϕ_{CO_2} vs. $\delta^{13}C_{CO_2}$

White Island (WI) has a complicated source system for CO$_2$ measured within the crater floor (Figure 14). The heavy end-member, of around -2$\%e$, is attributed to CO$_2$ release from the hydrothermal reservoir while the Lighter end-member source of around -10$\%e$ (V-SMOW) is thought to be a mix of microbial activity and atmospheric CO$_2$ into the shallow soil horizon. The sampled data in between describes a mixing population of different proportions of the end member sources. When the isotopic signatures are paired to the ϕ_{CO_2}, the points of high flux are (>1000 g m$^{-2}$ d$^{-1}$) where there is also a dominantly hydrothermal stable isotopic signature (Figure 14, >-3$\%e$), this is however not a purely proportional relationship and there is an aspect of spatial variability in the data related to permeability of the crater floor.

3.3 Surface water analysis

Fourteen surface water samples were collected and analysed (Figure 13 & Table 5) for stable isotopes of H$_2$O (δ^D and $\delta^{18}O_{H_2O}$) and dissolved inorganic carbon (DIC) ($\delta^{13}C_{H_2O}$). Water data from Giggenbach et al. (2003) plot in similar locations to this study (Figure 15). Given that some amount of evaporation is likely to have occurred which would isotopically enrich the fluids, the most likely sources for the acid stream waters are a combination of seawater and magmatic water with minor contributions from meteoric waters. If it was solely magmatic water we would expect to see a strong horizontal shift in the $\delta^{18}O$ data. However, we do see a slight shift to the right and mostly it’s an evaporation trend from SMOW.

4. Discussion

4.1 $\delta^{13}C$ analysis of DIC and Flux

Values from stable isotopic analysis of DIC are plotted on Figure 16 and can be related to the $\delta^{13}C_{\phi_{CO_2}}$ in a broad sense. There is some ambiguity in these values as there are multiple spring sources along each flow path that contribute cumulatively to the water sample collected. The range of values indicate a seawater contribution to DIC in the crater floor.
springs as already confirmed by the oxygen and hydrogen analysis of Giggenbach et al. (2003) and this study (Table 5, Figure 15). Depending on the connectivity depth of the source of the water from the acid springs sampled, the $\delta^{13}C_{H_2O}$ will show more or less mixing between meteoric, magmatic and seawater sources. In the western rim of east crater and eastern rim of central crater there is an area of deeper connectivity indicated by the relatively more positive $\delta^{13}C_{H_2O}$ compositions. As the water moves East across the crater floor there is an increasing component of meteoric derived fluid to the acid streams as indicated by relatively more negative $\delta^{13}C$.

4.2 Evaluation of fluid flow dynamics

Figure 16 is used to identify any spatial correlations. The area coincident with an old crater rim and the “spring” location on the 2003 (Giggenbach et al.) model (which is an area where seawater is mixing with the magmatic volatiles and meteoric water), has the heaviest $\delta^{13}C_{CO_2}$ signatures on the island which are all $>-3‰$. It is hypothesised that seawaters infiltrating the volcanic pile ascend in this area (Figure 17) as it is highly permeable due to its structural history. Houghton & Nairn (1991) infer a deep structural fault along the central sub-crater’s eastern rim (the area in question) that would provide higher permeability. Interestingly the more seawater-like $\delta^{13}C_{CO_2}$ signatures (<2‰) are to the east of the crater rim (Figure 16), perhaps indicating that this structure is acting as a barrier to pure magmatic volatiles in the west side and an open pathway to the mixed seawater and magmatic volatiles from the east. In the west of the central sub-crater, beside the crater lake rim a value of -5.5‰ was sampled which is more indicative of the mixed population or, a magmatic volatile with no seawater contamination, though it is more likely that this is just a more diffuse zone and therefore the sample is more mixed with background sources. Giggenbach et al. (2003)’s remarks that the seawater infiltration is ‘deep’ can be substantiated by the spatial distribution of the “seawater” signature of the diffuse soil CO$_2$. Only in areas where there is connected permeability to deeper in the system does the $\delta^{13}C_{CO_2}$ have a heavy signature. In those places of reduced flux and temperature, where we find a mixed or background signature (e.g. in the east of eastern crater), there is clearly limited permeability to the deeper system.
5. Conclusion

The central sub-crater’s eastern rim is a permeable zone of maximum degassing of φ_{CO_2} at WI. Paired to this are enriched $\delta^{13}\text{C}$ values which are related to infiltration of seawater into the shallow hydrothermal system. Though Giggenbach et al. (2003) have discussed this at length already it has not been fully acknowledged in the literature (Werner et al., 2008) and therefore this relationship of φ_{CO_2} and $\delta^{13}\text{C}$ at White Island cements the first presented concept (Stewart & Hulston, 1975) and further developed model (Giggenbach et al., 2003) by adding a second variable to the case of seawater entrained in the hydrothermal system at White Island.

6. References

http://dx.doi.org/10.1007/BF02596944

7. Tables

Table 4: Descriptive statistics of the variables collected during the soil gas survey at White island.

<table>
<thead>
<tr>
<th></th>
<th>ST (°C)</th>
<th>φCO₂ (g m⁻²d⁻¹)</th>
<th>δ¹³C CO₂ (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>20.8</td>
<td>0.125985101</td>
<td>-10.179576</td>
</tr>
<tr>
<td>Max.</td>
<td>100</td>
<td>20320.16645</td>
<td>-1.5511435</td>
</tr>
<tr>
<td>Mean</td>
<td>43.774</td>
<td>1383.944052</td>
<td>-6.6456796</td>
</tr>
<tr>
<td>Conf. Level (95%)</td>
<td>6.98664317</td>
<td>1086.728799</td>
<td>0.72417206</td>
</tr>
<tr>
<td>Std. Error</td>
<td>3.47667659</td>
<td>540.7753731</td>
<td>0.36036076</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>24.5838159</td>
<td>3823.859334</td>
<td>2.54813536</td>
</tr>
<tr>
<td>C.V.</td>
<td>0.5552</td>
<td>1.6397</td>
<td>0.5493</td>
</tr>
</tbody>
</table>

Table 5: Stable Isotope analysis of springs along the Charter bay outflow. All values are reported in per mille (‰). N/A = Not Analysed

<table>
<thead>
<tr>
<th></th>
<th>δ¹³C DIC</th>
<th>δ¹⁸O</th>
<th>δ²H</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI01</td>
<td>-5.35</td>
<td>4.890194</td>
<td>18.40822</td>
</tr>
<tr>
<td>WI02</td>
<td>-4.32</td>
<td>5.502718</td>
<td>19.46387</td>
</tr>
<tr>
<td>WI03</td>
<td>-3.74</td>
<td>5.725727</td>
<td>20.3074</td>
</tr>
<tr>
<td>WI04A</td>
<td>-2.61</td>
<td>5.79873</td>
<td>20.37363</td>
</tr>
<tr>
<td>WI04B</td>
<td>-1.6</td>
<td>7.581301</td>
<td>28.50067</td>
</tr>
<tr>
<td>WI05</td>
<td>-1.63</td>
<td>5.934735</td>
<td>21.61153</td>
</tr>
<tr>
<td>WI06A</td>
<td>-1.58</td>
<td>4.854192</td>
<td>18.58798</td>
</tr>
<tr>
<td>WI06B</td>
<td>-2.95</td>
<td>4.482178</td>
<td>18.34299</td>
</tr>
<tr>
<td>WI07</td>
<td>-1.14</td>
<td>5.925235</td>
<td>23.51918</td>
</tr>
<tr>
<td>WI08A</td>
<td>-3.95</td>
<td>6.763268</td>
<td>25.71713</td>
</tr>
<tr>
<td>WI08B</td>
<td>-2.4</td>
<td>5.857732</td>
<td>24.8253</td>
</tr>
<tr>
<td>WI09</td>
<td>N/A</td>
<td>5.79523</td>
<td>18.63578</td>
</tr>
<tr>
<td>WI10A</td>
<td>-2.41</td>
<td>10.93993</td>
<td>32.46535</td>
</tr>
<tr>
<td>WI10B</td>
<td>N/A</td>
<td>10.0289</td>
<td>32.55</td>
</tr>
</tbody>
</table>
8. Figures

Figure 13: Aerial view of the crater floor at White Island. Soil gas and Water samples are plotted in green and red, respectively. Known crater outlines are detailed by blue dashes, and the x-section for figure 17 is shown in white dash.
Figure 14: Plot of ϕ_{CO_2} vs. $\delta^{13}C_{CO_2}$, data is broken into three populations based on the Graphical Statistical Approach (Chiodini et al., 1998). Each colour represents a population defined by an inflection on a cumulative probability plot. Sample WI-3 G1 is from Marty & Giggenbach (1990)
Figure 15: Hydrogen and Oxygen isotope compositions of waters from White Island. Data from 2011 and 2003 refer to surface waters sampled by this study and Giggenbach et al. (2003). White Island meteoric samples are collated in Giggenbach et al. (2003).
Figure 16: Isoscape of $\delta^{13}C_{CO2}$ within the crater floor. Simple kriging was used in Golden Software’s Surfer to interpolate the contours. Surface water samples are plotted as filled circles and black dashed arrows delineate surface water flow lines. Historic craters are outlined in blue dots.
Figure 17: Schematic cross section through the White Island hydrothermal system along the NW-SE line from Figures 13 & 6 (modified after Giggenbach et al., 2003). Solid lines are pure seawater, dashed lines are magmatic volatiles, dash and dotted lines are a mixture of the two.
Attached to this thesis is the file “Appendix 2.xlsx”

Within this excel spreadsheet the raw and modified data used in most of the thesis exists. I obviously could not attach the sGs data as it would have made the file huge, however this will be attached in the CD with the bound thesis. Within the file the spreadsheets contained are split by RK for Rotokawa and WI for White island and contain the following:

- **RK_Flux**: Contains the raw data collected during the soil gas survey campaigns from Cindy Werner in early 2004 through to the data collected in 2011/2012
- **RK_Iso**: Contains the raw data collected during the soil gas flux and isotope survey during Nov 2011
- **RK_H2S**: Contains the specific locations and data produced by the H$_2$S sensor onboard the LICOR.
- **RK_SO4**: Contains the data used to calculate the sulphur budget for RK
- **RK_Results**: Contains the sGs data broken into populations by the GSA method, the summation of the total flux into an emission, the extrapolation, and calculation of steam, mass and heat flow values.
- **WI_Flux**: Contains the raw data collected during the soil gas survey campaign during 2011
- **WI_Iso**: Contains the raw data collected during the soil gas flux and isotope survey during Nov 2011
- **WI_Results**: Contains the sGs data broken into populations by the GSA, the summation of the total flux in an emission, the extrapolation, and calculation of steam, mass, and heat flow values.