
A Physiological Intensive Control

Insulin-Nutrition-Glucose (ICING) Model Validated in

Critically Ill Patients

Jessica Lina, Normy N. Razakb, Christopher G. Prettyb,
Aaron Le Compteb, Paul Dochertyb, Jacquelyn D. Parenteb,

Geoffrey M. Shawc, Christopher E. Hannb, J. Geoffrey Chaseb

aDepartment of Medicine, University of Otago Christchurch, New Zealand
bCenter for Bioengineering, University of Canterbury, New Zealand

cDepartment of Intensive Care Medicine, Christchurch Hospital, New Zealand

Abstract

Intensive insulin therapy (IIT) and tight glycaemic control (TGC), particu-

larly in intensive care units (ICU), are the subjects of increasing and con-

troversial debate in recent years. Model-based TGC has shown potential

in delivering safe and tight glycaemic management, all the while limiting

hypoglycaemia. A comprehensive, more physiologically relevant Intensive

Control Insulin-Nutrition-Glucose (ICING) model is presented and validated

using data from critically ill patients. Two existing glucose-insulin models

are reviewed and formed the basis for the ICING model. Model limitations

are discussed with respect to relevant physiology, pharmacodynamics and

TGC practicality. Model identifiability issues are carefully considered for

clinical settings. This article also contains significant reference to relevant

physiology and clinical literature, as well as some references to the modeling

efforts in this field.

Identification of critical constant population parameters were performed
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in two stages, thus addressing model identifiability issues. Model predictive

performance is the primary factor for optimizing population parameter val-

ues. The use of population values are necessary due to the limited clinical

data available at the bedside in the clinical control scenario. Insulin sensi-

tivity, SI , the only dynamic, time-varying parameter, is identified hourly for

each individual. All population parameters are justified physiologically and

with respect to values reported in the clinical literature. A parameter sensi-

tivity study confirms the validity of limiting time-varying parameters to SI

only, as well as the choices for the population parameters. The ICING model

achieves median fitting error of <1% over data from 173 patients (N = 42,941

hrs in total) who received insulin while in the ICU and stayed for ≥72 hrs.

Most importantly, the median per-patient one-hour ahead prediction error is

a very low 2.80% [IQR 1.18, 6.41%]. It is significant that the 75th percentile

prediction error is within the lower bound of typical glucometer measurement

errors of 7–12%. These results confirm that the ICING model is suitable for

developing model-based insulin therapies, and capable of delivering real-time

model-based TGC with a very tight prediction error range. Finally, the de-

tailed examination and discussion of issues surrounding model-based TGC

and existing glucose-insulin models render this article a mini-review of the

state of model-based TGC in critical care.

Key words: model-based control, tight blood glucose control, TGC, blood

glucose, insulin therapy, insulin sensitivity, critical care, predictive

performance
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1. Introduction

Since the landmark study in surgical intensive care unit (ICU) patients

by Van Den Berghe et al. [1], which reduced mortality 18-45% using tight

glycaemic control (TGC), the attitude towards tolerating hyperglycaemia in

critically ill patients has changed. Hyperglycaemia worsens outcomes, in-

creasing the risk of severe infection [2], myocardial infarction [3], and critical

illnesses such as polyneuropathy and multiple organ failure [1]. However, re-

peating these results has been difficult, and thus the role of tight glyceamic

control during critical illness and suitable glycaemic ranges have been under

scrutiny in recent years [4, 5, 6, 7, 8, 9, 10, 11]. However, conclusions are

varied with both success [1, 12, 13, 14], failure, [15] and, primarily, no clear

outcome [16, 17, 18, 19, 20, 21].

Although it is now becoming an unacceptable practice to allow excessive

hyperglycaemia and its associated effects [8, 22, 23, 24], moderately elevated

blood glucose levels are tolerated or recommended [11] because of the fear

of hypoglycaemia and higher nursing effort frequently associated with TGC

[8, 10, 25, 26]. Interestingly, some TGC studies that reported a mortality

reduction also had reduced and relatively low hypoglycaemic rates [13, 14],

whereas almost all other reports had increased and often excessive hypogly-

caemia [15, 17]. Finally, model-based and model-derived TGC methods have

shown the ability to provide very tight control with little or no hypoglycaemia

[13, 27, 28, 29, 30].

Many studies have developed glucose-insulin models with varying degrees

of complexity for a wide range of uses, primarily in research studies of insulin

sensitivity [27, 31, 32, 33, 34, 35, 36]. A more comprehensive model review
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can be found in [28]. For a model to be successful in delivery of TGC, it needs

to reflect observable physiology, as well as known biological mechanisms. In

addition, it should be uniquely identifiable, and the type and number of

parameters to be identified should reflect the clinically available data that

will provide validation. Finally, the most important aspect for a model to be

used in model-based TGC is its predictive ability, where most studies provide

only fitting error as validation [29, 33, 36, 37].

This paper presents a more comprehensive model, ICING (Intensive Con-

trol Insulin-Nutrition-Glucose model), for the use of glycaemic control par-

ticularly in the ICU. The model addresses several incomplete or implicit

physiological aspects from prior models by Chase et al. [27] and Lotz et al.

[38]. Model limitations are discussed with respect to physiology, pharma-

codynamics and TGC practicality. Model identifiability issues are carefully

considered for clinical settings. The ICING model is validated using clinical

data from critically ill patients and assessed for both its fitting, and more

critically for TGC, predictive performance. Finally, issues surrounding TGC

and existing glucose-insulin models are extensively reviewed and discussed.

2. Glucose-Insulin Physiology Model

Two clinically validated glucose-insulin physiology models set the basis of

this study. Both models share the same basic structure of the Minimal Model

[32]. The model from Chase et al. [27] was developed and validated for gly-

caemic level management in the ICU. This model captures the fundamental

dynamics seen in critically ill patients, yet has a relatively simple mathe-

matical structure enabling rapid identification of patient-specific parameters
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[39]. This model only requires measurements in blood glucose levels (BG),

therefore it can be used by the bedside for clinical real-time identification

and control. This structure has been widely used in clinical TGC studies

and other analyses [30, 40, 37].

The second model from Lotz et al. [38] was developed for diagnosis of

insulin resistance. The modeled insulin sensitivity has high correlation to the

euglycaemic hyperinsulinemic clamp (EIC) and high repeatability [38, 41].

This model has more patient specific parameters, but is not suitable for real-

time patient-specific parameter identification because it also requires non-

real-time plasma insulin and C-peptide assays [42]. Recent work has sought

to eliminate this issue in healthy subjects, but at a loss of precision [43].

2.1. Critical Care Glucose-Insulin Model (ICU Model)

Equations (1)–(5) presents the model used for glycaemic control in inten-

sive care from Chase et al. [27], hereafter referred to as the “ICU Model”.

ICU Model

Ġ = −pGG(t)− SI(G(t) +GE)
Q(t)

1 + αGQ(t)
+
P (t)

VG
(1)

Q̇ = −kQ(t) + kI(t) (2)

İ = − nI(t)

1 + αII(t)
+
uex(t)

VI
(3)

P (ti < t < ti+1) = P̄i+1 + (P (ti)− P̄i+1)e
−kpd(t−ti) where P̄i+1 < P (ti) (4)

P (ti < t < ti+1) = P̄i+1 + (P (ti)− P̄i+1)e
−kpr(t−ti) where P̄i+1 > P (ti) (5)

The symbols G [mmol/L] denotes the glucose above an equilibrium level,
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GE [mmol/L]. Plasma insulin is I [mU/L] and exogenous insulin input is

uex(t) [mU/min]. The effect of previously infused insulin being utilized over

time in the interstitium is represented by Q [mU/L], with k [1/min] ac-

counting for the effective life of insulin in the system. Patient endogenous

glucose removal and insulin sensitivity are pG [1/min] and SI [L/mU/min]

respectively. The parameter VI [L] is the insulin distribution volume and

n [1/min] is the constant first order decay rate for insulin from plasma. Ex-

ternal nutrition is P (t) [mmol/min]. In Equations (4)–(5), kpr [1/min] and

kpd [1/min] are the rise and decay rates of exogenous (enteral) plasma glu-

cose appearance, and P̄i and P̄i+1 are the stepwise consecutive enteral glucose

feed rates used to model dextrose control. The glucose distribution volume

is VG [L]. Michaelis-Menten functions are used to portray saturations, with

parameter αI [L/mU] used for saturation of plasma insulin disappearance,

and αG [L/mU] for saturation of insulin-stimulated glucose removal.

This model was developed and validated in critical care glycaemic control

studies [27, 36, 37, 44]. All the compartmental transport and utilisation rates

are treated as constants except insulin sensitivity SI . Insulin sensitivity SI

is the critical dynamic parameter, and is typically fitted to patient data

hourly, producing a step-wise hourly varying profile. The SPRINT glycaemic

control protocol [13, 45, 46] was developed using this model. Importantly,

the pre-trial virtual trial simulation of SPRINT gave very similar results to

the subsequent actual clinical implementation results [27], providing a further

measure of validation.

However, this model does not realistically describe the gastric uptake of

glucose. Equations (4) and (5) express simple exponential rises and decays of
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glucose absorption, which eventually reach a steady state equal to the feeding

rate. This simple expression works well in critical care where nasogastric

feeding rate is not adjusted frequently. If the feeding rate is changed more

frequently than once every 2 hours, Equations (4) and (5) fail to describe the

gastric absorption correctly.

This model also employs an “equilibrium blood glucose level” term, GE,

which is usually set to either the patient’s blood glucose level at the start of

insulin therapy or a long moving average. This term effectively addresses the

endogenous balance of glucose and insulin. Hence, this model does not explic-

itly express endogenous insulin production. Thus, when there is a significant

shift in this balance in a patient, for any number of reasons [36, 44, 47], GE

often needs to be adjusted to capture the patient’s (then) current clinical

glucose-insulin dynamics. Hence, the term is non-physiological, unidentifi-

able and was ignored in later model evolutions [30, 48, 49].

This model also has relatively simple insulin kinetics compared to other

more extensive models [50, 51, 52, 53]. It does not explicitly express different

routes of insulin clearance and transport from plasma. Instead, the lumped

out-flux from plasma is expressed by a saturable term −nI/(1 + αII). In

addition, as only kI appears as an input to interstitial insulin Q, the differ-

ence between n and k is implicitly the insulin clearance by liver and kidneys,

which was validated in Lotz et al. [41]. The insulin flux between plasma and

interstitial is also only one way in this model, ignoring the diffusion from

interstitium back to plasma, as it was designed for TGC using IV insulin

boluses. Therefore, the insulin concentration gradient between plasma and

the interstitium using bolus delivery is generally large enough that diffusion
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back to plasma is negligible. However, the use of boluses is less typical in

general clinical settings and neglecting diffusion can introduce error in either

case.

2.2. Glucose-Insulin Model for Insulin Sensitivity Test (SI Test Model)

Equations (6)–(8) presents the model used for insulin sensitivity testing

from Lotz et al. [38], hereafter referred to as the “SI Test Model”.

SI Test Model

Ġ = −pGG(t)− SI(G(t) +GE)
Q(t)

1 + αGQ(t)
+
P (t)

VG
+ EGP (t) (6)

Q̇ =
nI
VQ

(I(t)−Q(t))− nCQ(t) (7)

İ = −nKI(t)− nLI(t)

1 + αII(t)
− nI
VP

(I(t)−Q(t)) +
uex(t)

VP

+(1− xL)
uen(t)

VP
(8)

The nomenclature for this model is largely the same as that for the ICU

Model in Section 2.1. This model has more parameters and more exten-

sive insulin kinetics. It includes the endogenous glucose production rate

EGP [mmol/L/min], as well as the endogenous insulin production

uen [mU/min]. The endogenous insulin production can be calculated from

C-peptide measurements using a well validated insulin-C-peptide kinetics

model [54]. Endogenous insulin goes through first pass hepatic extraction,

where xL is the fraction of extraction. This model also has more explicitly

defined physiologically specific insulin transport parameters compared to the
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ICU Model, where nK is the kidney clearance rate of insulin from plasma

[1/min], nL is the liver clearance rate of insulin from plasma [1/min], nI is

the diffusion constant of insulin between compartments [L/min], and nC is

the cellular insulin clearance rate from interstitium [1/min]. Finally, it also

uses different volumes for each compartment, where VP is the plasma volume

(+Fast exchanging tissues) [L] and VQ is the interstitial fluid volume [L]. The

experimental VP and VQ are however very close [38].

In [38, 42], measurements from insulin and C-peptide are used to identify

nL and xL for each person. SI and VG are then calculated for each person

using BG measurements. All other parameters are treated as population

constants. The insulin sensitivity SI identified using this model correlates

highly (r > 0.97) to EIC results [38, 41]. Therefore, this model is effective as

a diagnostic tool for insulin resistance. However because plasma insulin and

C-peptide measurements cannot be obtained in real time, this model cannot

be readily adapted for TGC for ICU patients.

2.3. Intensive Control Insulin-Nutrition-Glucose Model (ICING Model)

The new and more physiologically comprehensive model developed from

the best aspects of both models [27, 38] is defined:

˙BG = −pGBG(t)− SIBG(t)
Q(t)

1 + αGQ(t)
+
P (t) + EGPb − CNS

VG
(9)

Q̇ = nI(I(t)−Q(t))− nC
Q(t)

1 + αGQ(t)
(10)

İ = −nKI(t)− nLI(t)

1 + αII(t)
− nI(I(t)−Q(t)) +

uex(t)

VI

+(1− xL)
uen
VI

(11)
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Ṗ1 = −d1P1 +D(t) (12)

Ṗ2 = −min(d2P2, Pmax) + d1P1 (13)

P (t) = min(d2P2, Pmax) + PN(t) (14)

uen(t) = k1e
− I(t)k2

k3 when C-peptide data is not available (15)

The nomenclature for this model is largely the same as defined in Sections

2.1 and 2.2. However, “equilibrium blood glucose level” GE is no longer

present, andBG(t) is the absolute BG level per more recent works [55, 30, 48].

A constant “basal” endogenous glucose production term EGPb [mmol/min],

which is the endogenous glucose production rate for a patient receiving no

exogenous glucose or insulin, is thus added. This model has an additional

insulin independent [56] central nervous system glucose uptake, CNS, with

an experimental value between 0.29–0.38 mmol/min [56, 57, 58, 59, 60, 61,

62, 63, 64].

In Equation (9), insulin independent glucose removal (excluding central

nervous system uptake CNS) and the suppression of endogenous glucose

production from EGPb with respect to BG(t) are compounded and repre-

sented by pG. Insulin mediated glucose removal and the suppression of EGP

from EGPb are similarly compounded and represented by SI . Consequently,

SI effectively represents the whole-body insulin sensitivity, which includes

tissue insulin sensitivity and the action of Glucose Transporter-4 (GLUT-4).

The action of GLUT-4 is associated with the compounding effect of receptor-

10



binding insulin and blood glucose, and its signaling cascade is also dependent

on metabolic condition and can be affected by medication [65, 66, 67, 68].

Therefore, SI is time varying and can reflect evolving patient condition. Its

variation through time can be significant, particularly for highly dynamic,

critically ill patients [40, 37].

Equations (10) and (11) define the insulin pharmacokinetics similarly to

[38] and Equations (7)–(8). Insulin clearance from plasma is saturable, as

well as its degradation after receptor binding in the interstitium [69]. The

receptor-bound insulin Q/(1 + αGQ) is also the insulin effective for glucose

removal to cells. Hence this term also appears in Equation (9) for glucose

dynamics. Note that nI in Equations (10) and (11) has unit [1/min] rather

than [L/min] as in Equations (7) and (8). This is because the new model in

Equations (9)–(15) does not use different volumes for plasma and interstitial

insulin distribution, since the experimental values are very similar in [38, 70].

To compare and convert nI from Lotz el al., its value needs to be divided by

VP from Lotz et al.

Equations (12)–(14) present the gastric absorption of glucose, where

P1 [mmol] represents the glucose in the stomach and P2 [mmol] is for the gut.

Transport rates between the compartments are d1 [1/min] and d2 [1/min].

Amount of dextrose from enteral feeding is D(t) [mmol/min]. Glucose ap-

pearance, P (t) [mmol/min] from enteral food intake D(t), is the glucose

flux out of the gut P2. This flux is saturable, and the maximal out flux

is Pmax = 6.11 [mmol/min]. Typically, for ICU patients on enteral feed-

ing, Pmax is not reached. Any additional parenteral dextrose is represented

by PN(t). This dextrose absorption model conserves ingested glucose, and
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therefore is also suitable for modeling meal ingestion over a short period of

time in contrast to the simpler model of Equations (4) and (5).

Equation (15) is a generic representation of endogenous insulin production

when C-peptide data is not available from the patient for specific identifica-

tion of its production. Endogenous insulin production, with the base rate

being k1 [mU/min], is suppressed with elevated plasma insulin levels. The

exponential suppression is described by generic constants k2 and k3.

3. Model Validation Methods

Validation of the glucose-insulin model presented in Equations (9)–(14) is

performed using data from 173 patients (42,941 total hours) that were on the

SPRINT TGC protocol [13] for 3 or more days, which also had a statistically

significant hospital mortality reductions. These patients also had long enough

stays to exhibit periods of both dynamic evolution and metabolic stability.

The median APACHE II score for this cohort is 19 [IQR 16, 25] and the

median age is 64 [IQR 49, 73] yrs old. The percentage of operative patients

is 33%.

Insulin sensitivity, SI is the critical patient specific parameter that is fitted

hourly to clinical blood glucose measurements using an integral-based fitting

method [39]. The rest of the parameters are kept as population constants.

This approach was verified for the ICU model via a sensitivity study [39].

(A sensitivity study is also performed in this study for the ICING model –

see Section 3.4). The model is assessed for its accuracy by fitting errors,

as well as robustness, or adaptability, by prediction errors. Fitting error is

simply the error between the measured and the modelled blood glucose levels.
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When an hourly SI is identified, a prediction of blood glucose level in one

hour using this identified SI is also made given the clinical record of insulin

and nutrition support. The prediction error is then the error between the

prediction and the actual blood glucose level.

Intra- and inter-patient variability are examined by looking at the data

on a by-cohort or per-patient basis. By-cohort analysis looks at the statis-

tics on all the available hourly fitting and prediction errors (weighting each

hour equally), whereas per-patient analysis looks at the statistics on each

individual patient (weighting each patient equally).

Essentially the model improvements from the ICU model to the ICING

model are made in two stages: firstly on the glucose compartment, secondly

on the insulin pharmacokinetics. During each stage, the important popu-

lation constant parameters are optimised using grid-search methods. The

grid-search approach is robust to measurement noise and can provide an

assessment of parameter sensitivity.

During the first stage of improvements on the glucose compartment,

EGPb and pG are optimised as a pair. The insulin pharmacodynamics are

kept as in Equations (2)–(3) during this stage – as the constant parameters

in Equations (10)–(11) are yet to be optimised. In the second stage of model

improvement, the ICING model takes its complete form and the constant in-

sulin pharmacokinetics parameters are optimised. Finally a re-assessment of

pG and EGPb, as well as a parameter sensitivity using the completed ICING

model are performed.
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3.1. Identification of pG and EGPb – Stage 1

In the first stage of model improvement, pG and EGPb are optimised as a

pair. Constant parameter values used in this stage of parameter identification

can be seen in Table 1. These constant parameters are consistent with values

found in surveys of population studies [36, 37, 55], and have been verified for

their suitability of being set to population constants in a previous parameter

sensitivity study [39] and clinical glycaemic control studies [30, 36, 44, 48].

The range of the grid search covers pG = 0.001 → 0.1 [1/min] with

increments of 0.001, and EGPb = 0.0→ 3.5 [mmol/min] with increments of

0.1. Fitting and prediction errors are calculated for each pG, EGPb coordinate

for each patient to find the optimal combination.

3.2. Identification of Insulin Kinetics Parameters – Stage 2

Model improvements on Insulin pharmacokinetics are made in the second

stage, and the model takes its final form as defined in Equations (9)–(15).

Parameters associated with insulin kinetics are identified in this stage. Lotz

et al. [38] uses measurements from insulin and C-peptide to identify patient

specific liver clearance nL and first pass endogenous insulin hepatic uptake

xL in Equations (7)–(8). The value for kidney clearance, nK , was taken from

a well validated population model of C-peptide kinetics, and the transcap-

illary diffusion rate nI was calculated by a method proposed by the same

authors [54]. For this study, ICU patient data does not contain the insulin

measurements to allow for unique identification of nL and xL. However, the

transition from Equations (2) and (3) to Equations (10) and (11) makes nI

the critical parameter to be investigated.
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Table 1: Models and constant parameter values and/or ranges

Constant ICU SI Test ICING

Parameters Model [27] Model [38] Model (Final)

GE [mmol/L] starting BG* starting BG* -

CNS [mmol/min] - - 0.3

αG [L/mU] 0.0154 0 0.0154

VG [L] 13.3 10.00–15.75 13.3

αI [L/mU] 0.0017 0.0017 0.0017

n [1/min] 0.16 - -

k [1/min] 0.0198 - -

pG [1/min] 0.01 0.01 to be identified

EGPb[mmol/min] - - to be identified

nI - 0.21–0.36 [L/min] to be identified [1/min]

nC [1/min] - 0.032–0.033 = nI

nL [1/min] - 0.10–0.21 0.1578

nK [1/min] - 0.053–0.064 0.0542

xL - 0.50–0.95 0.67

VI [L] 3.15 - 3.15

VQ [L] - 4.44–7.47 -

VP [L] - 3.90-5.96 -

kpr [1/min] 0.0347 - -

kpd [1/min] 0.0069 - -

d1 [1/min] - - 0.0347

d2 [1/min] - - 0.0069

Pmax [mmol/min] - - 6.11

k1 [mU/min] - - 45.7

k2 - - 1.5

k3 - - 1000
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The interstitial insulin transfer rate, k, in Equation (2) was calculated to

correspond to the active interstitial insulin half-life [44]. Effectively, Equation

(2) thus represents a delay compartment for insulin action in the interstitium,

and can be re-written:

Q(t) = k

∫ t

0

I(τ)e−k(t−τ)dτ (16)

On the other hand, the analytical solution of Q in Equation (10) is:

Q(t) = nI

∫ t

0

I(τ)e−(nI+nC)(t−τ)dτ (17)

Therefore, the decay rate of interstitial insulin is nI + nC in Equation (10),

and this rate should be comparable to k in Equation (2).

Studies indicated that steady state interstitial to plasma insulin ratio is

between 0.4 − 0.6 [71, 72, 73]. Lotz et al. [38] uses a population value

of 0.5 for this ratio. Therefore nI = nC can be assumed from the steady

state calculation using Equation (10) provided the steady state Q is low so

Q/(1 + αGQ) ≈ Q.

In this study, a grid search of nI is used to obtain a suitable model

value. Again, integral fitting is used to identify hourly SI . The grid covers

nI = nC = 10−4 → 0.02 [1/min]. The fitting and prediction error are

calculated at each grid for each patient. Other constant parameter values

are listed in Table 1. The value for nK is taken from Van Cauter et al. [54]

and nL is the mean fitted value found in Lotz et al. [38, 70]. First pass

hepatic insulin uptake, xL was also a fitted parameter in Lotz et al. [38], and

is coupled with liver clearance nL. In this study, xL is assumed to be 0.67,

which is within the range reported by Lotz et al. [38, 70]. In this study, xL
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has a relatively insignificant role, as patients on intensive insulin therapy can

be assumed to have their endogenous insulin production suppressed due to

elevated plasma insulin levels. The other constant parameters are kept the

same as in the identification of pG and EGPb.

3.3. Re-assessment of pG and EGPb

A re-assessment of the population constant values of pG and EGPb is

performed using the complete ICING model. The grid analysis covers pG =

0.005→ 0.025 [1/min] and EGPb= 0.5→ 2.5 [mmol/min] with an increment

step of 0.0033 and 0.33 respectively.

3.4. Parameter sensitivity analysis

The robustness of model population parameters nL, nK , nC and αG on

the model fit and predictive performance of the ICING model is tested by

modifying individual model values (summarized in Table 1) by ±50%. While

one parameter is being altered, the rest of the parameters are kept at their

original values in Table 1. Changes in model performance can indicate the

suitability of their assumed values, and whether or not they should be used

as population constants.

4. Results

4.1. pG and EGPb – Stage 1

The per-patient median fitting and prediction errors over the ranges

pG = 0.001 → 0.1 [min−1] and EGPb = 0 → 3.5 [mmol/min] are

shown in Figure 1. Sub-figures 1(a) and 1(c) show the median of all median
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hourly % errors for each patient. Sub-figures 1(b) and 1(d) show the me-

dian range of the 90% confidence interval in hourly % error for each patient.

Smaller (tighter) range means tighter distribution with less outliers. In gen-

eral, lower fitting and prediction errors and error ranges are produced in the

lower pG and lower EGPb regions, where the plot is darkest.

Figure 2(a) shows the cumulative distribution function of the prediction

error over all available hourly data for the selected pG and EGPb combina-

tions. The performance is very similar for [pG, EGPb] = [0.002, 0.5], [0.006,

0.8] and [0.006, 1.16]. However, the predictive performance is significantly

worse for EGPb = 2.3 mmol/min, where this value is tested to demonstrate

the impact of applying an extreme, supra-physiological value across the entire

cohort. In contrast, Figure 2(b) shows the cumulative distribution function

of the fitting error for the same combinations of pG and EGPb values. The

model clearly delivers the best fitting error with [pG, EGPb] = [0.006, 1.16].

From the figures of prediction and fitting error generated, it can be ob-

served that the best balance between fitting and prediction is achieved by

the combination [pG, EGPb] = [0.006, 1.16]. Glucose metabolism studies re-

ported EGP values range from 0.91→ 1.4 [mmol/min] [48, 74, 75]. The value

for EGPb identified in this study is therefore physiologically valid. Reported

values for pG from studies have been shown to range between 0.004→ 0.047

min−1 [32, 76, 77, 78]. Therefore, the identified pG = 0.006 [1/min] is also

physiologically valid.

4.2. Insulin Kinetics Parameters – Stage 2

The median of the 25th, 50th and 75th percentile fitting and prediction

errors for each patient across nI = 10−4 → 0.02 min−1 in the full ICING
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(a) Median % fitting error (b) 90% confidence interval in % fitting error

(c) Median % prediction error (d) 90% confidence interval in % prediction

error

Figure 1: Per-patient percentage fitting and prediction error with respect to pG and EGPb.

Each coordinate plots the median of the results from individual patients. 1(a) and 1(c)

show the median of the median hourly % error for each patient. 1(b) and 1(d) show the

median range of the 90% confidence interval in hourly % error for each patient. Smaller

(tighter) range means tighter distribution with less outliers.
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(a) Prediction error (%)

(b) Fitting error (%)

Figure 2: Cumulative distribution functions (cdf) of by-cohort prediction and fitting errors

with different combinations of pG and EGPb. Every hourly error contribute to the cdf.

model are shown in Figure 3. It can be seen that nI = 0.003 min−1 provides

the best predictive performance while fitting error is low through the entire

range.

Patient 5004 is shown in Figure 4 as an example of typical model fit using

the fully identified ICING model. The results show the model is capable

of capturing the patient’s highly variable dynamics during critical illness,
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(a) Fitting Error (%) (b) Prediction Error (%)

Figure 3: Fitting and prediction error from nI grid search.

particularly from the 50th hour to the end of the patient’s stay, where the

insulin requirement varied significantly from hour to hour.

In Figure 4, only end-of-hour insulin levels in plasma and interstitial are

plotted for readability. The response curves from insulin injections plotted

by the minute can be seen in Figure 5. The impact of nI on modeled insulin

can be seen with two different values used. The receptor bound insulin us-

ing nI = 0.0476 min−1 from Lotz et al. [38] peaks and decays a lot faster

than having the smaller nI = 0.003 min−1 found in grid search. More im-

portantly, the large nI value does not allow receptor-bound insulin levels to

accumulate over time. Applying this large nI value, the model fails to cap-

ture a patient’s long term glucose-insulin response. The per-patient fitting

error also increases to 5.32 [IQR 0.98, 9.70]% from 2.80 [IQR 1.18, 6.41]%.

More specifically, over 25% of the hourly modeled BG fails to capture clinical
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Figure 4: Model simulation results on Patient 5004 using the parameters identified for the

ICING model. Only end-of hour data are plotted for readability. In the top panel, the

solid line (–) illustrates the blood glucose model simulation while crosses (×) represents

the actual blood glucose measurements. The second panel demonstrates the plasma insulin

appearance (–) and plasma glucose appearance (· · ·). The third panel shows the interstitial

insulin (–) and the effective (receptor-bound) interstitial insulin (· · ·). Model fitted insulin

sensitivity is displayed in the bottom panel.
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measurements, which typically have a measurement error of 7%.

Figure 5: Dose response curves of plasma insulin and receptor bound interstitial insulin

from an insulin injection of 3U at the beginning of each hour.

The improvements in model performance from the the ICU model, through

improvements in glucose compartment (Stage 1), and finally the ICING

model in Equations (9)–(15) are shown in Table 2. The table shows the

median and IQR for absolute percentage model fit and predictive error for

the total 42941 hours of clinical data from 173 patients. Results are shown on

both per-patient and by cohort basis to highlight any inter- and intra-patient

variability in model performance.

The final model achieved improvements in performance compared to the
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ICU model in Equations (1)–(5). The predictive ability of the ICING model

improved significantly with much lower median prediction errors. More im-

portantly, the spread of error is tighter, evident by a much lower upper

quartile (75th percentile) error, which is now within measurement error for

both by-cohort and per-patient results. The main reduction is in the upper

quartile cohort prediction error, which is reduced to 6.47% from 10.64%, in-

dicating significantly better management of inter-patient variability in the

final model.

Main results in Table 2 show:

1. Improvement in glucose compartment reduces intra-patient variabil-

ity with lower per-patient upper quartile prediction.

2. Finalised ICING model reduces inter-patient variability with lower

upper quartile by-cohort prediction errors.

4.3. Re-Identification of pG and EGPb

Grid search for the re-identification of pG and EGPb near the previously

identified [pG, EGPb] = [0.006, 1.16] from Section 4.1 re-affirm these val-

ues. This combination of pG and EGPb values provides very low fitting and

prediction errors in the grid search region, and does not require adjustments.

4.4. Parameter Sensitivity

The parameter sensitivity study results for nK , nL, nC and αG are shown

in Table 3. Changes of ±50% from their final parameter values for the ICING

model in Table 1 have no clinically (as opposed to statistically) significant

effect on simulation results in terms of prediction error, fitting error and
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Table 2: Comparison of median and IQR for prediction and fitting error

Prediction Error (%) median [IQR]

Improved Glucose
Original ICU Model Compartment ICING Model

Per-Patient# 5.90 [4.75,7.51] 5.23 [4.20,6.36] 2.80 [1.18,6.41]

By Cohort+ 5.59 [2.46,10.64] 5.02 [2.11,10.34] 2.81 [1.08,6.47]

Fitting Error (%) median [IQR]

Per-Patient# 1.11 [0.84,1.63] 0.86 [0.58,1.18] 0.50 [0.21,0.99]

By Cohort+ 1.02 [0.41,1.94] 0.71 [0.23,1.44 ] 0.47 [0.20,0.97]

SI (10−3 L/mU/min) median [IQR]

Per-Patient# 0.25 [0.11,0.45] 0.21 [0.13,0.41] 0.31 [0.23,0.40]

By Cohort+ 0.24 [0.14,0.40] 0.21 [0.14,0.32] 0.31 [0.20,0.48]

# Per-patient analysis weights each patient equally, indicating inter-patient variability.
+ By-cohort analysis weights each hour of data equally, indicating intra-patient

variability.

identified insulin sensitivity, SI . The values for pG, EGPb and nI are 0.006

[1/min], 1.16 [mmol/min] and 0.003 [1/min] respectively. These sensitivity

study results suggest nK , nL, nC and αG can be fixed at their current popu-

lation values without over simplifying the model. However, αG does produce

a notable shift in insulin sensitivity, SI as expected, given their trade-off

relationship mathematically. A previous study showed changes in αG pro-

duce a magnification in insulin sensitivity SI without compromising model

performance unless it approaches non-physiological levels [79].
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5. Discussion

The new ICING model presented in this study is an integration and im-

provement of two clinically validated glucose-insulin physiological models

[27, 38]. This new model has more explicit physiological relevance with-

out increasing the number of patient-specific parameters to be identified. In

particular, the insulin kinetics is expressed with distinctive routes for insulin

clearance and transport from plasma, which reflects biological mechanisms.

A more realistic model for gastric glucose absorption accounting for the stom-

ach, gut and saturable glucose appearance is also introduced.

Parameters for endogenous glucose removal pG, and basal endogenous

glucose production EGPb trade off each other. Therefore, it is important

that they are identified as a pair. The definition for EGPb implies this pa-

rameter stays constant for any given patient. The decision to keep pG as a

constant is based on its relatively constant behaviour in ICU patients [39].

Grid analysis for the identification of pG and EGPb as constants popula-

tion parameters found the most suitable combination of parameter values in

reported physiological ranges [32, 48, 74, 76].

Many models have tried to include an estimated time-varying function

for endogenous glucose production, typically for use in experimental tracer

studies [80, 81, 82, 83]. Others developed functions based on study data

[34, 84, 85, 86, 87]. In reality, tracer studies require different assumptions

depending on experimental settings, and results are highly variable between

individuals and influenced by different conditions [75, 88, 89, 90, 91, 92]. This

study uses a basal endogenous glucose production EGPb as a constant in the

mathematical model. This choice allows the variation in actual endogenous
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glucose production be described by combining EGPb, variable suppression

via pG and G, and also SI and I. More importantly, this approach allows

SI be uniquely identified given the available data is limited to 1-2 hourly

BG measurements. The value for pG found in this study is somewhat at the

lower end of the range found in other studies [32, 76, 77, 78]. It is suspected

for hyperglycaemic ICU patients that the suppression of EGP by plasma

glucose levels is minimized compared to otherwise healthy subjects, which

has been reported elsewhere due to high levels of circulating catecholamines,

thus reducing the suppression of EGP from elevated G and I [2, 3, 93, 94, 95].

Glucose uptake is strongly correlated with interstitial insulin [96]. How-

ever, interstitial insulin concentrations and dynamics are difficult or impos-

sible to measure experimentally. This study attempted to find a realistic

description of interstitial insulin by linking plasma insulin and BG response

through known biological mechanisms and parameter identification. The dif-

fusion rate between plasma and the interstitial space nI , was identified as

the critical parameter, and its population value is chosen using grid search.

The identified optimal parameter value provided low fitting and prediction

error in BG and particularly reduced inter-patient variability in prediction

error.

“Effective” insulin half lives have been reported to be between 25–130

mins (k in Equation (16) or nI + nC in Equation (17) to be between 0.0277–

0.0053 min−1) [31, 97, 98]. The value for k in the Critical Care Model was

0.0198 min−1, which corresponds to a interstitial half life of 35 mins. The

value for nI +nC in the ICING model is 0.006 since nI = nC = 0.003 min−1,

and correspond to a half life of 115.5 mins. The half lives from both models,
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although both within the reported ranges, were on the opposite ends of the

spectrum. However, when k was chosen for the Critical Care Model, clinical

data were limited for its optimization [27, 36, 44]. The grid search on nI

performed in this study clearly optimized this value for model performance

using currently available data.

The value for nI identified for the new model is very low compared to that

of Lotz et al. [38, 70] (0.003 v.s. ∼0.0476 min−1). Lotz et al. [38, 70] used

a method to calculate nI adopted from Van Cauter et al. [54]. This method

estimates nI from an individual’s age, sex, weight, BSA, BMI and diagnosis

of type 2 diabetes, developed using a model for C-peptide and its measure-

ments. However, the nI population value calculated using this method fails

to capture long term blood glucose-insulin dynamics. Specifically, insulin

“pooling” and delayed utilization effects have been observed in critically ill

patients by Doran et al. [47, 99]. With nI at such a high value, these features

are lost from the model because the modeled insulin degradation is too fast.

Note that given nI = nC = 0.0476 min−1, the interstitial half life of insulin

from Lotz et al. [38] is more than 3 times shorter than the shortest reported

time.

The discrepancy between nI found in this study and Lotz el al. [38] may

have several explanations. These explanations include inherently different

plasma-interstitium diffusion rates under critical illness and insulin diffusion

across barrier being a saturable process. The latter possibility arises because

the experimental diffusion rates are determined by using C-peptide measure-

ments. Although C-peptide has very similar molecular properties to insulin,

it does not go through a high and variable degree of first pass extraction in
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the portal vein [54]. Therefore its concentration is several folds higher than

insulin in plasma. If the diffusion process is to any level saturable [50], the

rates determined using C-peptide measurements will not be reflective of in-

sulin. In addition, the plasma concentration achieved in critically ill patients

is very different to that in EIC experiments or otherwise healthy diabetic in-

dividuals. Patients in [70] were subjected to an overnight fast. Hence, their

plasma concentrations are relatively low and diffusion rates are faster for the

short, very low insulin dose tests used in that research. In contrast, criti-

cally ill patients are often hyperinsulinaemic and infused with large amount

of insulin. These ideas need to be further investigated with more insulin and

C-peptide studies.

A further important issue addressed throughout this study is model iden-

tifiability. Given the limited data available, it is crucial to maintain a

model that is uniquely identifiable with bedside (glucose) measurements. Al-

though the model presented in this study requires many population assump-

tions, and resulted in a much simpler structure compared to many others

[33, 34, 35, 100], it is able to accurately capture the highly dynamic response

in critical illness. It is the authors’ conclusion that given limited data in a

noisy and highly variable environment, such as critical care, a model that

requires the minimal number of parameters to be identified will potentially

cope most successfully both mathematically and clinically. Given all the pa-

rameters kept as population constants have been carefully studied and their

sensitivity analysed, this paper presents a clinically applicable yet compre-

hensive glucose-insulin model that is uniquely identifiable for each patient

at any given time. The low, and more importantly tightly distributed, pre-
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diction errors, where few fail to be within the clinical measurement error

of 7-12% [13, 27], indicates the model is well suited for use in real-time,

patient-specific TGC.

However, all models have limitations and this model would benefit from

further investigation into some parameters. The critical parameters are those

that influence the shape of Q/(1+αGQ), as this level is the ultimate unknown

(being unmeasurable) and the critical link between insulin and BG response.

These parameters are effectively nI and αG, as the parameters that only

appear in the plasma insulin equation (Equation (11)) can be more readily

identified given insulin and C-peptide measurements. Simulation studies

had been carried out to investigate the impact of these parameters, namely

“effective” insulin half life and insulin-stimulated glucose removal saturation

[44, 79]. Both variables have direct impact on SI . However, given that both

parameters are kept in reported range of physiological levels, their variation

simply creates a shift or magnification in the identified SI profiles and do

not compromise model fitting or prediction performance. Ultimately, it is

the control, or prediction performance, that is the most critical for a model

designed for model-based therapeutics.

6. Conclusions

A new, more comprehensive glucose-insulin model is presented and val-

idated using data from critically ill patients. The model is capable of ac-

curately capturing long term dynamics and evolution of a critically ill pa-

tient’s glucose-insulin response. Insulin sensitivity SI is the only parameter

that is identified hourly for each individual. Its identification is guaranteed
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to be unique given the integral fitting method used in this study. Popu-

lation constant parameters pG, EGPb and nI have been identified in steps

to avoid model identifiability issues. Parameter sensitivity analysis further

confirms the validity of limiting time-varying parameters to SI only. The

model achieved low fitting and, most importantly, low prediction error when

fitted to blood glucose data from critically ill patients. Fitting errors and

the 75th percentile prediction errors were all well below measurement error

for 173 patient and 42,941 hours of data. The new model outperforms its

critical care predecessors, and has greater physiological relevance and more

detailed insulin kinetics. This model therefore offers a platform to develop

robust insulin therapies for tight glycaemic control.
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