Insulin sensitivity, its variability and glycaemic outcome:
A model-based analysis of the difficulty in achieving tight glycaemic control in critical care

JG Chase et al
Dept of Mechanical Engineering
Centre for Bio-Engineering
University of Canterbury
New Zealand
Tight glycaemic control is beneficial in the ICU

- Critically ill patients are often hyperglycaemic due to the stress-response
- There are good physiological links between normal glycaemic levels/variability and:
 - Improved immune response to infection [Weekers 2003]
 - Reduced organ failure [Van den Bergre 2001]
- Several studies have shown improved outcomes with TGC
 - Van den Berghe [2001], Krinsley [2004], Chase [2008], and a few others

... But difficult to achieve safely and consistently

- Finfer – NICE-SUGAR [2009], Brunkhorst [2008], Preiser - Glucontrol [2009], and others...

Due mainly to increased hypoglycaemia and glycaemic variability – both of which increase morbidity and mortality
Tight glycaemic control is a balancing act...
- Blood glucose level can be modulated with insulin and nutrition

... But the balance point keeps changing...
- Insulin sensitivity (SI) defines the overall metabolic balance and response to exogenous insulin
- Changes can be very rapid as well, well within typical 2-4 hour measurement intervals

Understanding the variability and evolution of SI is key to safe, effective TGC
A further point of interest

- Not all hypoglycemia and variability is the “same”
 - Bagshaw et al (2009) showed that the earlier it occurred in a patient’s stay the more likely they were to die (up to 2.5x increased odds risk)

- The big extra question then is:
 - Do highly variable ICU patients have greater or lesser variability over time?
 - Is day 1 worse than day 3, or vice versa? Or is there no change?
 - What about by diagnosis or pre-existing diabetes?

- These answers would significantly inform glycaemic control protocols and methods
What exactly is insulin sensitivity?
- A parameter quantifying insulin-mediated glucose uptake
- Insulin sensitivity (SI) is inversely proportional to insulin resistance
- Low insulin sensitivity leads to hyperglycaemia

…and how can we measure it?
- The gold standard is the euglycaemic clamp
 - A complicated procedure that can take 2+ hours requiring precise IV insulin and glucose and frequent blood sampling
 - Results in an insulin sensitivity index (ISI)

Not easy to do with a critically ill patient!
A model-based approach

- Use model-based insulin sensitivity (SI)
- Clinically validated
- Correlates well with euglycaemic-clamp ISI (r > 0.90) [Lotz 2008]
- Provides a means to quantify SI and its evolution over time in critically ill patients
- SI identified hourly for every patient

BG system model

- ICU model [Lin 2010]

Model equations

\[
\dot{G}(t) = -p_G G(t) - S_I(t) G(t) \frac{Q(t)}{1 + \alpha_G Q(t)} + \frac{P(t) + EGP - CNS}{V_G} \\
\dot{Q}(t) = -kQ(t) + kI(t) \\
\dot{I}(t) = -\frac{n_I(t)}{1 + \alpha_I(t)} + \frac{u_{ext}(t)}{V_I} + e^{-(k_{ext}(t))} I_B \\
P(t) = \min(d_2 P_2, P_{max}) \\
\dot{P}_2 = -\min(d_2 P_2, P_{max}) + d_1 P_1 \\
\dot{P}_1 = -d_1 P_1 + D(t)
\]
Model-based SI

- “Whole-body” insulin sensitivity
- Captures overall metabolic balance, including the relative net effect of:
 - Altered endogenous glucose production
 - Peripheral and hepatic insulin mediated glucose uptake
 - Endogenous insulin secretion
- Has been used to guide model-based TGC in several studies
- Provides a means to analyse the evolution and hour-to-hour variability of SI in critically ill patients
Patients
- All patients on the SPRINT glycaemic control protocol

SPRINT
- Tight glycaemic control (TGC) protocol used in Christchurch hospital ICU since August 2005
- Entry criteria for SPRINT:
 - 2 consecutive measurements BG >8mmol/L
 - Clinical decision
- A simple, lookup-table system derived from a model-based controller
- Titrates insulin doses and nutrition rates to patient-specific insulin sensitivity
- 1-2 hourly BG measurements

<table>
<thead>
<tr>
<th>Study cohorts</th>
<th>SPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>394</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65 [50 – 74]</td>
</tr>
<tr>
<td>% Male</td>
<td>62.9%</td>
</tr>
<tr>
<td>Diabetic history</td>
<td>67 (17.0%)</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>18 [14 – 24]</td>
</tr>
<tr>
<td>APACHE II risk of death</td>
<td>25.6% [13.1% - 49.4%]</td>
</tr>
<tr>
<td>ICU LoS [median, IQR] (days)</td>
<td>4.0 [1.7 – 10.4]</td>
</tr>
<tr>
<td>Median BG (SD) (mmol/L)</td>
<td>6.0 (1.5)</td>
</tr>
<tr>
<td>% BG in 4.4-6.1 mmol/L</td>
<td>53.9%</td>
</tr>
<tr>
<td>% BG in 4.0-7.0 mmol/L</td>
<td>79.0%</td>
</tr>
<tr>
<td>% BG < 2.2 mmol/L</td>
<td>0.1%</td>
</tr>
<tr>
<td>Patients on Day 1</td>
<td>394</td>
</tr>
<tr>
<td>Patients on Day 2</td>
<td>264</td>
</tr>
<tr>
<td>Patients on Day 3</td>
<td>201</td>
</tr>
<tr>
<td>Patients on Day 4</td>
<td>181</td>
</tr>
</tbody>
</table>
- **SI evolution – longer-term trends**
 - SI identified hourly from the pharmacokinetic-pharmacodynamic model for each patient
 - Analysed in 24-hour blocks from the commencement of SPRINT

- **SI variability – hour-to-hour changes**
 - Defined by hour-to-hour percentage change in SI:

 $\%\Delta SI_{n+1} = \frac{100 \times (SI_{n+1} - SI_n)}{SI_{n+1}}$

 - Percentage change normalises values to a patient-specific level for fair comparison
 - Analysed in 24-hour blocks from the commencement of SPRINT

- **Non-parametric statistics**
 - Typical distributions of SI are asymmetric and skewed
 - Non-parametric statistics are used (median, interquartile range)
 - Cumulative distribution functions (CDFs)
- **SI evolution over time**
 - Each of Days 1-3 and Day 4 onward are different from each other (*p<0.0001*)
 - Days 1-2 and Day 4 onward are different from the overall total cohort (*all days, p<0.0001*)
 - Day 3 and the overall cohort (as seen in the plot) are similar (*p=0.72*) – Interestingly, 3 days is the average length of stay!
 - **It is clear that median and overall SI increase daily, with Day 4 onward surpassing the total overall cohort (all days) results.**

Results

Insulin sensitivity evolution

P-values calculated using Mann-Whitney U-test

<table>
<thead>
<tr>
<th>Day</th>
<th>SI: median [IQR] x 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.169 [0.095, 0.270]</td>
</tr>
<tr>
<td>2</td>
<td>0.224 [0.143, 0.339]</td>
</tr>
<tr>
<td>3</td>
<td>0.242 [0.162, 0.336]</td>
</tr>
<tr>
<td>4 Onward</td>
<td>0.261 [0.182, 0.354]</td>
</tr>
<tr>
<td>Total (all days)</td>
<td>0.242 [0.159, 0.341]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cumulative density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulin sensitivity, SI, [L/mU.min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>
- **SI variability over time**
 - SI variability decreases significantly over the first two days ($p<0.0001$)
 - SI variability decreases on all days from Days 1-3 and then Day 4 onward ($p<0.0001$).
 - Days 1-2 and Day 4 onward are different from the overall total cohort (all days, $p<0.0001$)
 - Days 3 and Day 4 onward are shown on the next slide for clarity

Results

Insulin sensitivity variability

<table>
<thead>
<tr>
<th>Day</th>
<th>SI: median [IQR] x 10^-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.6 [-22.0, 25.3]</td>
</tr>
<tr>
<td>2</td>
<td>1.5 [-14.5, 15.9]</td>
</tr>
<tr>
<td>3</td>
<td>1.2 [-12.2, 13.5]</td>
</tr>
<tr>
<td>4 Onward</td>
<td>-0.15 [-9.3, 10.5]</td>
</tr>
<tr>
<td>Total (all days)</td>
<td><0.01 [-11.2, 13.1]</td>
</tr>
</tbody>
</table>

P-values calculated using Mann-Whitney U-test
- **SI variability over time**
 - SI variability decreases on all days from Days 1-3 and then Day 4 onward (*p*<0.0001).
 - Days 1-2 and Day 4 onward are different from the overall total cohort (**all days**, *p*<0.0001).
 - Day 3 and the overall cohort (as seen in the plot) have similar variability (*p*=0.74) – again!
 - The number of %ΔSI values > ±15% decrease for each day that passes → Less variable

Results

<table>
<thead>
<tr>
<th>Day</th>
<th>SI: median [IQR] x 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.6 [-22.0, 25.3]</td>
</tr>
<tr>
<td>2</td>
<td>1.5 [-14.5, 15.9]</td>
</tr>
<tr>
<td>3</td>
<td>1.2 [-12.2, 13.5]</td>
</tr>
<tr>
<td>4 Onward</td>
<td>-0.15 [-9.3, 10.5]</td>
</tr>
<tr>
<td>Total (all days)</td>
<td><0.01 [-11.2, 13.1]</td>
</tr>
</tbody>
</table>

P-values calculated using Fisher exact test
Changes in SI level and variability over time

- ICU patients have a lower insulin sensitivity (greater resistance) in the first 1-2 days compared to analyses that have in past looked only at the whole cohort and all days [Langouche 2007, Lin 2008]

- ICU patients are more dynamically variable in their SI (more variable insulin resistance) than the overall cohort (over all days) in the first 1-2 days and similar on Day 3

- SI and its variability are reduced, compared to the overall cohort (all days) behaviours for Days 4 Onward

- SI rises and variability decreases over each day of stay, and the differences between days are significant both statistically and clinically.

- These trends for increasing SI over time matches results reported in a previous study [Langouche 2007].
Impact of SI variability on glycaemia

- The SI variability observed may be the primary reason for the outcome variability and hypoglycemia seen in many other TGC studies.
- Many TGC protocols administer insulin to relatively high levels in the face of the initial high insulin resistance (low SI) seen here.
 - Doses of up to 15 U/hour for a blood glucose concentration of 8.0-9.0 mmol/L, have been reported [Wilson 2007].
- This insulin sensitivity variability, combined with relatively high(er) insulin doses, will result in greater glycemic variability and thus increased risk of hypoglycemia for many protocols, especially in the first days.
- More insulin sensitive cohorts will further multiply this variability if insulin dosing isn’t implicitly or explicitly titrated to SI.
- *The direct outcome is poor control, increased hypoglycemia and poor outcome, matching recent reports* [Griesdale 2009]
Clinical implications

- Outcome glycaemia is a function of SI variability + insulin and CHO inputs
 - Protocols should seek to minimise or reduce insulin usage in the first 1-3 days
 - In the face of increased insulin resistance and possible insulin saturation during the first few days, modulation of CHO nutrition should be considered
 - Increased measurement frequency and higher glycaemic targets should be considered for the first few days of TGC

- Advanced glycaemic control protocols can take advantage of this knowledge to improve safety and effectiveness of TGC by accounting for the variability in SI
Conclusions

- SI level increases over the first 3 days of TGC

- SI variability decreases over the first 3 days of TGC

- Outcome glycaemia is a function of SI variability + insulin and CHO inputs

- Greater variability coupled with lower SI during the early stages of TGC greatly increase the difficulty in achieving safe and effective glycaemic control
8th IFAC Symposium on Biological and Medical Systems

Budapest, Hungary / 29-31 August, 2012

bms.iit.bme.hu
Questions?