Important note to readers:

This paper is the final draft version of the published article. Readers wishing to cite from this work for scholarly purposes are advised to consult the definitive, published version (below).

Source:
Utilizing Athletes as Endorsers to Sell Women’s Sport: Attractiveness Versus Expertise

Janet S. Fink
The Ohio State University
George B. Cunningham
Indiana University
Linda Jean Kensicki
University of Minnesota

Send all correspondence to:
Janet S. Fink
451 Larkins
337 W. 17th Avenue
The Ohio State University
Columbus, OH 43210
(614) 292-0867 (Phone)
(614) 688-34329(fax)
fink.26@osu.edu
Abstract

This study drew from the match-up hypothesis and associated learning theory to examine the effects of athlete attractiveness and athlete expertise on (a) endorser-event fit, (b) attitudes toward an event, and (c) intentions to purchase tickets to an event. Students (N = 173) from three universities participated in an experiment to test the study’s hypotheses. Results indicate that (a) athlete attractiveness and athlete expertise were both positively related to endorser-event fit and (b) the effects of expertise on fit were significantly stronger than those of attractiveness. Further, attitudes toward the event partially mediated the relationship between endorser-event fit and intentions to purchase tickets to the event, while identification moderated the relationship. Results are discussed relative to associative learning theory and the match-up hypothesis as well as ramifications they present for marketers and promoters of women’s sport.
Utilizing Athletes as Endorsers to Sell Women’s Sport: Attractiveness Versus Expertise

For years, marketers and advertisers have examined the influence their chosen spokesperson has on the persuasiveness of their message. In determining the salient characteristics of effective spokespersons, researchers have focused mainly on three attributes: expertise (Homer & Kahle, 1990; Hovland, Janis, & Kelley, 1953; McGuire, 1985; Ohanian, 1991; Till & Bussler, 2000), trustworthiness (Hovland, Janis, & Kelley, 1953; McGinnies & Ward, 1980; Miller & Baseheart, 1969), and attractiveness (Baker & Churchill, 1977; Kahle & Homer, 1985; 1990; Kamins, 1990; Ohanian, 1991). All three of these characteristics are related to source credibility, “a term commonly used to imply a communicator’s positive characteristics that affect the receiver’s acceptance of a message” (Ohanian, 1990, p.2). Thus, determining the most appropriate spokesperson for a particular product or service is no easy task.

Indeed, as the use of celebrity endorsers (e.g., well known athletes and actors/actresses) has grown over the years, a number of studies have been undertaken to determine under which conditions the celebrities are most effective (Agrawal & Kamakura, 1995; Ohanian, 1991; Tripp, Jensen, & Carlson, 1994). As Till and Busler (2000) note, many different theories have been utilized to clarify the successful (or unsuccessful) use of celebrity endorsers. The theories include the Elaboration Likelihood Model (Petty, Cacioppo, & Schumann, 1983), associative learning theory (Till & Shimp, 1998), social adaptation theory (Kahle & Homer, 1985), and a variety of others (Till & Busler, 2000) that have been successful in explaining the effectiveness of celebrity endorsers.

In the current study, we extended this literature by examining how the characteristics of the spokesperson influence attitudes and intentions to purchase a ticket to an athletic event. In
doing so, we drew from the match-up hypothesis and associated learning theory to propose that the attractiveness and the ability of the endorser (i.e., expertise) would influence the “fit” of the athlete as an endorser of the event. We also proposed that perceptions of fit lead to intentions to purchase tickets to the event and that this relationship would be mediated by attitudes toward the event. Finally, we proposed that the relationship between attitudes toward the event and ticket purchase intentions would be moderated by identification with the university’s team. An illustrative summary of the hypotheses is presented in Figure 1. These relationships were tested by way of an experiment. Below, we describe the theoretical background and present specific hypotheses.

The Match-up Hypothesis

The match-up hypothesis has been quite effective in predicting celebrity endorsers’ success (Kahle & Homer, 1985; Kamins, 1990; Till & Busler, 2000). The theory is straightforward. It suggests that the endorser or spokesperson is more effective when there is a “fit” between the endorser and the product they are endorsing (Kamins, 1990). Till and Busler (2000) propose that associative learning theory can be utilized to understand the effects of the match-up hypothesis. Associative learning suggests that links or associations between concepts can be created. It posits that patterns of concepts connected together will form a linked configuration network of memory, and this configuration will summon each concept every time the other concept is prompted (Anderson, 1983; Klein, 1991). Relative to advertisements using well-known endorsers, the endorser and the product will produce associations with other concepts in our minds based upon our experiences with and attitudes about both. In turn, the frequent coupling of the endorser and the product will become part of an individual’s
“association set” (i.e., when one sees one, the other immediately comes to mind) (Till & Bussler, 2000).

However, the strength of the association between product and endorser will depend on how well the endorser “fits” with the product, or “matches up” with the product (Kamins, 1990). Several studies have focused on the attractiveness of the celebrity and the “match-up” with the product. Researchers have utilized the match-up hypothesis to predict that attractive endorsers will be more effective when endorsing products that are utilized to increase one’s attractiveness (Kahle & Homer, 1985; Kamins, 1990). For example, Kahle and Homer (1985) found that attractive endorsers were more effective in selling razor blades than non-attractive endorsers. Similarly, Kamins found that using an attractive endorser (Tom Selleck) to advertise a product that enhances one’s attractiveness (a luxury car) was more effective than utilizing the unattractive endorser (Telly Savalas). However, when paired with a product not utilized to enhance one’s attractiveness (a home computer), both endorsers were equally effective. Thus, these studies show that a “match” or “fit” between the attractive endorser and their product had a positive effect on brand attitudes and that it is the interaction between the endorser and product that is more important to “fit” than mere attractiveness (Kamins, 1990).

Therefore, when advertising a product or service designed to enhance one’s own attractiveness, it appears that an attractive endorser creates a good match-up. However, Till and Busler (2000) suggested that expertise (as opposed to attractiveness) could be utilized to create a successful “match-up” as well. They proposed that expertise, more than attractiveness, would result in a greater fit in consumers’ minds when the endorser was paired with a product consistent with the endorser’s expertise. They paired a fictitious athlete (expert) and a fictitious attractive celebrity (attractiveness) with an energy bar and a candy bar. As expected, there was a
product by endorser interaction. The athlete was much more effective in creating a positive brand attitude for the energy bar. For the candy bar, both endorsers were equally effective. Thus, Till and Busler (2000) suggested that “expertise may possibly be more effective than physical attractiveness for matching a brand with an appropriate endorser” (p. 9).

However, to date, there have been no studies designed to determine the best “fit” when endorsing an actual athletic event. That is, while Till and Busler’s (2000) work suggests that an athlete’s expertise is important in selling a related product (e.g. Serena Williams and tennis racquets), the same match-up effect has not been established for selling an actual athletic event (Serena Williams and tennis tournament). Therefore, the purpose of this study was to utilize the tenets of associative learning theory and the match-up hypothesis to test the most effective endorsers (physically attractive versus expert) for an athletic event.

The match-up hypothesis and women’s sport

The issue of whom to use as an endorser for athletic events is particularly salient to women’s sport. For decades, researchers have lamented the fact that female athletes appear to be valued more for their femininity, good looks, and great bodies (attractiveness) than for their physical skills (expertise) (Andrews, 1998; Blinde, Greendorfer, & Shanker., 1991; Duncan, 1990; Eastman & Billings, 1999; Jones, Murrel, & Jackson, 1999; Kane, 1988; Kane & Greendorfer, 1994; Tuggle & Owen, 1999; Urquhart & Crossman, 1999). Research has shown that more attractive and traditionally feminine female athletes, regardless of their skill level, receive more press and more endorsements than their less attractive counterparts (Spencer & McClung, 2001). As a recent example, Anna Kournakova, an athlete many consider to be attractive, received $10.6 million in 2001, earning only $334,000.00 of it on the court while she was ranked only 37th on the tour. Had Venus Williams not signed a $40 million dollar deal with
Reebok, Kournakova would have been the top female athlete money earner, in any sport, despite the fact that she’s never won a major tournament (Hooper, 2002; Wertheim, 2001). In fact, Kournakova is often ranked higher on the WTA’s “commitment list”, a ranking of the players based on their perceived marketability rather than match outcomes, than more skilled players. Players on the commitment list make a bonus for playing in Tier I and Tier II events. In 2000, Kournakova collected $100,000 as a result of her commitment list rankings while Mary Pierce, ranked seven places higher on the tour rankings, was qualified for only $50,000 (Wertheim, 2002). Thus, it appears as though women’s tennis promoters assume that athlete attractiveness is a significant influence upon the public’s intentions to attend an event. The same cannot be said regarding men’s sporting events, in which the most skilled athletes are often utilized as endorsers for their event regardless of their level of attractiveness.

Of course, tennis is not the only sport whose governing bodies appear to value and pander attractiveness over expertise. The Women’s National Basketball Association (WNBA), the Women’s United Soccer Association (WUSA), and the Ladies Professional Golf Association (LPGA) have all recently been criticized for their willingness to “hyper-feminize” or “hyper-sexualize” their athletes in various media outlets in order to draw more crowds to events (Holste, 2002; Parker, 2002; Wilstein, 2002). While those in charge say such actions are important in making their respective sports more popular, others disagree. As Wilstein (2002) notes:

Avid fans who play golf and want to learn how to play it better, or who just like to watch great players hit the ball, don’t care much about how women look or what they do off the course. Similarly, people who don’t care for golf aren’t going to be drawn to it in great numbers because of the player’s sex appeal (p. 1).
Thus, promoters of women’s sports feel that utilizing the most attractive, hyper-feminized and hyper-sexualized athletes (or, attempting to create or highlight such attributes in less attractive athletes) will provide a boost in the sport’s following. Others vehemently disagree and propose that such media representations and promotions trivialize the athletic accomplishments of women and serve to further engrain traditional gender ideologies (Andrews, 1998; Kane & Greendorfer, 1994; Tuggle & Owen, 1999).

Hypotheses

While this debate has been quite common given the vast success of female athletes in recent years, to date, there have been no empirical studies assessing the importance of attractiveness and expertise in promoting women’s sport. Thus, this study attempts to fill that void. The study was guided by the following hypotheses.

Attractiveness and expertise of a spokesperson have been found to influence consumers’ attitudes about the product (Baker & Churchwell, 1977; Crisci & Kassinove, 1973; Kahle & Komer, 1985; Maddox & Rodgers, 1980). Based on this literature, we predicted that an athlete who was attractive and skilled (i.e., high expertise) would be seen as a better fit as an endorser for the event than would her less attractive and less skilled counterpart. This led to the following hypotheses:

Hypothesis 1a: Athlete attractiveness will be positively related to perceived fit as an endorser of the athletic event.

Hypothesis 1b: Athlete skill will be positively related to perceived fit as an endorser of the athletic event.

In addition to testing these hypotheses, we were also interested in determining which athlete attribute – attractiveness or expertise – was the more important determinant of fit. Again
drawing from the match-up hypothesis, endorser characteristics that are more closely aligned with the product or service offered should be the more salient characteristic. For example, Lynch and Schuler (1994) found that muscularity of the endorser was related to expertise with respect to exercise equipment. Additionally, Till and Busler (2000) found that brand attitudes toward an energy bar were more positive when the product was endorsed by an athlete than when it was endorsed by an actor. Based on these findings, it is likely that the fit, or congruence, of the athlete to the event will be more salient for event related characteristics (i.e., expertise) than for characteristics not related to the event (i.e., attractiveness). More formally, we hypothesized:

Hypothesis 2: Athlete expertise will be more strongly associated with athlete-event fit than will athlete attractiveness.

Til and Busler (2000) found that the “fit” between the endorser and the product was the most important aspect influencing brand attitudes and purchase intent. Rather than attractiveness or expertise being the sole influences regarding attitudes toward the event, the “fit” of the endorser to the product is vital. For example, one may perceive that an athlete is an expert in her sport, yet not be a good fit for the event (e.g., Venus Williams promoting the WNBA All-Star game or Chris Everett promoting the current Wimbledon tournament). It is reasonable to suspect, therefore, that, after controlling for attractiveness and expertise, endorser/product fit will be associated with outcomes related to the event. More formally, we hypothesized:

Hypothesis 3a: Athlete-event fit will be positively associated with attitudes toward the event after controlling for attractiveness and expertise.

Hypothesis 3b: Athlete-event fit will be positively associated with intentions to purchase tickets to the event after controlling for attractiveness and expertise.
Recall that Til and Busler (2000) found that fit was related to both brand attitudes and purchase intentions. Therefore, we would expect, in general, that athlete-event fit would be positively related attitudes toward the athletic event and intentions to purchase a ticket to the event. We extended this research, however, by more clearly specifying the relationships among fit, attitudes, and ticket purchase intentions. According to Madrigal (1995), positive attitudes toward an event should lead to purchase intentions. From this perspective, if one has positive attitudes toward an event, then he or she will be more likely to attend that event. This is consistent with predictions from Ajzen’s (1991) theory of planned behavior, whereby attitudes are predicted to be positively related to intentions to perform a behavior. Based on this literature, we would expect that athlete-event fit would result in positive attitudes toward the event. In turn, positive attitudes would result in intentions to purchase tickets to the event. Therefore, we hypothesized:

Hypothesis 4: Attitudes toward the event will mediate the relationship between athlete-event fit and intentions to purchase tickets to the event.

Finally, in the fan behavior literature, there has been a great deal of evidence that identification with the sport organization or sport team influences attitudes about the team and ticket purchase intentions. Trail, Anderson, & Fink (2000, pp. 165 - 166), defined identification as, “an orientation of the self in regard to other objects including a person or group that results in feelings or sentiments of close attachment.” Identification with a team has been found to be a moderator of cognitive, affective, and behavioral responses. Highly identified individuals have been shown to differ from lower identified individuals on several cognitive, affective, and behavioral variables that influence future sport consumption (Branscombe & Wann, 1991; Lever, 1983; Madrigal, 1995; Murrell & Dietz, 1992; Sloan, 1989). In particular, individuals highly
identified with a sport organization are more likely to purchase tickets to events and remain loyal customers (Branscombe & Wann, 1991). Thus, we anticipated:

Hypothesis 5: Team identification will moderate the relationship between attitudes toward the event and intentions to purchase tickets to the event.

Method

Endorser and Sport

We followed methods utilized by Till and Busler (2000) and chose to create a fictional athlete to endorse the athlete’s team playing in an National Collegiate Athletic Association (NCAA) National Softball Championship in order to obtain more experimental control. Had we used more well-known softball players (i.e. professional players) there was the chance that there could be a great deal of variation in the study’s subjects regarding their attitudes toward a particular player, thus increasing within group variation and lowering the power of the study. Further, to pick two softball players who varied with respect to physical attractiveness would also almost invariably result on other dimensions as well (e.g., expertise, level of popularity). Thus, as Till & Busler (2001) stated, “we chose to sacrifice some ecological validity (by using a fictitious rather than a real athlete), but gained construct validity by minimizing spurious confounds and statistical conclusion validity by minimizing within-group variation with our manipulation” (p. 5).

Additionally, we chose to promote an intercollegiate event (i.e., the NCAA National Championship Tournament) rather than a professional event for several reasons. First, had we chosen a professional softball event, subjects highly familiar with softball would have possibly recognized that our fictitious athlete was not somebody they were aware of, thus making it difficult to manipulate expertise level. Second, we wanted to determine the effects of team
identification, thus we wanted a team (e.g., University of Wisconsin Softball Team) with which subjects could identify. Finally, we chose a less popular sport in terms of attendance (as opposed to women’s basketball for instance) as we did not want subjects to recognize that the endorser was fictitious.

For the study, a close-up photograph of an attractive athletic woman (long blonde hair, slender face, slight make-up) was used to represent “Mary Endries” in the attractive endorser condition. A different close-up photograph of an athletic woman (shorter brown hair, slightly heavier face, no make-up) was used to represent “Mary Endries” in the less attractive endorser condition. Each advertisement read: “XX University NCAA Softball. Come see MARY ENDRIES this week at the NCAA Women’s Softball Championship.” This was to the left on the advertisement while a picture of the fictitious Mary Endries was on the right. Below the advertisement read, “Tickets available through XX University Box Office.”

To establish expertise, the same advertisements were utilized with a few things added. First, on the left it read, “Come see #1 tennis player, Mary Endries this week at the NCAA Softball Championship.” Additionally, a little further down the advertisement, it read, “Mary Endries is: Last year’s NCAA Champion, Voted #1 NCAA player 2002, Voted #1 division player 2001 & 2002, Voted #1 XX University player 2000, 2001, 2002.”

Procedures and Participants

Study participants were undergraduate students at three large mid-western universities. The study was conducted during class time and participation was voluntary. Experimenters handed out the materials (the one-page advertisement and the subsequent 2 pages with measures) face down. Participants were given a brief introduction of the study by the experimenter in which they were told that they were being utilized to determine the effectiveness of
advertisements for women’s sports. Participants had 30 seconds to view the advertisement. They then completed the 2 pages of demographic questions and other measures at their own rate. The 4 different versions of the advertisement were distributed randomly by class. A total of 173 subjects participated in the study.

Measures

The questionnaire requested participants to provide their age, race, and sex. Participants also responded to items related to (a) the perceived skills and attractiveness of the athlete in the advertisement, (b) the fit of the athlete for the advertisement, (c) attitudes toward the event advertised, (d) intentions to purchase a ticket to the event advertised, (e) identification with the athletic department. The mean of the items represented the final score for each measure. Reliability estimates (Cronbach’s alpha) were calculated for each measure and are reported below.

Skills. Five items from Ohanian (1990) were used to measure perceived skills of the athlete in the advertisement. The items were preceded by the phrase, “the athlete in the advertisement is...” Each item was then anchored by 9-point semantic differential scales with the endpoints “not an expert – an expert,” “inexperienced – experienced,” “unknowledgeable – knowledgeable,” “unqualified – qualified,” and “unskilled – skilled.” Reliability estimate (α = .97) for the measure was high.

Attractiveness. Attractiveness of the athlete in the advertisement was measured with five items adapted from Ohanian (1990). The phrase, “the athlete in the advertisement is...” was anchored by 9-point semantic differential scales with the endpoints “unattractive – attractive,” “not classy – classy,” “ugly – beautiful,” “plain – elegant,” and “not sexy – sexy.” The measure had a high reliability estimate (α = .96).
Fit. We used five items adapted from Till & Busler (2000) to measure athlete fit with the advertisement. A sample item is “I think the athlete is an appropriate endorser of the NCAA Championships.” All items were measured on a 9-point Likert-type scale ranging from 1 (strongly disagree) to 9 (strongly agree). The reliability estimate for the measure was high ($\alpha = .96$), thereby demonstrating the reliability of the measure.

Attitudes toward the event. Following Till & Busler (2000), attitudes toward the event were assessed using three semantic differential scales in response to the following phrase, “In general, how do you feel about the event?” The three scales were “strongly dislike – strongly like,” “unfavorable – favorable,” and “negative - positive.” All items were measured on a 9-point scale. The reliability estimate for the measure was high ($\alpha = .92$).

Intentions to purchase a ticket. Three items from Till and Busler (2000) were used to measure intentions to purchase a ticket. Participants responded to the following phrase, “How likely is it that you would consider purchasing a ticket to this event?” The phrase was anchored by 9-point semantic differential scales with endpoints “unlikely – likely,” “definitely would not – definitely would,” and “improbable – probable.” There was a high reliability estimate for the measure ($\alpha = .97$).

Team identification. Four items from Trail and James (2000) was used to measure team identification. A sample item is “I consider myself to be a ‘real fan’ of this university’s athletic teams.” The reliability estimate for the measure was high ($\alpha = .93$).

Analyses

We first checked the efficacy of the experimental manipulation. This was accomplished by calculating two separate analysis of variance (ANOVA) procedures. In the first, the experimental condition (0 = attractive, 1 = not attractive) served as the independent variable and
ratings of the athlete’s attractiveness served as the dependent variable. In the second, the experiment manipulation (0 = not an expert, 1 = expert) served as the independent variable and ratings of the athlete’s expertise served as the dependent variable.

Preliminary analyses showed differences in the study variables based on (a) the school from which the data were collected and (b) the age and race of the participants. Thus, we controlled for these variables in subsequent analyses. As data were collected from three different schools, we used the indicator codings from two schools \((k - 1)\) such that the coding for school A was 1 = school A, 0 = not school A, and the coding for school B was 1 = school B, 0 = not school B. Race was coded as 0 = racial minority, 1 = White.

Means, standard deviations, and bivariate correlations were calculated for all variables. Hypotheses 1a and 1b predicted that athlete attractiveness and expertise would be positively related to athlete-event fit. This was tested through a hierarchical regression analysis with the controls entered in the first step and attractiveness and expertise entered in the second step. Hypothesis 2 predicted that athlete expertise would be a stronger predictor of athlete-event fit than would athlete attractiveness. This was tested by calculating a \(t\) score to determine if the association between expertise and fit was stronger the association between attractiveness and fit (Bruning & Kintz, 1997). Hypotheses 3a and 3b predicted that fit would be associated with attitudes toward the event and intentions to purchase tickets to the event after controlling for attractiveness and expertise. These hypotheses were tested through separate hierarchical regression analyses with attractiveness and expertise entered in the first step and fit entered in the second step. Hypothesis 4 predicted that attitudes would mediate the relationship between fit and intentions to purchase a ticket. This was tested according to Baron and Kenny’s (1986) guidelines for mediation. According to these authors, mediation is supported if (a) the
independent variable is significantly related to both the mediator and the dependent variable, (b) the mediator is significantly related to the dependent variable, and (c) after controlling for the mediator, the independent variable is not related to the dependent variable. Sobel’s (1982) test was used to test the statistical significance of the third step. Hypothesis 5 predicted that team identification would mediate the relationship between attitudes and intentions. This was tested through a moderated regression analysis.

Results

Manipulation Check

Results of the ANOVA procedures demonstrated the efficacy of the manipulation. Specifically, persons who received an advertisement with the attractive athlete rated the athlete as significantly more attractive ($M = 7.24, SD = 1.22$) than did persons with the unattractive athlete ($M = 2.74, SD = 1.22$), $F(1,169) = 581.02, p < .001$. Likewise, persons who received the advertisement with the skilled athlete rated the athlete’s expertise significantly higher ($M = 6.72, SD = 1.79$) than did persons with the less skilled athlete ($M = 5.27, SD = 1.81$), $F(1,169) = 28.14, p < .001$. Thus, the experimental manipulation was successful.

Hypothesis Testing

Means, standard deviations, and bivariate correlations are presented in Table 1. Hypotheses 1a and 1b predicted that athlete attractiveness and expertise would be positively related to athlete-event fit. Results are presented in Table 2. The controls accounted for 10% ($p < .01$) of the variance in fit. After controlling for these effects, attractiveness ($\beta = .34, p < .001$) and expertise ($\beta = .54, p < .001$) accounted for an additional 43% unique variance – a large portion of the variance according to Cohen and Cohen’s (1983) standards. Thus, hypotheses 1a and 1b were supported.
Hypothesis 2 predicted that the effects of athlete expertise on perceptions of athlete-event fit would be stronger than the effects of athlete attractiveness. Results indicate that the association between expertise and fit was significantly stronger than the association between attractiveness and fit ($t = 2.46$, $p < .05$). Thus, hypothesis 2 was also supported.

Hypotheses 3a and 3b predicted that fit would be associated with attitudes toward the event and ticket purchase intentions after controlling for attractiveness and expertise. Results are presented in Table 3. When attitudes toward the event served as the dependent variable, the controls accounted for 12% of the variance ($p < .001$) and attractiveness and expertise combined to account for 21% unique variance ($p < .001$). After controlling for these effects, fit contributed an additional 4% unique variance ($\beta = .27$, $p < .01$). Thus, hypothesis 3a was supported.

When ticket purchase intentions served as the dependent variable, the controls accounted for 6% of the variance ($p < .05$) and attractiveness and expertise combined to account for 23% unique variance ($p < .001$). After controlling for these effects, fit contributed an additional 3% unique variance ($\beta = .23$, $p < .05$), thereby supporting hypothesis 3b.

Hypothesis 4 predicted that attitudes toward the event would mediate the relationship between fit and intentions to purchase tickets to the event. The first regression tested the effects of fit on intentions to purchase a ticket. The controls accounted for 6% ($p < .05$) of the variance, with fit contributing an additional 19% unique variance ($\beta = .46$, $p < .001$). The second regression tested the effects of fit on attitudes toward the event. The controls accounted for 12% ($p < .001$) of the variance, with fit accounting for an additional 20% unique variance ($\beta = .47$, $p < .001$). Thus, the first condition of mediation was supported. The third regression tested the effects of attitudes on intentions to purchase a ticket. After controlling for the effects of the controls ($R^2 = .06$, $p < .05$), attitudes contributed 39% unique variance ($\beta = .67$, $p < .001$),
thereby supporting the second condition for mediation. In the final regression, the controls were entered in the first step, while both fit and attitudes were entered in the second step. The controls accounted for 6% ($p < .05$) unique variance. After accounting for these effects and the effects of attitudes toward the event, fit was still a significant predictor of intentions to purchase a ticket ($\beta = .18, p < .01$). Results from Sobel’s (1982) test indicated that, after controlling for the controls and attitudes toward the event, the effects of fit on intentions to purchase a ticket were significantly reduced ($z = 5.86, p < .001$). Therefore, while the effects of fit were not completely negated, they were significantly reduced. Thus, hypothesis 3 received partial support. An illustrative summary of the results is presented in Figure 2.

Hypothesis 4 predicted that team identification would moderate the relationship between attitudes and intentions to purchase a ticket. Moderated regression analysis was used to test this hypothesis, with the controls entered in the first step, the first order effects (i.e., attitudes and team identification) entered in the second step, and the interaction term (i.e., attitudes \times team identification) entered in the final step. Interaction is supported if the final step is significant. Results are presented in Table 3. The controls accounted for 6% of the variance ($p < .05$) and the first order effects contributed an additional 40% unique variance ($p < .001$). After controlling for these effects, the interaction term accounted for a significant portion of the variance ($\Delta R^2 = .02, \beta = .60, p < .001$). Thus, hypothesis 4 was supported. We plotted the interaction (see Figure 3) to more fully understand the effects. As can be seen in Figure 3, intentions to purchase tickets to the event are highest when both attitudes toward the event and identification with the team are high.

In summary, we found support for hypotheses 1a and 1b, as both attractiveness and expertise were positively related to athlete-event fit. Support was also found for hypothesis 2, as expertise was a more salient predictor of fit than was attractiveness. We also found that, while
not completely reducing the effects, attitudes significantly reduced the effects of fit on intentions to purchase tickets, thereby supporting partial mediation. Thus, hypothesis 3 was partially supported. Finally, we found that identification moderated the relationship between attitudes and ticket purchase intentions, thereby supporting hypothesis 4.

Discussion

Our findings suggest that the match-up hypothesis is a useful theory in predicting the efficacy of different endorsers for women’s athletic events. Athlete-event “fit” was vital to attitudes toward the event, which, in turn, predicted purchase intentions. As suggested by the match-up hypothesis, expertise was significantly more important to “fit” than attractiveness. According to theory and previous studies conducted on endorser/product effectiveness, this outcome seems logical. While associative learning suggests that links between concepts can be created, the strength and effectiveness of the association is dependent upon how well the concepts “match-up” (Kamins, 1990; Klein, 1991). A softball player’s attractiveness has little to do with the event itself. That is, attractiveness will not impact how the game is played. Therefore, the “link” between attractiveness of the athlete and the event is weak. Level of expertise, on the other hand, has a significant impact on an event. Thus, the “expert” female athlete endorser built a stronger association for this event than did the attractive endorser and, subsequently, was more effective in producing positive attitudes toward the event.

This study suggests that for optimal results, promoters of women’s sports should emphasize the expertise of the athlete rather than her attractiveness. While this is only one study completed in the context of one sport, if the results are replicated with other women’s sports, it would suggest likely that women’s sports governing bodies should pander “looks” less and expertise more. Messner, Duncan, and Wachs (1996) suggested that capitalism may, in fact, win
out over the reinforcement of patriarchal ideology in the case of women in sport. That is, if those in power are convinced that promoting women’s sport through their expertise rather than their attractiveness will result in greater profitability, change may occur. Some may suggest that bringing about change in the portrayal of female athletes is much more complex than mere profitability (Andrews, 1998; Fink & Kensicki, 2002). As Fink and Kensicki (2002) note:

…..by consciously creating a perception of equity for female athletes that is more rhetoric than realism (Andrews, 1998; Eastman & Billings, 1999), women’s sports magazines can claim their magazine to be an avenue toward equity, but still package women’s sports in an offensive, status-quo manner to satisfy advertisers and the general sports readership (p. 335).

While we agree that there are many strong historical and social forces at work regarding the portrayal of female athletes, we also agree with Messner et al. (1996) and suggest that proving the profitability of highlighting female athletes’ athletic accomplishments, rather than their femininity, sex appeal, or traditional gender ideologies, is a necessary first step toward change. As long as those in power believe that the only way to sell women’s sport is to package it in a hyper-feminized or hyper-sexualized manner, transformation will be impossible. However, if they can be convinced that the road to profitability is through the public’s interest in women’s athletic accomplishments and expertise and, subsequently, will lead to profitable operations, those in power will be hard-pressed to continue in their old ways. Certainly our study explained a large portion of the variance in purchase intentions and produced a step toward proving that expertise and fit are most important in promoting women’s sport.

This study also reveals that fit between the athlete chosen as the endorser, and the event endorsed is key to the formulation of positive attitudes toward the event and purchase intentions.
While this study showed that expertise was the main influence in producing fit, it also reveals that marketers and promoters, given the choice between top athletes, would be wise to conduct marketing research regarding which athlete, or combination of athletes, is the best fit for a particular event in relation to a particular audience. For example, Lisa Leslie and Katie Smith are both considered top players on their respective WNBA teams. However, if the WNBA All-Star game was held in the Midwest, it might be best to utilize Katie Smith as the endorser to attract a Midwest audience as she plays for Minnesota, while Lisa Leslie may be more appropriate if the game were held on the West coast as she plays for Los Angeles.

Past research has revealed the importance of identification in selling tickets to sporting events (Madrigal, 1995; Brancombe & Wann, 1991), and certainly our results are no exception. Subjects’ were most likely to purchase tickets when both attitudes toward the event their level identification with the university’s sports were high. While it may seem likely that subjects’ attitudes toward the event would be significantly related to their identification level, the correlation between the two variables was insignificant. Thus, positive attitudes toward an event can be molded regardless of identification level. In the case of this study, positive attitudes were molded through an appropriate fit of the endorser and the event. However, subjects were most likely to purchase a ticket when they possessed high levels of identification along with positive attitudes. Thus, cultivating identification appears vital to selling women’s sports.

Several researchers have suggested methods of increasing identification or attachment and propose such things as developing team/individual fan clubs, increasing the opportunity of sport consumer interaction with the team/sport/player by providing a variety of information for consumers, providing team/player merchandise, increasing interactions with consumers through web-sites that allow for player features and player chat-rooms, as well as providing educational
programs about the sport to engender sport attachment just to name a few (Mahony, Nakazawa, Funk, James, & Gladden; 2002; Mullin et al., 1997). Interestingly though, most studies regarding identification have been conducted on men’s sports, thus, methods designed to increase levels of identification with women’s sports may be different.

Limitations and future directions

In order to control for numerous threats to internal validity by using fictitious players and a fictitious event, the study is limited in its generalizability to actual events and endorsers. However, it provides evidence that utilizing expertise is very important in promoting sport. Future studies should attempt to replicate the study employing real athletes and real events.

Additionally, our study examined the promotion of women’s softball, a sport that is not extremely popular in comparison to other women’s sports. Thus, will be important to examine whether similar effects can be found for other sports. Further, women’s softball would seem to be a “sex inappropriate sport” as set forth by Kane and Parks (1990). That is, women playing softball are perceived as participating in a sport that is not as acceptable for females as other, more traditionally feminine sports such as tennis and gymnastics. Perhaps variance in “fit” would be explained by attractiveness in sports that are more “sex appropriate.” Future studies should examine such contentions.

Future studies should also examine other predictors of endorser/event fit. For example, Kahle & Homer (1985) suggested that level of involvement with the product (or in our case, event) influences subjects’ processing of advertisements. While their study showed that endorser attractiveness was the only significant variable in changing subjects’ attitudes toward a product utilized to enhance one’s attractiveness (i.e. razor blades), it seems logical that involvement with the sport (i.e., having a great deal of knowledge about the sport and/or following the sport
closely) would influence perceptions of athlete/event fit. For example, an individual who is a big fan of tennis may feel that Serena Williams is the most appropriate endorser for the U.S. Open while a non fan might see the most attractive endorser as the most appropriate fit. Additionally, other variables besides involvement may influence perceptions of fit and should be included in future studies. Variables such as trustworthiness, familiarity, and likability are just a few athlete characteristics that might influence fit.

In conclusion, our study shows that athlete expertise is more important in explaining endorser/event fit than attractiveness in the promotion of women’s sporting events. The results follow the tenants of associative learning theory and the match-up hypothesis. Additionally, the study reveals that the fit of the endorser is very important in explaining positive attitudes toward an event and intent to buy a ticket to an event. Further, attitudes toward an event partially mediate the relationship between perceived fit and intention to buy a ticket while identification moderates the relationship between attitudes and intention to buy a ticket.
References

Selling Women’s Sport 28

Table 1

Means, Standard Deviations, and Bivariate Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. School A</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. School B</td>
<td>-</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.52***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Age</td>
<td>.28***</td>
<td>-.20**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Race</td>
<td>-.08</td>
<td>-.05</td>
<td>.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Attraction</td>
<td>-.01</td>
<td>-.04</td>
<td>.13</td>
<td>-.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Expertise</td>
<td>-.08</td>
<td>-.03</td>
<td>.14</td>
<td>-.05</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Fit</td>
<td>.16*</td>
<td>-.21**</td>
<td>.12</td>
<td>-.21**</td>
<td>.42***</td>
<td>.57***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Attitudes</td>
<td>.29***</td>
<td>-.22**</td>
<td>.17*</td>
<td>-.12</td>
<td>.32***</td>
<td>.37***</td>
<td>.52***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Intentions</td>
<td>.19*</td>
<td>-.21**</td>
<td>.13</td>
<td>-.05</td>
<td>.38***</td>
<td>.35***</td>
<td>.48***</td>
<td>.67***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Identification</td>
<td>.13</td>
<td></td>
<td>.13</td>
<td>.22**</td>
<td>.04</td>
<td>.08</td>
<td>.17*</td>
<td>.13</td>
<td>.18*</td>
<td></td>
</tr>
</tbody>
</table>

Variable										
Mean	.35	.34	20.04	.81	5.08	5.99	4.70	5.22	3.11	6.22
SD	.48	.48	1.80	.40	2.56	1.93	2.34	1.74	1.97	2.13

Notes. *p < .05. **p < .01. ***p < .001.