Accurate Glycaemic Control using a Stochastic TARgeted (STAR) Framework

L.M. Fisk, A.J. Le Compte, J.G. Chase, G.M. Shaw

INTRODUCTION

Background: Accurate glycaemic control (AGC) has proven difficult without excessive hypoglycemia risk. Stochastic TARgeted (STAR) glycemic control forecasts changes in insulin sensitivity to calculate a range of glycemic outcomes for an insulin intervention, creating a risk framework to increase safety and performance.

Objective: Create a new protocol with improved safety from prior to clinical pilot trials.

RESULTS

Severe hypoglycemia was reduced from 14 patients (clinical SPRINT data) to 6 with a simultaneous 23% workload reduction from 26,646 BG measurements to 20,050. Moderate nutrition was increased overall by 21% in median amount.

METHODS

Clinically validated virtual trials on 371 virtual patients from the SPRINT AGC cohort were used to adapt the framework to Christchurch ICU. Model forecasts target control to a clinically specified glycemic range (80mg/dL to 145mg/dL). Measurement intervals of 2-3 hours were used when predicted 5th and/or 95th percentile BG were within target range.

Robustness to measurement error limit insulin increases to +2U/hour (max 6U/hour bolus and 3U/hr infusion) and nutrition changes to ±30% (between 30-100% of ACCP goal) per intervention.

PILOT CLINICAL TRIALS

Clinical BG results over 10 pilot patients matched simulation results 93.4% of BG within 80-145mg/dL. Safety was maintained with 0.95% of BG < 72mg/dL and no severe hypoglycaemia events (BG < 40mg/dL). Median BG was 109 mg/dL [IQR: 101-121 mg/dL] versus simulated 111 mg/dL [IQR: 102-122 mg/dL], which matches very closely with the location and spread of BG in virtual trials.

CONCLUSIONS

Safe, accurate glycaemic control that also reduces clinical effort is achieved using stochastic forecasting of potential patient variation. Initial pilot clinical trials matched simulation expectations and are ongoing.

STAR DEVELOPMENT

Traditional insulin/nutrition combination approaches to glycemic regulation.

METHODS

1. **Controller forecast schematic for BG**
 - Target glycaemic range (including ± tolerance on the lower bound)
 - BG forecasting capability to possible forecasts possible for treatment intervals enabled by treatment intervals.
 - BG with 0.95% of BG < 72mg/dL and no severe hypoglycaemia events (BG < 40mg/dL).
 - Median BG was 109 mg/dL [IQR: 101-121 mg/dL] versus simulated 111 mg/dL [IQR: 102-122 mg/dL], which matches very closely with the location and spread of BG in virtual trials.

PILOT CLINICAL TRIALS

Clinical results over 10 pilot patients matched simulation results 93.4% of BG within 80-145mg/dL. Safety was maintained with 0.95% of BG < 72mg/dL and no severe hypoglycaemia events (BG < 40mg/dL). Median BG was 109 mg/dL [IQR: 101-121 mg/dL] versus simulated 111 mg/dL [IQR: 102-122 mg/dL], which matches very closely with the location and spread of BG in virtual trials.

CONCLUSIONS

Safe, accurate glycaemic control that also reduces clinical effort is achieved using stochastic forecasting of potential patient variation. Initial pilot clinical trials matched simulation expectations and are ongoing.

TABLE 1: STAR simulation results indicated significant improvements over SPRINT. Workload reductions result from permitting 3-hourly treatment intervals enabled by BG forecasting capability to manage safety from insulin/nutrition combinations without extra insulin administration rate increases over SPRINT for greater clinical acceptance and insulin usage was balanced to maintain current BG control performance.

<table>
<thead>
<tr>
<th>Workload</th>
<th>STAR</th>
<th>SPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td># BG measurements</td>
<td>20,050</td>
<td>26,646</td>
</tr>
<tr>
<td>Measures/day</td>
<td>12.0</td>
<td>16.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control performance</th>
<th>STAR</th>
<th>SPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG median [IQR] (mmol/L)</td>
<td>91.0</td>
<td>88.0</td>
</tr>
<tr>
<td>% BG within 80-145 mg/dL</td>
<td>99.0</td>
<td>100.0</td>
</tr>
<tr>
<td>% BG > 180 mg/dL</td>
<td>1.7</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
<th>STAR</th>
<th>SPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>% BG > 72 mg/dL</td>
<td>0.97</td>
<td>2.89</td>
</tr>
<tr>
<td>% BG > 40 mg/dL</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td># patients > 40 mg/dL</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Safe, accurate glycaemic control that also reduces clinical effort is achieved using stochastic forecasting of potential patient variation. Initial pilot clinical trials matched simulation expectations and are ongoing.