Recent Travels in k_t-Land

Johannes Barth, Sabine Beuermann, Michael Buback, Gregory T. Russell, Rebekka Siegmann

1 Institut für Physikalische Chemie, Georg-Augusta-Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
2 Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam/Golm, Germany
3 Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Until a few years ago, a presentation such as this would instead have been entitled “Recent Travails in k_t-Land”. What has changed in the last half-decade is the advent of the SP-PLP-EPR technique. It couples single-pulse pulsed-laser polymerization (SP PLP) with highly time-resolved EPR spectroscopy. The result is unrivalled access to chain-length-dependent termination rate coefficients, $k_{t,i,i}$, in radical polymerization. Where once it was a constant source of exasperation to measure termination rate coefficients, k_t, now one may obtain highly satisfying results using SP PLP EPR. In particular this is the case for small chain lengths, as illustrated in Fig. 1. This shows radical concentration, c_R, in the milliseconds immediately after a laser pulse induces polymerization. By fitting these results, one obtains $k_{t,1,1}$, the rate coefficient for termination between radicals of unity degree of polymerization, and α, the power-law exponent in the variation of $k_{t,i}$ with chain length, i, at small i. No other currently available technique can deliver these highly important parameters with such authority.

This presentation will report on results from a recent sabbatical year in Göttingen, where the only SP-PLP-EPR setup is located. The monomers studied are shown in Scheme 1. They are (1) a series of n-alkyl acrylates, and (2) a fluorinated methacrylate. These were of interest in that: (1) Previous $k_{t,i}$ results for acrylates were ambiguous due to the likelihood of mid-chain radicals being present. In the current study this uncertainty was eliminated by working at temperatures too low for backbiting to occur; and (2) Previously only ‘standard’ methacrylates had been studied, and so the effect of fluorination – which is known to alter miscibility and conformation – remained to be established.

1 J. Barth, M. Buback, Macromol. React. Eng. 2010, 4, 288-301

Greg Russell
A/Professor, Dr.
Department of Chemistry, University of Canterbury, New Zealand
Phone: +64-3-3642458 Fax: +64-3-3642110 E-mail: greg.russell@canterbury.ac.nz

Personal History
1991 PhD in Physical and Theoretical Chemistry: Sydney University
1992-4 Alexander von Humboldt Fellow: Göttingen University, Germany
1995-7 Lecturer (in Chemistry): University of Canterbury, New Zealand
1998-2005 Senior Lecturer: University of Canterbury, New Zealand
Since 2006 Associate Professor: University of Canterbury, New Zealand

Research interests: radical polymerization kinetics, mechanisms, modeling and synthesis