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ABSTRACT 

 

A civil structure’s health or level of damage can be monitored by identifying changes in 

structural or modal parameters. However, modal parameters can be less sensitive to 

(localised) damage than directly identifying the changes in physical parameters of a 

structure. This research directly identifies changes in structural stiffness due to modelling 

error or damage, when the structural state and a reasonable estimate of the input force are 

available, such as earthquake or roof loading of a sensored steel frame structure. This 

thesis presents the development and implementation of a health monitoring method based 

on Adaptive Least Mean Square (LMS) filtering theory. The focus in developing these 

methods is on simplicity to enable real-time implementation with minimal computation. 

Several adaptive LMS filtering approaches are used to analyse the data from the 

International Association for Structural Control and American Society of Civil Engineers 

Structural Health Monitoring (SHM) Task Group Benchmark problem. Results are 

compared with those from the Task Group and other published results. The proposed 

methods are shown to be very effective, accurately identifying damage to within 1%, with 

convergence times of 0.4 – 13.0 seconds for the twelve different 4 and 12 degrees-of-

freedom SHM Benchmark problems. The resulting modal parameters match to within 1% 

those from the SHM Benchmark problem definition. Finally, the method presented is 

computationally extremely simple, requiring no more than 1.4 Mega-cycles of computation, 

and therefore could easily be implemented in real-time.  
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1. INTRODUCTION 

 

1.1. Motivation 

 

Structural Health Monitoring (SHM) is the process of examining the current state of a 

structure’s condition and determining the existence, location, and degree of damage that 

may exist, particularly after a damaging input, such as an earthquake or other large 

environmental load. Current SHM methods are based on the idea of vibration-based 

damage detection where changes in modal parameters, such as frequencies, mode shapes 

and modal damping, are a result of changes in the physical mass, damping and stiffness 

properties of the structure (Doebling et al, 1996). SHM can simplify typical procedures of 

visual or localized experimental methods, such as acoustic or ultrasonic methods, magnetic 

field methods, radiography, eddy-current methods or thermal field methods (Doherty, 

1997), as it does not require visual inspection of the structure and its connections or 

components. Doebling et al (1996a) has an excellent review of the numerous different 

approaches for vibration-based damage detection methods.  However, the various studies 

apply different methods to different structures, rendering side-by-side comparison difficult.   

 

In 1999, under the auspices of the International Association for Structural Control (IASC) 

and the Dynamics Committee of the American Society of Civil Engineers (ASCE) 

Engineering Mechanics Division, the SHM Task Group was formed and charged with 

studying the efficacy of various SHM methods.  The IASC-ASCE SHM Task Group 

developed a series of Benchmark SHM problems and established a set of specific 
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Benchmark results for a specially designed test structure in the Earthquake Engineering 

Research Laboratory at the University of British Columbia (Johnson et al, 2000). After the 

Benchmark problem was established, SHM research for civil structures was concentrated 

on applying different techniques to the Benchmark problem to examine the relative and 

absolute effectiveness of different algorithms.  

 

SHM in civil structures is very useful for determining damage state of a structure. In 

particular, the ability to assess damage in real-time or immediately after an earthquake 

would allow Civil Defence authorities to determine which structures were safe. Current 

methods are more applicable to steel frame or bridge structures where vibration response 

may be more linear under ambient vibrations. These problems typically have known, or 

reasonably estimated, input loads. However, the insensitivity of modal parameters to 

(localised) damage in some cases can be a major limitation for the larger number of 

methods that rely on identifying these parameters to assess and locate damage. This 

research uses adaptive filtering to assess the damage directly without using modal 

parameters. This approach promises a computationally efficient sample-to-sample method 

of directly identifying damage. 

 

 

1.2. Objective 

 

The primary objective of this research is to develop simpler and more efficient algorithms 

than existing methods for continuously monitoring structural status. This information is 

especially important during or after earthquakes, or any other form of damaging 
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environmental excitation. A specific goal is an algorithm simple enough to be implemented 

in real-time, adaptive and LMS filtering theory is employed as an appropriate algorithm to 

achieve the goal. To achieve the primary objective of this research, the following 

intermediate stages are undertaken: 

 

 To study the literature on SHM and adaptive LMS filtering  

 To develop an analytical model of the SHM Benchmark structure 

 To develop an adaptive LMS filter based method for SHM 

 To verify the effectiveness of the algorithm via simulation 

 To compare the simulation results with the Task Group Benchmark results and 

other published results 

 To investigate the ability to implement the developed method in real time with the 

current technology 

 

 

1.3. Literature Survey 

 

Most of the modern developments in vibration-based damage detection stem from studies 

performed in the 1970s and early 1980s by the offshore oil industry (Doebling et al, 1996a). 

However, most of the early proposed techniques were less successful. Research in 

vibration-based damage identification has been rapidly expanding over the last few years. 

The literature study was concentrated on recently developed methods, particularly those 

corresponding to the SHM Task Group Benchmark problem. 
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The most common method for identification of civil structural model parameters is the 

Eigensystem Realization Algorithm (ERA). The ERA method is based on knowledge of 

the time domain free response data. In ERA, a discrete Hankel matrix is formed, and the 

state and output matrices for the resulting discrete matrix are determined. These matrices 

are transformed to the corresponding continuous time system. The natural frequencies are 

found by determining the eigenvalues of the continuous time system. Dyke et al (2000) use 

cross correlation functions in conjunction with the ERA method for identification of the 

modal parameters, which are used to identify frequency and damping parameters. Caicedo 

et al (2000) introduces SHM methods based on changes in the component transfer 

functions of the structure, or transfer functions between the floors of a structure, and use 

the ERA to identify the natural frequencies of each component transfer function. Lus and 

Betti (2000) also proposed a damage identification method based on ERA with a Data 

Correlation and Observer/Kalman Identification algorithm. Bernal and Gunes (2000) also 

used the ERA with Observer/Kalman Identification for identifying modal characteristics 

when the input is known, and used a Subspace Identification algorithm when the input 

cannot be measured. 

 

Wavelet analysis approaches for SHM and damage detection may be found in Corbin et al 

(2000) and Hou et al (2000). Damage, and the moment when the damage occurs, can be 

detected by a spike or an impulse in the plots of higher resolution details from wavelet 

decomposition of the acceleration response data. Wavelets offer the advantage of 

determining not only the extent of the damage but also the time of its occurrence, which 

can be correlated to the input record for greater understanding of what occurred.  
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The major drawback of all of these approaches is their inability to be implemented in real-

time, as the event occurs. More specifically, the wavelet and ERA methods require the 

entire measured response to process and identify damage. Further, their reliance on modal 

properties, which can be subject to noise, has potential problems. In addition, modal 

properties have been shown in some cases, to be non-robust in the presence of strong noise 

and insensitive to small amounts of damage (Hou et al, 2000). 

 

Adaptive identification methods were employed to identifying modal parameters by Sato 

and Qi (1998) and Loh et al (2000). Loh et al (2000) used the adaptive fading Kalman filter 

technique, and Sato and Qi (1998) an Adaptive H∞ Filter, to achieve real-time capable or 

near real-time capable results. What these approaches provide in real-time identification of 

modal parameters comes with significant computational cost and complexity. These 

methods can be sensitive to noise but typically account for it directly in the formulation. 

Hence, this research looks for the simplest possible algorithm while sustaining real-time 

capability. 

 

 

1.4. Overview 

 

This thesis presents the development of a much simpler and efficient algorithm than 

existing methods for continuously monitoring the status of a steel frame structure. 

Adaptive LMS filtering is employed for its overall simplicity and resultant ability to be 

implemented in real-time. A procedure is presented for developing adaptive LMS filtering 

based methods for SHM. This task is accomplished by taking advantage of this filter’s 
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ability to adaptively model noisy signals to identify changes in structural parameters in 

comparison to a base structural model. The algorithms developed consist of a series of 

coupled adaptive LMS filters and are tested on the Benchmark problem test cases. Results 

are also compared with those presented in the literature to further verify the method.  
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2. STRUCTURAL HEALTH MONITORING 

 

2.1. Definition 

 

A seismically excited structure can be modelled using standard linear equations of motion, 

or a more complex computational model. Consider a three story shear building, as a simple 

example, which can be approximated as shown in Figure 1. 

 

 

Figure 1 Spring-Mass-Damper model for three story building under seismically excited 

load  
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where vi is displacement of the ith floor relative to the ground, mi, ki and ci are the mass, 

stiffness and damping coefficient respectively, of the ith floor, and gx&&  is the ground motion 

acceleration due to an earthquake. Hence, the absolute displacements of the 1st, 2nd and 3rd 

floors are (xg + v1), (xg + v2) and (xg + v3) respectively. 

 

The equation of motion for each floor is derived: 

 

For 3rd floor:  

( ) ( ) ( )23323333 vvkvvcxvm g −−−−=+ &&&&&&    (1) 

 

For 2nd floor:  

( ) ( ) ( ) ( ) ( )23323312212222 vvkvvcvvkvvcxvm g −+−+−−−−=+ &&&&&&&&   (2) 

 

For 1st floor:  

( ) ( ) ( ) ( ) ( )122122111111 vvkvvcvkvcxvm g −+−+−−=+ &&&&&&&    (3) 

 

Equations (1) – (3) can be rearranged and combined into matrix form: 
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 (4) 

 



 9

where mi, ci and ki are the mass, damping and stiffness coefficient for ith story respectively, 

and vi is relative displacement of the ith story to the ground. It also can be expressed as the 

matrix equation: 

 

{ } { } { } gxvvv &&&&& ⋅−=⋅+⋅+⋅ MKCM     (5) 

 

where M, C and K are the mass, damping and stiffness matrices of the model, respectively, 

and { }v , { }v&  and { }v&&  are the displacement, velocity and acceleration vectors, respectively. 

This system represents a linear and undamaged baseline model. If damage occurred in the 

structure from an earthquake, or any other form of damaging excitation, structural 

properties such as natural frequency and stiffness will change. These changes can be time 

varying or result without an input from simple modelling error. For the damaged, or mis-

modelled, structure, the equations of motion can be re-defined: 

 

{ } { } ( ) { } gxvvv &&&&& ⋅−=⋅∆++⋅+⋅ MKKCM    (6) 

 

where v&& , v&  and v  are the responses of the damaged structure, and ∆K contains changes in 

the stiffness of the structure and can be a function of time. By tracking the changes in the 

stiffness matrix via the ∆K term, the structure’s condition can be directly monitored 

without having to identify modal parameters or mode shapes first. Therefore, the 

development of this heath monitoring algorithm is concentrated on developing a method to 

directly determine these changes.  

 

Damage is detected by identifying changes in the physical properties of the structure, 

particularly changes in stiffness, because it is the most likely to change for a steel frame 
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structure as damage occurs. Per the Benchmark problem definition this research examines 

changes in stiffness properties.  Damping changes, ∆C, could also be identified and can 

occur due to hysteresis. However, hysteretic damping could also be seen as oscillations in 

∆K rather than absolute changes, and identified that way. Change in mass, ∆M, is not 

likely to be significant even in the most damaging cases, hence it is ignored. Finally, the 

approach can be generalized to more detailed or complex models of the system and 

variations, as required.  

 

To determine ∆K using adaptive LMS, a new form of ∆K is defined with time varying 

scalar parameters, αi, to be determined using the LMS filter to identify damage. For the 

three story example of Equations (1) – (4), the ∆K matrix is sub-divided into three matrices 

with entries of 1, -1 and 0 to allow independent identification of changes in k1, k2 and k3, 

the story stiffnesses, from the αi coefficients. These matrices have a 1 or -1 wherever that 

story stiffness appeared in Equation (4). 
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The basic idea of using αi coefficients and sub-matrices is to enable the identification of 

changes in story stiffness values, ki. Therefore, the stiffness of the damaged structure, or 

effective stiffness changes due to non-linear behaviour such as yielding or hysteresis could 

be determined by identifying the ∆K matrix at every discrete time step. Rewriting Equation 

(6) using Equations (7) – (9) yields: 

 

{ } { } { } FKCM =∆+⋅+⋅+⋅ ∑
=

vKvvv
n

i
ii

1

α&&&    (10) 

 

where n is the number of degree-of-freedom of the model and F is the known, or estimated, 

input load vector. Note that n is the maximum number of coefficients to identify to 

determine changes in each story stiffness. A lesser number can be used if some stories are 

assumed not to suffer damage. Similarly, a greater number could be used for a more 

complex structural model with more DOF per story to obtain greater resolution on the 

changes in structural parameters. 

 

The varying stiffness term is simply the error between the, in this case, linear model and 

real measurements when actual measured values ( v , v&  and v&& ) are put in for { }v , { }v&  and 

{ }v&&  in Equation (10). Hence, vK∆  is the error in the linear model. 

 

vvvvK
n

i
ii KCMF −−−=∆∑

=

&&&
1

α     (11) 

 

where v , v&  and v&&  are measured values of the structural displacement, velocity and 

acceleration that are obtained either directly and/or from a dynamic state estimator, such as 
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a Kalman filter. Equation (11) is only valid at any point in time if the αi have the correct 

values. At any discrete time, k, the difference between the linear model and actual 

measurements can be defined: 

kkkkk vvvy KCMF −−−= &&&      (12) 

 

where Fk is the input at time k, and kv , kv&  and kv&&  are the measured displacement, velocity 

and acceleration at time k. The individual elements of the vector signal yk can be readily 

modelled in real-time using individual adaptive LMS filters so that the coefficients αi can 

be readily determined from the reduced noise modelled signal. 

 

∑
=

∆=
n

i
kiik vKy

1
α      (13) 

 

More specifically, if each element of the vector signal vector, yk is modelled using an 

adaptive filter then the αi can be determined directly using the linear system of equations 

defined in Equation (13) at each time step. 

 

 

2.2. Definition and Classification of Damage 

 

Damage is defined as changes introduced into a system, either intentional or unintentional, 

which adversely affect the current or future performance of that system. The effects of 

damage on a structure can be classified as linear or nonlinear. A linear damage situation is 

defined as the case when the initially linear-elastic structure remains linear-elastic after 
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damage. The changes in modal properties are a result of changes in the geometry and/or 

the material properties of the structure, but the structural response can still be modelled 

using linear equations of motion. Linear methods can be further classified as model-based 

and non-model-based. Model-based methods assume that the monitored structure responds 

in some predetermined manner that can be accurately discretised by finite element analysis, 

such as the response described by Euler-Bernoulli beam theory. 

 

Nonlinear damage is defined as the case when the initially linear-elastic structure behaves 

in a nonlinear manner after the damage has been introduced. One example of nonlinear 

damage is the formation of a fatigue crack that subsequently opens and closes under the 

normal operating vibration environment. Other examples include loose connections that 

rattle and nonlinear material behaviour such as that exhibited by polymers. The majority of 

the studies reported in the technical literature address only the problem of linear damage 

detection. However, damage in civil structure under large environmental loads is 

inherently permanent and non-linear. Another classification system for damage-

identification methods defines four levels of damage identification, as follows (Rytter, 

1993): 

 

 Level 1: Determination that damage is present in the structure 

 Level 2: Level 1 plus determination of the geometric location of the damage 

 Level 3: Level 2 plus quantification of the severity of the damage 

 Level 4: Level 3 plus prediction of the remaining service life of the structure 

 

Current vibration-based damage identification methods that do not make use of some 

structural model primarily provide Level 1 and Level 2 damage identification. When 
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vibration-based methods are coupled with a structural model, Level 3 damage 

identification can be obtained in some cases. Level 4 prediction is generally associated 

with the fields of fracture mechanics, fatigue-life analysis, or structural design assessment. 

 

In this thesis, we are considering Level 3 damage identification for non-linear damage. 

Once the change in stiffness matrix is identified, we are able to detect a presence, the 

geometric location and the severity of the damage by examining the elements of the 

resultant stiffness matrix. Note that once damage is identified, structural design codes 

provide metrics and methods to determine the remaining service life. Hence, Level 4 

identification is possible for civil structure using the results from the method presented. 
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3.  SHM TASK GROUP BENCHMARK PROBLEM 

 

The IASC-ASCE Task Group on SHM was established in 1999 and the group developed a 

series of benchmark SHM problems (Johnson et al, 2000). The Task Group decided that 

the use of simulated data from an analytical structural model based on an existing structure 

would allow for future comparisons with data taken on the actual structure. Starting with 

simulated data allows participants to better understand the sensitivities of their methods to 

various aspects of the problem, such as differences between the identification model and 

the true model, incomplete sensor information, and the presence of noise in measurement 

signals.  

 

The structure (Black and Ventura, 1998), shown in Figure 2 (a) and (b), is a 4-story, 2-bay 

by 2-bay steel-frame scale-model structure in the Earthquake Engineering Research 

Laboratory at the University of British Columbia (UBC). It has a 2.5 m × 2.5 m plan and is 

3.6 m tall. The members are hot rolled grade 300W steel (nominal yield stress 300 MPa). 

The sections are unusual, designed for a scale model, with properties as given in Table 1. 

There is one floor slab per bay per floor: four 800 kg slabs at the first level, four 600 kg 

slabs at each of the second and third levels, and, on the fourth floor, either four 400 kg 

slabs or three 400 kg slabs and one 550 kg slab to create some asymmetry.  

 

Two finite element models based on this structure were developed to generate the 

simulated data. The first is a 12 DOF shear-building model that constrains all motion 

except two horizontal translations and one rotation per floor. The second is a 120 DOF 

model that only requires floor nodes to have the same horizontal translation and in-plane 
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rotation. The columns and floor beams are modelled as Euler-Bernoulli beams in both 

finite element models. The braces are bars with no bending stiffness. A diagram of the 

analytical model is shown in Figure 2 (b).  

 

The SHM Task Group classified the analytical model into six different cases according to 

the number of DOF, whether it is symmetric or asymmetric and the type of loads applied.  

Cases 1, 3 and 4 are defined using the 12 DOF model whereas cases 2, 5 and 6 use the 120 

DOF model. In cases 1 and 2, loads are applied on all floors, while the load is applied only 

on the top floor in cases 3, 4, 5 and 6. The analytical model was asymmetric in cases 4, 5 

and 6. Table 2 shows all cases with specifications defined by the SHM Task Group. 

 

 

 

(a)       (b) 

Figure 2 Benchmark Structure at the University of British Columbia (a) Steel-frame scale 

structure and (b) Diagram of analytical model (the wi are excitations and iy&&  are 

accelerometer measurements in y-direction 
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Table 1 Mechanical Properties of structural members 

Property Columns Floor Beams Braces 

section type B100×9 S75×11 L25×25×3 

cross-sectional area                           A [m2] 1.133×10–3 1.43×10–3 0.141×10–3 

moment of inertia (strong direction) Iy [m4] 1.97×10–6 1.22×10–6 0 

moment of inertia (weak direction)   Iz [m4] 0.664×10–6 0.249×10–6 0 

St. Venant torsion constant                 J [m4] 8.01×10–9 38.2×10–9 0 

Young’s Modulus                               E [Pa] 2×1011 2×1011 2×1011 

Mass per unit length                       ρ [kg/m] 8.89 11.0 1.11 

 

 

The finite element models, by removing the stiffness of various elements, can simulate 

damage to the structure. Five damage patterns are defined for the structure in Table 3. 

Damage pattern 1 is where all of the first floor braces are removed and pattern 2 is where 

all of the first and third floors braces removed. Damage pattern 3 is defined as one brace 

removed in the first floor (drawn as dashed line in Figure 2 (b)) and pattern 4 is when one 

brace is removed in each of the first and third floors (drawn as dashed lines in Figure 2 (b)). 

Finally, damage pattern 5 is described as damage pattern 4 but with the floor beam 

partially unscrewed from the column (drawn as dashed line along the floor beam in Figure 

2 (b)). As a result, the unscrewed beam-column connection can only transmit forces and 

cannot sustain any bending moments. 
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Table 2 Model cases of SHM Task Group Benchmark problem 

Case Model Applied Loads 

Case 1 12 DOF and symmetric Ambient loads on all floors 

Case 2 120 DOF and symmetric Ambient loads on all floors 

Case 3 12 DOF and  symmetric load at the roof 

Case 4 12 DOF and asymmetric load at the roof 

Case 5 120 DOF and asymmetric load at the roof 

Case 6 120 DOF and asymmetric load at the roof 

 

 

 

Table 3 Damage patterns of SHM Task Group Benchmark problem 

Damage Pattern Descriptions 

Damage Pattern 1 All braces in 1st story are removed. 

Damage Pattern 2 All braces in 1st and 3rd stories are removed. 

Damage Pattern 3 One brace in 1st story is removed. 

Damage Pattern 4 One brace in each of the 1st and 3rd stories are removed. 

Damage Pattern 5 Damage Pattern 4 and loosen floor beam at 1st level. 
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4. ADAPTIVE FILTERING 

 

Adaptive filters are digital filters with coefficients that can change over time. The general 

idea is to assess how well the existing coefficients are performing in modelling a noisy 

signal, and then adapt the coefficient values to improve performance. Because of their self-

adjusting performance and built-in flexibility, adaptive filters have found use modelling 

signals in many real-time applications, particularly in advanced telecommunications such 

as cell phones. The Least Mean Squares (LMS) algorithm is one of the most widely used 

of all the adaptive filtering algorithms and is relatively simple to implement. It is an 

approximation of the Steepest Descent Method using an estimator of the gradient instead 

of its actual value, considerably simplifying the calculations and can be readily performed 

in real-time applications. The initial goal in this case is to model the individual, scalar 

elements of the signal yk in Equation (13) using the adaptive LMS filter. 

 

In adaptive LMS filtering, the coefficients are adjusted from sample-to-sample to minimize 

the Mean Square Error (MSE), between a measured noisy scalar signal and its modelled 

value from the filter. The scalar error at time k is defined: 
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where Wk is the adjustable filter coefficient vector or weight vector at time k, kŷ  is the 

noisy measured signal to be modelled or approximated, Xk is vector the input to the filter 

model of current and previous filter outputs, ikx − , so k
T

k XW  is the vector dot product 
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output from the filter to model a scalar signal kŷ , and m is the number of taps or prior time 

steps considered. The Widrow-Hopf LMS algorithm for updating the weights to minimise 

the error, ek is defined (Ifeachor and Jervis, 1993): 

 

kkkk XeWW ⋅⋅+=+ µ21     (15) 

 

where µ is a positive scalar that controls the stability and rate of convergence.  

 

Therefore, to find the αi coefficients in Equation (13) using adaptive LMS the filter output 

modelling the m elements of the vector ky , a linear system must be solved. 
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where ikv −  is the measured displacement response i steps prior and N is the element, N = 1, 

…, n, of the vector kŷ  being modelled. Hence, these αi, and thus the changes in stiffness 

can be found directly using adaptive LMS at any point in time, as data is gathered. As 

more data is obtained the error, ek, goes to zero and αi approach the correct damage 

identified values.  
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Figure 3 Flowchart for the standard adaptive LMS filter 

 

The general computational procedure for the basic adaptive LMS algorithm is summarized 

in Figure 3. (Ifeachor and Jervis, 1993). By determining changes in αi values using 

adaptive LMS filtering, the changes in the stiffness matrix due to the damage in the 

structure can be obtained. The first step of the method is the initialisation of weights, w0, 

usually to zero. In the next step, xk and kŷ  are measured, where xk is the displacement 

response and kŷ  is the noisy signal from the structure. Third, the filter output kn̂  is 

calculated at time k. The computation of the filter output depends on a number of input 

signals and therefore the number of filters used (n), and number of taps, or prior time steps, 

(m) used for each weight in the calculation of each step filter. For instance, the three-story 

Compute kn̂  
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Initialise w0(i) 

Read xk and kŷ  
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building model with one degree-of-freedom (DOF) per floor has 3 elements in ky , so the 

number of input signals is equivalent to the total DOF of the system. The number of taps 

affects the rate of convergence. More taps makes the algorithm converge faster and 

improves the accuracy, however it takes more computation. Before the weight is updated 

for the next time step, the error estimate is computed by Equation (14), subtracting the 

filter output, kn̂  from the noisy measured signal, kŷ . The weights are then updated and the 

procedure continues. Two different methods for updating the weights were developed, one 

is called the One Step method and the other is the Two Step method. The following section 

has the derivation of these two methods. 
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5. ADAPTIVE LMS BASED APPROACHES FOR SHM 

 

The One Step method presented in this section updates all of the weights in one operation 

as a whole matrix. Using the One Step method, the weights are the αi values, and are 

determined directly via a modified adaptive LMS filter. Therefore, the n LMS filters are 

coupled. As a result, convergence in modelling the signal ky  can be slower. The Two Step 

method in which each element of the vector ky  is modelled by its own adaptive LMS filter 

can also be used. However, in this case, the αi are solved after each time step 

independently of the filter weight updating process in a “second” step. Because the filters 

are decoupled convergence can be faster. Derivations of adaptive LMS based approaches 

for identifying the change in stiffness matrix: the One and the Two Step methods are 

presented. 

 

 

5.1. Two Step Method 

 

A noisy signal vector, ky , for the linear model error is obtained from a simulation of the 

non-linear model per Equation (12). The vector ky  can be modelled using n adaptive LMS 

filters. 
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where each T
kW  is updated individually for n different input signals and ( )ik

T
k XW  is the 

output for the ith individual adaptive LMS filter. In the Two Step method, adaptive LMS 

filters approximate the noisy signal, kk yy ≈ˆ  for each step, where kŷ  is the estimate of ky  

with dimension n×1. Hence, from Equations (16) and (17), the filter approximation, kŷ  is 

defined: 
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where dimensions of matrix A are n×n and αk is a n×1 vector of coefficients αi at time k. 

Therefore, the αi values can be determined analytically by solving Equation (18) as long as 

the matrix is full rank. 

 

The Two Step method is a fast and simple approach, and is also robust to noise because of 

its direct use of LMS filters. However, the computation required is more intense than 

desired due to the matrix solutions required at each time step, particularly as the number of 

DOF rises. Hence, as the complexity of the model increases the computational time also 

increases significantly. What is required is a method that combines the robustness and 

adaptive characteristics of LMS filtering to directly determine the αi coefficients without 

the matrix solution.  
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5.2. One Step Method 

 

The One Step method is developed to simplify and combine the steps of noisy signal 

modelling and filter approximations. The linear model error, estimated between the 

measured noisy signal and its modelled value from the filter, defined in Equation (14) can 

be expressed:  
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where kv  and yk are noisy signals, Qk is a n×1 vector and αij is the ith row and jth column 

element of the weight matrix of dimension n×m, Equation (20). Hence, the change in ki 

will be the sum over j of αij. This averaged approach essentially low-pass filters the signal 

kv  and reduces the impact of noise. An exact unfiltered solution would simply use m = 1. 

Note that there are no prior time steps involved when estimating the error at time k, 

because yk is not stationary and adaptive LMS based algorithms are not effective in the 

presence of non-stationary signals (Ifeachor and Jervis, 1993). In addition, the error, ek, in 

Equation (19) is the error at this time step and is a function of the response at time k only. 

 

Hence, the mean square error (MSE) can be determined: 
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Since, adaptive LMS minimises the MSE with respect to the weights αij, the optimum 

solution occurs when the gradient of MSE is zero. The gradient of MSE is defined: 
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where 
ij

MSEα∇  is one element of an n×m matrix MSE∇ . The term 
ij

kQ
α∂
∂  is an n×1 vector 

defined: 
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Therefore, 

[ ]ki
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where MSE∇  is an n×m matrix and [ ]ki
T
k vKe ∆ is the same across an entire row for all i = 

1, …, n rows. The weight matrix of dimension n×m can then be updated.  
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where the term [ ]ki
T
k vKe ∆ is the same for all m elements in the ith row, continuing low-pass 

filtering from the definition in Equation (19). 

 

Variations of this algorithm for updating the weight matrix include using prior time steps 

in error estimation to get a gradient over time, or determining the gradient without the 

coupling in the iK∆  matrices and examining only the diagonal elements.  

 

Using prior time step data to obtain a potentially improved gradient results in the following 

updated formula: 
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T
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where the term [ ]jki
T
k vKe −∆ is the (i,j)th element of the n×m gradient matrix. Equation (26) 

is the term that would result from the derivation presented if prior time steps were used to 

calculate the error, ek, in Equation (19). 
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Decoupling the gradient estimation by approximating iK∆  as a zero matrix with a 1.0 for 

the (i,i) element results in the following weight update formula: 

 

( ) ( )[ ]ivieww k
T
kkk µ21 +=+     (27) 

 

where the term ( ) ( )[ ]ivie k
T
k is the same for all m elements in row i. Without these coupling 

terms the gradient is calculated based only on changes in diagonal elements of the stiffness 

matrix, decreasing the likelihood of coupling terms reducing the gradient near zero error 

values. Note that the error calculation in Equation (19) still uses the iK∆  as originally 

defined with coupling, and Equation (27) only modifies the means by which the weights 

are updated. Note that Equatoin (27) has significantly fewer computations than Equation 

(25). The following section presents testing of the adaptive LMS filtering algorithm on the 

Benchmark Problems for both the Two Step and One Step methods. 

 

Throughout a series of tests, the weights converge slightly faster with the Two Step 

method. In terms of computational time, with small numbers of n and m (< 3), both the 

Two and One Step methods take almost the same amount of time to converge. However, 

for a more complex model with higher numbers of DOF and taps, the One Step method 

will require much less computational time based on counting the number of fundamental 

computational steps required.  
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6. ADAPTIVE LMS FOR SHM BENCHMARK PROBLEM 

 

6.1. Cases and Damage Patterns Considered 

 

The SHM Task Group analysed the structure using two models, one of 12 DOF and a 

second of 120 DOF. In the 12 DOF model, the structure is assumed to act as a shear 

building with three DOF per floor: translation in the x- and y-direction and rotation. 

Without constraints on the horizontal translation and rotation of floor nodes, the more 

complex 120 DOF model is formed.  In this paper, only the 12 DOF model and the simpler, 

one direction, 4 DOF model are considered. However, all the methods presented are 

readily generalized to this more complex case. Per the algorithms presented, the 

displacement, velocity and acceleration at each DOF are assumed to be measured or 

estimated and include noise as defined in the Benchmark problem. The input loads in the 

Benchmark problems studied are assumed known in their definition. 

 

Table 4 shows the cases and damage patterns of the Benchmark Problem considered in 

testing of the adaptive LMS based SHM methods presented. The four damage patterns are 

applied to each case in the table. Cases 2, 5 and 6 use the 120 DOF model and are not 

considered here. The Task Group also provided the MATLAB® based data generation 

codes for the 12 DOF and 120 DOF models (IASC-ASCE SHM Task group, 1999). The 

code allows the user to choose cases and damage patterns in which they are interested, the 

user also can define a damage pattern other than the 6 damage patterns defined by the Task 
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Group. Resultant mass and stiffness matrices of the damaged structure, force applied and 

acceleration measured are stored as the outputs of the code.  

 

Table 4 Cases and Damage patterns considered in simulation 

Case Damage 
Pattern Model Used Descriptions 

1 4 DOF 
Symmetric, loads on all floors 

All braces in 1st story removed 

2 4 DOF 
Symmetric, loads on all floors 

All braces in 1st & 3rd stories removed 

3 12 DOF 
Symmetric, loads on all floors 

One brace in 1st story removed 

1 

4 12 DOF 
Symmetric, loads on all floors 

One brace in each of 1st & 3rd stories removed 

1 4 DOF 
Symmetric, load at the roof 

All braces in 1st story removed 

2 4 DOF 
Symmetric, load at the roof  

All braces in 1st & 3rd stories removed 

3 12 DOF 
Symmetric, load at the roof 

One brace in 1st story removed 

3 

4 12 DOF 
Symmetric, load at the roof 

One brace in each of 1st & 3rd stories removed 

1 12 DOF 
Asymmetric, load at the roof 

All braces in 1st story removed 

2 12 DOF 
Asymmetric, load at the roof  

All braces in 1st & 3rd stories removed 

3 12 DOF 
Asymmetric, load at the roof 

One brace in 1st story removed 

4 

4 12 DOF 
Asymmetric, load at the roof 

One brace in each of 1st & 3rd stories removed 
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6.2. Simulation Parameters 

 

The following set of parameters are used in all simulations, unless otherwise stated: 

 

o Input load(s) = 1×106 ~ 107 sin (30t) N 

o Sample rate = 100 Hz 

o µ = 0.3  

o Number of taps, m = 5 

 

The convergence rate of the weights in the algorithm depends on the LMS parameter µ and 

the number of taps used. Even though faster convergence for each different case of the 

Benchmark problem can be achieved by varying those parameters, they would typically be 

fixed in a practical application. The values used here were developed by trial and error to 

illustrate the methods developed and may not be completely optimal. 

 

The One Step method, using Equation (27) for uncoupled weight updating, was used 

throughout the tests of adaptive LMS on the Benchmark problem. This form is used 

because it is computationally the simplest and, as will be shown, the most effective. Trade-

offs between other variations of the weight updating method presented in Equations (25) 

and (26) are also investigated. For cases 1 & 3 and damage patterns 1 & 2, the 12 DOF 

model can be approximated as a 4 DOF model (one DOF per floor), because it is 

symmetric and deforms only in the loading direction (y-direction). In the 4 DOF model, 
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there are four αi coefficients and four sub-matrices for ∆Ki, and each αi represents the 

change in stiffness of each floor similar to the 3 DOF definition in Equations (7) and (8).  

 

 

6.3. Damage Profiles 

 

The components can be broken or deformed in various ways. It could be broken 

instantaneously or start to fail, then after a certain time, break completely. Obviously, in 

the real-time damage identification, the results of simulation, such as convergence time or 

rate would depend on how the damage occurred in the structure. 

 

Hence, two different kinds of damage profile were introduced in the simulation for 

identifying the damage patterns using the adaptive LMS based method of the Benchmark 

problem. The first damage profile introduced was a sudden failure (step change) of braces 

and the second one was a gradual failure (ramp change). In the simulations, the damage is 

introduced at 5 seconds after a start of the simulation, which lasts for total simulation time 

of 20 seconds. The following section contains the results from the simulation of various 

Benchmark cases. Each case and damage pattern was simulated with two damage profiles 

introduced. 
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7. BENCHMARK PROBLEM SIMULATION RESULTS 

 

As a result of the simulation run, the actual changes in stiffness of each story along with 

the weights approximated by adaptive LMS based method are plotted in each Benchmark 

case. In the result figure, the solid line(s) represent the actual stiffness change during the 

simulation and the dashed line(s) indicate the value, from the αi, from applying this 

adaptive LMS based method. For each case and damage pattern, the test was carried out 

for two different damage situations, a sudden failure in the structure at 5 seconds, and 

damage that starts at 5 seconds and then is fully damaged gradually. All Benchmark cases 

were tested with the three different adaptive LMS approaches developed in the earlier 

section. The first method used was the One Step method without coupling terms in the 

gradient estimation as in Equation (27), and the second is the One Step method with 

coupling, which uses Equation (25). Last was the Two Step method.  

 

 

7.1. One Step Method without Coupling 

 

All braces at the first floor are removed in damage pattern 1, hence, only α1 changes when 

the 4 DOF model used. The other values correctly remain at zero. Figure 4 and Figure 5 

clearly show that only α1 is changed and other three α’s remained unchanged. The 

estimated α1 using LMS reached 90% of the actual change within 1 second after the 

damage occurred. Interestingly, the slower rate of change takes relatively longer to 

converge in Figure 5. This result is likely due to the difficulty LMS-based methods can 
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have in tracking non-stationary changes. The change in Figure 4 is sudden but then no 

further charge occurs, minimizing the period over which changes take place.  
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Figure 4 Identifying changes of α by adaptive LMS of 4 DOF model for case 1 with 

damage pattern 1 using the One Step Method without coupling for sudden failure 
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Figure 5 Identifying changes of α by adaptive LMS of 4 DOF model for case 1 and 

damage pattern 1 using the One Step Method without coupling due to gradual failure  
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Figure 6 Case 1 and damage pattern 2 using the One Step Method without coupling due 

to sudden failure 
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Figure 7 Case 1 and damage pattern 2 using the One Step Method without coupling due 

to gradual failure 

 

 

Figure 6 and Figure 7 show the results for case 1 and damage pattern 2, the 4 DOF model 

was used as the stiffness in the 1st and 3rd floors is changed due to removing all of the 

braces in these floors. Such changes result in changes in two αi values for the 4 DOF 

model (α1 and α3). The longest convergence times for α1 and α3 in both Figure 6 and 

Figure 7 are less than 1 second to reach 95% of the actual changes. Note that while the 

terms converge, some αi that end up being zero are non-zero for a brief time. 

 

Damage patterns 3 and 4 have partial damage in the 1st floor and the 1st and 3rd floors, 

respectively, hence, damage pattern 3 and 4 were simulated using the 12 DOF model, as 

shown in Figure 8 – Figure 11. For case 1 and damage pattern 3 in Figure 8 and Figure 9, it 

required changes in two α coefficients, specifically α2 and α3. The weight α2 is the change 

α1  

    α3 

α2, α4 
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in stiffness of the 1st floor in y-direction and α3 is the change in rotation. Figure 8 and 

Figure 9 show that the convergence time for α2 is less than 1 second to reach 95 % of the 

actual change, however for α3, it took longer to converge. The rest of the coefficients 

(change in stiffness of each DOF) are not changing in damage pattern 3, hence they remain 

zero. 
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Figure 8 Case 1 and damage pattern 3 using the One Step Method without coupling due 

to sudden failure 
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Figure 9 Case 1 and damage pattern 3 using the One Step Method without coupling due 

to gradual failure 
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Figure 10 Case 1 and damage pattern 4 using the One Step Method without coupling due 

to sudden failure 
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Figure 11 Case 1 and damage pattern 4 using the One Step Method without coupling due 

to gradual failure 

 

 

Damage pattern 4 causes changes in four α coefficients; changes of α2 and α3 denote that 

there is partial damage in the 1st floor and changes of α7 and α9 describe the partial damage 

in the 3rd floor. Figure 10 and Figure 11 show the adaptive LMS based identification of 

damage in the Benchmark structure for case 1 and damage pattern 4. As for damage pattern 

3 in Figure 8 and Figure 9, the stiffness changes in y-direction, α2 and α7, are well tracked 

by the method and converged within 1 second to 90% of the actual changes. Again, the 

convergence time, for identifying the stiffness changes in rotational direction, α3 and α9, 

take about 10 seconds to reach 90% of the actual changes. For the rest of α’s, there are 

initial fluctuations right after the damage started to occur, however all those values 

eventually return to zero. 
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Results for case 3 with all damage patterns 1 – 4 in Figure 12 – Figure 19 are very similar 

to the result of case 1. In case 3, the load is applied only in the top floor, 4th floor as 

described in the Benchmark problem. The 4 DOF model was used to simulate damage 

patterns 1 and 2, and the 12 DOF model was used for damage patterns 3 and 4. From the 

comparison of the results for case 1 and case 3, when the 4 DOF model is used for damage 

patterns 1 and 2, the results of both cases are almost identical. In contrast, when the 12 

DOF model was used, the convergence in case 3 for damage patterns 3 and 4 are found to 

be faster than in case 1 with the same damage patterns, especially for the changes in 

stiffness in rotational direction.  
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Figure 12 Case 3 and damage pattern 1 using the One Step Method without coupling due 

to sudden failure 
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Figure 13 Case 3 and damage pattern 1 using the One Step Method without coupling due 

to gradual failure 
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Figure 14 Case 3 and damage pattern 2 using the One Step Method without coupling due 

to sudden failure 
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Figure 15 Case 3 and damage pattern 2 using the One Step Method without coupling due 

to gradual failure 
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Figure 16 Case 3 and damage pattern 3 using the One Step Method without coupling due 

to sudden failure 
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Figure 17 Case 3 and damage pattern 3 using the One Step Method without coupling due 

to gradual failure 
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Figure 18 Case 3 and damage pattern 4 using the One Step Method without coupling due 

to sudden failure 
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Figure 19 Case 3 and damage pattern 4 using the One Step Method without coupling due 

to gradual failure 

 

 

Figure 20 and Figure 21 show the results for case 4 and damage pattern 1, which were 

simulated with the 12 DOF model. As shown in Figure 20 and Figure 21, because there are 

three DOF per floor in the 12 DOF model, the damage in the first floor requires changes in 

three αi values for all DOF of the 1st floor. Hence, in Figure 20 and Figure 21, two more αi 

values are changing than when the 4 DOF model is used in Figure 4 and Figure 5 for case 

1. Similar results can also be seen in Figure 12 and Figure 13 for case 3 with the same 

damage pattern 1.  
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Figure 20 Case 4 and damage pattern 1 using the One Step Method without coupling due 

to sudden failure 
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Figure 21 Case 4 and damage pattern 1 using the One Step Method without coupling due 

to gradual failure 
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Figure 22 Case 4 and damage pattern 2 using the One Step Method without coupling due 

to sudden failure 
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Figure 23 Case 4 and damage pattern 2 using the One Step Method without coupling due 

to gradual failure 
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Figure 24 Case 4 and damage pattern 3 using the One Step Method without coupling due 

to sudden failure 
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Figure 25 Case 4 and damage pattern 3 using the One Step Method without coupling due 

to gradual failure 
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Figure 26 Case 4 and damage pattern 4 using the One Step Method without coupling due 

to sudden failure 
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Figure 27 Case 4 and damage pattern 4 using the One Step Method without coupling due 

to gradual failure 
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7.2. One Step Method with Coupling 

 

In this section, the results from the simulation of the models using the One Step method 

with coupling term involved in the gradient calculation, as in Equation (25), are presented. 

Generally, for results of 4 DOF model simulations, Figure 28 – Figure 31 and Figure 36 – 

Figure 39, it took a slightly longer time to converge using the One Step method with the 

coupling terms than when the method without coupling is used. Particularly, when there 

are no further changes in stiffness, the convergence rate is significantly reduced for the 

One Step method with coupling terms. This trend will be discussed in a later section.      

 

 

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2
x 107 Benchmark Structure, y-direction only: ∆K, µ = 0.3, Time step = 0.01 (sec), 5 Taps

∆
K

, C
ha

ng
e 

in
 α

s

Time (sec)

Case 1, Damage Pattern 1

 

Figure 28 Case 1 and damage pattern 1 using the One Step Method with coupling due to 

sudden failure 
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Figure 29 Case 1 and damage pattern 1 using the One Step Method with coupling due to 

gradual failure 
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Figure 30 Case 1 and damage pattern 2 using the One Step Method with coupling due to 

sudden failure 
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Figure 31 Case 1 and damage pattern 2 using the One Step Method with coupling due to 

gradual failure 

 

 

Figure 32 and Figure 33 show the results for case 1 and damage pattern 3 using the One 

Step method with coupling. The 12 DOF model was used for simulating damage pattern 3. 

The method was having difficulty in identifying the changes within 20 seconds. The fastest 

convergence time to 95% of the actual change is about 9 seconds for α2 in Figure 32. It is 

found that the One Step method with coupling has relatively slower convergence for 

damage patterns 3 and 4 when the 12 DOF model is used. Figure 40 – Figure 51 are the 

results of the 12 DOF model simulations for the One Step method with coupling, and have 

similar trend as in Figure 32 and Figure 33. 
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Figure 32 Case 1 and damage pattern 3 using the One Step Method with coupling due to 

sudden failure 
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Figure 33 Case 1 and damage pattern 3 using the One Step Method with coupling due to 

gradual failure 
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Figure 34 Case 1 and damage pattern 4 using the One Step Method with coupling due to 

sudden failure 
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Figure 35 Case 1 and damage pattern 4 using the One Step Method with coupling due to 

gradual failure 
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Figure 36 Case 3 and damage pattern 1 using the One Step Method with coupling due to 

sudden failure 
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Figure 37 Case 3 and damage pattern 1 using the One Step Method with coupling due to 

gradual failure 
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Figure 38 Case 3 and damage pattern 2 using the One Step Method with coupling due to 

sudden failure 
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Figure 39 Case 3 and damage pattern 2 using the One Step Method with coupling due to 

gradual failure 
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Figure 40 Case 3 and damage pattern 3 using the One Step Method with coupling due to 

sudden failure 
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Figure 41 Case 3 and damage pattern 3 using the One Step Method with coupling due to 

gradual failure 
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Figure 42 Case 3 and damage pattern 3 using the One Step Method with coupling due to 

sudden failure 
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Figure 43 Case 3 and damage pattern 4 using the One Step Method with coupling due to 

gradual failure 
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Figure 44 Case 4 and damage pattern 1 using the One Step Method with coupling due to 

sudden failure 
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Figure 45 Case 4 and damage pattern 1 using the One Step Method with coupling due to 

gradual failure 
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Figure 46 Case 4 and damage pattern 2 using the One Step Method with coupling due to 

sudden failure 
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Figure 47 Case 4 and damage pattern 2 using the One Step Method with coupling due to 

gradual failure 
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Figure 48 Case 4 and damage pattern 3 using the One Step Method with coupling due to 

sudden failure 
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Figure 49 Case 4 and damage pattern 3 using the One Step Method with coupling due to 

gradual failure 
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Figure 50 Case 4 and damage pattern 4 using the One Step Method with coupling due to 

sudden failure 
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Figure 51 Case 4 and damage pattern 4 using the One Step Method with coupling due to 

gradual failure 
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7.3. Two Step Method 

 

The Two step method was expected to have the fastest convergence among the proposed 

methods because the α values are computed individually with own adaptive LMS filter. 

Figure 52 – Figure 55 and Figure 60 – Figure 63 clearly show that the Two Step method 

accurately identifies the changes in stiffness almost instantaneously when the 4 DOF 

model was simulated. Results of the 12 DOF model simulation, Figure 56 – Figure 59 and 

Figure 64 – Figure 75, also show that the Two Step method has fastest convergence and 

accurate identification. 

 

 

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1
x 107 Benchmark Structure, y-direction only: ∆K, µ = 0.3, Time step = 0.01 (sec), 5 Weights

∆
K

, C
ha

ng
e 

in
 α

s

Time (sec)

Case 1, Damage Pattern 1

 

Figure 52 Case 1 and damage pattern 1 using the Two Step Method due to sudden failure 
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Figure 53 Case 1 and damage pattern 1 using the Two Step Method due to gradual failure 
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Figure 54 Case 1 and damage pattern 2 using the Two Step Method due to sudden failure 
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Figure 55 Case 1 and damage pattern 2 using the Two Step Method due to gradual failure 
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Figure 56 Case 1 and damage pattern 3 using the Two Step Method due to sudden failure 
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Figure 57 Case 1 and damage pattern 3 using the Two Step Method due to gradual failure 
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Figure 58 Case 1 and damage pattern 4 using the Two Step Method due to sudden failure 
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Figure 59 Case 1 and damage pattern 4 using the Two Step Method due to gradual failure 
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Figure 60 Case 3 and damage pattern 1 using the Two Step Method due to sudden failure 
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Figure 61 Case 3 and damage pattern 1 using the Two Step Method due to gradual failure 
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Figure 62 Case 3 and damage pattern 2 using the Two Step Method due to sudden failure 
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Figure 63 Case 3 and damage pattern 2 using the Two Step Method due to gradual failure 
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Figure 64 Case 3 and damage pattern 3 using the Two Step Method due to sudden failure 
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Figure 65 Case 3 and damage pattern 3 using the Two Step Method due to gradual failure 
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Figure 66 Case 3 and damage pattern 4 using the Two Step Method due to sudden failure 
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Figure 67 Case 3 and damage pattern 4 using the Two Step Method due to gradual failure 
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Figure 68 Case 4 and damage pattern 1 using the Two Step Method due to sudden failure 
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Figure 69 Case 4 and damage pattern 1 using the Two Step Method due to gradual failure 
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Figure 70 Case 4 and damage pattern 2 using the Two Step Method due to sudden failure 
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Figure 71 Case 4 and damage pattern 2 using the Two Step Method due to gradual failure 
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Figure 72 Case 4 and damage pattern 2 using the Two Step Method due to sudden failure 
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Figure 73 Case 4 and damage pattern 3 using the Two Step Method due to gradual failure 
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Figure 74 Case 4 and damage pattern 4 using the Two Step Method due to sudden failure 
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Figure 75 Case 4 and damage pattern 4 using the Two Step Method due to gradual failure 
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7.4. Natural Frequencies 

 

Table 5 lists the identified natural frequencies for all cases and damage patterns considered 

here that use a 4 DOF model along with those from the Benchmark Task group simulation 

and from different published results. For the One Step adaptive LMS based method, which 

directly identifies changes in stiffness, the resulting net stiffness and modelled mass 

matrices are used to find the natural frequencies presented. The Kalman method results in 

Table 5 are from Bernal and Gunes (2000) and the Two-stage results are from Au et al 

(2000). The identified natural frequencies using the adaptive method presented are well 

within 1% of the Benchmark and as good as, or better, than the other published results, 

which means that the resulting modal parameters for the Benchmark structure can be 

identified accurately with this simple algorithm. 

 

Table 6 shows the identified natural frequencies for case 4 and damage patterns 1 – 4, 

which uses a 12 DOF model. There are 12 modes and corresponding frequencies, where, ‘1 

y’ denotes the first mode in y-direction. Results are reported for all 12 modes for damage 

patterns 1 – 4 including results from Rodriguez and Barraso (2002) for these cases using a 

stiffness-mass method. The results are again very close to the Benchmark results, which 

differences well within 1% for the modes in each direction. The results are also as good as, 

or better, than the other published results which do not identify all 12 frequencies. 
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Table 5 Identified natural frequencies (in Hz) for cases 1 and 3 damage patterns 1 and 2 

using a 4 DOF model 

 Case 1 

 No Damage Damage pattern 1 

Mode Bench-
mark LMS Kalman Two-

stage 
Bench-
mark LMS Kalman Two-

stage 

1 9.41 9.41 9.41 9.41 6.24 6.24 6.24 6.24 

2 25.54 25.54 25.54 25.6 21.53 21.53 21.53 21.6 

3 38.66 38.66 38.67 38.9 37.37 37.37 37.58 37.6 

4 48.01 48.01 48.01 48.4 47.83 47.83 47.83 48.2 

         

 Case 1 Case 3 

 Damage pattern 2 No Damage 

Mode Bench-
mark LMS Kalman Two-

stage 
Bench-
mark LMS Kalman Two-

stage 

1 5.82 5.82 5.82 5.83 9.41 9.41 9.41 9.42 

2 14.89 14.89 14.89 14.9 25.54 25.54 25.53 25.6 

3 36.06 36.06 36.06 36.3 38.66 38.66 38.66 38.9 

4 41.35 41.35 41.35 41.6 48.01 48.01 48.09 48.5 

         

 Case 3 

 Damage pattern 1 Damage pattern 2 

Mode Bench-
mark LMS Kalman Two-

stage 
Bench-
mark LMS Kalman Two-

stage 

1 6.24 6.24 6.23 6.24 5.82 5.82 5.79 5.80 

2 21.53 21.53 21.52 21.6 14.89 14.89 14.91 15.0 

3 37.37 37.37 37.44 37.7 36.06 36.06 37.44 36.4 

4 47.83 47.83 47.94 48.3 41.35 41.35 47.34 41.5 
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Table 6 Identified natural frequencies (in Hz) for case 4 with damage patterns 1 – 4 

 Damage pattern 1 

Mode Benchmark LMS Stiffness
-Mass Mode Benchmark LMS Stiffness

-Mass 
1 y 6.18 6.19 6.11 2 θ 37.93 38.00 - 
1 x 9.80 9.80 9.86 4 y 46.81 46.81 47.84 
1 θ 11.63 11.72 - 3 x 47.54 47.54 46.75 
2 y 21.27 21.27 21.47 4 x 59.63 59.63 59.94 
2 x 28.59 28.59 28.49 3 θ 64.67 64.69 - 
3 y 36.87 36.87 37.20 4 θ 82.89 82.89 - 

  
 Damage pattern 2 

Mode Benchmark LMS Stiffness
-Mass Mode Benchmark LMS Stiffness

-Mass 
1 y 5.76 5.76 5.75 2 θ 35.97 35.97 - 
1 x 9.39 9.39 9.37 4 y 40.60 40.60 40.83 
1 θ 10.90 11.00 - 3 x 46.46 46.46 46.63 
2 y 14.78 14.79 14.70 4 x 53.68 53.68 53.29 
2 x 24.70 24.70 24.62 3 θ 63.44 63.51 - 
3 y 28.22 28.51 35.75 4 θ 71.58 71.69 - 

        
 Damage pattern 3 

Mode Benchmark LMS Stiffness
-Mass Mode Benchmark LMS Stiffness

-Mass 
1 y 8.79 8.79 8.89 2 θ 43.61 43.61 - 
1 x 11.64 11.63 11.67 4 y 47.68 47.68 47.84 
1 θ 15.80 15.80 - 3 x 47.96 47.96 47.84 
2 y 24.37 24.37 24.50 4 x 59.81 59.81 59.94 
2 x 31.66 31.66 31.75 3 θ 66.58 66.58 - 
3 y 37.77 37.77 37.44 4 θ 83.18 83.18 - 

        
 Damage pattern 4 

Mode Benchmark LMS Stiffness
-Mass Mode Benchmark LMS Stiffness

-Mass 
1 y 8.79 8.79 8.77 2 θ 42.91 42.91 - 
1 x 11.50 11.50 11.43 4 y 47.68 47.68 47.24 
1 θ 15.68 15.68 - 3 x 47.96 47.96 47.84 
2 y 24.36 24.36 24.50 4 x 58.18 58.18 58.37 
2 x 30.28 30.82 31.03 3 θ 66.56 66.56 - 
3 y 37.76 37.76 37.68 4 θ 81.76 81.76 - 
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Table 7 shows identified natural frequencies for cases 1 and 3 with damage pattern 3 and 4. 

To the best of the authors’ knowledge, none of the published articles have given results for 

these cases except the SHM Task group. The resulting frequencies are within 1% of the 

benchmark results. 

 

 

Table 7 Identified natural frequencies (in Hz) for cases 1 and 3 with damage patterns 3 

and 4  

 Case 1 Case 3 

 Damage pattern 3 Damage pattern 4 Damage pattern 3 Damage pattern 4 

Mode Bench-
mark LMS Bench-

mark LMS Bench-
mark LMS Bench-

mark LMS 

1 y 8.89 8.89 8.89 8.89 8.89 8.89 8.89 8.89 

1 x 11.79 11.79 11.68 11.66 11.79 11.79 11.66 11.66 

1 θ 16.01 16.00 15.89 15.89 16.01 16.00 15.89 15.89 

2 y 24.60 24.60 24.60 24.60 24.60 24.60 24.59 24.60 

2 x 32.01 32.01 31.14 31.14 32.01 32.01 31.14 31.14 

3 y 38.24 38.24 38.23 38.23 38.24 38.24 38.23 38.23 

2 θ 43.99 43.99 43.21 43.21 43.99 43.99 43.21 43.21 

4 y 47.96 47.96 47.96 47.96 47.96 47.96 47.96 47.96 

3 x 48.44 48.44 48.41 48.41 48.44 48.44 48.41 48.41 

4 x 60.15 60.15 58.62 58.62 60.15 60.15 58.62 58.62 

3 θ 67.17 67.17 67.14 67.14 67.17 67.17 67.14 67.14 

4 θ 83.58 83.57 82.18 82.18 83.58 83.58 82.18 82.18 
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8. DISCUSSIONS AND COMPARISON OF RESULTS 

 

8.1. Convergence Time 

 

Table 8 compares the convergence time between the One Step method as in Equation (22), 

the One Step method with coupling, which uses Equation (25) for weight updating, and the 

Two Step method. These convergence times are the time taken for α1 (change in stiffness 

of the first floor in y-direction) to reach 90 and 95 percent of the actual change from when 

the damage occurred. The Two Step method was found to have faster convergence than the 

One Step method, because each element of the vector yk is modelled individually so the 

individual filters converge more quickly. In addition, the One Step method is not an exact 

adaptive LMS filter so its convergence may be limited by the assumptions made. Figure 76 

illustrates these results, showing how the convergence rate using the Two Step method is 

faster for case 4 and damage pattern 1. The convergence times for the One Step method 

using prior time steps and coupling, as in Equation (26), are approximately two times 

slower than the One Step method with coupling.  
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Table 8 Convergence (in seconds) to 90 and 95 % of the actual change of α1, due to 

sudden failure 

  One Step method 
with coupling 

One Step method 
without coupling Two Step method 

Case Damage 
Pattern 90 % 95 % 90 % 95 % 90 % 95 % 

1 0.39 0.59 0.33 0.41 0.20 0.21 

2 0.35 0.36 0.31 0.33 0.21 0.22 

3 3.23 9.11 0.11 0.12 0.20 0.21 
1 

4 5.46 11.53 0.31 0.34 0.21 0.22 

1 0.39 1.59 0.33 0.41 0.20 0.21 

2 0.35 3.26 0.31 0.33 0.21 0.22 

3 2.99 6.70 0.21 0.32 0.08 0.08 
3 

4 5.14 7.37 0.21 0.32 0.08 0.08 

1 0.33 0.35 0.21 0.22 0.09 0.01 

2 0.23 0.54 0.13 0.15 0.21 0.23 

3 4.44 12.91 0.29 0.32 0.22 0.28 
4 

4 6.42 13.21 0.29 0.32 0.21 0.28 

 

 

 

In comparing convergence times between the One Step methods with and without coupling 

for the same case, the convergence times are faster when no coupling terms are involved in 

calculation of the gradient. Particularly, for more complex cases, such as damage patterns 3 

and 4, the differences between the two One Step methods are much greater. Using the One 
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Step method without coupling, the stiffness change in the first floor, α1 converges within 

0.41 seconds for all cases and damage patterns of the Benchmark problem tested. However, 

with coupling the maximum time is 13.21 seconds. For damage patterns 1 and 2 the 

convergence times, particularly to 90%, are similar. The similarity at 90% and the greater 

difference at 95% for damage pattern 1 and 2 shows how the coupling in Equation (25) can 

impact the effectiveness of the gradients near zero error close to convergence. Finally, 

damage patterns 3 and 4 are far slower with coupling.   
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Figure 76 Adaptive LMS approximation using One Step and Two Step method for case 4 

and damage pattern 1 
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Figure 77 shows the convergence using the One Step methods with and without coupling 

for case 3 and damage pattern 2. As per the results shown in Table 8, it took 0.35 and 3.26 

seconds to reach 90% and 95% of the actual change, respectively when the One Step 

method with coupling is used. Without coupling, it took 0.31 and 0.33 seconds to 90% and 

95%, respectively. Note that there is only 0.04 seconds difference for 90% convergence, 

whereas the difference is about 3 seconds between the two versions of the method to reach 

95% of the actual change. This difference occurs due to the involvement of coupling terms 

in the weight update. With the coupling terms, the algorithm has difficulty finding the final 

value when there are no more changes due to damage. Figure 78 shows the adaptive LMS 

based approximation as in Figure 77, but with damage due to gradual failure. As shown in 

Figure 78, it is clear that the One Step method with coupling had slow convergence just 

after the value was settled. This result indicates that the stationary assumptions impact the 

method with coupling much more than the method without it.  

 

Finally, both methods converge to the correct values in a time period suitable for Civil 

Defence or other immediate needs. In addition, the computational effort required is very 

small, although without coupling it is even lower. The only major difference is that the 

method without coupling is more suitable for adaptive control applications given its fast 

convergence. 
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Figure 77 Adaptive LMS approximation using One Step methods with coupling and 

without coupling for case 3 and damage pattern 2 
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Figure 78 Adaptive LMS approximation using One Step methods with coupling and 

without coupling for case 3 and damage pattern 2 due to gradual failure  
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8.2. Sample Rate and Implementation Issues 

 

The convergence rate in adaptive LMS depends on the number of taps used and the LMS 

parameter, µ. It is also very dependent on the sampling rate. The sampling rate is important 

because it is directly related to the computational time and capability of the hardware, and 

the greater number of samples per cycle of the structural response, the faster the potential 

convergence. 
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Figure 79 Adaptive LMS approximations for case 3 and damage pattern 1 with sampling 

rates of 100, 500 and 1000 Hz for sudden failure 
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Figure 80 Adaptive LMS approximations for case 3 and damage pattern 1 with sampling 

rates of 100, 500 and 1000 Hz for gradual failure 

 

 

Figure 79 and Figure 80 show the damage identification using the adaptive LMS based 

filtering without coupling for case 3 and damage pattern 1 of the SHM Benchmark 

problem with different sampling rates. Both Figure 79 and Figure 80 show that the 

convergence time declines significantly with higher sampling rate. Particularly, in Figure 

80, the adaptive LMS identification has almost instantaneous convergence with sampling 

rates of 500 Hz and 1000 Hz. Note that these sampling rates are possible with modern 

sensor and data acquisition equipment. The trade-off is that the computations must occur 

within a far smaller time step, placing a greater requirement on the computational elements. 
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From an examination of the One Step method, there are, conservatively, 1400 single cycle 

operations per time step, including memory storage and retrieval for a 4 DOF model. If a 

sampling rate of 100 Hz is used, then 0.14 MHz (or mega-cycles) of computation is 

required and 1.4 MHz are required for a sampling rate of 1000 Hz. A 12 DOF model 

would require approximately 3 times more computational effort. A current Digital Signal 

Processing (DSP) chip operates at 300 – 1000 MHz. At a single operation per chip clock 

cycle, and many such chips have up to four operations per cycle, computation of the One 

Step method is well within this range. The Two Step method would involve approximately 

ten times more computation due to the matrix solutions required. Therefore, SHM for civil 

structures using the adaptive LMS filtering based methods as presented could be readily 

implemented in real-time, even without any significant computational simplifications or 

parallelization. 
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9. FUTURE WORK 

 

The developed identification algorithm could be verified experimentally. A simple 

experimental structure needs to be constructed and tested to verify the results from the 

computer simulation. A slight modification of the computer model would be required to 

match the test structure’s circumstances. 

 

The algorithm at the moment is used to identify changes in stiffness matrix. The simulation 

model and method can be modified to include identifying the changes in the structural 

damping matrix. This task could be done using the same concept as for stiffness matrix 

identification, however two times the number of variables is required. There is also the 

potential for misidentifying the stiffness and damping contribution to the linear model error. 

 

The model needs to be tested under various scenarios such as one or more sensors failing 

during the testing (which is case 6 in the Benchmark problem) or a series of damage 

occurring in sequence. It would also be worthwhile to simulate the model with the real 

earthquake data. 

 

Finally, to adapt the method for use in even more practical and realistic situations, an 

investigation into the validity of the sensors and data acquisition equipment required needs 

to be done. This task could be one stage of the experimental verification. 
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10. CONCLUSIONS 

 

This thesis presents SHM methods for civil structures using adaptive Least Mean Square 

filtering theory. Damage that occurs in the structure can be identified by changes in the 

stiffness matrix. One Step and Two Step adaptive LMS based methods were developed and 

tested. All of the 4 and 12 DOF cases of the SHM Task group’s Benchmark problems were 

tested using the proposed methods, and the results show that the adaptive LMS filtering is 

very effective for identifying damage in real-time. 

 

The different variations are compared and the method without coupling terms in the 

gradient calculation is seen to converge the fastest. However, the final results for all 

methods converge to the desired final values. In each case, the changes in stiffness are 

determined directly and then the modal parameters presented are calculated for comparison. 

The resulting modal parameters are well within 1% of the IASC-ASCE Benchmark 

problem results. 

 

The methods presented conservatively require only 0.14 – 1.4 Mega-cycles of computation 

and can operate on a sample to sample basis without requiring the entire record. Hence, 

they are all suitable for real-time implementation, and the One Step method without 

coupling in the gradient calculation has convergence times for the Benchmark problem 

under 0.41 seconds making it suitable for adaptive control applications. Convergence times 

for the Two Step method presented are faster, however the computational costs are 

significantly higher. Finally, the convergence times of the adaptive LMS methods 

presented improve as sampling rate increases from the 100 Hz of the Benchmark problem 
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to a still practicable value of 1000 Hz. Overall, these methods provide accurate, robust 

identification of damage with stability, little computational cost, and fast convergence. 

 

Implementation of the activities detailed in the ‘Future Work’ section will serve to further 

qualify the use of LMS for identifying damage in real-time. All software and models used 

in this work are also presented in the Appendices. 
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APPENDIX 

A1. Matlab Codes: 4 DOF model 

%************************************************************************************ 
% FILE NAME: LMS_BENCHMARK_NEW.m 
%       calculates delta_K - changes in stiffness matrix for four DOF system 
%       EOM for baseline: Mv" + Cv' + Kv = F, and 
%           for damaged:  Mv" + Cv' + (K+∆K)v = F. 
%       A 4 DOF model of SHM Benchmark structure (y-direction only) 
%       Cases 1 & 3 with damage pattern 1 & 2 only  
%       associated files: EOM_benchmark.mdl, s_delta_benchmark.m 
%       Created by Leo Hwang on 13th Mar. 2003 
%       Last Modified by Leo Hwang on 16th Jul. 2003 
%       Department of Mechanical Engineering, Unveristy of Canterbury, New Zealand 
%************************************************************************************ 
 
clear all, clc, %close all 
 
% ----------------------------------------------------------------------------------- 
% define simulation parameters and model characteristics 
% ----------------------------------------------------------------------------------- 
 
% simulation parameters 
t_final = 20;                   % total simulation time  
t_step  = 0.01;                 % sample time step 
t = 0:t_step:t_final;           % time vector 
time_no = t_final/t_step + 1;   % number of time sample 
t_change = 5;                   % time when delta_k starts changing  
 
% choose case interested (only for case 1 & 3) 
disp('Case 0 - Symmetric, 12 DOF, ground excitation (not in benchmark problem)') 
disp('Case 1 - Symmetric, 12 DOF, load at all stories') 
disp('Case 3 - Sysmetric, 12 DOF, load at roof') 
case_no = input('** Enter a Case number [0, 1, or 3] = ');  
 
% model characteristics 
dof = 4;                        % degree of freedom 
 
m = [3452.4 2652.4 2652.4 1809.9];          % mass of each story 
c = 1e2 * [0.2 0.2 0.2 0.2];                % damping coefficients     
k = 1e+8 * [0.6790 0.6790 0.6790 0.6790];   % stiffness coefficients 
 
% construct mass matrix 
M = diag(m); 
inv_M = inv(M); 
 
% construct damping matrix 
for i = 2:dof-1, 
    c_diag(i) = c(i) + c(i+1); 
    C(i,:) = [zeros(1,i-2) -c(i) c_diag(i) -c(i) zeros(1,dof-1-i)]; 
end 
C(1,:) = [c(1)+c(2) -c(1) zeros(1,dof-2)]; 
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C(dof,:) = [zeros(1,dof-2) -c(dof) c(dof)]; 
 
% construct stiffness matrix 
for i = 2:dof-1, 
    k_diag(i) = k(i) + k(i+1); 
    K(i,:) = [zeros(1,i-2) -k(i) k_diag(i) -k(i) zeros(1,dof-1-i)]; 
end 
K(1,:) = [k(1)+k(2) -k(1) zeros(1,dof-2)]; 
K(dof,:) = [zeros(1,dof-2) -k(dof) k(dof)]; 
 
 
% ----------------------------------------------------------------------------------- 

% select damage pattern and determine △K matrix for each case 
% ----------------------------------------------------------------------------------- 
 
% select damage patterns of Benchmark problem (for pattern 1 & 2) 
disp('  ') 
disp('Damage pattern 0 - undamaged (baseline structure)') 
disp('Damage pattern 1 - all braces of 1st story are broken') 
disp('Damage pattern 2 - all braces of 1st and 3rd story are broken') 
damage_no = input('** Enter a number for Damage pattern [0, 1 or 2] = '); 
 
% submatirces of delta_K, each alpha represents change in stiffness for each floor 

% △K = α1*K_in1 + α2*K_in2 + α3*K_in3 + α4*K_in4 

% (α1 = △k1, α2 = △k2, α3 = △k3, α4 = △k4) 
K_in(:,:,1)=[1 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0]; 
K_in(:,:,2)=[1 -1 0 0;-1 1 0 0 ;0 0 0 0;0 0 0 0]; 
K_in(:,:,3)=[0 0 0 0;0 1 -1 0;0 -1 1 0;0 0 0 0]; 
K_in(:,:,4)=[0 0 0 0;0 0 0 0;0 0 1 -1;0 0 -1 1]; 
 
 
% ----------------------------------------------------------------------------------- 
% determine input force 
% ----------------------------------------------------------------------------------- 
 
% magnitude of wind excitation and ground force [N] - sine wave 
freq = 30;      % frequency of a sine wave [rad/sec] 
 
% define load applied according to the selected case 
if case_no == 0,                % ground excitation 
    wind_f = [0 0 0 0];  
    ground_f = 500;            
     
elseif case_no == 1,            % case 1 - load at all story 
    wind_f = 1e6*[1 1 1 1];     
    ground_f = 0; 
     
elseif case_no == 3,            % case 3 - roof excitation 
    wind_f = 8e6*[0 0 0 1];     
    ground_f = 0; 
     
end 
 
 
% ----------------------------------------------------------------------------------- 
% start simulation for four story buliding (4 DOF model) 



 96

% ----------------------------------------------------------------------------------- 
 
sim('EOM_benchmark',[0:t_step:t_final]);  
 
 
% ----------------------------------------------------------------------------------- 

% determine K_damanged = K + △K analytically 
% just for checking with simulation result 
K_delta = alphas(time_no,1)*K_in(:,:,1) + alphas(time_no,2)*K_in(:,:,2) + ... 
    alphas(time_no,3)*K_in(:,:,3) + alphas(time_no,4)*K_in(:,:,4); 
K_damaged = K + K_delta; 
 
 
% ----------------------------------------------------------------------------------- 
% compute difference (error) between the original and damaged 
acc = acc'; vel = vel'; dis = dis'; F_in = F_in';  
y_out = F_in - M*acc - C*vel - K*dis; 
 
% to verify the simulation data (y_zero should be zero) 
y_zero = F_in - M*acc - C*vel - K_damaged*dis;  
 
 
% ----------------------------------------------------------------------------------- 
% Adaptive LMS filtering, for n weights, m taps 
% ----------------------------------------------------------------------------------- 
 
filter_no = dof;        % number of signal (filter) = number of DOF 
tap_no = 5;             % number of taps for each weight 
mu = 0.3;               % LMS factor: controls stability and rate of convergence 
w(dof,tap_no,tap_no+time_no) = 0;  % initialise weight matrix 
 
% redefine x and y  
% add m-1 zero vectors for prior time step calculation  
x_temp = dis; 
y_temp = y_out; 
 
x = zeros(dof,tap_no+time_no); 
y = zeros(dof,tap_no+time_no); 
 
x(:,tap_no+1:tap_no+time_no) = x_temp; 
y(:,tap_no+1:tap_no+time_no) = y_temp; 
 
% adaptive LMS weight updating, One Step method 
for i1 = tap_no+1:time_no, 
     
    n_temp = zeros(dof,dof); 
    sum_n = 0; 
    Q = 0; 
    G = zeros(dof,tap_no); 
     
    for j = 1:tap_no, 
        for i2 = 1:dof 
             
            % i) exact w/ prior time step disps 
            %n_temp = w(i2,j,i1)*K_in(:,:,i2)*x(:,i1-j+1);     
             
            % ii) w/o prior time step disps (main method) 
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            n_temp = w(i2,j,i1)*K_in(:,:,i2)*x(:,i1);            
             
            sum_n = sum_n + n_temp; 
             
        end         % for i 
    end             % for j 
     
    Q = sum_n; 
     
    e(:,i1) = y(:,i1) - Q; 
     
    for i3 = 1:dof, 
        for j2 = 1:tap_no,  
             
            % i) exact with prior time displacements  
            %G(i3,j2) = e(:,i1)'*K_in(:,:,i3)*x(:,i1-j2+1);     
             
            % ii) exact, current disps only 
            %G(i3,j2) = e(:,i1)'*K_in(:,:,i3)*x(:,i1);         
             
            % iii) w/o coupling and prior disps (main method) 
            G(i3,j2) = e(i3,i1)*x(i3,i1-j2+1);      
             
            % iv) w/o coupling w/o prior disps  
            %G(i3,j2) = e(i3,i1)*x(i3,i1);              
        end 
    end 
     
    G = 2*mu*G; 
     
    w(:,:,i1+1) = w(:,:,i1) + G; 
     
end 
 
% sum up for m elements of a weight 
w_temp = 0; 
for j = 1:tap_no, 
    w_temp = w_temp + w(:,j,:); 
end 
 
% redefine index for plotting 
for i = 1:time_no-tap_no+1, 
    w1(:,:,i) = w_temp(:,:,i+tap_no-1); 
end 
 
 
% ----------------------------------------------------------------------------------- 
% plot results (LMS and actual alphas vs time)   
% ----------------------------------------------------------------------------------- 
%t_axis = 0:t_step:t_final; 
t_axis = 0:t_step:t_final-t_step*(tap_no-1); 
figure, 
%plot(t_axis,w(:,1:time_no),':',t_axis,alphas) 
plot(t_axis,w1(:,1:time_no-tap_no+1),':',t_axis,alphas(1:time_no - tap_no+1,:)) 
title(['Benchmark Structure, y-direction only: ∆K, \mu = ' num2str(mu(1)), ... 
        ', Time step = ' num2str(t_step) ' (sec), ' num2str(tap_no) ' Taps']), grid 
ylabel('∆K, Change in \alphas'), xlabel('Time (sec)') 
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text(12,-1.5e7,['Case ' num2str(case_no) ', Damage Pattern ' num2str(damage_no)], ... 
    'fontsize',12,'fontweight','bold') 
 
 
%************************************************************************************ 
%*************************** End of LMS_benchmark_new.m ***************************** 
%************************************************************************************ 
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A2. Matlab Codes: S-function 

%************************************************************************************ 
% FILE NAME: S_DELTA_BENCHMARK.M 
%       changes in stiffness coefficent as the simulation runs 
%       this function called by EOM_benchmark.mdl  
%       Created by Leo Hwang 
%       Department of Mechanical Engineering, Unveristy of Canterbury, New Zealand 
%************************************************************************************ 
 
function [sys,x0,str,ts] = s_delta_benchmark(t,x,u,flag,t_change,damage_no) 
 
switch flag, 
    % Initialization % 
    case 0, 
        [sys,x0,str,ts]=mdlInitializeSizes; 
        % Derivatives % 
    case 1, 
        sys=mdlDerivatives(t,x,u,t_change); 
        % Update % 
    case 2, 
        sys=mdlUpdate(t,x,u,t_change); 
        % Outputs % 
    case 3, 
        sys=mdlOutputs(t,x,u,t_change,damage_no); 
        % GetTimeOfNextVarHit % 
    case 4, 
        sys=mdlGetTimeOfNextVarHit(t,x,u,t_change); 
        % Terminate % 
    case 9, 
        sys=mdlTerminate(t,x,u,t_change); 
        % Unexpected flags % 
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); 
end 
 
%============================================================================= 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%============================================================================= 
function [sys,x0,str,ts]=mdlInitializeSizes 
sizes = simsizes; 
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 0; 
sizes.NumOutputs     = 4; 
sizes.NumInputs      = 1; 
sizes.DirFeedthrough = 1; 
sizes.NumSampleTimes = 1;   % at least one sample time is needed 
sys = simsizes(sizes); 
% initialize the initial conditions 
x0  = []; 
% str is always an empty matrix 
str = []; 
% initialize the array of sample times 
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ts  = [0 0]; 
% end mdlInitializeSizes 
 
%============================================================================= 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%============================================================================= 
function sys=mdlDerivatives(t,x,u,t_change) 
sys = []; 
% end mdlDerivatives 
 
%============================================================================= 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%============================================================================= 
function sys=mdlUpdate(t,x,u,t_change) 
sys = []; 
% end mdlUpdate 
 
%============================================================================= 
% mdlOutputs 
% Return the block outputs. 
%============================================================================= 
function sys=mdlOutputs(t,x,u,t_change,damage_no) 
 
% changing in alphas  
if damage_no == 0,                  % undamage 
    alpha = 1e8 * [0 0 0 0]; 
elseif damage_no == 1,              % damage pattern 1 
    alpha = 1e8 * [-0.4822 0 0 0]; 
else                                % damage pattern 2 
    alpha = 1e8 * [-0.4822 0 -0.4822 0];    % for new K_in's 
end 
 
% damage profile  
% i) sudden failure (step change) 
 
% for i = 1:4, 
%     if u(1) < t_change, 
%         sys(i) = 0; 
%         %sys(i) = 0 + 1e6*randn;     % non-linear 
%     else 
%         sys(i) = alpha(i);     
%         %sys(i) = alpha(i) + 1e6*randn;    % non-linear 
%     end 
% end 
 
 
% ii) gradual failure (ramp change)  
 
grad = 1e7 * [-1 -1 -1 -1]; 
for i = 1:4 
    if u <= t_change, 
        sys(i) = 0; 
    elseif u <= t_change + alpha(i)/grad(i), 
        sys(i) = grad(i)*u - grad(i)*t_change; 
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    else 
        sys(i) = alpha(i);   
    end 
end 
 
%end mdlOutputs 
 
%============================================================================= 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block.  Note that the result is 
% absolute time.  Note that this function is only used when you specify a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%============================================================================= 
function sys=mdlGetTimeOfNextVarHit(t,x,u,t_change) 
sys = []; 
% end mdlGetTimeOfNextVarHit 
 
%============================================================================= 
% mdlTerminate 
% Perform any end of simulation tasks. 
%============================================================================= 
function sys=mdlTerminate(t,x,u,t_change) 
sys = []; 
% end mdlTerminate 
 
%************************************************************************************ 
%*************************** End of s_delta_benchmark.m ***************************** 
%************************************************************************************ 
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A3. Simulink Model: 4 DOF model 

 

Figure 81 Simulink representation for 4 DOF model of Benchmark structure: 

EOM_benchmark.mdl 
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Figure 82 Computing Delata K: Subsystem of EOM_benchmark.mdl, creating 

damage by changing α values 
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A4. Matlab Codes: 12 DOF model 

%************************************************************************************ 
% FILE NAME: LMS_BENCHMARK12_NEW.m 
%       calculates delta_K - changes in stiffness matrix for four DOF system 
%       EOM for baseline: Mv" + Cv' + Kv = F, and 
%           for damaged:  Mv" + Cv' + (K+∆K)v = F. 
%       12 DOF (3 DOF per floor) model  
%       Cases 1, 3 and 4 with damage pattern 1 - 4 
%       associated files: EOM_benchmark12.mdl, s_delta_benchmark12.m 
%       Created by Leo Hwang on 29 April 2003 
%       Last Modified by Leo Hwang on 20th July 2003 
%       Department of Mechanical Engineering, Unveristy of Canterbury, New Zealand 
%************************************************************************************ 
 
clear all, clc, %close all 
 
% ----------------------------------------------------------------------------------- 
% define simulation parameters and model characteristics 
% ----------------------------------------------------------------------------------- 
 
% simulation paramters 
t_final = 20;                   % total simulation time  
t_step  = 0.01;                 % sample time step 
t = 0:t_step:t_final;           % time vector 
time_no = t_final/t_step + 1;   % number of time sample 
t_change = 5;                   % time when delta_k starts changing  
 
% choose case interested (all 12 DOF cases: 1, 3 and 4) 
disp('Case 0 - Symmetric, 12 DOF, ground excitation (not in benchmark problem)') 
disp('Case 1 - Symmetric, 12 DOF, load at all stories') 
disp('Case 3 - Sysmetric, 12 DOF, load at roof') 
disp('Case 4 - Asymmetric, 12 DOF, load at roof') 
case_no = input('** Enter a Case number [0, 1, 3, or 4] = ');  
 
% model characteristics 
dof = 12;                   % degree of freedom 
 
% mass, damping and stiffness coefficients per dof. 
m = [3452.4 3452.4 3819.4 2652.4 2652.4 2986.1 2652.4 2652.4 2986.1 1809.9 ... 
        1809.9 2056.9]; 
c = 1e2 * [0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2]; 
k = 1e+8 * [1.066 0.6790 2.3202 1.066 0.6790 2.3202 1.066 0.6790 2.3202 ... 
        1.066 0.6790 2.3202]; 
 
% construct mass matrix 
% for case 1 & 3 - symmetric 
M = diag(m); 
 
% for case 4 - asymmetric 
if case_no == 4; 
    M(10:12,10:12) = [1959.9 0 93.8;0 1959.9 -93.8;93.8 -93.8 2213.1]; 
end 
 
inv_M = inv(M); 
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% construct damping matrix of baseline structure 
C = [  
    c(1)+c(4)    0    0  -c(4)    0    0    0    0    0    0    0    0 
    0   c(2)+c(5)    0    0  -c(5)    0    0    0    0    0    0    0 
    0    0   c(3)+c(6)    0    0  -c(6)    0    0    0    0    0    0 
    -c(4)    0    0   c(4)+c(7)    0    0  -c(7)    0    0    0    0    0 
    0  -c(5)    0    0   c(5)+c(8)    0    0  -c(8)    0    0    0    0 
    0    0  -c(6)    0    0   c(6)+c(9)    0    0  -c(9)    0    0    0 
    0    0    0  -c(7)    0    0   c(7)+c(10)    0    0  -c(10)    0    0 
    0    0    0    0  -c(8)    0    0   c(8)+c(11)    0    0  -c(11)    0 
    0    0    0    0    0  -c(9)    0    0   c(9)+c(12)    0    0  -c(12) 
    0    0    0    0    0    0  -c(10)    0    0   c(10)    0    0 
    0    0    0    0    0    0    0  -c(11)    0    0   c(11)    0 
    0    0    0    0    0    0    0    0  -c(12)    0    0   c(12) 
]; 
 
% construct stiffness matrix of baseline structure - fixed 
K = [  
    k(1)+k(4)    0    0  -k(4)    0    0    0    0    0    0    0    0 
    0   k(2)+k(5)    0    0  -k(5)    0    0    0    0    0    0    0 
    0    0   k(3)+k(6)    0    0  -k(6)    0    0    0    0    0    0 
    -k(4)    0    0   k(4)+k(7)    0    0  -k(7)    0    0    0    0    0 
    0  -k(5)    0    0   k(5)+k(8)    0    0  -k(8)    0    0    0    0 
    0    0  -k(6)    0    0   k(6)+k(9)    0    0  -k(9)    0    0    0 
    0    0    0  -k(7)    0    0   k(7)+k(10)    0    0  -k(10)    0    0 
    0    0    0    0  -k(8)    0    0   k(8)+k(11)    0    0  -k(11)    0 
    0    0    0    0    0  -k(9)    0    0   k(9)+k(12)    0    0  -k(12) 
    0    0    0    0    0    0  -k(10)    0    0   k(10)    0    0 
    0    0    0    0    0    0    0  -k(11)    0    0   k(11)    0 
    0    0    0    0    0    0    0    0  -k(12)    0    0   k(12) 
]; 
 
% ----------------------------------------------------------------------------------- 

% select damage pattern and determine △K matrix for each case 
% ----------------------------------------------------------------------------------- 
 
% select damage patterns of Benchmark problem (for pattern 1 - 4) 
disp('  ') 
disp('Damage pattern 0 - undamaged (baseline structure)') 
disp('Damage pattern 1 - all braces of 1st story are broken') 
disp('Damage pattern 2 - all braces of 1st and 3rd story are broken') 
disp('Damage pattern 3 - one brace of 1st story is broken') 
disp('Damage pattern 4 - one brace of 1st and 3rd story are broken') 
damage_no = input('** Enter a number for Damage pattern [0, 1, 2, 3 or 4] = '); 
 
 
% new delta K, each alpha represents change in stiffness for each floor 

% △K = α1*K_in1 + α2*K_in2 + α3*K_in3 + α4*K_in4 + ... 

% (α1 = △k1, α2 = △k2, α3 = △k3, α4 = △k4, ...) 
if damage_no == 3, 
    k23 = 0.1507/0.1205;          % k23 - entry at row 2 & column 3 
    k32 = 0.1507/0.1205; 
    k46 = 0; k64 = 0; k49 = 0; k94 = 0; k67 = 0; k76 = 0; k79 = 0; k97 = 0; 
elseif damage_no == 4, 
    k23 = 0.1507/0.1205;    k32 = 0.1507/0.1205; 
    k46 = 0.1507/0.1205;    k64 = 0.1507/0.1205; 
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    k49 = -0.1507/0.1205;   k94 = -0.1507/0.1205; 
    k67 = -0.1507/0.1205;   k76 = -0.1507/0.1205; 
    k79 = 0.1507/0.1205;    k97 = 0.1507/0.1205; 
else  
    k23 = 0; k32 = 0; k46 = 0; k64 = 0; k49 = 0; 
    k94 = 0; k67 = 0; k76 = 0; k79 = 0; k97 = 0; 
end 
 
K_in(:,:,1) = ... 
    [1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
% K_in(:,:,2) = ... 
%     [0 0 0 0 0 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
%         0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
%         0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
%         0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,2) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 1 k23 0 0 0 0 0 0 0 0 0;0 k32 0 0 0 0 0 0 0 0 0 0;... 
   0 0 0 0 0 k46 0 0 k49 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 k64 0 0 k67 0 0 0 0 0;... 
   0 0 0 0 0 k76 0 0 k79 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 k94 0 0 k97 0 0 0 0 0;... 
   0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
 
K_in(:,:,3) = ...  
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,4) = ... 
    [1 0 0 -1 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        -1 0 0 1 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,5) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 1 0 0 -1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 -1 0 0 1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,6) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 1 0 0 -1 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 -1 0 0 1 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,7) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 1 0 0 -1 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 -1 0 0 1 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,8) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 1 0 0 -1 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 -1 0 0 1 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,9) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 1 0 0 -1 0 0 0;... 
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        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 -1 0 0 1 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,10) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 1 0 0 -1 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 -1 0 0 1 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,11) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 1 0 0 -1 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 -1 0 0 1 0;0 0 0 0 0 0 0 0 0 0 0 0];  
K_in(:,:,12) = ... 
    [0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 1 0 0 -1;... 
        0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 -1 0 0 1];  
 
 
% ----------------------------------------------------------------------------------- 
% determine input force 
% ----------------------------------------------------------------------------------- 
% magnitude of wind excitation and ground force [N] - sine wave 
freq = 30;      % frequency of a sine wave [rad/sec] 
 
% define load applied according to the selected case 
if case_no == 0, 
    wind_f = [0 0 0 0];  
    ground_f = 500;             
     
elseif case_no == 1, 
    wind_f = 2.5e6*[1 1 1 1];   % case 1 - load at all story 
    ground_f = 0; 
     
elseif case_no == 3 | 4, 
    wind_f = 8e6*[0 0 0 1];     % case 3 & 4 - roof excitation 
    ground_f = 0; 
     
end 
 
% ----------------------------------------------------------------------------------- 
% run simulink model 'EOM_benchmark.mdl' 
% ----------------------------------------------------------------------------------- 
 
% Three different method to produce dis, vel, acc 
sim('EOM_benchmark12',[0:t_step:t_final]);  
 
 
% -----------------------------------------------------------------------------------
- 

% determine K_damanged = K + △K analytically 
% just for checking with simulation result 
K_delta = alphas(time_no,1)*K_in(:,:,1) + alphas(time_no,2)*K_in(:,:,2) + ... 
    alphas(time_no,3)*K_in(:,:,3) + alphas(time_no,4)*K_in(:,:,4) + ...  
    alphas(time_no,5)*K_in(:,:,5) + alphas(time_no,6)*K_in(:,:,6) + ...  
    alphas(time_no,7)*K_in(:,:,7) + alphas(time_no,8)*K_in(:,:,8) + ...  
    alphas(time_no,9)*K_in(:,:,9) + alphas(time_no,10)*K_in(:,:,10) + ... 
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    alphas(time_no,11)*K_in(:,:,11) + alphas(time_no,12)*K_in(:,:,12); 
K_damaged = K + K_delta; 
 
% ----------------------------------------------------------------------------------- 
% compute difference (error) between the original and damaged 
acc = acc'; vel = vel'; dis = dis'; F_in = F_in';  
y_out = F_in - M*acc - C*vel - K*dis; 
 
% to verify the simulation data (y_zero should be zero) 
y_zero = F_in - M*acc - C*vel - K_damaged*dis; 
 
 
 
% ----------------------------------------------------------------------------------- 
% Adaptive LMS filtering, for n weights, m taps 
% ----------------------------------------------------------------------------------- 
 
filter_no = dof;        % number of signal (filter) = number of DOF 
tap_no = 5;             % number of weights for each signal 
mu = 0.3;               % LMS factor: controls stability and rate of convergence 
w(dof,tap_no,tap_no+time_no) = 0;  % initialise weight matrix 
 
% redefine x and y  
% add m-1 zero vectors for prior time step calculation  
x_temp = dis; 
y_temp = y_out; 
 
x = zeros(dof,tap_no+time_no); 
y = zeros(dof,tap_no+time_no); 
 
x(:,tap_no+1:tap_no+time_no) = x_temp; 
y(:,tap_no+1:tap_no+time_no) = y_temp; 
 
% adaptive LMS weight updating, One Step method 
for i1 = tap_no+1:time_no, 
     
    n_temp = zeros(dof,dof); 
    sum_n = 0; 
    Q = 0; 
    G = zeros(dof,tap_no); 
     
    for j = 1:tap_no, 
        for i2 = 1:dof 
             
            % i) exact w/ prior time step disps 
            % n_temp = w(i2,j,i1)*K_in(:,:,i2)*x(:,i1-j+1);  
             
            % ii) w/o prior time step disps (main method) 
            n_temp = w(i2,j,i1)*K_in(:,:,i2)*x(:,i1);  
             
            sum_n = sum_n + n_temp; 
        end         % for i 
    end             % for j 
     
    Q = sum_n; 
     
    e(:,i1) = y(:,i1) - Q; 
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    for i3 = 1:dof, 
        for j2 = 1:tap_no,  
             
            % i) exact with prior time displacements 
            %G(i3,j2) = e(:,i1)'*K_in(:,:,i3)*x(:,i1-j2+1);    
             
            % ii) exact, current disps only 
            % G(i3,j2) = e(:,i1)'*K_in(:,:,i3)*x(:,i1);         
             
            % iii) w/o coupling and prior disps (main method) 
            G(i3,j2) = e(i3,i1)*x(i3,i1-j2+1);          
             
            % iv) w/o coupling w/o prior disps  
            % G(i3,j2) = e(i3,i1)*x(i3,i1);            
                                     
        end 
    end 
     
    G = 2*mu*G; 
     
    w(:,:,i1+1) = w(:,:,i1) + G; 
     
end 
 
% sum up for m elements of a weight 
w_temp = 0; 
for j = 1:tap_no, 
    w_temp = w_temp + w(:,j,:); 
end 
 
% redefine index for plotting 
for i = 1:time_no-tap_no+1, 
    w1(:,:,i) = w_temp(:,:,i+tap_no-1); 
end 
 
 
% ----------------------------------------------------------------------------------- 
% plot results (LMS and actual alphas vs time)   
% ----------------------------------------------------------------------------------- 
%t_axis = 0:t_step:t_final; 
t_axis = 0:t_step:t_final-t_step*(tap_no-1); 
figure, 
%plot(t_axis,w(:,1:time_no),':',t_axis,alphas) 
plot(t_axis,w1(:,1:time_no-tap_no+1),':',t_axis,alphas(1:time_no-tap_no+1,:)) 
title(['Benchmark Structure, 12 DOF: ∆K, \mu = ' num2str(mu(1)), ... 
        ', Time step = ' num2str(t_step) ' (sec), ' num2str(tap_no) ' taps']), grid 
ylabel('∆K, Change in \alphas'), xlabel('Time (sec)') 
text(12,-0.4e7,['Case ' num2str(case_no) ', Damage Pattern ' num2str(damage_no)], ... 
    'fontsize',12,'fontweight','bold') 
 
 
%************************************************************************************ 
%*************************** End of LMS_benchmark12_new.m *************************** 
%************************************************************************************ 
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A5. Matlab Code: S-function 

%************************************************************************************ 
% FILE NAME: S_DELTA_BENCHMARK12.M 
%       changes in stiffness coefficent as the simulation runs 
%       this function called by EOM_benchmark12.mdl  
%       Created by Leo Hwang 
%       Department of Mechanical Engineering, Unveristy of Canterbury, New Zealand 
%************************************************************************************ 
 
function [sys,x0,str,ts] = s_delta_benchmark12(t,x,u,flag,t_change,damage_no) 
% This s-function generates varying alphas with time, and 
% is called from 'EOM_benchmark12.mdl', which is called from 'LMS_benchmark12.m' 
 
switch flag, 
    % Initialization % 
    case 0, 
        [sys,x0,str,ts]=mdlInitializeSizes; 
        % Derivatives % 
    case 1, 
        sys=mdlDerivatives(t,x,u,t_change,damage_no); 
        % Update % 
    case 2, 
        sys=mdlUpdate(t,x,u,t_change,damage_no); 
        % Outputs % 
    case 3, 
        sys=mdlOutputs(t,x,u,t_change,damage_no); 
        % GetTimeOfNextVarHit % 
    case 4, 
        sys=mdlGetTimeOfNextVarHit(t,x,u,t_change,damage_no); 
        % Terminate % 
    case 9, 
        sys=mdlTerminate(t,x,u,t_change,damage_no); 
        % Unexpected flags % 
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); 
end 
 
%============================================================================= 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%============================================================================= 
function [sys,x0,str,ts]=mdlInitializeSizes 
sizes = simsizes; 
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 0; 
sizes.NumOutputs     = 12; 
sizes.NumInputs      = 1; 
sizes.DirFeedthrough = 1; 
sizes.NumSampleTimes = 1;   % at least one sample time is needed 
sys = simsizes(sizes); 
% initialize the initial conditions 
x0  = []; 
% str is always an empty matrix 
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str = []; 
% initialize the array of sample times 
ts  = [0 0]; 
% end mdlInitializeSizes 
 
%============================================================================= 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%============================================================================= 
function sys=mdlDerivatives(t,x,u,t_change,damage_no) 
sys = []; 
% end mdlDerivatives 
 
%============================================================================= 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%============================================================================= 
function sys=mdlUpdate(t,x,u,t_change,damage_no) 
sys = []; 
% end mdlUpdate 
 
%============================================================================= 
% mdlOutputs 
% Return the block outputs. 
%============================================================================= 
function sys=mdlOutputs(t,x,u,t_change,damage_no) 
 
% changing in alphas  
if damage_no == 0,          % undamaged 
    alpha = 1e8 * [0 0 0 0 0 0 0 0 0 0 0 0]; 
     
elseif damage_no == 1,      % damage pattern 1 
    alpha = 1e8 * [-0.4823 -0.4822 -1.5072 0 0 0 0 0 0 0 0 0]; 
     
elseif damage_no == 2,      % damage pattern 2 
    alpha = 1e8 * [-0.4823 -0.4822 -1.5072 0 0 0 -0.4823 -0.4822 -1.5072 0 0 0]; 
     
elseif damage_no == 3,      % damage pattern 3 
    alpha = 1e8 * [0 -0.1205 -0.1884 0 0 0 0 0 0 0 0 0]; 
     
elseif damage_no == 4,      % damage pattern 4 
    alpha = 1e8 * [0 -0.1205 -0.1884 0 0 0 -0.1205 0 -0.1884 0 0 0]; 
     
end 
 
% damage profile  
 
% i) sudden failure (step change) 
% for i = 1:12, 
%     if u(1) < t_change, 
%         sys(i) = 0; 
%     else 
%         sys(i) = alpha(i);     
%     end 
% end 
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% ii) gradual failure (ramp change)  
grad = 2e7 * [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]; 
for i = 1:12 
    if u <= t_change, 
        sys(i) = 0; 
    elseif u <= t_change + alpha(i)/grad(i), 
        sys(i) = grad(i)*u - grad(i)*t_change; 
    else 
        sys(i) = alpha(i);      
    end 
end 
 
% end mdlOutputs 
 
%============================================================================= 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block.  Note that the result is 
% absolute time.  Note that this function is only used when you specify a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%============================================================================= 
function sys=mdlGetTimeOfNextVarHit(t,x,u,t_change,damage_no) 
sys = []; 
% end mdlGetTimeOfNextVarHit 
 
%============================================================================= 
% mdlTerminate 
% Perform any end of simulation tasks. 
%============================================================================= 
function sys=mdlTerminate(t,x,u,t_change,damage_no) 
sys = []; 
% end mdlTerminate 
 
%************************************************************************************ 
%************************** End of s_delta_benchmark12.m **************************** 
%************************************************************************************ 
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A6. Simulink Model: 12 DOF model 

 

Figure 83 Simulink representation for 12 DOF model of Benchmark structure: 

EOM_benchmark12.mdl 
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Figure 84 Computing Delata K: Subsystem of EOM_benchmark12.mdl, creating 

damage by changing α values 


