Studies on Simuliidae (Diptera), with particular reference to *Austrosimulium tillyardianum*

Volume 2 -- Appendices

A thesis presented for the degree of Doctor of Philosophy in Zoology in the University of Canterbury, Christchurch, New Zealand

by

Trevor K. Crosby

1974
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Use of the common names "sandfly" and "black fly" for species of Simuliidae (Diptera)</td>
<td>AP 1</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>A gynandromorph of Austrosimulium (Austrosimulium) australense (Schiner) from New Zealand (Diptera: Simuliidae)</td>
<td>AP 5</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Obtaining literature through interlibrary loan</td>
<td>AP 10</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Instar determination data and programs</td>
<td>AP 18</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Wainui Valley Stream sampling programme data</td>
<td>AP 74</td>
</tr>
</tbody>
</table>
Appendix 1

Use of the common names "sandfly" and "black fly"
for species of Simuliidae (Diptera)

Accepted for publication in: New Zealand Entomologist
In New Zealand, Simuliidae are called "sandflies", a usage that has persisted since the voyages of exploration of Captain Cook between 1769 and 1775 (Dumbleton 1973). Throughout the remainder of the English-speaking world, Simuliidae are generally referred to as "black flies", a name apparently of North American origin.

The use of both these common names for the Simuliidae can be confusing. In most parts of the English-speaking world, "sandflies" is the common name generally applied to psychodid flies belonging to the subfamily Phlebotominae, although this name is often used, especially in conversation, for the biting midges of the family Ceratopogonidae (Oldroyd 1964). Dumbleton (1973) suggested that since there were no biting Psychodidae in New Zealand, and only one biting ceratopogonid of localized distribution, the New Zealand use of "sandflies" for Simuliidae caused no confusion. But, if "sandflies" is used in publications, authors should realize that other researchers who do not know of the equivalence of "sandflies" and "black flies" may be confused.

The name "black fly" may also be ambiguous at times. Thus "blackfly" written as one word is often used as a common name for some aphids, such as the bean aphis (Oldroyd 1964), and this spelling has also been used in many publications on Simuliidae.

Because of the confusion surrounding the use of common names, the term "simuliid" which is being increasingly used in the scientific literature is preferred to either "black fly" or "sandfly".

HISTORICAL USE

Dumbleton (1973) remarked that the Oxford English Dictionary (O.E.D.) defined "sandfly" as a small fly or midge, especially one belonging to the genus *Simulium*, and cited its use as early as 1748 in Anson's "Voyage round the World". The association of the word "sand-flies" in the citation and the genus *Simulium* by the compilers of the O.E.D. was given through Boas (1896) in his "Text book of zoology" page 276: 'The sand-fly (*Simulia*), . . .' (edition translated from the German by Kirkaldy & Pollard).

However, the full citation from Anson in which the term "sand-flies" is used leaves doubt as to whether it is in fact simuliids that are referred to: 'And at sun-set, when the musquitoes [sic] re-tired, they were succeeded by an infinity of sand-flies, which, though scarce discernible to the naked eye, make a mighty buzzing, and wherever they bite raise a small bump in the flesh, which is soon attended with a painful itching . . .' (Walter, undated.
At the time of writing, Anson was anchored in the harbour of the Island of Santa Catarina (called St. Catherine by Anson) just off the mainland of Brazil. Three simuliid species have been recorded from the nearby mainland (Vulcano 1967), one of which bites man, Simulium (Simulium) dinelli (Joan); however, it does not fit the description of the citation. The references to the very small size, buzzing, biting at sunset, and the effect of the bite describe better a ceratopogonid, biting midges to which the common name "sandfly" is often applied. For example, Christy (1903) described the attack of an Ugandan ceratopogonid as: 'This minute fly ... bites terribly, leaving an irritating wheal, which itches for days. It makes a sharp short peevish buzz when settling, fully as loud as a mosquito'.

Probably then the earliest authentic reference to Simuliidae as "sandflies" would be that by Forster (1777) from Cook's second voyage to New Zealand: Dusky Sound, 3-5 April 1773 '... where a sort of little crane-flies ... became remarkably troublesome during the bad weather. They were numerous in the skirts of the woods, not half so large as gnats or musketeoes, and our sailors called them sandflies'.

Strangely, the common name "black fly" was not defined in the main part of the O.E.D. but was defined in the Supplement as 'any one of the species of the genus Simulium ...', this definition originating from "The Century Dictionary, 1889", an American publication. Boas (1896) had used the word "black-flies" a few lines under "sand-fly", and apparently this had been overlooked by the compilers of the O.E.D.: 'others, Black-flies, e.g., Simulium molestum', while Davies, Peterson & Wood (1962) record an earlier use of "black fly" for Simuliidae by Talbot (1824). Still earlier references to Simuliidae in North America are usually given under the common name "mosquitoes" (Davies, Peterson & Wood 1962), a name probably used with the original Spanish meaning of "little flies".

ACKNOWLEDGMENTS

I wish to thank Dr M.J. Winterbourn for his helpful criticisms of this paper. The above work was supported by a New Zealand Postgraduate Scholarship.
COMMON NAMES

LITERATURE CITED

TALBOT, E. A., 1824: Black fly. In Five years' residence in the Canadas (including a tour through part of the United States of America in the year 1823). Volume I: 243-244. London. (Cited by Davies, Peterson & Wood (1962)).

Appendix 2

A gynandromorph of Austrosimulium (Austrosimulium) australense (Schiner) from New Zealand
(Diptera : Simuliidae)

Accepted for publication in: Journal of Natural History
Introduction

When examining a collection of females of *Austrosimulium (Austrosimulium) australense* (Schiner) and *A. (A.) unguilatum* Tonnoir from Punakaiki, West Coast, South Island, a gynandromorph of *A. (A.) australense* was discovered. This individual had the head of a female, but the thorax and abdomen were a mosaic of both male and female characters. According to the classification of gynandromorphs outlined by Puri (1933), this specimen would be a primary somatic hermaphrodite since it possessed parts of the internal and external secondary sexual apparatus of both sexes.

Description of the *A. (A.) australense* gynandromorph

For comparison, descriptions of the normal male and female may be found in Tonnoir (1925) and Dumbleton (1973).

Head. That of a normal female. Head dichoptic, eye facets uniformly small. Mouthparts well developed, mandibles and maxillae normally toothed.

Thorax. Left side: that of a normal female, with overlying pruinose appearance, scutum with short decumbent hairs, prescutellar depression and scutellum with long black hairs. Haltere light yellow. Wing normal.

Right side: resembling a male, about 1/3 normal number of long black hairs present on prescutellar depression and scutellum. Haltere dark yellow-brown. Wing with very few macrotrichia on costal vein, otherwise normal.

Two features of right side are found in neither sex: overlying pruinose appearance absent; scutum bare, lacking decumbent hairs.

Legs. Legs of the left side and the right hind leg female; the right fore and mid legs male, as shown by the presence on each of a finely striated sclerotized pad extending distally from tarsus 5.

Abdomen. Basal fringe of hairs on tergite 1; those of left side light as in female; those of right side black as in male, but sparser. Shape of tergites 2-8 indeterminate, intermediate between male and female. Traces of sternites 3 and 5 present (none present in a normal female), shape of sternites 6-8 resembles a male. Lateral tufts of abdominal hairs; those of left side light as in female; those of right side black as in male, but sparser.

Genitalia. Internally, no organs recognizable as gonads.

Female structures: complete left and right paraprocts, cerci and anterior gonapophyses present, these external structures occupying their normal terminal position on abdomen, anterior gonapophyses faint; genital fork present but with articulation of right side absent, lightly sclerotized;
A GYNANDROMORPH OF AUSTROSIMULIUM AUSTRALENSE

spermatheca present, with short internal hairs, granular material present in spermatheca but not recognizable as sperm.

Male structures: external structures confined to extreme right of segment 9 of abdomen; fully developed right coxite, style and paramere present; style with 3 apical teeth; a small knob of tissue under the right anterior gonapophysis probably represents the left coxite and style; ventral plate present, but about 1/2 normal size; aedeagal membrane with combs of fine spinules present.

Locality. Punakaiki Camping Ground, 42° 07'S, 171° 20'E, 18.viii.70, P.M. Johns.

Collected inside a hut on a window together with females of A. (A.) australense and A. (A.) ungulatum. Preserved in 90% ethanol.

Discussion

Only one case of gynandromorphism in adult Simuliidae has been described previously, that of an individual of *Simulium* (*Simulium*) palmatum Puri from India (Puri, 1933). This individual was a secondary somatic hermaphrodite, a gynandromorph that possessed the secondary sexual apparatus of one sex only. Gynandromorphs of a similar type were reported for two species by Rubzov (1958), *Simulium* (*Wilhelmia*) equinum (Linnaeus) from the Leningrad district of Russia and *Simulium* (*Wilhelmia*) mediterraneum Puri from Central Asia, but neither was described. Intersexuality appears to be commoner than gynandromorphism, and has been described in four species; *Simulium* (*Obuchovia*) auricoma Meigen from France (Grenier & Bertrand, 1949), *Simulium* (*Simulium*) paramorsitans Rubzov from Russia (Rubzov, 1958), and *Metacnephia* terterjani (Rubzov) and *Simulium* (*Eusimulium*) delizhanense Rubzov from Armenia (Terteryan, 1961); and has been reported for two other species, *Simulium* (*Schoenbaueria*) subpusillum Rubzov and *Simulium* (*Simulium*) morsitans Edwards from the Leningrad district of Russia (Rubzov, 1958). In all described cases specimens were hatched or dissected from pupae that had been collected in the field and brought back to the laboratory for examination.

Overall, female characters were more fully expressed in the A. (A.) australense gynandromorph than those of the male, this dominance being shown most clearly by the hairs of the thoracic and abdominal regions. All female regions were fully haired as in a normal female, but most male regions were more sparsely haired than in a normal male.

Although both female and male genitalia were present in the gynandromorph, only the female genitalia were located in their normal terminal
position on the abdomen. The incomplete set of male genitalia appeared to be confined to the extreme right side, perhaps because of a lack of room for their complete development.

The behaviour of the A. (A.) australense gynandromorph appeared to be that of a typical female since I have found only females in collections of adults taken from windows. The absence of sperm from the spermatheca of the gynandromorph is not surprising, for, even if it was capable of normal female mating behaviour, the presence of male genitalia probably would have prevented successful copulation. In comparison, the twenty normal females of A. (A.) australense examined from the same collection all had sperm present in the spermatheca.

Summary

A gynandromorph of Austrosimulium (Austrosimulium) australense (Schiner) is described. This individual had the head of a female, whereas the thorax and abdomen were a mosaic of male and female characters. The genitalia of both sexes were present, but only the female set was complete. Overall, the female characters of this specimen appeared to be more fully expressed than those of the male.

Acknowledgments

I wish to thank Dr M.J. Winterbourn for his helpful criticisms of this paper. The above work was supported by a New Zealand Postgraduate Scholarship.

References

'A library's most satisfied customer tends to be an elderly scientist who has been in the university for a long time and who cannot understand what all the fuss is about because the collection can provide what he needs for his own work.'

McEldowney (1973) New Zealand University Library Resources 1972 pp. 95-6
On the basis of his experience in assembling a collection of reprints in specialised subject areas using the interloan system a research scientist considers Garfield's proposal that major library centres housing "the least used journals" should be set up for servicing interlibrary loans. Such a proposal has both advantages and limitations, but would not lessen the need, nor provide a substitute for good local collections held at centres where research is being undertaken.
An integral part of any research programme is searching the literature and obtaining papers that are relevant to the research problem. The efficacy of information services or reprint distribution in helping to achieve this aim has been discussed by several authors recently, either expressing their praise or doubts about such systems (1-11).

The thoroughness of a literature search is normally influenced by the abstracting journals or indexing services available, and the time the investigator is prepared to search before deciding that a point has been reached where the returns no longer match the effort expended. Often useful papers are overlooked or ignored because they are not written in the investigator's native language, they have misleading titles that do not indicate the full scope of the paper, or because the source journal is not readily available. This last factor is particularly important in small research centres where library holdings, facilities and finance are normally limited (12, 13) and where specialised reprint collections are probably not available.

The purpose of this paper is to present the results of assembling a reprint collection in such a small centre, the University of Canterbury, Christchurch, New Zealand. The main method of obtaining the literature was through the interlibrary loan (interloan) system, the type of system that has been proposed (14) as being suitable for obtaining papers in the "least used journals" perhaps "stored in regional, national or even international library centers". Since some aspects of my search were carried out in greater depth than others, the efficiency of the interloan system with respect to differing user requirements could be assessed, and also the probable effectiveness and limitations of Garfield's (14) scheme could be evaluated. The papers sought between March 1969 and June 1972 were those concerned with black flies (Diptera: Simuliidae) or with methods of analysing multivariate data.

The reprints were analysed by dividing the collection into four sections (Table I), each representing a different degree of completeness and intensity of search effort depending upon the importance that I had placed upon the section as part of my study. These sections may be characterised as follows:
1. Biology of Simulidae; studies on the biology of larvae and adults. No restrictions on the availability of source journals, no language bias.

2. Catalogue; taxonomic papers affecting simuliid nomenclature, required to compile a catalogue of world species. No restrictions on the availability of source journals, no language bias.

3. Other simuliid papers; studies on parasites, predators, diseases, related ecological methods, morphology, salivary gland chromosomes, control, and taxonomic papers not affecting nomenclature. Mainly from source journals available in New Zealand; English, French and German language bias.

4. Multivariate analysis; mainly discriminant function analysis; a selection of papers sought. Mainly from source journals readily available in New Zealand; English language bias.

TABLE I. Number of reprints in collection compared with the total number of references recorded in card file.

<table>
<thead>
<tr>
<th></th>
<th>Total references recorded</th>
<th>Number of reprints</th>
<th>Percentage of potential reprints in collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>395</td>
<td>272</td>
<td>68.9</td>
</tr>
<tr>
<td>Catalogue</td>
<td>658</td>
<td>588</td>
<td>89.4</td>
</tr>
<tr>
<td>Other simuliid</td>
<td>1,206</td>
<td>526</td>
<td>43.6</td>
</tr>
<tr>
<td>Multivariate</td>
<td>169</td>
<td>111</td>
<td>65.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,428</td>
<td>1,497</td>
<td>61.7</td>
</tr>
</tbody>
</table>

TABLE II. Source of the reprints in collection.

<table>
<thead>
<tr>
<th>University of Canterbury libraries</th>
<th>Sent by author</th>
<th>Sent on interloan</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences Library, on shelves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>13</td>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>Catalogue</td>
<td>15</td>
<td>26</td>
<td>62</td>
</tr>
<tr>
<td>Other simuliid</td>
<td>38</td>
<td>24</td>
<td>116</td>
</tr>
<tr>
<td>Multivariate</td>
<td>22</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>88</td>
<td>66</td>
<td>227</td>
</tr>
</tbody>
</table>

Other libraries or storage			
Biology	3		210
Catalogue	26		485
Other simuliid	24		348
Multivariate	13		73
TOTAL	66		1,116

Sent by author			
biology	46		272
Catalogue	62		588
Other simuliid	116		526
Multivariate	3		111
TOTAL	227		1,497
TABLE II—continued

One hundred and fifty-four out of the total of 1,497 were photocopied from the University of Canterbury holdings. About 90 of the reprints sent by authors are available in the University of Canterbury libraries. Therefore, about 16.3 per cent of my collection is available in the libraries.

Of the total references in the card file, about 11 per cent are available in the University of Canterbury libraries.

The means of obtaining 1,497 papers in my reprint collection over the three and a quarter year period are summarised in Table II. The small number of articles shelved in the Sciences Library, University of Canterbury, is striking, and in fact less than 12 per cent of the literature relevant to my study was accessible for consultation from the shelves at the moment it may have been required. To obtain all other literature, at least one request form of some kind had to be filled.

Efficiency of the University of Canterbury Interloan System

The University of Canterbury interloan system is efficient (Table III), even for "in-depth" studies. If an article cannot be located in New Zealand, requests are sent to libraries in Australia, North America, and Britain, usually in that order. If an article has still not been located, often a request is sent to the National Library of the country in which the article has been published. Most articles were obtained, although they were from about 400 different journals and 100 books.

TABLE III. Number of interloans obtained compared with the number requested.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Number requested</th>
<th>Number obtained</th>
<th>Percentage obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>210</td>
<td>210</td>
<td>100.0</td>
</tr>
<tr>
<td>Catalogue</td>
<td>546</td>
<td>485</td>
<td>88.8</td>
</tr>
<tr>
<td>Other simulii</td>
<td>348</td>
<td>348</td>
<td>100.0</td>
</tr>
<tr>
<td>Multivariate</td>
<td>74</td>
<td>73</td>
<td>98.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,178</td>
<td>1,116</td>
<td>94.7</td>
</tr>
</tbody>
</table>

The section "Catalogue" provided a particularly exacting test of the efficiency of the interloan system (Table III) since there was no bias towards requesting only articles that it was thought that the library could locate. Three hundred and seventy-eight journal articles from 240 journals
were obtained; of the 31 requests for journal articles not obtained, 18 were in the above journals but the appropriate volume could not be located, whereas the other 13 were in 13 journals that could not be located. There were 76 interloan requests for books containing articles on simuliid taxonomy and 46 were received; most of the 30 not received were published before 1850, and many of these are rare.

TABLE IV. Time taken for interloans to arrive.

<table>
<thead>
<tr>
<th>TIME (weeks)</th>
<th>Less than 1</th>
<th>1-2</th>
<th>2-4</th>
<th>4-8</th>
<th>8-26</th>
<th>26-52</th>
<th>52-104</th>
<th>More than 104</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>12</td>
<td>31</td>
<td>59</td>
<td>56</td>
<td>44</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>210</td>
</tr>
<tr>
<td>Catalogue</td>
<td>4</td>
<td>32</td>
<td>104</td>
<td>142</td>
<td>141</td>
<td>58</td>
<td>11</td>
<td>3</td>
<td>485</td>
</tr>
<tr>
<td>Other simuliid</td>
<td>18</td>
<td>70</td>
<td>152</td>
<td>71</td>
<td>27</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>348</td>
</tr>
<tr>
<td>Multivariate</td>
<td>13</td>
<td>20</td>
<td>25</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>TOTAL</td>
<td>47</td>
<td>143</td>
<td>340</td>
<td>276</td>
<td>219</td>
<td>74</td>
<td>12</td>
<td>5</td>
<td>1,116</td>
</tr>
</tbody>
</table>

Even though the interloan system was efficient, it had the disadvantage that there was a time lag between the time of requesting and the time of receiving items (Table IV). The time scale in Table IV has been divided into units that reflect to some extent the current "usefulness" of an article to a user at the time it is received. About 48 per cent of requests were received in four weeks, a further 44 per cent within 26 weeks, and the remaining eight per cent took up to two years, or even longer, to arrive. In general, the interloans received within four weeks were those obtained in New Zealand, overseas interloans normally took longer than four weeks to arrive; some requests from Australia however, were received within two weeks. The section "Catalogue" provided the best indication of the time required to obtain articles if a complete literature search is being undertaken. This showed that a six-month delay can be expected before most of the literature can be assessed with any degree of confidence.

Evaluation of Garfield's (14) proposal

Most libraries in the world are unable to purchase all the journals that they would like to. Therefore major library centres housing "the least used journals" set up for servicing interlibrary loans could be of considerable value. For example, the National Lending Library for Science
and Technology at Boston Spa is a central repository for journals in Britain, and serves to some extent such a function.

Such centres would benefit both users and librarians. Librarians could request an interloan from their nearest centre, and be assured that the article would be serviced and returned quickly no matter how "obscure" the journal. Similarly, the user would know that any paper requested would be obtained in a reasonable period of time, even though it would require form-filling followed by a time lag before receipt.

Publishers of small "local interest" journals would also benefit, as it is this type of journal that libraries are usually unable to purchase. A list of the "small journal" centres would indicate to publishers the libraries likely to subscribe to the journal. As well, authors would be assured that their publication was readily available to all researchers.

My experience in using the University of Canterbury interloan system suggests that there could be several limitations in Garfield's scheme however. A major problem could be the expense of operating such a scheme. It would be the smaller libraries that would make the greatest use of such centres, and if too many requests were made by researchers in a small library available finance might be insufficient to service all requests. Some form of priority would therefore have to be established.

In the scheme, photocopying methods and standards would have to be high, since it is unlikely that the original volumes containing the requested articles would be lent. This particularly applies to the copying of photographs, since at the moment copied photographs are seldom as informative as the originals. This is one reason why reprints are requested by individuals even though the article may be readily available for photocopying.

Often the exact date of publication of an article is required, particularly in taxonomic studies. Because some journals are actually issued at a different date to that stated on the cover (e.g., cover date December, 1972; actual publication date February, 1973), photocopies should state the actual date of publication. Otherwise, mistakes will result when the papers are cited by researchers. In many journals it is difficult to find the actual date of publication, and this could cause problems in the "small journal" centres when servicing such requests.
Perhaps the biggest disadvantage to a user if all interloans are sent as photocopies will be the loss of the "browsing factor"; that is, other papers in the same volume as the requested article that are of direct or fringe interest to the researcher or to his colleagues will not be seen. In my experience many papers of interest were found in volumes sent on interloan, either for myself or for colleagues. In this respect photocopied interloans cannot adequately compensate for the lack of a journal in a library.

To summarise, Garfield's proposal has advantages and limitations. On final analysis however the existence of major library centres operating efficient interloan systems does not lessen the need, nor provide a substitute, for good local collections held at centres where research is being undertaken. The function of any interloan system should be only that of a "back-up" service for specialist needs of researchers, and not for obtaining readily available journals that should be a basic part of any library collection.

Acknowledgments

I wish to thank Mr W.J. McEldowney (University Librarian, University of Otago, Dunedin) and Dr M.J. Winterbourn for their helpful discussions and criticism of this paper. Special thanks go to the staff of the University of Canterbury Library for their efforts in satisfying my requests; in particular, Mr R.N. Erwin and those of the interloan section, Pam Barnett, Alison Eng, Pam Lock, and Elizabeth Russell. I am indebted to Mr P. Hodgson (National Library of Australia, Canberra) who formulated a MEDLARS search for me. The above work was supported by a New Zealand Postgraduate Scholarship.

References

3 Garfield, E. Citations-to divided by items-published gives journal impact factor; ISI lists the top fifty high-impact journals of science. Current Contents 23 Feb.:6-9, 1972.

4 ---- Is citation frequency a valid criterion for selecting journals? Current Contents 5 Apr.:5-6, 1972.

5 ---- Citation analysis as a tool in journal evaluation. Science 178:471-9, 1972.

7 Garfield, E. If you can't stand the heat, get out of the kitchen! Publishing journals is not kid-stuff!! Current Contents 7 Mar.:5, 1973.

14 Garfield, E. Citation studies indicate that two copies may be cheaper than one! Current Contents 7 June:5-6, 1972.

15 ---- Should journal publication dates be controlled by legislation? Current Contents 29 Mar.:5-6, 1972.
'Neusner loved computers and statistical theory and his papers were famous for the sheets of numbers that masked the fantasy of his conclusions.'

Updike (1969) Couples p. 111
Appendix 4

Instar determination data and programs

Appendix table 1 -- Measurements of the standardization set of larvae AP 19
Appendix table 2 -- Measurements of the test sets of larvae AP 23
Appendix table 3 -- Standardization set of discriminant function equations AP 27
Appendix table 4 -- Discriminant values of the standardization set of larvae in the standardization set of discriminant function equations AP 36
Appendix table 5 -- Means and variances of the discriminant values of the standardization set of larvae in the standardization set of discriminant function equations AP 52
Calculation of quadratic discriminant function equations AP 56
Multiple discriminant function analysis program -- MDISC AP 61
Program for evaluating discriminant function equations -- DSEV AP 70
Program for counting outlier discriminant values -- LIMIT AP 72
INSTAR DETERMINATION DATA

Appendix table 1 -- Measurements of the standardization set of *Austrosimulium tillyardianum* larvae.

INSTAR 1

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDARDIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

INSTAR 2

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDARDIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

X = SPECIMENS WITH MISSING MEASUREMENTS, NOT USED IN THE MULTIPLE DISCRIMINANT FUNCTION ANALYSES
INSTAR DETERMINATION DATA

Appendix table 1 -- continued.

INSTAR 3

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDARDIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.025</td>
<td>181.0</td>
</tr>
<tr>
<td>2 1.175</td>
<td>202.7</td>
</tr>
<tr>
<td>3 1.175</td>
<td>206.4</td>
</tr>
<tr>
<td>4 1.025</td>
<td>213.6</td>
</tr>
<tr>
<td>5 0.95C</td>
<td>206.3</td>
</tr>
<tr>
<td>6 1.15C</td>
<td>177.4</td>
</tr>
<tr>
<td>7 1.075</td>
<td>173.8</td>
</tr>
<tr>
<td>8 0.975</td>
<td>191.9</td>
</tr>
<tr>
<td>9 1.15C</td>
<td>195.5</td>
</tr>
<tr>
<td>10 1.025</td>
<td>188.2</td>
</tr>
<tr>
<td>11 1.025</td>
<td>191.1</td>
</tr>
<tr>
<td>12 0.96C</td>
<td>191.9</td>
</tr>
<tr>
<td>13 1.125</td>
<td>206.3</td>
</tr>
<tr>
<td>14 0.925</td>
<td>152.0</td>
</tr>
<tr>
<td>15 0.825</td>
<td>173.8</td>
</tr>
<tr>
<td>16 0.800</td>
<td>152.0</td>
</tr>
<tr>
<td>17 1.15C</td>
<td>233.6</td>
</tr>
<tr>
<td>18 1.275</td>
<td>206.3</td>
</tr>
<tr>
<td>19 0.55C</td>
<td>150.0</td>
</tr>
<tr>
<td>20 0.55C</td>
<td>162.9</td>
</tr>
<tr>
<td>21 0.55C</td>
<td>115.2</td>
</tr>
<tr>
<td>22 0.55C</td>
<td>152.0</td>
</tr>
<tr>
<td>23 0.55C</td>
<td>152.0</td>
</tr>
<tr>
<td>24 0.55C</td>
<td>152.0</td>
</tr>
<tr>
<td>25 0.55C</td>
<td>152.0</td>
</tr>
<tr>
<td>26 0.55C</td>
<td>152.0</td>
</tr>
<tr>
<td>27 0.55C</td>
<td>152.0</td>
</tr>
</tbody>
</table>

INSTAR 4

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDARDIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.425</td>
<td>230.9</td>
</tr>
<tr>
<td>2 1.35C</td>
<td>246.2</td>
</tr>
<tr>
<td>3 1.425</td>
<td>235.3</td>
</tr>
<tr>
<td>4 1.425</td>
<td>235.3</td>
</tr>
<tr>
<td>5 1.50C</td>
<td>246.2</td>
</tr>
<tr>
<td>6 1.425</td>
<td>235.3</td>
</tr>
<tr>
<td>7 1.50C</td>
<td>211.0</td>
</tr>
<tr>
<td>8 1.225</td>
<td>181.0</td>
</tr>
<tr>
<td>9 1.375</td>
<td>278.7</td>
</tr>
<tr>
<td>10 1.50C</td>
<td>286.0</td>
</tr>
<tr>
<td>11 1.35C</td>
<td>213.5</td>
</tr>
<tr>
<td>12 1.05C</td>
<td>188.2</td>
</tr>
<tr>
<td>13 0.775</td>
<td>233.6</td>
</tr>
<tr>
<td>14 0.675</td>
<td>262.0</td>
</tr>
<tr>
<td>15 0.825</td>
<td>236.9</td>
</tr>
<tr>
<td>16 1.50C</td>
<td>210.0</td>
</tr>
<tr>
<td>17 1.15C</td>
<td>224.4</td>
</tr>
<tr>
<td>18 1.76C</td>
<td>257.0</td>
</tr>
<tr>
<td>19 0.50C</td>
<td>233.6</td>
</tr>
<tr>
<td>20 0.50C</td>
<td>244.3</td>
</tr>
<tr>
<td>21 0.425</td>
<td>248.2</td>
</tr>
<tr>
<td>22 0.375</td>
<td>233.6</td>
</tr>
</tbody>
</table>

* X = SPECIMENS WITH MISCELLANEOUS MEASUREMENTS, NOT USED IN THE MULTIPLE DISCRIMINANT FUNCTION ANALYSES
INSTAR DETERMINATION DATA

Appendix table 1 -- continued.

INSTAR 5

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDARDIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

INSTAR 6

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDARDIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

X = SPECIMENS WITH MISSING MEASUREMENTS, NOT USED IN THE MULTIPLE DISCRIMINANT FUNCTION ANALYSES.
<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.15</td>
<td>1.13</td>
<td>1.10</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>1.14</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.10</td>
<td>1.13</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.12</td>
<td>1.14</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.15</td>
<td>1.13</td>
<td>1.10</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td></td>
</tr>
</tbody>
</table>

INSTANT DETrMINATION DATA

AP 22

APPENDIX TABLE 1 -- CONTINUED.

INSTANT 7

STANDARDIZATION SET OF VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.15</td>
<td>1.13</td>
<td>1.10</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>1.14</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>1.10</td>
<td>1.13</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>4</td>
<td>1.12</td>
<td>1.14</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>1.15</td>
<td>1.13</td>
<td>1.10</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
</tr>
</tbody>
</table>

INSTANT 8

STANDARDIZATION SET OF VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.15</td>
<td>1.13</td>
<td>1.10</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>1.14</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td>1.10</td>
<td>1.13</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>4</td>
<td>1.12</td>
<td>1.14</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>1.15</td>
<td>1.13</td>
<td>1.10</td>
<td>1.17</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.31</td>
<td>1.34</td>
<td>1.37</td>
<td>1.40</td>
<td>1.43</td>
<td>1.46</td>
<td>1.49</td>
</tr>
</tbody>
</table>

X = SPECIMENS WITH MISSING MEASUREMENTS; NOT USED IN THE MULTIPLE DISCRIMINANT FUNCTION ANALYSES.
Appendix table 1 -- continued.

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>STANDORIZATION SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

X = SPECIMENS WITH MISSING MEASUREMENTS, NOT USED IN THE MULTIPLE DISCRIMINANT FUNCTION ANALYSES

Appendix table 2 -- Measurements of the test sets of *Austrostimulium stillvadianum* larvae

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>26-9-71</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

INSTAR 9

INSTAR 1
INSTAR DETERMINATION DATA

Appendix table 2 -- continued.

INSTAR 2

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTAR 3

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTAR 4

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AP 24
INSTAR DETERMINATION DATA
Appendix table 2 — continued.

INSTAR 5

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.95G 300.6 249.8 213.6 139.2 8 55.7 55.4 14.1 97.9 11.5 2 3 3 3 2</td>
</tr>
<tr>
<td>2</td>
<td>1.925 318.7 253.4 217.2 136.9 8 57.6 41.8 7.2 115.2 11.5 2 3 3 3 2</td>
</tr>
<tr>
<td>3</td>
<td>1.80C 322.2 257.4 231.7 129.9 7 56.2 44.6 5.8 110.9 11.2 2 3 3 3 2</td>
</tr>
<tr>
<td>4</td>
<td>1.85C 336.7 271.5 231.7 138.2 7 54.7 47.5 7.2 113.8 11.6 2 3 3 3 2</td>
</tr>
<tr>
<td>5</td>
<td>2.2CC 296.8 253.4 217.2 129.9 8 54.7 43.2 7 129.4 11.2 2 3 3 3 2</td>
</tr>
<tr>
<td>6</td>
<td>2.05C 365.0 260.6 226.1 129.9 7 53.3 41.8 8.6 166.6 11.6 2 3 3 3 2</td>
</tr>
<tr>
<td>7</td>
<td>1.625 335.6 246.8 224.4 129.9 8 49.0 46.1 5.6 151.1 14.4 2 3 3 3 2</td>
</tr>
<tr>
<td>8</td>
<td>1.925 365.0 289.6 267.9 139.2 7 49.0 46.1 7.2 159.4 13.6 2 3 3 3 2</td>
</tr>
<tr>
<td>9</td>
<td>2.025 365.0 266.6 231.7 129.9 7 53.1 44.6 7.2 159.4 13.6 2 3 3 3 2</td>
</tr>
<tr>
<td>10</td>
<td>2.000 350.4 257.0 231.7 125.3 8 56.2 43.2 6.6 166.6 13.0 2 3 3 3 2</td>
</tr>
</tbody>
</table>

INSTAR 6

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.50C 408.8 277.4 233.6 169.4 9 59.0 54.7 7.2 120.6 11.0 2 3 3 3 2</td>
</tr>
<tr>
<td>2</td>
<td>2.840 433.0 321.2 262.8 185.6 9 67.7 66.2 10.1 139.2 11.5 2 3 3 3 2</td>
</tr>
<tr>
<td>3</td>
<td>2.50C 423.4 312.6 233.6 174.0 9 66.2 66.5 10.1 136.9 13.3 2 3 3 3 2</td>
</tr>
<tr>
<td>4</td>
<td>2.100 379.6 249.2 244.4 174.0 10 64.8 56.7 10.1 127.6 14.6 2 3 3 3 2</td>
</tr>
<tr>
<td>5</td>
<td>2.400 452.6 312.6 233.6 174.0 9 64.8 56.7 6.6 148.5 14.0 2 3 3 3 2</td>
</tr>
<tr>
<td>6</td>
<td>2.675 394.2 282.4 246.2 153.1 9 54.7 44.6 10.1 151.1 14.4 2 3 3 3 2</td>
</tr>
<tr>
<td>7</td>
<td>2.05C 379.6 275.1 242.5 145.1 9 56.2 57.6 9.6 122.4 14.4 2 3 3 3 2</td>
</tr>
<tr>
<td>8</td>
<td>2.600 423.4 282.4 253.4 157.8 9 61.9 56.4 7.2 136.9 15.0 2 3 3 3 2</td>
</tr>
<tr>
<td>9</td>
<td>2.275 423.4 296.8 264.3 160.1 9 66.2 51.8 7.2 134.6 14.4 2 3 3 3 2</td>
</tr>
<tr>
<td>10</td>
<td>2.375 438.0 314.9 276.7 171.7 7 73.4 64.8 10.1 136.9 13.0 2 3 3 3 2</td>
</tr>
</tbody>
</table>

INSTAR 7

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.22C 540.2 394.2 335.8 192.6 10 88.4 66.5 14.4 164.7 14.4 4 3 3 3 2</td>
</tr>
<tr>
<td>2</td>
<td>1.280 511.0 365.0 306.4 199.5 10 79.2 66.2 12.7 159.1 12.0 4 3 3 3 2</td>
</tr>
<tr>
<td>3</td>
<td>3.35C 554.8 379.6 335.8 217.2 10 87.8 66.8 15.0 174.0 15.8 4 3 3 3 2</td>
</tr>
<tr>
<td>4</td>
<td>3.08C 496.4 350.4 306.4 212.8 10 82.1 66.2 15.8 162.0 14.4 4 3 3 3 2</td>
</tr>
<tr>
<td>5</td>
<td>3.00C 525.6 408.8 346.0 212.7 10 82.1 67.7 15.1 174.6 14.4 4 3 3 3 2</td>
</tr>
<tr>
<td>6</td>
<td>2.48C 491.8 292.4 268.2 101.4 9 72.0 61.9 15.1 150.8 17.2 4 3 3 3 2</td>
</tr>
<tr>
<td>7</td>
<td>1.32C 504.2 375.6 306.4 213.6 10 86.6 63.4 15.1 162.4 14.4 4 3 3 3 2</td>
</tr>
<tr>
<td>8</td>
<td>1.40C 525.6 365.0 306.4 197.2 9 80.6 64.8 11.5 150.0 15.8 4 3 3 3 2</td>
</tr>
<tr>
<td>9</td>
<td>2.46C 525.6 375.6 321.2 213.6 9 77.4 61.5 11.5 159.3 14.4 4 3 3 3 2</td>
</tr>
<tr>
<td>10</td>
<td>1.16C 525.6 375.6 330.4 195.5 10 86.4 57.6 11.5 153.1 14.4 4 3 3 3 2</td>
</tr>
</tbody>
</table>

INSTAR 8

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.56C 425.6 385.0 321.2 213.6 12 77.8 72.0 13.0 155.4 18.7 5 3 3 3 2</td>
</tr>
<tr>
<td>2</td>
<td>1.60C 554.8 408.8 350.4 213.6 9 83.5 66.2 15.8 153.1 15.8 4 3 3 3 2</td>
</tr>
<tr>
<td>3</td>
<td>1.70C 475.0 365.0 306.4 191.9 9 74.9 57.6 11.5 141.5 15.8 4 3 3 3 2</td>
</tr>
<tr>
<td>4</td>
<td>1.72C 550.0 194.2 335.8 220.1 12 86.6 72.4 17.3 162.4 15.8 5 3 3 3 2</td>
</tr>
<tr>
<td>5</td>
<td>1.56C 598.6 408.8 350.4 213.6 9 89.3 66.2 17.3 162.4 17.3 4 3 3 3 2</td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

APPENDIX TABLE 2 -- CONTINUED.

INSTAR 8

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.606</td>
<td>642.4</td>
<td>452.6</td>
<td>379.6</td>
<td>238.9</td>
<td>11.4</td>
<td>95.0</td>
<td>83.5</td>
<td>14.4</td>
<td>197.2</td>
<td>14.4</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.125</td>
<td>657.0</td>
<td>511.0</td>
<td>408.0</td>
<td>246.2</td>
<td>12.9</td>
<td>96.5</td>
<td>79.2</td>
<td>14.4</td>
<td>192.6</td>
<td>15.8</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.125</td>
<td>657.0</td>
<td>511.0</td>
<td>408.0</td>
<td>246.2</td>
<td>12.9</td>
<td>96.5</td>
<td>88.4</td>
<td>14.4</td>
<td>204.2</td>
<td>18.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.938</td>
<td>627.8</td>
<td>481.8</td>
<td>394.2</td>
<td>257.4</td>
<td>13.2</td>
<td>97.9</td>
<td>75.2</td>
<td>14.4</td>
<td>155.0</td>
<td>15.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.250</td>
<td>627.8</td>
<td>438.0</td>
<td>365.0</td>
<td>249.8</td>
<td>12.9</td>
<td>86.4</td>
<td>69.1</td>
<td>14.4</td>
<td>178.6</td>
<td>18.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.750</td>
<td>642.4</td>
<td>466.0</td>
<td>394.2</td>
<td>267.9</td>
<td>13.2</td>
<td>108.0</td>
<td>74.9</td>
<td>20.2</td>
<td>193.0</td>
<td>14.0</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.875</td>
<td>650.0</td>
<td>452.6</td>
<td>379.6</td>
<td>271.5</td>
<td>12.9</td>
<td>89.3</td>
<td>65.0</td>
<td>13.6</td>
<td>199.1</td>
<td>17.3</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.250</td>
<td>627.8</td>
<td>467.2</td>
<td>371.6</td>
<td>260.6</td>
<td>13.2</td>
<td>105.1</td>
<td>83.5</td>
<td>13.0</td>
<td>210.0</td>
<td>18.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.450</td>
<td>642.4</td>
<td>496.0</td>
<td>408.0</td>
<td>253.4</td>
<td>13.2</td>
<td>110.8</td>
<td>86.6</td>
<td>16.7</td>
<td>210.0</td>
<td>17.3</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.125</td>
<td>642.4</td>
<td>481.8</td>
<td>406.0</td>
<td>253.4</td>
<td>13.2</td>
<td>109.4</td>
<td>74.9</td>
<td>14.4</td>
<td>193.5</td>
<td>17.3</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTAR 9

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-71</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.750</td>
<td>710.0</td>
<td>525.6</td>
<td>452.6</td>
<td>307.7</td>
<td>13.2</td>
<td>115.2</td>
<td>150.4</td>
<td>18.7</td>
<td>231.9</td>
<td>20.2</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.125</td>
<td>750.0</td>
<td>540.0</td>
<td>430.0</td>
<td>304.0</td>
<td>13.2</td>
<td>112.3</td>
<td>92.2</td>
<td>28.8</td>
<td>224.4</td>
<td>15.6</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.688</td>
<td>715.4</td>
<td>554.8</td>
<td>467.2</td>
<td>311.3</td>
<td>12.9</td>
<td>118.1</td>
<td>116.6</td>
<td>24.8</td>
<td>220.8</td>
<td>14.4</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.188</td>
<td>750.0</td>
<td>554.8</td>
<td>452.6</td>
<td>318.5</td>
<td>13.2</td>
<td>119.3</td>
<td>112.3</td>
<td>26.6</td>
<td>230.9</td>
<td>18.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.438</td>
<td>759.2</td>
<td>585.4</td>
<td>460.0</td>
<td>325.6</td>
<td>13.2</td>
<td>124.4</td>
<td>95.0</td>
<td>18.7</td>
<td>249.0</td>
<td>18.7</td>
<td>6.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.625</td>
<td>759.2</td>
<td>569.4</td>
<td>496.4</td>
<td>336.7</td>
<td>14.2</td>
<td>128.2</td>
<td>108.8</td>
<td>26.2</td>
<td>246.2</td>
<td>18.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.125</td>
<td>715.4</td>
<td>569.4</td>
<td>511.0</td>
<td>311.3</td>
<td>13.2</td>
<td>118.1</td>
<td>155.4</td>
<td>24.8</td>
<td>246.2</td>
<td>18.7</td>
<td>6.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.313</td>
<td>759.2</td>
<td>569.4</td>
<td>322.2</td>
<td>122.6</td>
<td>108.8</td>
<td>18.7</td>
<td>238.9</td>
<td>26.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.625</td>
<td>759.2</td>
<td>554.8</td>
<td>481.8</td>
<td>307.7</td>
<td>13.2</td>
<td>116.6</td>
<td>104.6</td>
<td>14.4</td>
<td>204.0</td>
<td>15.0</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.813</td>
<td>722.0</td>
<td>569.4</td>
<td>467.2</td>
<td>321.2</td>
<td>13.2</td>
<td>125.3</td>
<td>158.8</td>
<td>18.7</td>
<td>244.4</td>
<td>20.2</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26-9-71

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>TEST SET OF VARIABLES</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>4.625</td>
<td>671.6</td>
<td>505.0</td>
<td>430.0</td>
<td>307.0</td>
<td>13.2</td>
<td>103.7</td>
<td>86.6</td>
<td>15.8</td>
<td>195.5</td>
<td>16.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.125</td>
<td>710.0</td>
<td>525.6</td>
<td>467.2</td>
<td>271.5</td>
<td>11.0</td>
<td>108.0</td>
<td>79.2</td>
<td>25.7</td>
<td>195.5</td>
<td>18.7</td>
<td>5.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.250</td>
<td>671.6</td>
<td>511.0</td>
<td>452.6</td>
<td>253.4</td>
<td>11.0</td>
<td>100.0</td>
<td>78.2</td>
<td>24.5</td>
<td>184.6</td>
<td>17.2</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.438</td>
<td>642.4</td>
<td>496.4</td>
<td>408.0</td>
<td>253.4</td>
<td>13.2</td>
<td>109.4</td>
<td>74.9</td>
<td>14.4</td>
<td>195.5</td>
<td>17.3</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

DISCRIMINANT FUNCTION EQUATIONS

VARIABLES USED

<table>
<thead>
<tr>
<th>INSTAR</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1617.5134</td>
<td>0.29525 0.56245 -0.35878 0.20712 (.74525 -0.84709 0.17141 0.291345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>2</td>
<td>-2023.9220</td>
<td>0.30864 0.10308 0.94611 0.43687 0.23437 0.31354 0.51466 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>3</td>
<td>-4205.7104</td>
<td>0.56690 0.16931 0.92029 0.24108 0.15416 0.21714 0.715230 2.55012 0.56153 1.26425 0.75506 0.462209 0.943846</td>
</tr>
<tr>
<td>4</td>
<td>-6232.1679</td>
<td>2.17641 0.77421 1.341605 1.04976 0.386727 0.35462 0.247560 0.462209 0.943846</td>
</tr>
<tr>
<td>5</td>
<td>-12770.5796</td>
<td>1.09072 0.95012 0.92616 0.23116 0.61455 0.71166 0.489536 0.462209 0.943846</td>
</tr>
<tr>
<td>6</td>
<td>-15945.7591</td>
<td>1.04079 0.97392 0.92816 0.23262 0.61455 0.71166 0.489536 0.462209 0.943846</td>
</tr>
<tr>
<td>7</td>
<td>-29782.2421</td>
<td>1.00063 1.01494 0.92852 0.23364 0.61455 0.71166 0.489536 0.462209 0.943846</td>
</tr>
<tr>
<td>8</td>
<td>-37861.8120</td>
<td>0.02597 0.98081 0.92366 0.23364 0.61455 0.71166 0.489536 0.462209 0.943846</td>
</tr>
<tr>
<td>9</td>
<td>-53525.2825</td>
<td>0.04569 0.18698 0.92618 0.23524 0.61455 0.71166 0.489536 0.462209 0.943846</td>
</tr>
</tbody>
</table>

DISCRIMINANT FUNCTION EQUATIONS

VARIABLES USED

<table>
<thead>
<tr>
<th>INSTAR</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-44.0355</td>
<td>0.049476 0.00591 0.17023 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>2</td>
<td>-43.4525</td>
<td>0.07005 0.00659 0.17049 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>3</td>
<td>-56.7146</td>
<td>0.01186 0.00536 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>4</td>
<td>-68.9462</td>
<td>0.09594 0.02635 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>5</td>
<td>-133.0299</td>
<td>0.15755 0.03132 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>6</td>
<td>-195.4271</td>
<td>0.15586 0.02911 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>7</td>
<td>-297.4133</td>
<td>0.12395 0.04729 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>8</td>
<td>-399.7016</td>
<td>0.17428 0.06758 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
<tr>
<td>9</td>
<td>-581.6600</td>
<td>0.12865 0.06963 0.17016 0.20712 (.74525 -0.84709 0.17141 0.297345 C.43752 (.40592 0.23330 0.44817 (.15711 0.31354 0.91406 1.15535 C.31147 0.33397 1.32312 C.372(5 0.27347 1.7447 0.97839 C.23423</td>
</tr>
</tbody>
</table>
Discriminant Function Equations

EQUATIONS TO DISCRIMINATE BETWEEN INSTARS 1 2

Selection 1
Variables Used: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>*Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-234670.07500</td>
<td>-77.675048</td>
</tr>
<tr>
<td>2</td>
<td>-242322.43700</td>
<td>-310.095735</td>
</tr>
</tbody>
</table>

Selection 2
Variables Used: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>*Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2538.09800</td>
<td>-65.719948</td>
</tr>
<tr>
<td>2</td>
<td>-2672.43610</td>
<td>-1.737396</td>
</tr>
</tbody>
</table>

Selection 3
Variables Used: 4 5 10

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>*Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-421.94639</td>
<td>3.135844</td>
</tr>
<tr>
<td>2</td>
<td>-515.54549</td>
<td>3.054454</td>
</tr>
</tbody>
</table>

Selection 4
Variables Used: 5 10

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>*Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-289.46045</td>
<td>5.018939</td>
</tr>
<tr>
<td>2</td>
<td>-367.09717</td>
<td>5.973959</td>
</tr>
</tbody>
</table>

Selection 5
Variables Used: 1 2

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>*Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-44.49043</td>
<td>2.56902</td>
</tr>
<tr>
<td>2</td>
<td>-65.14362</td>
<td>12.25349</td>
</tr>
</tbody>
</table>

Selection 6
Variables Used: 4 5

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>*Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-317.74648</td>
<td>3.68693</td>
</tr>
<tr>
<td>2</td>
<td>-467.16333</td>
<td>3.97505</td>
</tr>
</tbody>
</table>
DISCRIMINANT FUNCTION EQUATIONS

EQUATIONS TO DISCRIMINATE BETWEEN INSTARS 2-3

<table>
<thead>
<tr>
<th>SELECTION</th>
<th>VARIABLES USED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR Constant</td>
<td>COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2304.82227</td>
<td>2.05575</td>
<td>1.49937</td>
<td>1.01216</td>
<td>5.32018</td>
<td>3.49074</td>
<td>9.46655</td>
<td>-5.37140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION</th>
<th>VARIABLES USED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR Constant</td>
<td>COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-154.60875</td>
<td>0.12301</td>
<td>0.36089</td>
<td>0.84672</td>
<td>3.00575</td>
<td>0.80634</td>
<td>-0.98500</td>
<td>4.19534</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-207.07410</td>
<td>-0.31986</td>
<td>-0.72344</td>
<td>0.95465</td>
<td>3.53567</td>
<td>0.10637</td>
<td>-0.56661</td>
<td>1.46331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION</th>
<th>VARIABLES USED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR Constant</td>
<td>COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-103.70772</td>
<td>1.16709</td>
<td>2.07350</td>
<td>-1.03376</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-101.02100</td>
<td>1.34258</td>
<td>2.19825</td>
<td>-0.40384</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION</th>
<th>VARIABLES USED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR Constant</td>
<td>COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-65.34488</td>
<td>2.50591</td>
<td>0.16602</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-111.99235</td>
<td>2.11888</td>
<td>0.95332</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION</th>
<th>VARIABLES USED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR Constant</td>
<td>COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-13.38341</td>
<td>2.98381</td>
<td>0.34420</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-54.47144</td>
<td>14.48579</td>
<td>0.33184</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION</th>
<th>VARIABLES USED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR Constant</td>
<td>COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-97.95786</td>
<td>0.98625</td>
<td>1.57952</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-160.14734</td>
<td>1.26206</td>
<td>2.00564</td>
<td></td>
</tr>
</tbody>
</table>
Discriminant Function Equations

Equations to Discriminate Between Instars 3, 4

Selection: 1
Variables Used: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Instar Constant Coefficients:

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-10490.07812</td>
<td>0.76079 20.52996 21.65556 25.05893 5.00828 -7.53901 -3.20526</td>
</tr>
<tr>
<td>4</td>
<td>-18116.69922</td>
<td>0.62733 24.25664 24.11165 28.62776 12.67761 -7.75141 0.75812</td>
</tr>
</tbody>
</table>

Selection: 2
Variables Used: 2 3 4 5 6 7 8 9 10 11
Instar Constant Coefficients:

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-221.86929</td>
<td>-0.27671 1.84148 -0.04049 3.65623 0.37473</td>
</tr>
<tr>
<td>4</td>
<td>-395.51929</td>
<td>-0.56860 2.31381 0.24497 2.81590</td>
</tr>
</tbody>
</table>

Selection: 3
Variables Used: 4 5 10
Instar Constant Coefficients:

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-154.00391</td>
<td>1.72011 2.93758 0.16810</td>
</tr>
<tr>
<td>4</td>
<td>-268.39966</td>
<td>1.24029 3.23408 0.10359</td>
</tr>
</tbody>
</table>

Selection: 4
Variables Used: 5 10
Instar Constant Coefficients:

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-1C4.01082</td>
<td>2.73464 -0.04049</td>
</tr>
<tr>
<td>4</td>
<td>194.49634</td>
<td>-3.65610 0.05156</td>
</tr>
</tbody>
</table>

Selection: 5
Variables Used: 1 2
Instar Constant Coefficients:

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-39.22371</td>
<td>16.22400 0.30552</td>
</tr>
<tr>
<td>4</td>
<td>-59.37392</td>
<td>23.86562 0.37473</td>
</tr>
</tbody>
</table>

Selection: 6
Variables Used: 4 5
Instar Constant Coefficients:

<table>
<thead>
<tr>
<th>Instar</th>
<th>Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-135.48511</td>
<td>1.01207 2.25980</td>
</tr>
<tr>
<td>4</td>
<td>-268.20264</td>
<td>1.23334 3.15536</td>
</tr>
</tbody>
</table>
Discriminant Function Equations

EQUATIONS TO DISCRIMINATE BETWEEN INSTARS 4-5

Selection:

VARIABLES USED: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

<table>
<thead>
<tr>
<th>INSTARS</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-147.63</td>
<td>86.72</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-243.28</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Selection:

VARIABLES USED: 2 3 4 5 7 8 9 10 11

<table>
<thead>
<tr>
<th>INSTARS</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-163.67</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>-0.0537</td>
<td>0.23</td>
</tr>
<tr>
<td>5</td>
<td>-243.14</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Selection:

VARIABLES USED: 4 5 10

<table>
<thead>
<tr>
<th>INSTARS</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-100.43</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>-0.20</td>
</tr>
<tr>
<td>5</td>
<td>-171.98</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Selection:

VARIABLES USED: 5 10

<table>
<thead>
<tr>
<th>INSTARS</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-77.04</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.27</td>
</tr>
<tr>
<td>5</td>
<td>-131.15</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Selection:

VARIABLES USED: 1 2

<table>
<thead>
<tr>
<th>INSTARS</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-28.60</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.28</td>
</tr>
<tr>
<td>5</td>
<td>-55.72</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Selection:

VARIABLES USED: 4 5

<table>
<thead>
<tr>
<th>INSTARS</th>
<th>CONSTANT</th>
<th>COEFFICIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-59.59</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>-169.57</td>
<td>0.94</td>
</tr>
</tbody>
</table>
CISCRIMINANT FUNCTION EQUATIONS

EQUATIONS TO DISCRIMINATE BETWEEN INSTARS 5 & 6

SELECTION..... 1 VARIABLES USED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
INSTAR CONSTANT * COEFFICIENTS
5 -8965.4492 0.0 -2.4897 -4.0584 13.3287 -49.9889 0.4591 -0.5178 0.9226
6 -15001.4644 0.0 -5.9307 -6.7963 -3.2746 -11.1428 -2.7435 -1.0755 7.1265

SELECTION..... 2 VARIABLES USED 2 3 4 5 7 8 9 10 11
INSTAR CONSTANT * COEFFICIENTS
5 -137.7685 0.2109 -0.7490 0.2474 0.3869 0.6191 -2.0264
6 -196.5967 0.2197 -0.0746 0.1777 0.3241 0.4353 1.1444 -3.6420

SELECTION..... 3 VARIABLES USED 4 5 10
INSTAR CONSTANT * COEFFICIENTS
5 -73.6668 0.0229 0.5918 0.5456
6 -123.8164 0.0199 0.7642 0.7350

SELECTION..... 4 VARIABLES USED 5 10
INSTAR CONSTANT * COEFFICIENTS
5 -73.5240 0.6255 0.5908
6 -123.7098 0.7935 0.7350

SELECTION..... 5 VARIABLES USED 1 2
INSTAR CONSTANT * COEFFICIENTS
5 -14.5609 3.2379 0.1924
6 -53.8465 2.4979 0.2134

SELECTION..... 6 VARIABLES USED 4 5
INSTAR CONSTANT * COEFFICIENTS
5 -65.9271 0.0247 0.8493
6 -100.9416 0.0222 1.1082
DISCRIMINANT FUNCTION EQUATIONS

EQUATIONS TO DISCRIMINATE BETWEEN INSTARS 6 & 7

<table>
<thead>
<tr>
<th>SELECTION... 1</th>
<th>VARIABLES USED</th>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR CONSTANT</td>
<td>* COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-342.00795</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.02110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.15212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.75279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.03276</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-18.53014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.52171</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-5247.56250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.43017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.23723</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.13654</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.77232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-22.85425</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.05886</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION... 2</th>
<th>VARIABLES USED</th>
<th>2 3 4 5 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR CONSTANT</td>
<td>* COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-127.59578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.09454</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.21203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.44038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.27146</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.54480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.03299</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-201.69727</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06662</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.16398</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.22156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.28554</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.60900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42513</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.76525</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.60404</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION... 3</th>
<th>VARIABLES USED</th>
<th>4 5 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR CONSTANT</td>
<td>* COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-102.81424</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.13211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45527</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.83898</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-163.85104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01761</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.58655</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.03872</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION... 4</th>
<th>VARIABLES USED</th>
<th>5 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR CONSTANT</td>
<td>* COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-102.77483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.47695</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.83204</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-163.78972</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.62877</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.02747</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION... 5</th>
<th>VARIABLES USED</th>
<th>1 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR CONSTANT</td>
<td>* COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-38.32561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.39804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.14957</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-67.38263</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.89309</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.19555</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELECTION... 6</th>
<th>VARIABLES USED</th>
<th>4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTAR CONSTANT</td>
<td>* COEFFICIENTS</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-66.28397</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08829</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.88621</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-108.07637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10782</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.12399</td>
<td></td>
</tr>
</tbody>
</table>
Discriminant Function Equations

Equations to Discriminate Between Instars 7-8

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instar</td>
<td>Constant</td>
<td>Coefficients</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-2724.48047</td>
<td>21.11763</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.20566</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.97161</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.62854</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16.66538</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.03778</td>
<td>3.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>341.39000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.82747</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-35432.46875</td>
<td>27.11351</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.36733</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.22611</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.62227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.12767</td>
<td>8.65592</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00000</td>
<td></td>
</tr>
</tbody>
</table>

Selection..... 2

<table>
<thead>
<tr>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 4 5 6 7 8 9 10 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-221.92369</td>
<td>0.05812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.39234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.93577</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.51004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.50205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.54665</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.12475</td>
</tr>
<tr>
<td>8</td>
<td>-301.72681</td>
<td>0.06435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.63925</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.67659</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.61284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.05432</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.41385</td>
</tr>
</tbody>
</table>

Selection..... 3

<table>
<thead>
<tr>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-198.06931</td>
<td>0.22836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.40823</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.27262</td>
</tr>
<tr>
<td>8</td>
<td>-271.67798</td>
<td>0.26906</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.54239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.35111</td>
</tr>
</tbody>
</table>

Selection..... 4

<table>
<thead>
<tr>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-189.9337</td>
<td>0.71775</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.17990</td>
</tr>
<tr>
<td>8</td>
<td>-258.50596</td>
<td>0.92692</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.29526</td>
</tr>
</tbody>
</table>

Selection..... 5

<table>
<thead>
<tr>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-62.88672</td>
<td>0.27650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18865</td>
</tr>
<tr>
<td>8</td>
<td>-82.98269</td>
<td>7.68889</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.21777</td>
</tr>
</tbody>
</table>

Selection..... 6

<table>
<thead>
<tr>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-114.2793C</td>
<td>0.15399</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.80721</td>
</tr>
<tr>
<td>8</td>
<td>-174.97667</td>
<td>0.1874C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.98162</td>
</tr>
</tbody>
</table>
Discriminant Function Equations

Equations to Discriminate Between Instars 8 & 9

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</td>
<td>$-522.65625 \times 5.62906 + 7.01565 - 8.57708 + 467.42464 + 419.72263 + 224.42663 + 37.31622 + 3.47344$</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>$-735.137500 \times 6.49189 + 81.65379 - 1.49189 + 242.32928 + 647.26291 + 241.72263 + 43.52757 + 5.82488$</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
<td>$-935.04229 \times 0.59344 + 0.01339 + 41.68751$</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>$-1283.65994 \times 0.63233 + 2.41257 + 45.49091$</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>$-233.56971 \times 0.72343 + 4.37020 + 1.67678 + 2.26140$</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>$-353.74170 \times 0.10286 + 0.93234 + 1.24409$</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>$-229.69138 \times 0.64017 + 1.10521$</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>$-350.97734 \times 1.11244 + 1.26532$</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>$-100.01627 \times 1.73306 + 0.21847$</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>$-128.97449 \times 2.86081 + 0.21042$</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection</th>
<th>Variables Used</th>
<th>Instar Constant</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>$-175.19507 \times 0.16413 + 1.02667$</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>$-217.98907 \times 1.15122 + 1.37146$</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
Appendix table 4 — Discriminant values of the standardization set of Austrosimulium tilyardianum larvae in the standardization set of discriminant function equations.

VALUES FOR INSTAR 1 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1817 1708 1097 -725 -3435 -8386 -15794 -22269 -35215</td>
</tr>
<tr>
<td>2</td>
<td>1479 1359 596 -1164 -6340 -9350 -11188 -23768 -37776</td>
</tr>
<tr>
<td>3</td>
<td>1512 1415 989 -1292 -6143 -9270 -16972 -23415 -36626</td>
</tr>
<tr>
<td>4</td>
<td>1553 1436 709 -1268 -6112 -9234 -18622 -23355 -35659</td>
</tr>
<tr>
<td>5</td>
<td>1703 1541 947 -918 -3656 -8644 -16093 -22532 -35591</td>
</tr>
<tr>
<td>6</td>
<td>1901 1800 1262 -465 -3632 -7866 -15145 -21458 -34287</td>
</tr>
<tr>
<td>7</td>
<td>1454 1325 587 -1413 -6275 -9417 -17039 -23593 -36815</td>
</tr>
<tr>
<td>8</td>
<td>1523 1402 664 -1330 -6191 -9330 -16943 -23940 -36714</td>
</tr>
<tr>
<td>9</td>
<td>1550 1426 706 -1265 -6107 -9222 -16811 -23343 -36557</td>
</tr>
<tr>
<td>10</td>
<td>1547 1429 701 -1276 -6123 -9249 -16642 -22380 -36596</td>
</tr>
<tr>
<td>11</td>
<td>1628 1512 629 -1090 -3878 -8925 -16642 -22992 -36032</td>
</tr>
<tr>
<td>12</td>
<td>1716 1667 964 -898 -3630 -8618 -16057 -22492 -35545</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 2 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1862 1795 1508 -344 -3048 -6003 -15406 -21612 -34765</td>
</tr>
<tr>
<td>2</td>
<td>1480 2012 1547 -295 -2980 -7410 -15288 -21670 -34601</td>
</tr>
<tr>
<td>3</td>
<td>1681 1999 1558 -265 -2915 -7810 -15144 -21497 -34397</td>
</tr>
<tr>
<td>4</td>
<td>1704 1894 1366 -539 -3305 -8334 -15823 -22295 -35356</td>
</tr>
<tr>
<td>5</td>
<td>2046 2159 1773 33 -2551 -7372 -14623 -24925 -37736</td>
</tr>
<tr>
<td>6</td>
<td>1978 2151 1651 -153 -2824 -7734 -15096 -21460 -34383</td>
</tr>
<tr>
<td>7</td>
<td>1957 2041 1632 -168 -2815 -7693 -15023 -21371 -34247</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 3 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3617 3978 4563 3971 2021 -1648 -7675 -13119 -24492</td>
</tr>
<tr>
<td>2</td>
<td>3545 3950 4424 3502 1890 -1804 -7943 -12298 -24659</td>
</tr>
<tr>
<td>3</td>
<td>3591 3957 4509 3620 2045 -1603 -7593 -13614 -24755</td>
</tr>
<tr>
<td>4</td>
<td>3422 3777 4260 3237 1544 -2254 -6402 -13937 -25466</td>
</tr>
<tr>
<td>5</td>
<td>3353 3712 4114 3097 1361 -2489 -6687 -14251 -25836</td>
</tr>
<tr>
<td>6</td>
<td>3519 3975 4358 3396 1721 -2040 -5160 -12672 -25193</td>
</tr>
<tr>
<td>7</td>
<td>3511 3984 4265 3415 1767 -1962 -6052 -13545 -24968</td>
</tr>
<tr>
<td>8</td>
<td>2822 3140 3588 1989 -26 -4217 -10346 -14619 -26110</td>
</tr>
<tr>
<td>9</td>
<td>3315 3650 4133 3085 1379 -2429 -5598 -14136 -25647</td>
</tr>
<tr>
<td>10</td>
<td>3156 3454 3853 2695 864 -3095 -9428 -15784 -24769</td>
</tr>
<tr>
<td>11</td>
<td>3242 3592 4062 2922 1163 -2711 -8949 -14537 -26134</td>
</tr>
<tr>
<td>12</td>
<td>3224 3571 3998 2908 1174 -2673 -6885 -14405 -26214</td>
</tr>
<tr>
<td>13</td>
<td>3834 4200 4459 4126 2875 -814 -6539 -11935 -23101</td>
</tr>
<tr>
<td>14</td>
<td>3751 4121 4729 3930 2421 -1144 -7043 -12414 -23666</td>
</tr>
<tr>
<td>15</td>
<td>2705 3067 3176 1693 -505 -4916 -11723 -17712 -30002</td>
</tr>
<tr>
<td>16</td>
<td>3273 3633 3676 2446 990 -3610 -10097 -1586 -27776</td>
</tr>
<tr>
<td>17</td>
<td>2983 3303 3546 2255 254 -5907 -10467 -16286 -28252</td>
</tr>
<tr>
<td>18</td>
<td>4486 4916 551 5827 4665 1625 -3722 -8711 -19209</td>
</tr>
<tr>
<td>19</td>
<td>3356 3726 4116 3143 1445 -2355 -6567 -14242 -25548</td>
</tr>
</tbody>
</table>
VALUES FOR INSTAR 4 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5527</td>
<td>5998</td>
<td>7264</td>
<td>8247</td>
<td>7609</td>
<td>5227</td>
<td>612</td>
<td>-2871</td>
<td>-12644</td>
</tr>
<tr>
<td>2</td>
<td>5642</td>
<td>6114</td>
<td>7439</td>
<td>8499</td>
<td>7939</td>
<td>5561</td>
<td>1140</td>
<td>-3271</td>
<td>-12620</td>
</tr>
<tr>
<td>3</td>
<td>5172</td>
<td>5614</td>
<td>6731</td>
<td>7500</td>
<td>6662</td>
<td>4632</td>
<td>-853</td>
<td>-5520</td>
<td>-15995</td>
</tr>
<tr>
<td>4</td>
<td>5422</td>
<td>5876</td>
<td>7125</td>
<td>8074</td>
<td>7407</td>
<td>4980</td>
<td>324</td>
<td>-4195</td>
<td>-14628</td>
</tr>
<tr>
<td>5</td>
<td>5577</td>
<td>6044</td>
<td>7361</td>
<td>8442</td>
<td>7894</td>
<td>5625</td>
<td>1125</td>
<td>-3275</td>
<td>-12886</td>
</tr>
<tr>
<td>6</td>
<td>5274</td>
<td>5718</td>
<td>6086</td>
<td>7720</td>
<td>6949</td>
<td>4396</td>
<td>-397</td>
<td>-5002</td>
<td>-15468</td>
</tr>
<tr>
<td>7</td>
<td>5117</td>
<td>5558</td>
<td>6641</td>
<td>7368</td>
<td>6488</td>
<td>3605</td>
<td>-1130</td>
<td>-5828</td>
<td>-15686</td>
</tr>
<tr>
<td>8</td>
<td>4758</td>
<td>5174</td>
<td>6106</td>
<td>6615</td>
<td>5593</td>
<td>2597</td>
<td>-2613</td>
<td>-7561</td>
<td>-17545</td>
</tr>
<tr>
<td>9</td>
<td>5451</td>
<td>5969</td>
<td>7201</td>
<td>8197</td>
<td>7574</td>
<td>5227</td>
<td>624</td>
<td>-1042</td>
<td>-13518</td>
</tr>
<tr>
<td>10</td>
<td>6118</td>
<td>7251</td>
<td>9183</td>
<td>11031</td>
<td>11259</td>
<td>9921</td>
<td>6432</td>
<td>2715</td>
<td>-5746</td>
</tr>
<tr>
<td>11</td>
<td>6995</td>
<td>7547</td>
<td>9587</td>
<td>11592</td>
<td>11162</td>
<td>10603</td>
<td>7503</td>
<td>3916</td>
<td>-4333</td>
</tr>
<tr>
<td>12</td>
<td>5622</td>
<td>6609</td>
<td>7411</td>
<td>8465</td>
<td>7907</td>
<td>5614</td>
<td>1080</td>
<td>-3342</td>
<td>-12594</td>
</tr>
<tr>
<td>13</td>
<td>5570</td>
<td>6008</td>
<td>7340</td>
<td>8390</td>
<td>7890</td>
<td>5490</td>
<td>912</td>
<td>-3546</td>
<td>-13288</td>
</tr>
<tr>
<td>14</td>
<td>4929</td>
<td>5365</td>
<td>6330</td>
<td>7660</td>
<td>6051</td>
<td>3269</td>
<td>-1771</td>
<td>-6536</td>
<td>-16733</td>
</tr>
<tr>
<td>15</td>
<td>5573</td>
<td>6009</td>
<td>7246</td>
<td>8366</td>
<td>7489</td>
<td>5301</td>
<td>698</td>
<td>-3802</td>
<td>-13611</td>
</tr>
<tr>
<td>16</td>
<td>5297</td>
<td>5734</td>
<td>6011</td>
<td>7706</td>
<td>6032</td>
<td>4219</td>
<td>-635</td>
<td>-5284</td>
<td>-15364</td>
</tr>
<tr>
<td>17</td>
<td>5618</td>
<td>6075</td>
<td>7412</td>
<td>8454</td>
<td>7897</td>
<td>5611</td>
<td>1079</td>
<td>-3332</td>
<td>-12567</td>
</tr>
<tr>
<td>18</td>
<td>5184</td>
<td>5626</td>
<td>6796</td>
<td>7543</td>
<td>6719</td>
<td>4101</td>
<td>-768</td>
<td>-5428</td>
<td>-15461</td>
</tr>
<tr>
<td>19</td>
<td>5641</td>
<td>5476</td>
<td>6491</td>
<td>7146</td>
<td>6168</td>
<td>3570</td>
<td>-1694</td>
<td>-6497</td>
<td>-16771</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 5 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6153</td>
<td>6550</td>
<td>8267</td>
<td>9688</td>
<td>9508</td>
<td>7675</td>
<td>3656</td>
<td>-416</td>
<td>-9491</td>
</tr>
<tr>
<td>2</td>
<td>6753</td>
<td>7259</td>
<td>9244</td>
<td>10941</td>
<td>11195</td>
<td>9811</td>
<td>6300</td>
<td>2586</td>
<td>-5963</td>
</tr>
<tr>
<td>3</td>
<td>6284</td>
<td>6813</td>
<td>8539</td>
<td>9931</td>
<td>9871</td>
<td>8101</td>
<td>4179</td>
<td>176</td>
<td>-8337</td>
</tr>
<tr>
<td>4</td>
<td>7393</td>
<td>7991</td>
<td>10262</td>
<td>12456</td>
<td>13172</td>
<td>12371</td>
<td>9464</td>
<td>6159</td>
<td>-1638</td>
</tr>
<tr>
<td>5</td>
<td>7169</td>
<td>7777</td>
<td>9899</td>
<td>11895</td>
<td>12435</td>
<td>11423</td>
<td>8290</td>
<td>6181</td>
<td>-12327</td>
</tr>
<tr>
<td>6</td>
<td>6580</td>
<td>7113</td>
<td>9019</td>
<td>10647</td>
<td>10839</td>
<td>9354</td>
<td>7587</td>
<td>5202</td>
<td>-1150</td>
</tr>
<tr>
<td>7</td>
<td>6422</td>
<td>6953</td>
<td>6371</td>
<td>10277</td>
<td>10355</td>
<td>8773</td>
<td>5026</td>
<td>1150</td>
<td>-7667</td>
</tr>
<tr>
<td>8</td>
<td>7565</td>
<td>8155</td>
<td>10592</td>
<td>12698</td>
<td>13752</td>
<td>13167</td>
<td>13932</td>
<td>7222</td>
<td>-3888</td>
</tr>
<tr>
<td>9</td>
<td>7509</td>
<td>8108</td>
<td>10464</td>
<td>12695</td>
<td>13491</td>
<td>12790</td>
<td>5794</td>
<td>6780</td>
<td>-894</td>
</tr>
<tr>
<td>10</td>
<td>7633</td>
<td>8207</td>
<td>10648</td>
<td>12978</td>
<td>13809</td>
<td>13112</td>
<td>10665</td>
<td>7546</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>7772</td>
<td>8392</td>
<td>10887</td>
<td>13301</td>
<td>14285</td>
<td>13008</td>
<td>11265</td>
<td>8224</td>
<td>828</td>
</tr>
<tr>
<td>12</td>
<td>7923</td>
<td>8547</td>
<td>11135</td>
<td>13674</td>
<td>14772</td>
<td>14635</td>
<td>12046</td>
<td>9090</td>
<td>1833</td>
</tr>
<tr>
<td>13</td>
<td>5333</td>
<td>6435</td>
<td>9661</td>
<td>12890</td>
<td>12911</td>
<td>9212</td>
<td>2124</td>
<td>-972</td>
<td>-10117</td>
</tr>
<tr>
<td>14</td>
<td>7C03</td>
<td>7561</td>
<td>9682</td>
<td>11595</td>
<td>12676</td>
<td>10985</td>
<td>7765</td>
<td>4265</td>
<td>-3684</td>
</tr>
<tr>
<td>15</td>
<td>7C04</td>
<td>8515</td>
<td>11089</td>
<td>13601</td>
<td>14677</td>
<td>14352</td>
<td>11407</td>
<td>9578</td>
<td>1745</td>
</tr>
<tr>
<td>16</td>
<td>7809</td>
<td>8429</td>
<td>10695</td>
<td>13428</td>
<td>14454</td>
<td>14056</td>
<td>11565</td>
<td>8066</td>
<td>1316</td>
</tr>
<tr>
<td>17</td>
<td>8203</td>
<td>8657</td>
<td>11265</td>
<td>13840</td>
<td>14966</td>
<td>14661</td>
<td>12224</td>
<td>9419</td>
<td>2284</td>
</tr>
<tr>
<td>18</td>
<td>7442</td>
<td>9039</td>
<td>10411</td>
<td>12672</td>
<td>13485</td>
<td>12790</td>
<td>10014</td>
<td>6793</td>
<td>-642</td>
</tr>
<tr>
<td>19</td>
<td>8356</td>
<td>9010</td>
<td>11972</td>
<td>14771</td>
<td>16231</td>
<td>16336</td>
<td>14411</td>
<td>17681</td>
<td>5323</td>
</tr>
<tr>
<td>20</td>
<td>7415</td>
<td>7944</td>
<td>10341</td>
<td>12556</td>
<td>13374</td>
<td>12601</td>
<td>9772</td>
<td>6528</td>
<td>-1184</td>
</tr>
<tr>
<td>21</td>
<td>6638</td>
<td>7147</td>
<td>9566</td>
<td>10698</td>
<td>10864</td>
<td>9405</td>
<td>5703</td>
<td>1697</td>
<td>-6699</td>
</tr>
<tr>
<td>22</td>
<td>6795</td>
<td>7363</td>
<td>9395</td>
<td>11169</td>
<td>11555</td>
<td>10329</td>
<td>6991</td>
<td>2413</td>
<td>-4512</td>
</tr>
<tr>
<td>23</td>
<td>8084</td>
<td>8732</td>
<td>11447</td>
<td>14121</td>
<td>15372</td>
<td>15255</td>
<td>13684</td>
<td>16328</td>
<td>3622</td>
</tr>
</tbody>
</table>
Appendix Table 4 -- continued.

VALUES FOR INSTAR 6 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10259 11066 14902 19060 21823 25527 28333 21540 17346</td>
</tr>
<tr>
<td>2</td>
<td>9635 10393 13651 17524 19805 20926 22115 18501 12935</td>
</tr>
<tr>
<td>3</td>
<td>9240 9933 13229 16649 18665 19468 19250 16151 16356</td>
</tr>
<tr>
<td>4</td>
<td>1564 11357 15340 17005 22654 25494 26463 23776 16340</td>
</tr>
<tr>
<td>5</td>
<td>9175 9118 11190 16550 18597 19413 18201 16204 15776</td>
</tr>
<tr>
<td>6</td>
<td>9836 10609 14171 17994 20407 21683 21049 19337 14142</td>
</tr>
<tr>
<td>7</td>
<td>8592 9278 13201 15163 16720 16824 15137 12437 6116</td>
</tr>
<tr>
<td>8</td>
<td>9246 9962 13213 16368 18627 15400 18185 16667 12463</td>
</tr>
<tr>
<td>9</td>
<td>9897 10679 14335 18251 20762 22170 21635 20005 15551</td>
</tr>
<tr>
<td>10</td>
<td>8442 9115 12002 14927 16416 16591 14712 12142 5622</td>
</tr>
<tr>
<td>11</td>
<td>9028 9746 12980 16144 17987 18571 17173 14925 8862</td>
</tr>
<tr>
<td>12</td>
<td>9324 10027 13379 16996 19009 19920 18849 16843 11221</td>
</tr>
<tr>
<td>13</td>
<td>9173 9887 13162 16578 18592 18344 18166 16600 12597</td>
</tr>
<tr>
<td>14</td>
<td>10665 10930 14536 18931 21126 22621 22222 20471 17463</td>
</tr>
<tr>
<td>15</td>
<td>8421 9524 12852 15725 17464 17917 16396 14556 7839</td>
</tr>
<tr>
<td>16</td>
<td>8626 9289 12289 15346 16995 17359 15612 13162 6721</td>
</tr>
<tr>
<td>17</td>
<td>9675 10390 13674 17606 19868 20960 20152 18229 12825</td>
</tr>
<tr>
<td>18</td>
<td>8753 9418 12463 15576 17276 17669 16045 13649 7356</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 7 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12022 12426 17634 22923 26852 29965 91326 31019 28164</td>
</tr>
<tr>
<td>2</td>
<td>11815 12712 17285 22403 26167 29062 30191 29723 26554</td>
</tr>
<tr>
<td>3</td>
<td>12045 12994 17752 23112 27122 30379 71846 31467 29554</td>
</tr>
<tr>
<td>4</td>
<td>11737 12641 17168 22260 25548 28796 29856 25377 24125</td>
</tr>
<tr>
<td>5</td>
<td>12034 12941 17669 23003 26961 30125 31528 32465 26649</td>
</tr>
<tr>
<td>6</td>
<td>11328 12181 16565 21425 24924 27515 27636 27437 24609</td>
</tr>
<tr>
<td>7</td>
<td>12217 13331 17940 23411 27486 30771 32222 32131 25441</td>
</tr>
<tr>
<td>8</td>
<td>12061 12976 17701 23030 27001 30182 31662 31399 28564</td>
</tr>
<tr>
<td>9</td>
<td>12415 13373 19311 23932 28173 31674 34656 34422 31446</td>
</tr>
<tr>
<td>10</td>
<td>11866 12771 17366 22528 26329 29275 30468 32620 26666</td>
</tr>
<tr>
<td>11</td>
<td>12155 13062 17899 23333 27442 30783 32356 32226 26725</td>
</tr>
<tr>
<td>12</td>
<td>12570 13513 18541 24268 28610 32260 34616 34225 30500</td>
</tr>
<tr>
<td>13</td>
<td>10911 11819 15876 19284 22124 25238 26885 25991 18669</td>
</tr>
<tr>
<td>14</td>
<td>11158 12019 16326 21120 24506 26969 27556 26750 21378</td>
</tr>
<tr>
<td>15</td>
<td>11461 12489 16919 21833 25452 28136 29131 28520 25152</td>
</tr>
<tr>
<td>16</td>
<td>10871 11714 15832 20366 23527 25659 26623 24998 26515</td>
</tr>
<tr>
<td>17</td>
<td>11117 11964 16199 20882 24195 26569 27708 26224 22214</td>
</tr>
<tr>
<td>18</td>
<td>12753 13698 18777 24620 29033 32746 34726 34760 32793</td>
</tr>
<tr>
<td>19</td>
<td>11956 12082 17475 22757 26564 29596 30864 30583 27251</td>
</tr>
<tr>
<td>20</td>
<td>10614 11633 15699 20152 23224 25555 25538 24412 21365</td>
</tr>
<tr>
<td>21</td>
<td>12459 13408 18295 23054 26052 31482 33215 32717 26234</td>
</tr>
<tr>
<td>22</td>
<td>12260 13234 19142 23671 27881 33321 37641 32983 25782</td>
</tr>
<tr>
<td>23</td>
<td>9474 10209 17498 17325 19653 20765 22012 18213 19273</td>
</tr>
<tr>
<td>24</td>
<td>10935 11782 15923 20478 23620 25889 26290 25253 21253</td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTAR 8 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12349</td>
<td>13303</td>
<td>18225</td>
<td>23757</td>
<td>28004</td>
<td>41943</td>
<td>33261</td>
<td>33263</td>
<td>32688</td>
</tr>
<tr>
<td>2</td>
<td>14028</td>
<td>15075</td>
<td>20849</td>
<td>27540</td>
<td>32899</td>
<td>37769</td>
<td>41012</td>
<td>42318</td>
<td>41370</td>
</tr>
<tr>
<td>3</td>
<td>13554</td>
<td>14579</td>
<td>19134</td>
<td>26529</td>
<td>31621</td>
<td>36133</td>
<td>39050</td>
<td>39016</td>
<td>38668</td>
</tr>
<tr>
<td>4</td>
<td>13855</td>
<td>14874</td>
<td>20553</td>
<td>27098</td>
<td>32347</td>
<td>37048</td>
<td>40156</td>
<td>41053</td>
<td>41310</td>
</tr>
<tr>
<td>5</td>
<td>12632</td>
<td>13599</td>
<td>18623</td>
<td>24292</td>
<td>28666</td>
<td>32362</td>
<td>34332</td>
<td>34487</td>
<td>32318</td>
</tr>
<tr>
<td>6</td>
<td>13496</td>
<td>14516</td>
<td>19581</td>
<td>26261</td>
<td>31221</td>
<td>35595</td>
<td>38312</td>
<td>38956</td>
<td>37655</td>
</tr>
<tr>
<td>7</td>
<td>13696</td>
<td>14718</td>
<td>20300</td>
<td>26725</td>
<td>31833</td>
<td>36396</td>
<td>39312</td>
<td>40163</td>
<td>39557</td>
</tr>
<tr>
<td>8</td>
<td>12387</td>
<td>13350</td>
<td>18300</td>
<td>23846</td>
<td>28112</td>
<td>31600</td>
<td>33386</td>
<td>33996</td>
<td>33152</td>
</tr>
<tr>
<td>9</td>
<td>13185</td>
<td>14187</td>
<td>19477</td>
<td>25529</td>
<td>30243</td>
<td>34333</td>
<td>36731</td>
<td>37169</td>
<td>35558</td>
</tr>
<tr>
<td>10</td>
<td>13436</td>
<td>14448</td>
<td>19892</td>
<td>26146</td>
<td>31074</td>
<td>35414</td>
<td>38089</td>
<td>38708</td>
<td>37378</td>
</tr>
<tr>
<td>11</td>
<td>13506</td>
<td>14528</td>
<td>20007</td>
<td>26297</td>
<td>31273</td>
<td>35670</td>
<td>38413</td>
<td>39082</td>
<td>37630</td>
</tr>
<tr>
<td>12</td>
<td>13506</td>
<td>14566</td>
<td>20356</td>
<td>26363</td>
<td>31362</td>
<td>35795</td>
<td>38592</td>
<td>39351</td>
<td>38126</td>
</tr>
<tr>
<td>13</td>
<td>13643</td>
<td>14696</td>
<td>21240</td>
<td>26668</td>
<td>31744</td>
<td>36276</td>
<td>39170</td>
<td>39728</td>
<td>38652</td>
</tr>
<tr>
<td>14</td>
<td>12696</td>
<td>13670</td>
<td>18002</td>
<td>24611</td>
<td>29117</td>
<td>32922</td>
<td>35028</td>
<td>35247</td>
<td>33276</td>
</tr>
<tr>
<td>15</td>
<td>12654</td>
<td>13634</td>
<td>18687</td>
<td>24448</td>
<td>28895</td>
<td>32528</td>
<td>34510</td>
<td>34631</td>
<td>32537</td>
</tr>
<tr>
<td>16</td>
<td>13505</td>
<td>14682</td>
<td>20304</td>
<td>26298</td>
<td>31251</td>
<td>35610</td>
<td>38351</td>
<td>38594</td>
<td>37050</td>
</tr>
<tr>
<td>17</td>
<td>13378</td>
<td>14394</td>
<td>19013</td>
<td>26667</td>
<td>30973</td>
<td>35279</td>
<td>37944</td>
<td>38530</td>
<td>37132</td>
</tr>
<tr>
<td>18</td>
<td>12752</td>
<td>13954</td>
<td>19260</td>
<td>25295</td>
<td>29300</td>
<td>34068</td>
<td>36456</td>
<td>36880</td>
<td>35240</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 9 USING 16 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16884</td>
<td>18169</td>
<td>25480</td>
<td>34170</td>
<td>41568</td>
<td>48459</td>
<td>54889</td>
<td>57765</td>
<td>60397</td>
</tr>
<tr>
<td>2</td>
<td>15440</td>
<td>16623</td>
<td>23155</td>
<td>30819</td>
<td>37205</td>
<td>43625</td>
<td>49786</td>
<td>52974</td>
<td>55071</td>
</tr>
<tr>
<td>3</td>
<td>15535</td>
<td>17149</td>
<td>23990</td>
<td>31872</td>
<td>38599</td>
<td>45020</td>
<td>50408</td>
<td>52324</td>
<td>54632</td>
</tr>
<tr>
<td>4</td>
<td>16454</td>
<td>17764</td>
<td>24672</td>
<td>33288</td>
<td>40410</td>
<td>47652</td>
<td>53262</td>
<td>55752</td>
<td>58053</td>
</tr>
<tr>
<td>5</td>
<td>15945</td>
<td>16595</td>
<td>23446</td>
<td>31264</td>
<td>37798</td>
<td>44111</td>
<td>49632</td>
<td>51553</td>
<td>52242</td>
</tr>
<tr>
<td>6</td>
<td>15810</td>
<td>16995</td>
<td>23787</td>
<td>31769</td>
<td>39466</td>
<td>45965</td>
<td>51044</td>
<td>52268</td>
<td>53561</td>
</tr>
<tr>
<td>7</td>
<td>15113</td>
<td>16296</td>
<td>22790</td>
<td>30268</td>
<td>36510</td>
<td>42647</td>
<td>48586</td>
<td>50207</td>
<td>51657</td>
</tr>
<tr>
<td>8</td>
<td>16081</td>
<td>18161</td>
<td>25467</td>
<td>34045</td>
<td>41466</td>
<td>48077</td>
<td>54872</td>
<td>57867</td>
<td>61430</td>
</tr>
<tr>
<td>9</td>
<td>14373</td>
<td>15517</td>
<td>21566</td>
<td>28555</td>
<td>35363</td>
<td>42037</td>
<td>48320</td>
<td>50478</td>
<td>54761</td>
</tr>
<tr>
<td>10</td>
<td>15393</td>
<td>16518</td>
<td>22999</td>
<td>30568</td>
<td>36844</td>
<td>43247</td>
<td>49323</td>
<td>51507</td>
<td>56045</td>
</tr>
<tr>
<td>11</td>
<td>15594</td>
<td>16785</td>
<td>23603</td>
<td>31338</td>
<td>37937</td>
<td>44381</td>
<td>50229</td>
<td>51498</td>
<td>55218</td>
</tr>
<tr>
<td>12</td>
<td>17296</td>
<td>19267</td>
<td>26215</td>
<td>35196</td>
<td>42970</td>
<td>50033</td>
<td>57292</td>
<td>61592</td>
<td>65642</td>
</tr>
<tr>
<td>13</td>
<td>15244</td>
<td>16417</td>
<td>22654</td>
<td>33392</td>
<td>36636</td>
<td>42580</td>
<td>48734</td>
<td>51668</td>
<td>55863</td>
</tr>
<tr>
<td>14</td>
<td>14940</td>
<td>16126</td>
<td>22510</td>
<td>29908</td>
<td>35691</td>
<td>41977</td>
<td>46339</td>
<td>48187</td>
<td>48588</td>
</tr>
</tbody>
</table>
Appendix Table 4 -- continued.

Values for Instar 1 Using 9 Variables

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57</td>
<td>41</td>
<td>42</td>
<td>31</td>
<td>7</td>
<td>-36</td>
<td>-111</td>
<td>-190</td>
<td>-359</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>30</td>
<td>30</td>
<td>16</td>
<td>-10</td>
<td>-55</td>
<td>-132</td>
<td>-219</td>
<td>-383</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>28</td>
<td>28</td>
<td>15</td>
<td>-12</td>
<td>-57</td>
<td>-134</td>
<td>-215</td>
<td>-383</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>28</td>
<td>26</td>
<td>16</td>
<td>-10</td>
<td>-55</td>
<td>-132</td>
<td>-213</td>
<td>-383</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>29</td>
<td>29</td>
<td>17</td>
<td>-9</td>
<td>-53</td>
<td>-128</td>
<td>-209</td>
<td>-377</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>27</td>
<td>29</td>
<td>17</td>
<td>-8</td>
<td>-51</td>
<td>-127</td>
<td>-207</td>
<td>-375</td>
</tr>
<tr>
<td>7</td>
<td>39</td>
<td>25</td>
<td>24</td>
<td>10</td>
<td>-16</td>
<td>-59</td>
<td>-135</td>
<td>-214</td>
<td>-361</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>-8</td>
<td>-52</td>
<td>-128</td>
<td>-208</td>
<td>-377</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>-8</td>
<td>-52</td>
<td>-128</td>
<td>-208</td>
<td>-377</td>
</tr>
</tbody>
</table>

Values for Instar 2 Using 9 Variables

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>45</td>
<td>40</td>
<td>28</td>
<td>6</td>
<td>-34</td>
<td>-103</td>
<td>-181</td>
<td>-332</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>49</td>
<td>44</td>
<td>33</td>
<td>12</td>
<td>-27</td>
<td>-96</td>
<td>-169</td>
<td>-215</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>39</td>
<td>34</td>
<td>22</td>
<td>1</td>
<td>-39</td>
<td>-106</td>
<td>-183</td>
<td>-334</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>43</td>
<td>39</td>
<td>27</td>
<td>5</td>
<td>-77</td>
<td>-109</td>
<td>-185</td>
<td>-338</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>41</td>
<td>39</td>
<td>26</td>
<td>6</td>
<td>-24</td>
<td>-103</td>
<td>-182</td>
<td>-337</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>49</td>
<td>44</td>
<td>32</td>
<td>9</td>
<td>-33</td>
<td>-106</td>
<td>-184</td>
<td>-341</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>38</td>
<td>36</td>
<td>25</td>
<td>2</td>
<td>-29</td>
<td>-111</td>
<td>-187</td>
<td>-346</td>
</tr>
</tbody>
</table>

Values for Instar 3 Using 9 Variables

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>62</td>
<td>66</td>
<td>63</td>
<td>48</td>
<td>15</td>
<td>-45</td>
<td>-113</td>
<td>-257</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>41</td>
<td>66</td>
<td>63</td>
<td>50</td>
<td>20</td>
<td>-27</td>
<td>-103</td>
<td>-243</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>54</td>
<td>59</td>
<td>55</td>
<td>41</td>
<td>9</td>
<td>-56</td>
<td>-119</td>
<td>-260</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>55</td>
<td>60</td>
<td>55</td>
<td>41</td>
<td>9</td>
<td>-51</td>
<td>-120</td>
<td>-262</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>52</td>
<td>58</td>
<td>53</td>
<td>39</td>
<td>2</td>
<td>-56</td>
<td>-129</td>
<td>-271</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>61</td>
<td>66</td>
<td>63</td>
<td>47</td>
<td>15</td>
<td>-47</td>
<td>-116</td>
<td>-259</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>52</td>
<td>56</td>
<td>52</td>
<td>36</td>
<td>3</td>
<td>-66</td>
<td>-130</td>
<td>-274</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>36</td>
<td>37</td>
<td>27</td>
<td>11</td>
<td>-23</td>
<td>-86</td>
<td>-156</td>
<td>-297</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>48</td>
<td>49</td>
<td>43</td>
<td>28</td>
<td>-4</td>
<td>-65</td>
<td>-113</td>
<td>-270</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>43</td>
<td>45</td>
<td>38</td>
<td>21</td>
<td>-13</td>
<td>-77</td>
<td>-144</td>
<td>-254</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>44</td>
<td>51</td>
<td>45</td>
<td>30</td>
<td>-2</td>
<td>-63</td>
<td>-131</td>
<td>-271</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>37</td>
<td>39</td>
<td>32</td>
<td>16</td>
<td>-15</td>
<td>-77</td>
<td>-146</td>
<td>-285</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>65</td>
<td>69</td>
<td>67</td>
<td>53</td>
<td>23</td>
<td>-36</td>
<td>-104</td>
<td>-245</td>
</tr>
<tr>
<td>14</td>
<td>91</td>
<td>61</td>
<td>66</td>
<td>65</td>
<td>51</td>
<td>19</td>
<td>-46</td>
<td>-108</td>
<td>-248</td>
</tr>
<tr>
<td>15</td>
<td>52</td>
<td>57</td>
<td>51</td>
<td>52</td>
<td>33</td>
<td>-7</td>
<td>-74</td>
<td>-148</td>
<td>-287</td>
</tr>
<tr>
<td>16</td>
<td>42</td>
<td>48</td>
<td>51</td>
<td>45</td>
<td>27</td>
<td>10</td>
<td>-75</td>
<td>-148</td>
<td>-297</td>
</tr>
<tr>
<td>17</td>
<td>42</td>
<td>51</td>
<td>53</td>
<td>47</td>
<td>25</td>
<td>-7</td>
<td>-72</td>
<td>-149</td>
<td>-299</td>
</tr>
<tr>
<td>18</td>
<td>65</td>
<td>68</td>
<td>74</td>
<td>74</td>
<td>63</td>
<td>36</td>
<td>-19</td>
<td>-63</td>
<td>218</td>
</tr>
<tr>
<td>19</td>
<td>34</td>
<td>49</td>
<td>52</td>
<td>45</td>
<td>30</td>
<td>-3</td>
<td>-65</td>
<td>-135</td>
<td>-278</td>
</tr>
</tbody>
</table>
Values for Instar 4 Using 9 Variables

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>69</td>
</tr>
<tr>
<td>13</td>
<td>67</td>
</tr>
<tr>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>69</td>
</tr>
<tr>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>65</td>
</tr>
<tr>
<td>18</td>
<td>59</td>
</tr>
<tr>
<td>19</td>
<td>67</td>
</tr>
</tbody>
</table>

Values for Instar 5 Using 9 Variables

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>79</td>
</tr>
<tr>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>77</td>
</tr>
<tr>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>16</td>
<td>82</td>
</tr>
<tr>
<td>17</td>
<td>96</td>
</tr>
<tr>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>21</td>
<td>91</td>
</tr>
<tr>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>23</td>
<td>63</td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTAR 6 USING 9 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
<td>133</td>
<td>162</td>
<td>194</td>
<td>220</td>
<td>237</td>
<td>235</td>
<td>215</td>
<td>149</td>
</tr>
<tr>
<td>2</td>
<td>113</td>
<td>131</td>
<td>156</td>
<td>187</td>
<td>212</td>
<td>224</td>
<td>219</td>
<td>198</td>
<td>126</td>
</tr>
<tr>
<td>3</td>
<td>106</td>
<td>131</td>
<td>154</td>
<td>182</td>
<td>204</td>
<td>215</td>
<td>208</td>
<td>185</td>
<td>115</td>
</tr>
<tr>
<td>4</td>
<td>104</td>
<td>123</td>
<td>151</td>
<td>182</td>
<td>206</td>
<td>222</td>
<td>217</td>
<td>193</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>117</td>
<td>142</td>
<td>167</td>
<td>187</td>
<td>199</td>
<td>195</td>
<td>167</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>103</td>
<td>120</td>
<td>149</td>
<td>176</td>
<td>198</td>
<td>207</td>
<td>198</td>
<td>169</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>133</td>
<td>157</td>
<td>182</td>
<td>201</td>
<td>206</td>
<td>195</td>
<td>167</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>101</td>
<td>119</td>
<td>141</td>
<td>165</td>
<td>182</td>
<td>189</td>
<td>174</td>
<td>142</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>92</td>
<td>117</td>
<td>143</td>
<td>171</td>
<td>191</td>
<td>203</td>
<td>192</td>
<td>164</td>
<td>93</td>
</tr>
<tr>
<td>10</td>
<td>103</td>
<td>133</td>
<td>162</td>
<td>194</td>
<td>220</td>
<td>237</td>
<td>235</td>
<td>215</td>
<td>149</td>
</tr>
<tr>
<td>11</td>
<td>101</td>
<td>122</td>
<td>145</td>
<td>169</td>
<td>187</td>
<td>193</td>
<td>178</td>
<td>147</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>112</td>
<td>136</td>
<td>161</td>
<td>179</td>
<td>188</td>
<td>174</td>
<td>145</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>90</td>
<td>110</td>
<td>135</td>
<td>159</td>
<td>177</td>
<td>183</td>
<td>169</td>
<td>137</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>109</td>
<td>119</td>
<td>149</td>
<td>178</td>
<td>202</td>
<td>214</td>
<td>206</td>
<td>185</td>
<td>101</td>
</tr>
<tr>
<td>15</td>
<td>95</td>
<td>115</td>
<td>138</td>
<td>162</td>
<td>186</td>
<td>196</td>
<td>173</td>
<td>143</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>76</td>
<td>97</td>
<td>117</td>
<td>136</td>
<td>151</td>
<td>152</td>
<td>132</td>
<td>94</td>
<td>-2</td>
</tr>
<tr>
<td>17</td>
<td>101</td>
<td>110</td>
<td>136</td>
<td>161</td>
<td>179</td>
<td>179</td>
<td>159</td>
<td>121</td>
<td>29</td>
</tr>
<tr>
<td>18</td>
<td>90</td>
<td>102</td>
<td>125</td>
<td>147</td>
<td>161</td>
<td>163</td>
<td>142</td>
<td>106</td>
<td>12</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 7 USING 9 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td>171</td>
<td>209</td>
<td>253</td>
<td>294</td>
<td>327</td>
<td>347</td>
<td>347</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
<td>174</td>
<td>208</td>
<td>252</td>
<td>293</td>
<td>325</td>
<td>344</td>
<td>344</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>129</td>
<td>156</td>
<td>192</td>
<td>235</td>
<td>273</td>
<td>308</td>
<td>324</td>
<td>324</td>
<td>252</td>
</tr>
<tr>
<td>4</td>
<td>137</td>
<td>164</td>
<td>190</td>
<td>246</td>
<td>284</td>
<td>316</td>
<td>320</td>
<td>315</td>
<td>256</td>
</tr>
<tr>
<td>5</td>
<td>133</td>
<td>147</td>
<td>185</td>
<td>226</td>
<td>263</td>
<td>292</td>
<td>305</td>
<td>297</td>
<td>242</td>
</tr>
<tr>
<td>6</td>
<td>123</td>
<td>138</td>
<td>174</td>
<td>212</td>
<td>247</td>
<td>273</td>
<td>284</td>
<td>274</td>
<td>217</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>142</td>
<td>182</td>
<td>223</td>
<td>261</td>
<td>288</td>
<td>303</td>
<td>292</td>
<td>230</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>156</td>
<td>190</td>
<td>230</td>
<td>268</td>
<td>306</td>
<td>316</td>
<td>315</td>
<td>261</td>
</tr>
<tr>
<td>9</td>
<td>124</td>
<td>148</td>
<td>167</td>
<td>229</td>
<td>268</td>
<td>298</td>
<td>314</td>
<td>306</td>
<td>252</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>156</td>
<td>191</td>
<td>230</td>
<td>269</td>
<td>295</td>
<td>310</td>
<td>300</td>
<td>237</td>
</tr>
<tr>
<td>11</td>
<td>109</td>
<td>144</td>
<td>177</td>
<td>217</td>
<td>255</td>
<td>287</td>
<td>301</td>
<td>295</td>
<td>253</td>
</tr>
<tr>
<td>12</td>
<td>121</td>
<td>136</td>
<td>176</td>
<td>217</td>
<td>253</td>
<td>282</td>
<td>294</td>
<td>282</td>
<td>229</td>
</tr>
<tr>
<td>13</td>
<td>113</td>
<td>131</td>
<td>158</td>
<td>189</td>
<td>217</td>
<td>239</td>
<td>239</td>
<td>223</td>
<td>155</td>
</tr>
<tr>
<td>14</td>
<td>110</td>
<td>136</td>
<td>148</td>
<td>203</td>
<td>234</td>
<td>256</td>
<td>260</td>
<td>243</td>
<td>132</td>
</tr>
<tr>
<td>15</td>
<td>111</td>
<td>146</td>
<td>176</td>
<td>212</td>
<td>247</td>
<td>273</td>
<td>283</td>
<td>270</td>
<td>111</td>
</tr>
<tr>
<td>16</td>
<td>111</td>
<td>137</td>
<td>166</td>
<td>200</td>
<td>230</td>
<td>251</td>
<td>255</td>
<td>239</td>
<td>170</td>
</tr>
<tr>
<td>17</td>
<td>113</td>
<td>136</td>
<td>166</td>
<td>200</td>
<td>229</td>
<td>250</td>
<td>253</td>
<td>225</td>
<td>167</td>
</tr>
<tr>
<td>18</td>
<td>131</td>
<td>156</td>
<td>191</td>
<td>234</td>
<td>273</td>
<td>303</td>
<td>318</td>
<td>306</td>
<td>251</td>
</tr>
<tr>
<td>19</td>
<td>129</td>
<td>144</td>
<td>179</td>
<td>220</td>
<td>253</td>
<td>278</td>
<td>285</td>
<td>270</td>
<td>207</td>
</tr>
<tr>
<td>20</td>
<td>134</td>
<td>152</td>
<td>183</td>
<td>218</td>
<td>250</td>
<td>272</td>
<td>278</td>
<td>264</td>
<td>198</td>
</tr>
<tr>
<td>21</td>
<td>153</td>
<td>177</td>
<td>216</td>
<td>261</td>
<td>306</td>
<td>342</td>
<td>362</td>
<td>370</td>
<td>321</td>
</tr>
<tr>
<td>22</td>
<td>116</td>
<td>161</td>
<td>197</td>
<td>242</td>
<td>285</td>
<td>320</td>
<td>345</td>
<td>345</td>
<td>314</td>
</tr>
<tr>
<td>23</td>
<td>103</td>
<td>136</td>
<td>164</td>
<td>176</td>
<td>233</td>
<td>221</td>
<td>222</td>
<td>209</td>
<td>142</td>
</tr>
<tr>
<td>24</td>
<td>119</td>
<td>141</td>
<td>174</td>
<td>208</td>
<td>241</td>
<td>262</td>
<td>270</td>
<td>255</td>
<td>186</td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTAR 8 USING 9 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142</td>
<td>175</td>
<td>211</td>
<td>258</td>
<td>305</td>
<td>347</td>
<td>377</td>
<td>388</td>
<td>261</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
<td>171</td>
<td>214</td>
<td>264</td>
<td>314</td>
<td>361</td>
<td>392</td>
<td>402</td>
<td>273</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>175</td>
<td>219</td>
<td>272</td>
<td>328</td>
<td>377</td>
<td>419</td>
<td>435</td>
<td>412</td>
</tr>
<tr>
<td>4</td>
<td>155</td>
<td>175</td>
<td>219</td>
<td>271</td>
<td>326</td>
<td>374</td>
<td>414</td>
<td>428</td>
<td>398</td>
</tr>
<tr>
<td>5</td>
<td>146</td>
<td>174</td>
<td>210</td>
<td>256</td>
<td>302</td>
<td>344</td>
<td>372</td>
<td>380</td>
<td>345</td>
</tr>
<tr>
<td>6</td>
<td>152</td>
<td>181</td>
<td>221</td>
<td>271</td>
<td>321</td>
<td>365</td>
<td>397</td>
<td>405</td>
<td>375</td>
</tr>
<tr>
<td>7</td>
<td>154</td>
<td>175</td>
<td>217</td>
<td>269</td>
<td>318</td>
<td>364</td>
<td>396</td>
<td>406</td>
<td>276</td>
</tr>
<tr>
<td>8</td>
<td>131</td>
<td>164</td>
<td>203</td>
<td>249</td>
<td>294</td>
<td>330</td>
<td>356</td>
<td>360</td>
<td>325</td>
</tr>
<tr>
<td>9</td>
<td>161</td>
<td>186</td>
<td>229</td>
<td>281</td>
<td>328</td>
<td>372</td>
<td>402</td>
<td>413</td>
<td>389</td>
</tr>
<tr>
<td>10</td>
<td>145</td>
<td>168</td>
<td>208</td>
<td>256</td>
<td>303</td>
<td>345</td>
<td>373</td>
<td>378</td>
<td>341</td>
</tr>
<tr>
<td>11</td>
<td>153</td>
<td>178</td>
<td>225</td>
<td>272</td>
<td>321</td>
<td>364</td>
<td>397</td>
<td>406</td>
<td>377</td>
</tr>
<tr>
<td>12</td>
<td>147</td>
<td>186</td>
<td>229</td>
<td>285</td>
<td>338</td>
<td>388</td>
<td>427</td>
<td>446</td>
<td>438</td>
</tr>
<tr>
<td>13</td>
<td>146</td>
<td>179</td>
<td>221</td>
<td>272</td>
<td>323</td>
<td>366</td>
<td>402</td>
<td>412</td>
<td>388</td>
</tr>
<tr>
<td>14</td>
<td>131</td>
<td>165</td>
<td>203</td>
<td>252</td>
<td>300</td>
<td>342</td>
<td>373</td>
<td>382</td>
<td>360</td>
</tr>
<tr>
<td>15</td>
<td>137</td>
<td>162</td>
<td>204</td>
<td>252</td>
<td>294</td>
<td>328</td>
<td>350</td>
<td>350</td>
<td>314</td>
</tr>
<tr>
<td>16</td>
<td>152</td>
<td>188</td>
<td>229</td>
<td>275</td>
<td>330</td>
<td>372</td>
<td>407</td>
<td>414</td>
<td>377</td>
</tr>
<tr>
<td>17</td>
<td>149</td>
<td>174</td>
<td>215</td>
<td>264</td>
<td>314</td>
<td>357</td>
<td>390</td>
<td>396</td>
<td>355</td>
</tr>
<tr>
<td>18</td>
<td>142</td>
<td>164</td>
<td>212</td>
<td>265</td>
<td>312</td>
<td>353</td>
<td>384</td>
<td>393</td>
<td>276</td>
</tr>
</tbody>
</table>

VALUES FOR INSTAR 9 USING 9 VARIABLES

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>156</td>
<td>227</td>
<td>257</td>
<td>327</td>
<td>396</td>
<td>471</td>
<td>531</td>
<td>569</td>
<td>604</td>
</tr>
<tr>
<td>2</td>
<td>164</td>
<td>266</td>
<td>294</td>
<td>318</td>
<td>384</td>
<td>450</td>
<td>567</td>
<td>541</td>
<td>556</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>213</td>
<td>261</td>
<td>328</td>
<td>394</td>
<td>466</td>
<td>518</td>
<td>550</td>
<td>565</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>211</td>
<td>261</td>
<td>331</td>
<td>398</td>
<td>470</td>
<td>525</td>
<td>566</td>
<td>612</td>
</tr>
<tr>
<td>5</td>
<td>143</td>
<td>250</td>
<td>250</td>
<td>314</td>
<td>379</td>
<td>442</td>
<td>498</td>
<td>527</td>
<td>547</td>
</tr>
<tr>
<td>6</td>
<td>171</td>
<td>204</td>
<td>257</td>
<td>328</td>
<td>396</td>
<td>469</td>
<td>532</td>
<td>573</td>
<td>608</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>194</td>
<td>242</td>
<td>306</td>
<td>368</td>
<td>432</td>
<td>484</td>
<td>516</td>
<td>559</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>220</td>
<td>274</td>
<td>346</td>
<td>423</td>
<td>491</td>
<td>575</td>
<td>623</td>
<td>655</td>
</tr>
<tr>
<td>9</td>
<td>156</td>
<td>262</td>
<td>251</td>
<td>314</td>
<td>374</td>
<td>435</td>
<td>487</td>
<td>519</td>
<td>543</td>
</tr>
<tr>
<td>10</td>
<td>174</td>
<td>210</td>
<td>262</td>
<td>330</td>
<td>394</td>
<td>459</td>
<td>515</td>
<td>549</td>
<td>570</td>
</tr>
<tr>
<td>11</td>
<td>156</td>
<td>196</td>
<td>247</td>
<td>314</td>
<td>379</td>
<td>449</td>
<td>506</td>
<td>544</td>
<td>579</td>
</tr>
<tr>
<td>12</td>
<td>159</td>
<td>199</td>
<td>258</td>
<td>333</td>
<td>407</td>
<td>465</td>
<td>555</td>
<td>601</td>
<td>644</td>
</tr>
<tr>
<td>13</td>
<td>162</td>
<td>205</td>
<td>243</td>
<td>317</td>
<td>390</td>
<td>444</td>
<td>496</td>
<td>528</td>
<td>547</td>
</tr>
<tr>
<td>14</td>
<td>156</td>
<td>194</td>
<td>248</td>
<td>214</td>
<td>379</td>
<td>444</td>
<td>502</td>
<td>540</td>
<td>570</td>
</tr>
</tbody>
</table>
Appendix table 4 -- continued.

VALUES FOR INSTARS 1 AND 2

<table>
<thead>
<tr>
<th>INSTAR 1</th>
<th>1</th>
<th>2</th>
<th>SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN</td>
<td>1</td>
<td>2</td>
<td>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>258076 259407</td>
<td>3375 3253</td>
<td>444 440</td>
</tr>
<tr>
<td>2</td>
<td>197656 194402</td>
<td>2880 2746</td>
<td>415 409</td>
</tr>
<tr>
<td>3</td>
<td>219196 216322</td>
<td>3036 2920</td>
<td>392 384</td>
</tr>
<tr>
<td>4</td>
<td>217945 215050</td>
<td>3115 2999</td>
<td>415 408</td>
</tr>
<tr>
<td>5</td>
<td>255789 253412</td>
<td>3550 3480</td>
<td>432 427</td>
</tr>
<tr>
<td>6</td>
<td>303629 302067</td>
<td>4125 4097</td>
<td>459 456</td>
</tr>
<tr>
<td>7</td>
<td>221376 218310</td>
<td>2871 2727</td>
<td>375 365</td>
</tr>
<tr>
<td>8</td>
<td>211333 208221</td>
<td>2894 2727</td>
<td>428 424</td>
</tr>
<tr>
<td>9</td>
<td>219633 216624</td>
<td>2993 2851</td>
<td>419 416</td>
</tr>
<tr>
<td>10</td>
<td>217823 215043</td>
<td>3113 3000</td>
<td>406 396</td>
</tr>
<tr>
<td>11</td>
<td>239001 236135</td>
<td>3185 3054</td>
<td>433 428</td>
</tr>
<tr>
<td>12</td>
<td>254831 252487</td>
<td>3601 3532</td>
<td>436 431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTAR 2</th>
<th>1</th>
<th>2</th>
<th>SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>1</td>
<td>2</td>
<td>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>225220 228796</td>
<td>3611 3761</td>
<td>490 494</td>
</tr>
<tr>
<td>2</td>
<td>222552 225522</td>
<td>3536 3664</td>
<td>546 550</td>
</tr>
<tr>
<td>3</td>
<td>247177 250335</td>
<td>3903 4032</td>
<td>539 549</td>
</tr>
<tr>
<td>4</td>
<td>213729 215950</td>
<td>3261 3310</td>
<td>449 449</td>
</tr>
<tr>
<td>5</td>
<td>272531 274813</td>
<td>4036 4143</td>
<td>527 533</td>
</tr>
<tr>
<td>6</td>
<td>240417 242631</td>
<td>3463 3655</td>
<td>479 477</td>
</tr>
<tr>
<td>7</td>
<td>255492 257251</td>
<td>3799 3859</td>
<td>539 549</td>
</tr>
</tbody>
</table>
VALUES FOR INSTARS 2 AND 3

<table>
<thead>
<tr>
<th>INSTAR 2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>SELECTION</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>2</td>
<td>3</td>
<td>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2235</td>
<td>1457</td>
<td>128</td>
<td>117</td>
<td>90</td>
<td>88</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>2274</td>
<td>1495</td>
<td>155</td>
<td>149</td>
<td>120</td>
<td>111</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>2259</td>
<td>1681</td>
<td>134</td>
<td>125</td>
<td>112</td>
<td>103</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>2052</td>
<td>1191</td>
<td>120</td>
<td>108</td>
<td>88</td>
<td>75</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>2466</td>
<td>1807</td>
<td>128</td>
<td>121</td>
<td>101</td>
<td>93</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>2479</td>
<td>1676</td>
<td>133</td>
<td>124</td>
<td>91</td>
<td>81</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>2368</td>
<td>1735</td>
<td>140</td>
<td>147</td>
<td>112</td>
<td>103</td>
<td>71</td>
</tr>
</tbody>
</table>

VALUES FOR INSTARS 2 AND 3

<table>
<thead>
<tr>
<th>INSTAR 3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>SELECTION</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>2</td>
<td>3</td>
<td>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5142</td>
<td>6223</td>
<td>183</td>
<td>231</td>
<td>158</td>
<td>170</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>4632</td>
<td>5470</td>
<td>194</td>
<td>242</td>
<td>177</td>
<td>190</td>
<td>119</td>
</tr>
<tr>
<td>3</td>
<td>4719</td>
<td>5620</td>
<td>167</td>
<td>221</td>
<td>162</td>
<td>175</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>4528</td>
<td>5286</td>
<td>169</td>
<td>213</td>
<td>156</td>
<td>167</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>4521</td>
<td>5207</td>
<td>150</td>
<td>212</td>
<td>159</td>
<td>169</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>4577</td>
<td>5207</td>
<td>172</td>
<td>225</td>
<td>155</td>
<td>165</td>
<td>104</td>
</tr>
<tr>
<td>7</td>
<td>4496</td>
<td>5237</td>
<td>147</td>
<td>196</td>
<td>139</td>
<td>149</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>3728</td>
<td>4275</td>
<td>158</td>
<td>206</td>
<td>157</td>
<td>162</td>
<td>106</td>
</tr>
<tr>
<td>9</td>
<td>4249</td>
<td>4974</td>
<td>149</td>
<td>199</td>
<td>158</td>
<td>169</td>
<td>107</td>
</tr>
<tr>
<td>10</td>
<td>4068</td>
<td>4695</td>
<td>132</td>
<td>182</td>
<td>139</td>
<td>146</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>4186</td>
<td>4883</td>
<td>143</td>
<td>201</td>
<td>152</td>
<td>161</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>4116</td>
<td>4986</td>
<td>144</td>
<td>192</td>
<td>152</td>
<td>162</td>
<td>110</td>
</tr>
<tr>
<td>13</td>
<td>4921</td>
<td>5841</td>
<td>162</td>
<td>216</td>
<td>148</td>
<td>161</td>
<td>108</td>
</tr>
<tr>
<td>14</td>
<td>4968</td>
<td>5859</td>
<td>173</td>
<td>228</td>
<td>158</td>
<td>171</td>
<td>117</td>
</tr>
<tr>
<td>15</td>
<td>3756</td>
<td>3737</td>
<td>162</td>
<td>197</td>
<td>137</td>
<td>137</td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td>3958</td>
<td>4353</td>
<td>126</td>
<td>164</td>
<td>117</td>
<td>120</td>
<td>86</td>
</tr>
<tr>
<td>17</td>
<td>3752</td>
<td>4002</td>
<td>126</td>
<td>168</td>
<td>117</td>
<td>119</td>
<td>88</td>
</tr>
<tr>
<td>18</td>
<td>5550</td>
<td>6036</td>
<td>159</td>
<td>237</td>
<td>168</td>
<td>189</td>
<td>118</td>
</tr>
<tr>
<td>19</td>
<td>4407</td>
<td>5160</td>
<td>145</td>
<td>195</td>
<td>156</td>
<td>167</td>
<td>92</td>
</tr>
</tbody>
</table>
Appendix table 4 -- continued.

VALUES FOR INSTARS 3 AND 4

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11611</td>
<td>10582</td>
<td>244</td>
<td>216</td>
<td>161</td>
<td>147</td>
</tr>
<tr>
<td>2</td>
<td>11327</td>
<td>10344</td>
<td>254</td>
<td>232</td>
<td>182</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>11529</td>
<td>10634</td>
<td>238</td>
<td>214</td>
<td>168</td>
<td>156</td>
</tr>
<tr>
<td>4</td>
<td>11087</td>
<td>10007</td>
<td>231</td>
<td>199</td>
<td>161</td>
<td>147</td>
</tr>
<tr>
<td>5</td>
<td>11045</td>
<td>9877</td>
<td>237</td>
<td>216</td>
<td>159</td>
<td>142</td>
</tr>
<tr>
<td>6</td>
<td>10862</td>
<td>9771</td>
<td>235</td>
<td>210</td>
<td>158</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>10292</td>
<td>9117</td>
<td>204</td>
<td>169</td>
<td>143</td>
<td>124</td>
</tr>
<tr>
<td>8</td>
<td>8736</td>
<td>6760</td>
<td>234</td>
<td>209</td>
<td>155</td>
<td>139</td>
</tr>
<tr>
<td>9</td>
<td>10156</td>
<td>8933</td>
<td>190</td>
<td>149</td>
<td>161</td>
<td>147</td>
</tr>
<tr>
<td>10</td>
<td>9420</td>
<td>7820</td>
<td>203</td>
<td>165</td>
<td>138</td>
<td>115</td>
</tr>
<tr>
<td>11</td>
<td>9686</td>
<td>8271</td>
<td>220</td>
<td>191</td>
<td>154</td>
<td>138</td>
</tr>
<tr>
<td>12</td>
<td>9508</td>
<td>8112</td>
<td>206</td>
<td>174</td>
<td>157</td>
<td>143</td>
</tr>
<tr>
<td>13</td>
<td>11761</td>
<td>11114</td>
<td>235</td>
<td>205</td>
<td>157</td>
<td>142</td>
</tr>
<tr>
<td>14</td>
<td>11961</td>
<td>11279</td>
<td>243</td>
<td>221</td>
<td>167</td>
<td>156</td>
</tr>
<tr>
<td>15</td>
<td>8498</td>
<td>6353</td>
<td>204</td>
<td>163</td>
<td>125</td>
<td>98</td>
</tr>
<tr>
<td>16</td>
<td>8670</td>
<td>6853</td>
<td>182</td>
<td>138</td>
<td>116</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>7799</td>
<td>5830</td>
<td>173</td>
<td>128</td>
<td>116</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>14309</td>
<td>14554</td>
<td>268</td>
<td>249</td>
<td>182</td>
<td>175</td>
</tr>
<tr>
<td>19</td>
<td>10972</td>
<td>9843</td>
<td>205</td>
<td>165</td>
<td>155</td>
<td>137</td>
</tr>
</tbody>
</table>

VALUES FOR DISCRIMINANT FUNCTION EQUATIONS

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17536</td>
<td>18878</td>
<td>357</td>
<td>380</td>
<td>256</td>
<td>273</td>
</tr>
<tr>
<td>2</td>
<td>10043</td>
<td>19545</td>
<td>396</td>
<td>435</td>
<td>287</td>
<td>315</td>
</tr>
<tr>
<td>3</td>
<td>16102</td>
<td>16919</td>
<td>355</td>
<td>378</td>
<td>246</td>
<td>260</td>
</tr>
<tr>
<td>4</td>
<td>16637</td>
<td>17730</td>
<td>335</td>
<td>356</td>
<td>238</td>
<td>251</td>
</tr>
<tr>
<td>5</td>
<td>17061</td>
<td>18360</td>
<td>364</td>
<td>395</td>
<td>245</td>
<td>259</td>
</tr>
<tr>
<td>6</td>
<td>16703</td>
<td>17636</td>
<td>369</td>
<td>402</td>
<td>253</td>
<td>269</td>
</tr>
<tr>
<td>7</td>
<td>16107</td>
<td>16828</td>
<td>350</td>
<td>371</td>
<td>240</td>
<td>251</td>
</tr>
<tr>
<td>8</td>
<td>14729</td>
<td>14661</td>
<td>349</td>
<td>373</td>
<td>237</td>
<td>247</td>
</tr>
<tr>
<td>9</td>
<td>15411</td>
<td>16370</td>
<td>353</td>
<td>392</td>
<td>224</td>
<td>232</td>
</tr>
<tr>
<td>10</td>
<td>20584</td>
<td>23478</td>
<td>355</td>
<td>388</td>
<td>252</td>
<td>272</td>
</tr>
<tr>
<td>11</td>
<td>22006</td>
<td>25384</td>
<td>367</td>
<td>425</td>
<td>276</td>
<td>303</td>
</tr>
<tr>
<td>12</td>
<td>16645</td>
<td>17864</td>
<td>372</td>
<td>414</td>
<td>262</td>
<td>283</td>
</tr>
<tr>
<td>13</td>
<td>15277</td>
<td>16320</td>
<td>353</td>
<td>382</td>
<td>229</td>
<td>242</td>
</tr>
<tr>
<td>14</td>
<td>15345</td>
<td>15991</td>
<td>381</td>
<td>423</td>
<td>269</td>
<td>290</td>
</tr>
<tr>
<td>15</td>
<td>16927</td>
<td>18257</td>
<td>353</td>
<td>381</td>
<td>235</td>
<td>248</td>
</tr>
<tr>
<td>16</td>
<td>16810</td>
<td>17852</td>
<td>369</td>
<td>401</td>
<td>263</td>
<td>282</td>
</tr>
<tr>
<td>17</td>
<td>17198</td>
<td>18509</td>
<td>385</td>
<td>427</td>
<td>266</td>
<td>287</td>
</tr>
<tr>
<td>18</td>
<td>15823</td>
<td>16628</td>
<td>359</td>
<td>388</td>
<td>253</td>
<td>270</td>
</tr>
<tr>
<td>19</td>
<td>16015</td>
<td>16703</td>
<td>370</td>
<td>393</td>
<td>243</td>
<td>256</td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTARS 4 AND 5

<table>
<thead>
<tr>
<th>INSTAR 4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>SELECTION</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>14689</td>
<td>13594</td>
<td>171</td>
<td>162</td>
<td>102</td>
<td>93</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>15291</td>
<td>14150</td>
<td>196</td>
<td>193</td>
<td>119</td>
<td>116</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>13301</td>
<td>11623</td>
<td>150</td>
<td>139</td>
<td>98</td>
<td>88</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>14327</td>
<td>12997</td>
<td>149</td>
<td>136</td>
<td>94</td>
<td>82</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>15401</td>
<td>14309</td>
<td>148</td>
<td>137</td>
<td>96</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>13636</td>
<td>11805</td>
<td>152</td>
<td>141</td>
<td>101</td>
<td>92</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>12782</td>
<td>10915</td>
<td>152</td>
<td>140</td>
<td>93</td>
<td>82</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>11253</td>
<td>9021</td>
<td>139</td>
<td>125</td>
<td>94</td>
<td>82</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>15118</td>
<td>13853</td>
<td>146</td>
<td>130</td>
<td>85</td>
<td>72</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>20943</td>
<td>21592</td>
<td>159</td>
<td>150</td>
<td>99</td>
<td>89</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>22295</td>
<td>23303</td>
<td>184</td>
<td>179</td>
<td>111</td>
<td>106</td>
<td>92</td>
</tr>
<tr>
<td>12</td>
<td>14682</td>
<td>13597</td>
<td>176</td>
<td>166</td>
<td>107</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>13</td>
<td>15285</td>
<td>14098</td>
<td>167</td>
<td>154</td>
<td>92</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>12421</td>
<td>10521</td>
<td>175</td>
<td>167</td>
<td>110</td>
<td>104</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>14750</td>
<td>13543</td>
<td>150</td>
<td>135</td>
<td>93</td>
<td>82</td>
<td>79</td>
</tr>
<tr>
<td>16</td>
<td>13200</td>
<td>11415</td>
<td>170</td>
<td>161</td>
<td>106</td>
<td>98</td>
<td>74</td>
</tr>
<tr>
<td>17</td>
<td>15005</td>
<td>13735</td>
<td>166</td>
<td>156</td>
<td>108</td>
<td>101</td>
<td>81</td>
</tr>
<tr>
<td>18</td>
<td>13604</td>
<td>11760</td>
<td>173</td>
<td>164</td>
<td>102</td>
<td>94</td>
<td>80</td>
</tr>
<tr>
<td>19</td>
<td>12542</td>
<td>10546</td>
<td>178</td>
<td>168</td>
<td>97</td>
<td>86</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTAR 5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>SELECTION</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>17600</td>
<td>17149</td>
<td>197</td>
<td>195</td>
<td>121</td>
<td>118</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>20028</td>
<td>20413</td>
<td>258</td>
<td>272</td>
<td>171</td>
<td>183</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>18470</td>
<td>18417</td>
<td>225</td>
<td>229</td>
<td>132</td>
<td>132</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>23975</td>
<td>25486</td>
<td>219</td>
<td>226</td>
<td>143</td>
<td>147</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>22602</td>
<td>23730</td>
<td>221</td>
<td>227</td>
<td>140</td>
<td>153</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>19925</td>
<td>20241</td>
<td>216</td>
<td>221</td>
<td>148</td>
<td>153</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>18912</td>
<td>18908</td>
<td>216</td>
<td>221</td>
<td>148</td>
<td>153</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>24603</td>
<td>26625</td>
<td>259</td>
<td>275</td>
<td>167</td>
<td>178</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>24141</td>
<td>25866</td>
<td>232</td>
<td>243</td>
<td>167</td>
<td>178</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>24617</td>
<td>26754</td>
<td>237</td>
<td>253</td>
<td>183</td>
<td>199</td>
<td>146</td>
</tr>
<tr>
<td>11</td>
<td>25422</td>
<td>27397</td>
<td>248</td>
<td>263</td>
<td>180</td>
<td>195</td>
<td>137</td>
</tr>
<tr>
<td>12</td>
<td>26417</td>
<td>28702</td>
<td>257</td>
<td>273</td>
<td>182</td>
<td>197</td>
<td>143</td>
</tr>
<tr>
<td>13</td>
<td>16027</td>
<td>16381</td>
<td>202</td>
<td>208</td>
<td>156</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td>14</td>
<td>21735</td>
<td>22574</td>
<td>203</td>
<td>209</td>
<td>146</td>
<td>151</td>
<td>110</td>
</tr>
<tr>
<td>15</td>
<td>25961</td>
<td>27961</td>
<td>226</td>
<td>235</td>
<td>170</td>
<td>182</td>
<td>128</td>
</tr>
<tr>
<td>16</td>
<td>26102</td>
<td>28097</td>
<td>245</td>
<td>256</td>
<td>168</td>
<td>180</td>
<td>128</td>
</tr>
<tr>
<td>17</td>
<td>26970</td>
<td>29265</td>
<td>260</td>
<td>300</td>
<td>191</td>
<td>209</td>
<td>146</td>
</tr>
<tr>
<td>18</td>
<td>26687</td>
<td>26506</td>
<td>225</td>
<td>233</td>
<td>152</td>
<td>159</td>
<td>127</td>
</tr>
<tr>
<td>19</td>
<td>23937</td>
<td>32680</td>
<td>236</td>
<td>252</td>
<td>172</td>
<td>184</td>
<td>144</td>
</tr>
<tr>
<td>20</td>
<td>23966</td>
<td>25559</td>
<td>231</td>
<td>243</td>
<td>165</td>
<td>176</td>
<td>133</td>
</tr>
<tr>
<td>21</td>
<td>19393</td>
<td>19602</td>
<td>228</td>
<td>234</td>
<td>150</td>
<td>156</td>
<td>118</td>
</tr>
<tr>
<td>22</td>
<td>20680</td>
<td>21362</td>
<td>239</td>
<td>257</td>
<td>177</td>
<td>191</td>
<td>127</td>
</tr>
<tr>
<td>23</td>
<td>27300</td>
<td>29928</td>
<td>241</td>
<td>254</td>
<td>176</td>
<td>190</td>
<td>114</td>
</tr>
</tbody>
</table>
Appendix Table 4 -- continued.

Values for Instars 5 and 6

<table>
<thead>
<tr>
<th>Instar 5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Selection</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5843</td>
<td>4028</td>
<td>107</td>
<td>91</td>
<td>49</td>
<td>35</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>6954</td>
<td>5385</td>
<td>146</td>
<td>138</td>
<td>70</td>
<td>62</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>5850</td>
<td>3883</td>
<td>141</td>
<td>129</td>
<td>50</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>9004</td>
<td>8341</td>
<td>146</td>
<td>139</td>
<td>70</td>
<td>62</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>8382</td>
<td>7371</td>
<td>144</td>
<td>137</td>
<td>69</td>
<td>61</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>9683</td>
<td>5341</td>
<td>122</td>
<td>112</td>
<td>64</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>6338</td>
<td>4619</td>
<td>119</td>
<td>107</td>
<td>61</td>
<td>51</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>9466</td>
<td>8610</td>
<td>157</td>
<td>151</td>
<td>77</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>9206</td>
<td>9481</td>
<td>149</td>
<td>144</td>
<td>77</td>
<td>71</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>9851</td>
<td>9351</td>
<td>146</td>
<td>142</td>
<td>86</td>
<td>84</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>9926</td>
<td>9439</td>
<td>155</td>
<td>151</td>
<td>83</td>
<td>80</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>10363</td>
<td>10939</td>
<td>153</td>
<td>148</td>
<td>80</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>5549</td>
<td>3777</td>
<td>96</td>
<td>84</td>
<td>61</td>
<td>51</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>6010</td>
<td>6902</td>
<td>125</td>
<td>116</td>
<td>66</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>10113</td>
<td>9738</td>
<td>138</td>
<td>131</td>
<td>81</td>
<td>77</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>9904</td>
<td>9465</td>
<td>139</td>
<td>134</td>
<td>60</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>10299</td>
<td>9939</td>
<td>168</td>
<td>167</td>
<td>89</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>9438</td>
<td>8839</td>
<td>129</td>
<td>121</td>
<td>77</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>19</td>
<td>12154</td>
<td>12519</td>
<td>148</td>
<td>147</td>
<td>93</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>20</td>
<td>9240</td>
<td>9558</td>
<td>135</td>
<td>127</td>
<td>79</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>21</td>
<td>6472</td>
<td>4474</td>
<td>136</td>
<td>123</td>
<td>64</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>22</td>
<td>7550</td>
<td>6228</td>
<td>128</td>
<td>121</td>
<td>72</td>
<td>64</td>
<td>71</td>
</tr>
<tr>
<td>23</td>
<td>10143</td>
<td>9691</td>
<td>130</td>
<td>122</td>
<td>78</td>
<td>73</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instar 6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Selection</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>16249</td>
<td>17933</td>
<td>206</td>
<td>220</td>
<td>136</td>
<td>148</td>
<td>136</td>
</tr>
<tr>
<td>2</td>
<td>14921</td>
<td>15570</td>
<td>208</td>
<td>220</td>
<td>133</td>
<td>144</td>
<td>132</td>
</tr>
<tr>
<td>3</td>
<td>13681</td>
<td>14472</td>
<td>209</td>
<td>222</td>
<td>128</td>
<td>136</td>
<td>129</td>
</tr>
<tr>
<td>4</td>
<td>17003</td>
<td>19844</td>
<td>211</td>
<td>226</td>
<td>135</td>
<td>147</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>12924</td>
<td>13364</td>
<td>152</td>
<td>192</td>
<td>126</td>
<td>134</td>
<td>124</td>
</tr>
<tr>
<td>6</td>
<td>15313</td>
<td>16675</td>
<td>201</td>
<td>208</td>
<td>123</td>
<td>131</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>11430</td>
<td>11351</td>
<td>196</td>
<td>199</td>
<td>110</td>
<td>113</td>
<td>109</td>
</tr>
<tr>
<td>8</td>
<td>13998</td>
<td>14958</td>
<td>195</td>
<td>204</td>
<td>110</td>
<td>114</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>15401</td>
<td>16818</td>
<td>189</td>
<td>199</td>
<td>125</td>
<td>134</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>11836</td>
<td>12072</td>
<td>195</td>
<td>156</td>
<td>97</td>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td>11</td>
<td>13149</td>
<td>13758</td>
<td>195</td>
<td>203</td>
<td>110</td>
<td>115</td>
<td>110</td>
</tr>
<tr>
<td>12</td>
<td>13999</td>
<td>14967</td>
<td>174</td>
<td>181</td>
<td>114</td>
<td>120</td>
<td>114</td>
</tr>
<tr>
<td>13</td>
<td>13771</td>
<td>14624</td>
<td>178</td>
<td>184</td>
<td>111</td>
<td>116</td>
<td>111</td>
</tr>
<tr>
<td>14</td>
<td>16058</td>
<td>17707</td>
<td>196</td>
<td>205</td>
<td>129</td>
<td>139</td>
<td>129</td>
</tr>
<tr>
<td>15</td>
<td>12754</td>
<td>13220</td>
<td>182</td>
<td>187</td>
<td>113</td>
<td>118</td>
<td>113</td>
</tr>
<tr>
<td>16</td>
<td>13026</td>
<td>13672</td>
<td>167</td>
<td>171</td>
<td>98</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>17</td>
<td>14738</td>
<td>15990</td>
<td>184</td>
<td>187</td>
<td>105</td>
<td>108</td>
<td>105</td>
</tr>
<tr>
<td>18</td>
<td>12556</td>
<td>13011</td>
<td>164</td>
<td>165</td>
<td>101</td>
<td>103</td>
<td>101</td>
</tr>
</tbody>
</table>

Values for Discriminant Function Equations

- **Instar 5**
 - 122, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55

- **Instar 6**
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55
 - 129, 112, 64, 55

Note: The table continues with more data for Instars 5 and 6.
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTARS 6 AND 7

<table>
<thead>
<tr>
<th>INSTAR 6</th>
<th>1</th>
<th>2</th>
<th>3 SELECTION</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>6</td>
<td>7</td>
<td>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>40749</td>
<td>40346</td>
<td>144 140 124 122 124 122</td>
<td>48</td>
<td>47</td>
<td>79 78</td>
</tr>
<tr>
<td>2</td>
<td>36433</td>
<td>34999</td>
<td>146 140 116 113 116 113</td>
<td>47</td>
<td>46</td>
<td>82 82</td>
</tr>
<tr>
<td>3</td>
<td>33485</td>
<td>31555</td>
<td>139 131 110 105 111 106</td>
<td>41</td>
<td>38</td>
<td>87 87</td>
</tr>
<tr>
<td>4</td>
<td>43093</td>
<td>43267</td>
<td>156 156 126 124 126 124</td>
<td>37</td>
<td>32</td>
<td>77 75</td>
</tr>
<tr>
<td>5</td>
<td>33736</td>
<td>31666</td>
<td>131 122 107 102 106 101</td>
<td>46</td>
<td>44</td>
<td>72 68</td>
</tr>
<tr>
<td>6</td>
<td>37127</td>
<td>35867</td>
<td>137 129 110 105 110 104</td>
<td>45</td>
<td>43</td>
<td>66 60</td>
</tr>
<tr>
<td>7</td>
<td>29568</td>
<td>24849</td>
<td>115 99 91 81 90 81</td>
<td>45</td>
<td>43</td>
<td>66 61</td>
</tr>
<tr>
<td>8</td>
<td>33390</td>
<td>31207</td>
<td>127 115 97 88 96 88</td>
<td>33</td>
<td>27</td>
<td>59 52</td>
</tr>
<tr>
<td>9</td>
<td>38687</td>
<td>37784</td>
<td>126 114 113 108 113 108</td>
<td>36</td>
<td>32</td>
<td>70 65</td>
</tr>
<tr>
<td>10</td>
<td>28213</td>
<td>24798</td>
<td>97 77 82 70 80 70</td>
<td>22</td>
<td>13</td>
<td>53 44</td>
</tr>
<tr>
<td>11</td>
<td>31559</td>
<td>28950</td>
<td>122 108 95 86 95 86</td>
<td>39</td>
<td>35</td>
<td>61 55</td>
</tr>
<tr>
<td>12</td>
<td>34445</td>
<td>32541</td>
<td>128 120 101 93 101 93</td>
<td>34</td>
<td>29</td>
<td>63 57</td>
</tr>
<tr>
<td>13</td>
<td>32643</td>
<td>30326</td>
<td>118 107 98 89 98 89</td>
<td>40</td>
<td>37</td>
<td>61 55</td>
</tr>
<tr>
<td>14</td>
<td>38988</td>
<td>38193</td>
<td>148 147 117 114 117 114</td>
<td>49</td>
<td>48</td>
<td>72 68</td>
</tr>
<tr>
<td>15</td>
<td>30019</td>
<td>27071</td>
<td>120 109 96 88 96 88</td>
<td>41</td>
<td>36</td>
<td>68 63</td>
</tr>
<tr>
<td>16</td>
<td>28322</td>
<td>25007</td>
<td>109 97 85 73 85 73</td>
<td>36</td>
<td>31</td>
<td>53 45</td>
</tr>
<tr>
<td>17</td>
<td>36886</td>
<td>35523</td>
<td>121 104 96 87 96 87</td>
<td>21</td>
<td>11</td>
<td>50 40</td>
</tr>
<tr>
<td>18</td>
<td>29886</td>
<td>26897</td>
<td>111 97 87 76 87 76</td>
<td>29</td>
<td>21</td>
<td>55 47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTAR 7</th>
<th>1</th>
<th>2</th>
<th>3 SELECTION</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIMEN NUMBER</td>
<td>6</td>
<td>7</td>
<td>VALUES FOR DISCRIMINANT FUNCTION EQUATIONS</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>53206</td>
<td>55783</td>
<td>200 209 170 181 170 181</td>
<td>70</td>
<td>76</td>
<td>120 130</td>
</tr>
<tr>
<td>2</td>
<td>51385</td>
<td>53547</td>
<td>212 225 167 177 167 177</td>
<td>75</td>
<td>82</td>
<td>122 132</td>
</tr>
<tr>
<td>3</td>
<td>55041</td>
<td>58041</td>
<td>197 208 173 185 173 185</td>
<td>55</td>
<td>56</td>
<td>120 130</td>
</tr>
<tr>
<td>4</td>
<td>51087</td>
<td>53156</td>
<td>202 212 162 170 162 170</td>
<td>62</td>
<td>66</td>
<td>113 121</td>
</tr>
<tr>
<td>5</td>
<td>53585</td>
<td>56268</td>
<td>195 207 163 172 163 171</td>
<td>62</td>
<td>65</td>
<td>103 108</td>
</tr>
<tr>
<td>6</td>
<td>48489</td>
<td>49982</td>
<td>186 197 155 162 155 162</td>
<td>64</td>
<td>69</td>
<td>108 115</td>
</tr>
<tr>
<td>7</td>
<td>54043</td>
<td>56873</td>
<td>197 209 164 173 164 173</td>
<td>74</td>
<td>81</td>
<td>102 106</td>
</tr>
<tr>
<td>8</td>
<td>53505</td>
<td>56175</td>
<td>200 212 165 174 164 174</td>
<td>67</td>
<td>72</td>
<td>106 111</td>
</tr>
<tr>
<td>9</td>
<td>55632</td>
<td>58828</td>
<td>194 205 167 177 167 176</td>
<td>72</td>
<td>79</td>
<td>100 105</td>
</tr>
<tr>
<td>10</td>
<td>50939</td>
<td>53017</td>
<td>209 224 158 165 158 165</td>
<td>70</td>
<td>76</td>
<td>101 106</td>
</tr>
<tr>
<td>11</td>
<td>54511</td>
<td>57438</td>
<td>193 207 168 177 168 177</td>
<td>61</td>
<td>65</td>
<td>107 114</td>
</tr>
<tr>
<td>12</td>
<td>57812</td>
<td>61508</td>
<td>197 209 166 178 168 178</td>
<td>56</td>
<td>58</td>
<td>98 102</td>
</tr>
<tr>
<td>13</td>
<td>42027</td>
<td>41960</td>
<td>175 184 132 133 132 133</td>
<td>50</td>
<td>49</td>
<td>89 90</td>
</tr>
<tr>
<td>14</td>
<td>46721</td>
<td>47777</td>
<td>164 168 140 142 140 143</td>
<td>52</td>
<td>52</td>
<td>87 87</td>
</tr>
<tr>
<td>15</td>
<td>48757</td>
<td>50316</td>
<td>189 200 150 155 150 155</td>
<td>63</td>
<td>67</td>
<td>93 95</td>
</tr>
<tr>
<td>16</td>
<td>44540</td>
<td>45087</td>
<td>172 176 137 139 137 139</td>
<td>63</td>
<td>66</td>
<td>88 89</td>
</tr>
<tr>
<td>17</td>
<td>46743</td>
<td>47792</td>
<td>175 179 139 141 139 141</td>
<td>55</td>
<td>56</td>
<td>84 84</td>
</tr>
<tr>
<td>18</td>
<td>57688</td>
<td>61370</td>
<td>207 221 168 178 169 178</td>
<td>56</td>
<td>57</td>
<td>100 105</td>
</tr>
<tr>
<td>19</td>
<td>52433</td>
<td>54848</td>
<td>195 204 155 161 155 162</td>
<td>49</td>
<td>48</td>
<td>99 103</td>
</tr>
<tr>
<td>20</td>
<td>44321</td>
<td>44779</td>
<td>178 183 138 140 138 140</td>
<td>59</td>
<td>62</td>
<td>93 95</td>
</tr>
<tr>
<td>21</td>
<td>55465</td>
<td>58567</td>
<td>225 244 178 191 178 191</td>
<td>85</td>
<td>97</td>
<td>122 133</td>
</tr>
<tr>
<td>22</td>
<td>54450</td>
<td>57394</td>
<td>198 214 178 191 178 191</td>
<td>76</td>
<td>85</td>
<td>125 136</td>
</tr>
<tr>
<td>23</td>
<td>35413</td>
<td>33809</td>
<td>150 156 126 126 126 126</td>
<td>58</td>
<td>60</td>
<td>98 102</td>
</tr>
<tr>
<td>24</td>
<td>44557</td>
<td>45114</td>
<td>181 189 141 144 141 144</td>
<td>68</td>
<td>73</td>
<td>92 94</td>
</tr>
</tbody>
</table>
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTARS 7 AND 8

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28564</td>
<td>28209</td>
<td>240</td>
<td>235</td>
<td>220</td>
<td>219</td>
</tr>
<tr>
<td>2</td>
<td>28123</td>
<td>27705</td>
<td>240</td>
<td>236</td>
<td>213</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>28866</td>
<td>28561</td>
<td>240</td>
<td>238</td>
<td>225</td>
<td>224</td>
</tr>
<tr>
<td>4</td>
<td>27319</td>
<td>26778</td>
<td>239</td>
<td>234</td>
<td>205</td>
<td>201</td>
</tr>
<tr>
<td>5</td>
<td>28796</td>
<td>28471</td>
<td>236</td>
<td>231</td>
<td>210</td>
<td>206</td>
</tr>
<tr>
<td>6</td>
<td>25893</td>
<td>25170</td>
<td>218</td>
<td>212</td>
<td>194</td>
<td>188</td>
</tr>
<tr>
<td>7</td>
<td>29559</td>
<td>29335</td>
<td>232</td>
<td>225</td>
<td>209</td>
<td>204</td>
</tr>
<tr>
<td>8</td>
<td>29023</td>
<td>28729</td>
<td>232</td>
<td>227</td>
<td>214</td>
<td>210</td>
</tr>
<tr>
<td>9</td>
<td>30330</td>
<td>30212</td>
<td>232</td>
<td>225</td>
<td>217</td>
<td>212</td>
</tr>
<tr>
<td>10</td>
<td>28357</td>
<td>27962</td>
<td>243</td>
<td>238</td>
<td>201</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>29689</td>
<td>29493</td>
<td>229</td>
<td>225</td>
<td>214</td>
<td>210</td>
</tr>
<tr>
<td>12</td>
<td>31161</td>
<td>31158</td>
<td>239</td>
<td>234</td>
<td>216</td>
<td>211</td>
</tr>
<tr>
<td>13</td>
<td>22246</td>
<td>21019</td>
<td>194</td>
<td>185</td>
<td>164</td>
<td>152</td>
</tr>
<tr>
<td>14</td>
<td>22519</td>
<td>23570</td>
<td>102</td>
<td>107</td>
<td>106</td>
<td>101</td>
</tr>
<tr>
<td>15</td>
<td>26741</td>
<td>26120</td>
<td>217</td>
<td>208</td>
<td>189</td>
<td>180</td>
</tr>
<tr>
<td>16</td>
<td>23769</td>
<td>22707</td>
<td>186</td>
<td>172</td>
<td>168</td>
<td>156</td>
</tr>
<tr>
<td>17</td>
<td>24810</td>
<td>23917</td>
<td>197</td>
<td>185</td>
<td>175</td>
<td>163</td>
</tr>
<tr>
<td>18</td>
<td>31541</td>
<td>31557</td>
<td>233</td>
<td>224</td>
<td>205</td>
<td>197</td>
</tr>
<tr>
<td>19</td>
<td>27994</td>
<td>27515</td>
<td>212</td>
<td>200</td>
<td>181</td>
<td>171</td>
</tr>
<tr>
<td>20</td>
<td>23300</td>
<td>22196</td>
<td>196</td>
<td>183</td>
<td>171</td>
<td>161</td>
</tr>
<tr>
<td>21</td>
<td>30880</td>
<td>30861</td>
<td>264</td>
<td>263</td>
<td>234</td>
<td>235</td>
</tr>
<tr>
<td>22</td>
<td>29975</td>
<td>29623</td>
<td>244</td>
<td>241</td>
<td>228</td>
<td>228</td>
</tr>
<tr>
<td>23</td>
<td>18210</td>
<td>16443</td>
<td>173</td>
<td>162</td>
<td>154</td>
<td>143</td>
</tr>
<tr>
<td>24</td>
<td>24196</td>
<td>23230</td>
<td>209</td>
<td>199</td>
<td>178</td>
<td>168</td>
</tr>
</tbody>
</table>

VALUES FOR INSTARS 8 AND 9

<table>
<thead>
<tr>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31301</td>
<td>31358</td>
<td>277</td>
<td>284</td>
<td>248</td>
<td>253</td>
</tr>
<tr>
<td>2</td>
<td>38471</td>
<td>39510</td>
<td>296</td>
<td>304</td>
<td>279</td>
<td>286</td>
</tr>
<tr>
<td>3</td>
<td>36602</td>
<td>37405</td>
<td>316</td>
<td>329</td>
<td>284</td>
<td>294</td>
</tr>
<tr>
<td>4</td>
<td>38336</td>
<td>39379</td>
<td>321</td>
<td>335</td>
<td>287</td>
<td>297</td>
</tr>
<tr>
<td>5</td>
<td>32831</td>
<td>33105</td>
<td>286</td>
<td>294</td>
<td>256</td>
<td>261</td>
</tr>
<tr>
<td>6</td>
<td>36162</td>
<td>36880</td>
<td>305</td>
<td>314</td>
<td>267</td>
<td>273</td>
</tr>
<tr>
<td>7</td>
<td>37151</td>
<td>38016</td>
<td>307</td>
<td>317</td>
<td>276</td>
<td>284</td>
</tr>
<tr>
<td>8</td>
<td>31183</td>
<td>31221</td>
<td>264</td>
<td>266</td>
<td>243</td>
<td>247</td>
</tr>
<tr>
<td>9</td>
<td>34250</td>
<td>34699</td>
<td>297</td>
<td>304</td>
<td>264</td>
<td>271</td>
</tr>
<tr>
<td>10</td>
<td>35853</td>
<td>36529</td>
<td>281</td>
<td>285</td>
<td>263</td>
<td>267</td>
</tr>
<tr>
<td>11</td>
<td>36136</td>
<td>36857</td>
<td>313</td>
<td>323</td>
<td>272</td>
<td>279</td>
</tr>
<tr>
<td>12</td>
<td>35825</td>
<td>36511</td>
<td>315</td>
<td>328</td>
<td>289</td>
<td>301</td>
</tr>
<tr>
<td>13</td>
<td>36303</td>
<td>37037</td>
<td>299</td>
<td>307</td>
<td>273</td>
<td>280</td>
</tr>
<tr>
<td>14</td>
<td>32588</td>
<td>32618</td>
<td>275</td>
<td>281</td>
<td>252</td>
<td>257</td>
</tr>
<tr>
<td>15</td>
<td>31164</td>
<td>31170</td>
<td>264</td>
<td>263</td>
<td>237</td>
<td>238</td>
</tr>
<tr>
<td>16</td>
<td>39729</td>
<td>36380</td>
<td>300</td>
<td>306</td>
<td>266</td>
<td>271</td>
</tr>
<tr>
<td>17</td>
<td>35546</td>
<td>35947</td>
<td>292</td>
<td>298</td>
<td>259</td>
<td>263</td>
</tr>
<tr>
<td>18</td>
<td>32725</td>
<td>32975</td>
<td>288</td>
<td>295</td>
<td>261</td>
<td>267</td>
</tr>
</tbody>
</table>

For Discriminant Function Equations
INSTAR DETERMINATION DATA

Appendix table 4 -- continued.

VALUES FOR INSTARS 8 AND 9

<table>
<thead>
<tr>
<th>INSTAR 8</th>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>4</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>44687 41369</td>
<td>882 843</td>
<td>220 205</td>
<td>217 202</td>
<td>109 111</td>
<td>179 169</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59358 58776</td>
<td>960 929</td>
<td>243 230</td>
<td>239 226</td>
<td>107 106</td>
<td>168 154</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54337 52835</td>
<td>976 949</td>
<td>255 248</td>
<td>253 245</td>
<td>127 126</td>
<td>197 191</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>56580 55460</td>
<td>957 922</td>
<td>256 249</td>
<td>254 246</td>
<td>129 129</td>
<td>193 186</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>46770 43828</td>
<td>884 841</td>
<td>222 205</td>
<td>214 198</td>
<td>99 94</td>
<td>177 163</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>54598 53093</td>
<td>914 874</td>
<td>234 220</td>
<td>231 217</td>
<td>101 100</td>
<td>172 159</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>55512 54203</td>
<td>942 906</td>
<td>242 230</td>
<td>237 225</td>
<td>95 91</td>
<td>178 166</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>45289 42103</td>
<td>891 846</td>
<td>212 194</td>
<td>207 190</td>
<td>103 98</td>
<td>168 154</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>51119 48991</td>
<td>1003 979</td>
<td>233 220</td>
<td>228 216</td>
<td>84 79</td>
<td>162 171</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>54128 52558</td>
<td>922 883</td>
<td>227 210</td>
<td>221 205</td>
<td>100 96</td>
<td>161 144</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>54302 52763</td>
<td>916 875</td>
<td>239 226</td>
<td>234 221</td>
<td>93 90</td>
<td>170 166</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>53725 52132</td>
<td>1033 1021</td>
<td>263 259</td>
<td>261 257</td>
<td>110 108</td>
<td>214 213</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>56068 54874</td>
<td>966 930</td>
<td>241 228</td>
<td>237 225</td>
<td>99 94</td>
<td>176 164</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>48300 45665</td>
<td>852 809</td>
<td>227 215</td>
<td>228 216</td>
<td>96 90</td>
<td>178 169</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>47958 45257</td>
<td>863 812</td>
<td>204 184</td>
<td>201 180</td>
<td>65 55</td>
<td>169 130</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>55268 53895</td>
<td>1004 975</td>
<td>228 211</td>
<td>221 205</td>
<td>112 108</td>
<td>163 146</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>59387 52374</td>
<td>915 874</td>
<td>225 208</td>
<td>221 205</td>
<td>102 98</td>
<td>158 142</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>49207 46820</td>
<td>951 921</td>
<td>232 219</td>
<td>229 216</td>
<td>70 62</td>
<td>180 169</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTAR 9</th>
<th>SPECIMEN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>4</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>82373 06189</td>
<td>1267 1308</td>
<td>359 377</td>
<td>361 378</td>
<td>136 143</td>
<td>263 276</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>69307 70761</td>
<td>1205 1229</td>
<td>325 334</td>
<td>320 329</td>
<td>138 144</td>
<td>252 260</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>73955 76145</td>
<td>1232 1257</td>
<td>329 340</td>
<td>329 339</td>
<td>132 136</td>
<td>248 256</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79252 82534</td>
<td>1259 1305</td>
<td>353 369</td>
<td>353 369</td>
<td>106 108</td>
<td>265 278</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>71958 73074</td>
<td>1262 1299</td>
<td>317 322</td>
<td>312 318</td>
<td>135 146</td>
<td>235 230</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>71143 72089</td>
<td>1284 1327</td>
<td>351 370</td>
<td>353 371</td>
<td>129 134</td>
<td>279 297</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67292 68316</td>
<td>1197 1225</td>
<td>316 325</td>
<td>316 325</td>
<td>122 126</td>
<td>246 254</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>79340 82612</td>
<td>1289 1328</td>
<td>392 415</td>
<td>381 406</td>
<td>138 137</td>
<td>314 336</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>60067 97778</td>
<td>1284 1325</td>
<td>304 310</td>
<td>301 307</td>
<td>116 118</td>
<td>250 258</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>67462 69680</td>
<td>1269 1299</td>
<td>329 342</td>
<td>329 341</td>
<td>125 126</td>
<td>265 278</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>66977 71204</td>
<td>1234 1274</td>
<td>341 355</td>
<td>337 351</td>
<td>104 105</td>
<td>271 283</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>83566 97608</td>
<td>1258 1300</td>
<td>390 424</td>
<td>393 419</td>
<td>130 134</td>
<td>307 329</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>67912 69018</td>
<td>1222 1250</td>
<td>318 326</td>
<td>316 325</td>
<td>126 133</td>
<td>268 256</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>63858 64324</td>
<td>1215 1247</td>
<td>333 344</td>
<td>325 337</td>
<td>118 120</td>
<td>275 287</td>
<td></td>
</tr>
</tbody>
</table>
Means (\bar{Y}) and variances (s^2) of discriminant values for larvae of standardization set evaluated using the standardization set of discriminant function equations

a) The discriminant function equation for instar 1 used to separate all 9 instars

<table>
<thead>
<tr>
<th>Instar</th>
<th>N</th>
<th>16 variables</th>
<th>9 variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\bar{Y}</td>
<td>s^2</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1617</td>
<td>19300.6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1913</td>
<td>7533.9</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>399</td>
<td>152359.6</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>5499</td>
<td>295921.0</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>7240</td>
<td>466938.5</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>9353</td>
<td>369534.6</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>11661</td>
<td>597882.8</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>13248</td>
<td>259896.0</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>15776</td>
<td>692487.2</td>
</tr>
</tbody>
</table>

b) The characteristic discriminant function equation for each instar

<table>
<thead>
<tr>
<th>Instar</th>
<th>N</th>
<th>16 variables</th>
<th>9 variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\bar{Y}</td>
<td>s^2</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1617</td>
<td>19300.6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2029</td>
<td>7974.9</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>4206</td>
<td>348639.1</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>8232</td>
<td>1493098.0</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>12771</td>
<td>4103739.0</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>20057</td>
<td>6434230.0</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>29782</td>
<td>12897090.0</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>37865</td>
<td>6997251.0</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>53527</td>
<td>28516160.0</td>
</tr>
</tbody>
</table>
c) For separating instars 1 and 2

<table>
<thead>
<tr>
<th>Selection function</th>
<th>Instar 1</th>
<th>Instar 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{Y}</td>
<td>s^2</td>
</tr>
<tr>
<td>1</td>
<td>234 691</td>
<td>844 988</td>
</tr>
<tr>
<td>2</td>
<td>231 956</td>
<td>870 550</td>
</tr>
<tr>
<td>3</td>
<td>3 229</td>
<td>140 323.3</td>
</tr>
<tr>
<td>2</td>
<td>3 116</td>
<td>169 622.6</td>
</tr>
<tr>
<td>4</td>
<td>421</td>
<td>530.4</td>
</tr>
<tr>
<td>2</td>
<td>415</td>
<td>624.0</td>
</tr>
<tr>
<td>5</td>
<td>291</td>
<td>452.4</td>
</tr>
<tr>
<td>2</td>
<td>286</td>
<td>518.9</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>55.5</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>103.2</td>
</tr>
<tr>
<td></td>
<td>318</td>
<td>334.3</td>
</tr>
<tr>
<td></td>
<td>312</td>
<td>402.1</td>
</tr>
</tbody>
</table>

d) For separating instars 2 and 3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2 305</td>
<td>21 906.5</td>
<td>4 435</td>
</tr>
<tr>
<td>3</td>
<td>1 589</td>
<td>51 919.9</td>
<td>5 150</td>
<td>576 820.5</td>
</tr>
<tr>
<td>2</td>
<td>135</td>
<td>117.5</td>
<td>156</td>
<td>335.6</td>
</tr>
<tr>
<td>3</td>
<td>128</td>
<td>233.5</td>
<td>207</td>
<td>476.3</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>135.8</td>
<td>151</td>
<td>227.8</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
<td>171.5</td>
<td>161</td>
<td>372.9</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
<td>102.6</td>
<td>103</td>
<td>140.2</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>116.2</td>
<td>112</td>
<td>254.9</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>49.2</td>
<td>51</td>
<td>76.7</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>78.9</td>
<td>54</td>
<td>119.2</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>95.3</td>
<td>152</td>
<td>227.6</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>149.8</td>
<td>160</td>
<td>376.2</td>
</tr>
</tbody>
</table>

e) For separating instars 3 and 4

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>10 490</td>
<td>2 377 104.0</td>
<td>16 893</td>
</tr>
<tr>
<td>4</td>
<td>9 265</td>
<td>4 377 426.0</td>
<td>18 117</td>
<td>6 276 023.0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>222</td>
<td>646.4</td>
<td>364</td>
</tr>
<tr>
<td>4</td>
<td>191</td>
<td>1 127.6</td>
<td>395</td>
<td>458.0</td>
</tr>
<tr>
<td>3</td>
<td>154</td>
<td>341.5</td>
<td>252</td>
<td>271.1</td>
</tr>
<tr>
<td>4</td>
<td>138</td>
<td>606.5</td>
<td>268</td>
<td>466.3</td>
</tr>
<tr>
<td>4</td>
<td>104</td>
<td>216.3</td>
<td>180</td>
<td>204.1</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>399.4</td>
<td>194</td>
<td>375.0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>39</td>
<td>64.5</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>94.7</td>
<td>59</td>
<td>142.9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>153</td>
<td>347.5</td>
<td>251</td>
</tr>
<tr>
<td>4</td>
<td>137</td>
<td>610.5</td>
<td>268</td>
<td>465.7</td>
</tr>
</tbody>
</table>
Appendix table 5 -- continued.

f) For separating instars 4 and 5

<table>
<thead>
<tr>
<th>Selection</th>
<th>Discriminant function</th>
<th>Instar 4</th>
<th>Instar 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{Y})</td>
<td>(s^2)</td>
<td>(\bar{Y})</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>14764</td>
<td>7286</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13494</td>
<td>12310</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>114</td>
<td></td>
</tr>
</tbody>
</table>

g) For separating instars 5 and 6

<table>
<thead>
<tr>
<th>Selection</th>
<th>Instar 5</th>
<th>Instar 6</th>
<th>Instar 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{Y})</td>
<td>(s^2)</td>
<td>(\bar{Y})</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>8566</td>
<td>3277</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7622</td>
<td>5996</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>138</td>
<td>282.7</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>130</td>
<td>390.1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>74</td>
<td>135.9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>67</td>
<td>233.4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>74</td>
<td>138.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>67</td>
<td>232.3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>34</td>
<td>57.8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>31</td>
<td>87.3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>60</td>
<td>79.6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>55</td>
<td>134.6</td>
</tr>
</tbody>
</table>

h) For separating instars 6 and 7

<table>
<thead>
<tr>
<th>Selection</th>
<th>Instar 7</th>
<th>Instar 8</th>
<th>Instar 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{Y})</td>
<td>(s^2)</td>
<td>(\bar{Y})</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>34201</td>
<td>20123</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>32238</td>
<td>30872</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>128</td>
<td>235.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>117</td>
<td>411.9</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>103</td>
<td>173.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>96</td>
<td>271.2</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>103</td>
<td>175.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>96</td>
<td>270.7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>38</td>
<td>68.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>34</td>
<td>120.1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>111.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>61</td>
<td>180.7</td>
</tr>
</tbody>
</table>
APPENDIX TABLE 5 -- continued.

i) For separating instars 7 and 8

<table>
<thead>
<tr>
<th>Selection</th>
<th>Discriminant function</th>
<th>Instar 7</th>
<th>Instar 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\bar{Y}</td>
<td>s^2</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>27 160</td>
<td>11 360</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>26 698</td>
<td>13 906</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>113</td>
<td></td>
</tr>
</tbody>
</table>

j) For separating instars 8 and 9

<table>
<thead>
<tr>
<th>Selection</th>
<th>Discriminant function</th>
<th>Instar 8</th>
<th>Instar 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\bar{Y}</td>
<td>s^2</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>52 289</td>
<td>18 036</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>50 389</td>
<td>25 296</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>935</td>
<td>2 578.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>900</td>
<td>3 534.7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>234</td>
<td>230.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>220</td>
<td>365.8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>230</td>
<td>253.3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>216</td>
<td>386.0</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>100</td>
<td>260.6</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>96</td>
<td>344.4</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>176</td>
<td>225.8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>164</td>
<td>372.7</td>
</tr>
</tbody>
</table>
Calculation of quadratic discriminant function equations

Step 1

The means of the variables for each of the groups are first calculated.

\[\bar{x}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} x_{ijk} \]

where \(k = 1, 2, \ldots, g \) are groups
\(n_k \) = sample size in the \(k \)th group
\(x_{ijk} \) = the \(i \)th individual of the \(k \)th group
\(j = 1, 2, \ldots, m \) are variables

Step 2

The sum of cross-products of deviations from means is then calculated for each group.

\[S_k = \{ s_{jl}^k \} = \sum (x_{ijk} - \bar{x}_{jk})(x_{ilk} - \bar{x}_{lk}) \]

where \(j = 1, 2, \ldots, m \)
\(l = 1, 2, \ldots, m \)

Step 3

The pooled dispersion matrix (pooled variance-covariance matrix), \(D \), is computed using the \(S_k \) matrices.

\[D = \frac{g}{\sum_{k=1}^{g} n_k - g} \sum_{k=1}^{g} S_k \]

where \(g = \) number of groups

An element in the \(i \)th row and \(j \)th column of the matrix is designated as \(s_{ij} \).
Step 4

The inverse of this matrix, \(D^{-1} \), is then found. An element in the \(i^{th} \) row and \(j^{th} \) column of this matrix is designated as \(s^{ij} \). Calculation of the inverse is by the Gauss-Jordan method where the elements of a pivotal row, the covariances, are divided by a pivot (diagonal) element, the variance, and every other row is reduced by the products of its elements times the modified elements of the pivot row (Searle, 1966). As a result of this operation, when the matrix \(D \) is multiplied by its inverse \(D^{-1} \), an identity matrix \(I \) is obtained (an identity matrix is a matrix containing 1's in the diagonal elements and 0's in the off-diagonal elements). The lengthy formulae required to invert a matrix are given by Pennington (1970).

Step 5

The coefficients and constant for each of the \(k_\star = 1, 2, \ldots, g \) discriminant functions are now computed.

Coefficients:

\[
c_{ik_\star} = \sum_{j=1}^{m} s^{ij} \cdot \bar{x}_{jk}
\]

where \(i = 1, 2, \ldots, m \)

\(k = k_\star \)

\(s^{ij} \) = an inverse element of the pooled dispersion matrix \(D \).

Constant:

\[
c_{0k_\star} = -\frac{1}{2} \sum_{j=1}^{m} \sum_{l=1}^{m} s^{jl} \cdot \bar{x}_{jk} \cdot \bar{x}_{lk}
\]

Step 6

By evaluating the discriminant functions for each \(i^{th} \) individual of each \(k^{th} \) group, the probability of an individual belonging to an assigned group can be assessed.

Discriminant functions:

\[
z_{k_\star} = \sum_{j=1}^{m} c_{jk_\star} \cdot x_{ijk} + c_{0k_\star}
\]

where \(k_\star = 1, 2, \ldots, g \)
Probability of being associated with the largest discriminant function:
\[P_L = \frac{1}{\sum_{k=1}^{g} e^{(z_{k*} - z_L)}} \]

where \(z_L \) = value of the largest discriminant function.
\(L \) = subscript of the largest discriminant function.

Step 7

As a measure of the distance between groups, the generalized Mahalanobis \(D^2 \) statistic, \(V \), is calculated.

Common means:
\[\bar{y}_j = \frac{\sum_{k=1}^{g} n_k \bar{y}_{jk}}{\sum_{k=1}^{g} n_k} \]

Mahalanobis \(D^2 \):
\[V = \sum_{i=1}^{m} \sum_{j=1}^{m} s_{ij} \sum_{k=1}^{g} n_k (\bar{y}_{ik} - \bar{y}_i)(\bar{y}_{jk} - \bar{y}_j) \]

\(V \) can be used as chi-square (under assumption of normality) with \(m(g - 1) \) degrees of freedom, to test the hypothesis that the mean values are the same in all the \(g \) groups for these \(m \) variables.

LITERATURE CITED

The calculation of discriminant function equations is illustrated using the simplest case of discriminating between two groups by two variables. The two groups are the 3rd and 4th larval instars of *A. tillyardianum*, and the two variables are numbers 5 (mandible length) and 10 (antennal segment 3 length) of the standardization set of data. Sample size in each case is 19.

1. Means for the variables of the groups.

<table>
<thead>
<tr>
<th>Instar</th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instar 3</td>
<td>76.93675</td>
<td>58.57886</td>
</tr>
<tr>
<td>Instar 4</td>
<td>105.21045</td>
<td>84.05783</td>
</tr>
</tbody>
</table>

2. Sum of cross-products of deviations from means

<table>
<thead>
<tr>
<th>Instar</th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instar 3</td>
<td>529.16422</td>
<td>400.29004</td>
</tr>
<tr>
<td></td>
<td>400.29004</td>
<td>548.13158</td>
</tr>
<tr>
<td>Instar 4</td>
<td>495.51789</td>
<td>402.44842</td>
</tr>
<tr>
<td></td>
<td>402.44842</td>
<td>1406.98631</td>
</tr>
</tbody>
</table>

3. Pooled dispersion matrix, D

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>28.46332</td>
</tr>
<tr>
<td>x_2</td>
<td>22.22531</td>
</tr>
</tbody>
</table>

4. Inverse of pooled dispersion matrix, D^{-1}

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0.05163</td>
</tr>
<tr>
<td>x_2</td>
<td>-0.02113</td>
</tr>
</tbody>
</table>

5. To check the distinctness of the instar groups, the Mahalanobis D^2 statistic V is computed.
Common means:

\[\bar{Y}_1 = 91.07359 \quad \bar{Y}_2 = 71.31833 \]

where

\[\bar{Y}_1 = \frac{(19 \times 76.93675) + (19 \times 105.21045)}{19 + 19} \]

Calculation of the generalized Mahalanobis \(D^2 \) statistic gives the value 269.78540 with 2 degrees of freedom, demonstrating that there are significant differences between the instar groups.

6. Discriminant functions

\[z_1 (\text{instar } 3, x_1, x_2) = 2.73464 \times x_1 - 0.04049 \times x_2 - 104.01082 \]

\[z_{II} (\text{instar } 4, x_1, x_2) = 3.65610 \times x_1 + 0.05156 \times x_2 - 194.49634 \]

The coefficient for the variable \(x_1 \) of the discriminant function associated with instar 3, \(c_{I,1} \), is calculated as follows.

\[c_{I,1} = s_{11} \times \bar{X}_{I,1} + s_{12} \times \bar{X}_{I,2} \]

\[= (0.05163 \times 76.93675) + (-0.02113 \times 58.57886) \]

\[= 2.73464 \]

The constant for the discriminant function associated with instar 3, \(c_{I,0} \), is given by:

\[c_{I,0} = -1/2 \left(c_{I,1} \times \bar{X}_{I,1} + c_{I,2} \times \bar{X}_{I,2} \right) \]

\[= -1/2 ((2.73464 \times 76.93675) + (-0.04049 \times 58.57886)) \]

\[= 104.01082 \]

7. Group membership probabilities of individuals

Measurements of individuals are now substituted in the equations. For example, an individual with mandible length of 85.0 \(\mu \)m and antennal segment 3 length of 60.5 \(\mu \)m gives discriminant values of

\[z_1 (\text{instar } 3) = 125.984 \]

\[z_{II} (\text{instar } 4) = 119.392 \]

Since \(z_1 \) is larger than \(z_{II} \) this individual is a member of instar 3. The probability of this individual being associated with instar 3 can be calculated as being 0.99863.
Computer program for Multiple Discriminant Function Analysis -- MDISC. (FORTRAN IV language for an IBM 360/44 machine).

MODEL 44 PS VERSION 3, LEVEL 3 DATE 72327

MULTIPLE DISCRIMINANT FUNCTION ANALYSIS -- MDISC

MODIFICATION OF IBM APPLICATION PROGRAM
SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE

T. K. CRUSEY AUGUST 1971

PURPOSE

TO CLASSIFY AN INDIVIDUAL INTO ONE OF SEVERAL CATEGORIES USING A SERIES OF MEASUREMENTS. IN MOST CASES IT CAN BE ASSUMED THAT THERE ARE A FINITE NUMBER OF CATEGORIES OR POPULATIONS EACH OF WHICH THE INDIVIDUAL MAY HAVE COME AND EACH POPULATION IS CHARACTERIZED BY A PROBABILITY DISTRIBUTION OF THE MEASUREMENTS.

METHOD

A SET OF LINEAR FUNCTIONS IS CALCULATED FROM A STANDARDIZATION SET OF DATA ON GROUPS TO ALLOW THE CLASSIFICATION OF INDIVIDUALS INTO ONE OF SEVERAL GROUPS. THE CLASSIFICATION OF INDIVIDUALS IS PERFORMED BY EVALUATING EACH OF THE CALCULATED LINEAR FUNCTIONS, THEN FINDING THE GROUP FOR WHICH THE VALUE IS LARGEST. THE LINEAR FUNCTIONS CAN BE USED FOR EVALUATING ANOTHER TEST SET OF NEW INDIVIDUALS TO SEE WHICH GROUP THEY BELONG TO (DISCRIMINANT EVALUATION PROGRAM).

METHOD

SUBROUTINE: SL/PROGRAMS REQUIRE

READ FOR EACH DATA SET ARE
1) A PARAMETER CARD,
2) A CARD CONTAINING THE STANDARDIZATION COEFFICIENTS FOR THE VARIABLES,
3) A VARIABLE FORMAT CARD DESCRIBING THE PUNCHING OF THE INPUT DATA, AND
4) THE DATA WHICH ARE PLACED IN A 3-DIMENSIONAL FORTRAN ARRAY.

FOLLOWING ARE A VARIABLE NUMBER OF SELECTION CARDS TO SELECT DATA CLASSIFICATION
5) THE SELECTION TYPE INDICATING THE GROUP NUMBERS TO BE USED IN THE SELECTION OF INDIVIDUALS.

A BLANK CARD AFTER 6) WILL CAUSE A NEW GROUP SELECTION CARD TO BE READ STARTING FROM 1). A CARD WITH A POSITIVE NUMBER FOLLOWING THE SELECTION INDICATES THAT ALL ANALYSES HAVE BEEN COMPLETED.

THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE NUMBER OF GROUPS, M.

DIMENSION H(M)

THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE NUMBER OF VARIABLES, N.

DIMENSION CMEAN(N)

THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE PRODUCT OF N(M).

DIMENSION XBED(N)

THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE PRODUCT OF (M-1)K.

DIMENSION C1(12)

THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE PRODUCT OF N(M).

DIMENSION D1(12)

THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO THE TOTAL OF SAMPLE SIZES OF K GROUPS COMBINED, T (T = T1*...*K).

DIMENSION P(250), LG(250)
VECTOR CONTAINING A DATA SUBSET

OTHER DIMENSIONS ADDED TO THE IBM VERSION

DIMENSION XA(4000)

DIMENSION FAIT(20)

DIMENSION ITTRANS(40)

DIMENSION XA(9,25,34)

DIMENSION KGROUP(9)

DIMENSION KGROUP(9)

DIMENSION NLIST(9)

DIMENSION XA(9,25,34)

VECTOR CONTAINING THE GROUP NUMBERS TO BE USED IN A SELECTION

VECTOR CONTAINING THE GROUP SIZES TO BE USED IN A SELECTION

VECTOR CONTAINING THE VARIABLE NUMBERS TO BE USED IN A SELECTION

VECTOR FOR WRITING OUT THE INVERSE OF THE POLED DISPERSION MATRIX

THE COMMON ARRAY XA MUST BE THE SAME DIMENSIONS AS IN THE SUBROUTINE SUBPROGRAM DATA.

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE STATEMENT WHICH FOR FCLLChG.

THE COMMON PRECISION CPEAN, KEPAN, CDET, GVP

THE COMMON PRECISION STATEMENTS APPEARING IN OTHER ROUTINES SHOULD BE REMOVED FROM THIS ROUTINE.

COMMON XA

1 FORMAT (24 A A, A5, E15.5)
2 FORMAT (24 A A, A5, E15.5)
3 FORMAT (24 A A, A5, E15.5)
4 FORMAT (24 A A, A5, E15.5)
5 FORMAT (24 A A, A5, E15.5)
6 FORMAT (24 A A, A5, E15.5)
7 FORMAT (24 A A, A5, E15.5)
8 FORMAT (24 A A, A5, E15.5)
9 FORMAT (24 A A, A5, E15.5)
10 FORMAT (24 A A, A5, E15.5)
11 FORMAT (24 A A, A5, E15.5)
12 FORMAT (24 A A, A5, E15.5)
13 FORMAT (24 A A, A5, E15.5)
14 FORMAT (24 A A, A5, E15.5)
15 FORMAT (24 A A, A5, E15.5)
16 FORMAT (24 A A, A5, E15.5)
17 FORMAT (24 A A, A5, E15.5)
18 FORMAT (24 A A, A5, E15.5)
19 FORMAT (24 A A, A5, E15.5)
20 FORMAT (24 A A, A5, E15.5)
21 FORMAT (24 A A, A5, E15.5)
22 FORMAT (24 A A, A5, E15.5)
23 FORMAT (24 A A, A5, E15.5)
24 FORMAT (24 A A, A5, E15.5)
INSTAR DETERMINATION PROGRAMS

25 ARE THE SAMPLES IN ALL THE '12,' GROUPS FOR THESE '13,' VARIABLES.

READ PROBLEM PARAMETER CARD

100 READ (5,1,END=999) PR, PRI, K, H, IDATA, IPUNCH, N(1), I=1,K)

PR: PROBLEM NUMBER (MAY BE ALPHABETIC)

PRI: PROBLEM NUMBER (CONTINUE)

K: NUMBER OF GROUPS

H: NUMBER OF VARIABLES

IDATA: PRINTLY OF DATA INPUT OPTION

IPUNCH: DISCRIMINANT EQUATIONS PUNCHED ON CARDS OPTION

N: VECTOR OF LENGTH K CONTAINING SAMPLE SIZES

IF (K LE 1, G) GC TO 999

WRITE (6,3) PR, PRI, K, H

READ TRANSFORMATION CODES OF VARIABLES

READ (5,18) [TRANS(I)], I = 1, M

WRITE (6,21) [TRANS(I)], I = 1, M

READ VARIABLE FORMAT OF DATA

READ (5,2) FMT

READ DATA SET AND PLACE IN ARRAY XA

WRITE (6,30) I, XA(I)

TRANSFORM DATA IF REQUIRED

CALL DATA (M, I, J, TRANS)

CONTINUE

120 CONTINUE

READ GROUP NUMBERS SELECTION CARD

300 READ (5,19) KGROUP, (KGROUP(I), II = 1, NGROUP)

KGROUP: NUMBER OF GROUPS IN SELECTION

KGROUP(I): THE NUMBERS OF THE GROUPS IN SELECTION

IF (NGROUP) 999, 100, 200

WRITE (6,22) I, KGROUP(I), II = 1, NGROUP

CONTINUE

READ VARIABLE NUMBERS SELECTION CARD

400 READ (5,18) KKJ, (KKJ(I), JJ = 1, NKJ)

KKJ: NUMBER OF VARIABLES IN SELECTION

KKJ(I): THE NUMBERS OF THE VARIABLES IN SELECTION

IF (NKJ) 999, 300, 230

WRITE (6,23) KL, KKJ(I), JJ = 1, NKJ

CONTINUE

TRANSFER DATA SUBSET FROM XA TO X

WRITE (6,24) KL, NKJ, (X(I), I = 1, KL)

CONTINUE

END
MISC -- continued.

I = LAG
N1 = NA(1)
DO 240 I1 = 1, K1
L = L + 1
N2 = N1
DO 240 JJ = 1, NKJ
JJ = KJ(JJ)
C(NEAN(IJ)) = XA(IAG, IN, JK)
N2 = NMIN
X(IJ) = C(NEAN(IJ))
240 L = N2

TRANSFER GROUP SIZES IN SELECTION FROM N TO NA

DC 800 I1 = KGRCP
LAG = KGRCLP(I1)
I = LAG
N1 = N(I1)
N2 = N(I1)
K = NGRCP
P = NKJ
C

CALL DRATX(K,P,N,A,XBAR,C,MEAN)

PRINT PEAKS AND PCCLE Dispersion Matrix

LD = DC 270 I = 1, K
NL = KGRCP(I1)
DO 260 J = 1, P
NL = 1

260 WRITE(6,63) NG, C(NEAN(IJ), J = 1, P)
WRITE(6,47) I
LD = 1
DO 160 J = 1, P
LD = 1

160 C(NEAN(IJ)) = XBAR(J)
WRITE(6,8) I, J, C(NEAN(IJ), J = 1, P)

C

PRINT PCCLE Dispersion Inverse and Determinant

WRITE (6,22) I
LD = 0
DO 162 I = 1, P
DC 161 J = 1, P
L = L + 1

162 WRITE(6,23) I,

C

CALL DISCR(K,P,N,A,XBAR,C,MEAN,V,C,P,LAG)

PRINT COMMON MEANS

WRITE (6,7) C(NEAN(IJ), I = 1, P)

PRINT GENERALIZED VARIANCES C-SQUARE

WRITE (6,10) V
IFP = (K, I = 1, P)
WRITE (6,24) V, IFP, X, P

PRINT Constants and Coefficients of Discriminant Functions

N1 = N
N2 = N
DC 180 I = 1, K
WRITE (6,11) I, C(IJ), J = N1, N2

CHECK IF THE CONSTANT AND COEFFICIENTS OF THE DISCRIMINANT FUNCTIONS ARE TO BE PUNCH CUT

IF I PUNCH A.E. C1 GC TO 171

GO TO 174

171 PJ = (N2 - N1) + 1
WRITE (7) PJ, (C(IJ), J = N1, N2)

C

PRINT EVALUATION OF CLASSIFICATION FUNCTIONS FOR EACH OBSERVATION

WRITE (6,12) I
N1 = N
N2 = N(1)
DO 210 I1 = 1, K1
NG = KGRCLP(I1)
WRITE (6,13) NG
LD = C(IJ, J = N1, N2)
L = 1

210 WRITE (6,14) I, PJ, I(LEII)
IF I ERKJ 200

GO TO 190

200 N1 = N1 + NA(1)
N2 = N2 + NA(1) + 1

C

CONTINUE

C

STOP

END
SUBROUTINE DPATX

PURPOSE

COMPLETE MEANS OF VARIABLES IN EACH GROUP AND A PCCELE DISPERSION MATRIX FOR ALL THE GROUPS. NUMERICAL THIS SUB-
Routines IS USED IN THE PERFORMANCE OF DISCRIMINANT ANALYSIS.

USAGE

CALL DPATX (K,P,N,X,XBAR,D,CPMEAN)

DESCRIPTION OF PARAMETERS

K - NUMBER OF VARIABLES (MUST BE THE SAME FOR ALL

N - INPUT VECTOR OF LENGTH K CONTAINING SAMPLE SIZES OF

X - INPUT VECTOR CONTAINING DATA IN THE PANNER EQUIVA-

CANT TO A 3-DIMENSIONAL FORTRAN ALIAS, XI(1:1,11), XI(2:1,11), ETC. THE FIRST SUBSCRIPT IS

CASE NUMBER, THE SECOND SUBSCRIPT IS VARIABLE NUMBER

AND THE THIRD SUBSCRIPT IS GROUP NUMBER. THE

LENGTH OF VECTOR X IS EQUAL TO THE TOTAL NUMBER

OF CASE POINTS, NPK, WHERE I = N(1) + N(2) +...+ N(K).

XBAR - OUTPUT MATRIX (P X K) CONTAINING MEANS OF VARIABLES

IN K GROUPS.

D - OUTPUT MATRIX (P X M) CONTAINING PCCELE DISPERSION.

CPMEAN - WORKING VECTOR OF LENGTH P.

REMARKS

THE NUMBER OF VARIABLES MUST BE GREATER THAN OR EQUAL TO

THE NUMBER OF GROUPS.

SUBRoutines AND FUNCTION SUBPROGRAMS REQUIRED

NONE

METHOD

REFER TO BMD COMPUTER PROGRAMS MANUAL, EDITED BY J. J.

CITICA, UCLA 1964, AND T. W. ANDERSON, INTRODUCTION TO

MULTIVARIATE STATISTICAL ANALYSIS. JOHN WILEY AND SONS,

1958, SECTION 6.6-6.8.

SUBROUTINE DPATX (K,P,N,X,XBAR,D,CPMEAN)

DIMENSION N(1),X(1:1,XBAR(1),D(1:1),CPMEAN(1))

DOUBLE PRECISION XBAR,D,CPMEAN

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE ISEEDED THE

STATEMENTS WHICH USE CPCLCS.

DOUBLE PRECISION XBAR,D,CPMEAN

THE E PLT ALSO BE RECIPIE FROM DOUBLE PRECISION STATEMENTS

IN OTHER Routines USED IN CONJUNCTION WITH THIS

Routines.

INITIALIZATION

N=N+1,M=I+1,M

10 C DC 100 I=1,M

DC 100 N=1,N

DC 100 NG=1,K

DC N(1)=1,N

DC I=1:1,M

12 C XBAR=0.0

DC I(1)=1,M

13 C XBAR=0.0

14 C XBAR=0.0

15 C XBAR=0.0

16 C XBAR=0.0

17 C XBAR=0.0

18 C XBAR=0.0

19 C XBAR=0.0

RETURN

END
SUBROUTINE MINV

PURPOSE

INVERT A MATRIX

USAGE

CALL MINV(A,N,C,L,M,K)

DESCRIPTION OF PARAMETERS

A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY RESULTANT INVERSE.
N - NUMBER OF ROWS OF MATRIX A.
C - RESULTANT DETERMINANT. IF N=0 THEN DETERMINANT IS ALREADY IN A.
L - WORK VECTOR OF LENGTH N.
M - WORK VECTOR OF LENGTH N.
K - RESULTANT SINGULARITY INDICATOR. K=0 THEN DETERMINANT NOTZERO.

REMARKS

MATRIX A MUST BE A GENERAL MATRIX
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD

THE STAGNAR GAUSS-JORDAN METHOD IS USED; THE DETERMINANT IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT THE MATRIX IS SINGULAR.

SUBROUTINE MINV(N,C,L,M,K)

DIMENSION A(N,L,M,K)

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED THE STATEMENT WHICH FOLLOWS MUST BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION A,D,BIGA,PIV

THE C MUST ALSO BE REPLACED FROM DOUBLE PRECISION STATEMENTS APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT 10 MUST BE CHANGED TO DBS.

SEARCH FOR LARGEST ELEMENT

D=1.0
K=0
DO 10 K=K+1,N
DD=DD+K**2
10 CONTINUE

INTERCHANGE ROWS

J=J(K)
10 FLJ=K, K=J
25 CONTINUE

INTERCHANGE COLUMNS

35 J=J(K)
36 FLJ=K, K=J
SUBROUTINE DISC

PURPOSE

COMPLETE A SET OF LINEAR FUNCTIONS WHICH SERVE AS INDICES FOR CLASSIFYING OR DETERMINING INTO ONE OF THE FIFTY STATES. NORMALLY THIS SUBROUTINE IS USED IN THE PERFORMANCE OF DISCRIMINANT ANALYSIS.

DESCRIPTION OF PARAMETERS

K - NUMBER OF GROUPS. K MUST BE GREATER THAN ONE.
N - INPUT VECTOR OF LENGTH K CONTAINING SAMPLE SIZES OF GROUPS.
X - INPUT VECTOR CONTAINING DATA IN THE FORM EQUIVALENT TO A 3-DIMENSIONAL FRACTION ARRAY, X(J,I,K), WHERE J IS THE SECOND SUBSCRIPT, I IS THE THIRD SUBSCRIPT, AND THE FIRST SUBSCRIPT IS GROUP NUMBER. THE TOTAL NUMBER OF DATA POINTS, N, WHERE N = (N1)(N2)(N3), ARE THE MEANS OF DATA POINTS IN K GROUPS.
XBAR - INPUT MATRIX (K X K) CONTAINING MEANS OF VARIABLES IN K GROUPS.
YBAR - OUTPUT VARIABLE CONTAINING GENERALIZED POPULATION MEANS.
C - OUTPUT MATRIX (K X K) CONTAINING THE COEFFICIENTS OF DISCRIMINANT FUNCTIONS. THE FIRST POSITION OF EACH COLUMN (FUNCTION) CONTAINS THE VALUE OF THE CONSTANT FOR THAT FUNCTION.
P - OUTPUT VECTOR CONTAINING THE PROPORTION ASSOCIATED WITH THE LARGEST DISCRIMINANT FUNCTIONS OF ALL CASES. THE OCCURRENCE AND OCCURRANCE OF THE DATA LINES (K X 1) ARE THE MEAN LINES OF VECTORS X AND Y.
LG - OUTPUT VECTOR CONTAINING THE LINES OF VECTORS X AND Y AS THE MEAN LINES OF VECTORS X AND Y.
MDISC -- continued.

REMARKS
1. THE NUMBER OF VARIABLES MUST BE GREATER THAN OR EQUAL TO
 THE NUMBER OF GROUPS.
2. SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRE
 NO CODE.

METHOD
1. REFER TO "PDP COMPILER PROGRAMS MANUAL", EDITED BY W. J.
 DIXON, U.C.L.A, 1965, AND T. W. ANDERSON, "INTRODUCTION TO
 MULTIVARIATE STATISTICAL ANALYSIS", JOHN WILEY AND SONS,
 1958, SECTION 6.8.4.1.

SUBROUTINE DISCR (K,N,XBAR,D,CMEAN,N,C,P,L,G)
DIMENSION N(I),X(I),XBAR(I),D(I),CMEAN(I),C(I),P(I),L(I),G(L)

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
STATEMENT WHICH FOLLOWS.

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. EXP IN STATEMENT
250 MUST BE CHANGED TO CEXP.

CALCULATE COPPEN MEANS
1 = 1, N

CALCULATE GENERALIZED MAPALONDBIS D SQUARE

CALCULATE THE COEFFICIENTS OF DISCRIMINANT FUNCTIONS

FOR EACH CASE IN EACH GROUP, CALCULATE..
SUBROUTINE DATA

PURPOSE TO CHECK IF INPUT DATA ARE TO BE TRANSFORMED TO A NEW SCALE.
DATA MAY BE TRANSFORMED AS FOLLOWS
 1 - ARGUMENT VALUE
 2 - SQUARE ROOT
 3 - SQUARE ROOT + G.5
 4 - VALUE SCALING
 5 - LOGARITHM OF VALUE BASE 10
 6 - ARSIN OF VALUE; A PERCENT BETWEEN ZERO AND ONE
 7 - RECIPROCAL OF VALUE

USAGE CALL DATA (PI,JL,ITRANS)

DESCRIPTION OF PARAMETERS
 M = NUMBER OF VARIABLES IN DATA SET
 I = CLASS NUMBER
 JL = NUMBER OF AN INDIVIDUAL IN THE CLASS
 ITRANS = VECTOR CONTAINING TRANSFORMATION CODES OF THE VARIABLES

REMARKS
THE COMMON ARRAY XA MUST BE THE SAME DIMENSIONS AS IN THE
MAINLINE PROGRAM MDISC

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
FREE

METHOD REFER R.R. SCKAL AND F.I. RCHLF, "BIOMETRY", W.I.
FREE AND COMPANY, SAN FRANCISCO, 1969, APPENDIX 3.
Computer program for evaluating discriminant function equations -- DSEV. (FORTRAN IV language for an IBM 360/44 machine).

PROGRAM FOR EVALUATING DISCRIMINANT FUNCTION EQUATIONS - DSEV
T. K. CROSBY AUGUST 1971

PURPOSE
TO READ A DATA SET AND FOR EACH INDIVIDUAL, CALCULATE THE DISCRIMINANT VALUES FROM THE GIVEN DISCRIMINANT FUNCTION EQUATIONS. USE IT TO SELECT THE GROUP FROM WHICH A TEST SET OF DATA TO BE EVALUATED IN A STANDARDIZATION SET OF DISCRIMINANT FUNCTION EQUATIONS.

SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED
DATA

REMARKS
THE PROGRAM HAS BEEN WRITTEN WITH THE FOLLOWING MAXIMUM DIMENSIONS:
- NUMBER OF GROUPS: 9
- OBSERVATIONS PER GROUP: 40
- NUMBER OF VARIABLES: 16

THE MEASUREMENTS OF AN INDIVIDUAL CAN BE EVALUATED IN 12 DIFFERENT DISCRIMINANT FUNCTION EQUATIONS IN EACH PROGRAM RUN.

THE COMMON ARRAY D MUST BE THE SAME DIMENSIONS AS IN THE SUBROUTINE SUBPROGRAM DATA.

ONLY ONE DATA SET CAN BE EVALUATED IN EACH PROGRAM RUN.

READ FOR A DATA SET ARE THE FOLLOWING CARDS:
- GROUP CARD FOR THE DATA SET
- GROUP DIMENSIONS OF THE DATA SET
- TRANSFORMATION CODES FOR THE VARIABLES
- FORMAT CARD DESCRIBING THE PUNCHING OF THE INPUT DATA
- THE DATA, WHICH ARE PLACED IN A 3-DIMENSIONAL FORTRAN ARRAY FOLLOWING ARE A VARIABLE NUMBER OF SELECTION CARDS TO SELECT DATA SUBSETS, AND TO EVALUATE DISCRIMINANT EQUATIONS.
- THE FIRST TYPE INDICATING THE GROUP NUMBERS TO BE USED IN THE SELECTION.
- THE SECOND TYPE INDICATING THE VARIABLE NUMBERS TO BE USED IN THE SELECTION. THERE MAY BE SEVERAL OF THESE CARDS FOR EACH GROUP SELECTION CARD.
- THE THIRD TYPE PROVIDING THE DISCRIMINANT EQUATIONS TO BE USED IN THE SELECTION. THERE MAY BE SEVERAL OF THESE CARDS FOR EACH VARIABLE SELECTION CARD.

TWO blank cards after 81 will cause the discriminant values calculated to be printed and punched. A card with a negative number following the selections indicates that all calculations have been completed.

DIMENSION D(40,16),HEADNG(20),FMT(20),COEFF(16),KJ(16)
DIMENSION NC(9),KGROUP(9),LGROUP(9),ITRANS(16),SSUM(16,160)
COMMON D,FMT,COEFF,HEADNG

READ AND PRINT HEADING CARD OF DATA SET
100 READ (5,1,END=999,ERR=999) HEADNG
WRITE (6,11) HEADNG

READ THE GROUP DIMENSIONS OF THE DATA SET
READ (5,23) KA, M, (N(I), I = 1, KA)

KA = NUMBER OF GROUPS
M = NUMBER OF VARIABLES
C

SIZE OF THE GROUPS

IF (M .LE. 0) GO TO 999

WRITE (16,1) KA

DO 150 I = 1, KA

150 WRITE (16,12) I, N(I)

READ TRANSFORMATION CODES OF VARIABLES

READ (5,2) (ITRANS(I), I = 1, M)

READ VARIABLE FORMAT OF DATA

READ (5,1) FMT

DO 165 I = 1, KA

165 WRITE 16,13 I

READ DATA SET AND PLACE IN ARRAY D

READ (5,FMT) ID(I,IH,J), J = 1, M

TRANSFORM DATA IF REQUIRED

CALL DATA (N(I),IH,ITRANS)

CONTINUE

PRINT THE INPUT DATA, THE TRANSFORMED VALUES ARE PRINTED IF
TRANSFORMATION WAS REQUESTED

DO 175 I = 1, KA

175 WRITE (16,14) I, (D(I,IH,J), J = 1, M)

READ GROUP NUMBERS SELECTION CARD

READ (5,2) NGROUP, (KGROUP(I)), I = 1, NGROUP

NGROUP ••• NUMBER OF GROUPS TO BE USED IN THIS SERIES

KGROUP(I) ••• THE NUMBERS OF THE GROUPS TO BE USED

IF (NGROUP .EQ. 999, 500, 20)

IF NEGATIVE, CALCULATIONS COMPLETED

IF ZERO OR-blank, CONTROL IS TRANSFERRED TO STATEMENT NUMBER 500.

IF DISCRIMINANT VALUES ARE PRINTED

IF POSITIVE, CONTINUE

CONTINUE

WRITE (16,4) (KGROUP(I), I = 1, NGROUP)

11 = 1

NGROUP = NGROUP

DO 80 II = 1, NGROUP

80 GGROUP(II) = KGROUP(II)

READ VARIABLES NUMBERS SELECTION CARD

READ (5,2) NEQ, NKJ, (KJ(J), JJ = 1, NKJ)

NEQ ••• NUMBER OF EQUATIONS IN THIS SELECTION

KJ(J) ••• THE NUMBERS OF THE VARIABLES TO BE USED IN SELECTION

IF (NEQ .EQ. 999, 200, 30)

IF NEGATIVE, CALCULATIONS COMPLETED

IF ZERO OR blank, GO TO STATEMENT NUMBER 200 TO SEE IF
DISCRIMINANT VALUES ARE TO BE PRINTED

IF POSITIVE, CONTINUE

CONTINUE

WRITE (6,5) KL, (KJ(J), JJ = 1, NKJ)

KL = KL + 1

DO 60 K = 1, NEQ

READ THE DISCRIMINANT FUNCTION EQUATIONS

READ(5,6) NCOEF, (COEF(I), I = 1, NCOEF)

NCOEF ••• NUMBER OF COEFFICIENTS IN THE EQUATION (PLUS CONSTANT)

COEF •••••• THE CONSTANT AND COEFFICIENTS OF THE EQUATION

WRITE (6,7) K, (COEF(I), I = 1, NCOEF)

CALCULATE THE DISCRIMINANT VALUES FOR EACH INDIVIDUAL

DO 50 II = 1, NGROUP

LC = KGROUP(II)

NI = N(LG)
DSEV -- continued.

DO 50 IH = 1, N1
 SUM = 0.
 DO 2 J = 1, NKJ
 SUM = SUM + COEF(J2) * DLG(1H, J)
 SSM(IDIS, 1055) = SUM
 50 IDIS = IDIS + 1
C
 GO TO 300

CC

OUTPUT OF DISCRIMINANT VALUES

CC

DO 900 IDIS = IDIS-1

CC

DO 990 INCB

CC

PUNCH THE DISCRIMINANT VALUES

CC

WRITE(7,151) (SSUM(IDIS,J), IDIS=1, IDIS)

CC

PRINT THE DISCRIMINANT VALUES

CC

CONTINUE

CC

READ A NEW GROUP NUMBERS SELECTION CARD

CC

GO TO 200

CC

STOP

END

Computer program for counting outlier discriminant values -- LIMIT.
(FORTRAN IV language for an IBM 360/44 machine).

PROGRAM FOR COUNTING OUTLIER DISCRIMINANT VALUES -- LIMIT
T. K. CRESBY NOVEMBER 1971

SLRoutines and function subprograms required:

READ FOR EACH DATA SET ARE THE FOLLOWING CARDS

1) THE NUMBER OF DISCRIMINANT VALUES AND THE VARIABLE FORMAT DESCRIBING THE PUNCHING OF THE DISCRIMINANT VALUES

2) THE DISCRIMINANT VALUES

SUBROUTINE CUT IS CALLED FOR EACH SET OF DISCRIMINANT VALUES IN TURN, AND A CARD CONTAINING THE CORRESPONDING SAMPLE SIZE, MEAN AND VARIANCE OF THE STANDARDIZATION DISCRIMINANT VALUE SET IS READ.

DIMENSION 01(301),02(301),03(301),04(301),05(301),06(301),07(301),08(301),
10(301),101(1301),102(1301),103(1301),104(1301),105(1301),106(1301),107(1301),108(1301),109(1301),110(1301),111(1301),112(1301),113(1301),114(1301),115(1301),116(1301),117(1301),118(1301),119(1301),120(1301)

INPUT DATA

10C READ(1, END=993),(FM1(1), 1=1, 20)
 1 FORMAT(2(F4.4, A2))

READ DISCRIMINANT VALUES

DO 2 I = 1, N
 READ(1, 222),(C11(1), C21(1), C31(1), C41(1), C51(1), C61(1), C71(1), C81(1), C91(1), C101(1), C111(1), C121(1), C131(1), C141(1), C151(1), C161(1), C171(1), C181(1), C191(1), C201(1), C211(1), C221(1), C231(1), C241(1), C251(1), C261(1), C271(1), C281(1), C291(1), C301(1))
 CALL CUT(1, 1, A11)
 CALL CUT(1, 2, B11)
 CALL CUT(1, 3, C11)
 CALL CUT(1, 4, D11)
 CALL CUT(1, 5, E11)
 CALL CUT(1, 6, F11)
 CALL CUT(1, 7, G11)
 CALL CUT(1, 8, H11)
 CALL CUT(1, 9, I11)
 CALL CUT(1, 10, J11)
 CALL CUT(1, 11, K11)
 CALL CUT(1, 12, L11)
 CALL CUT(1, 13, M11)
 CALL CUT(1, 14, N11)
 CALL CUT(1, 15, O11)
 CALL CUT(1, 16, P11)
 CALL CUT(1, 17, Q11)
 CALL CUT(1, 18, R11)
 CALL CUT(1, 19, S11)
 CALL CUT(1, 20, T11)
 2 CONTINUE
C

999 STOP
END
SUBROUTINE CUT

USAGE CALL CUT(V,NC,INFO)

DESCRIPTION OF PARAMETERS
V= VECTOR CONTAINING DISCRIMINANT VALUES
NC = NUMBER OF DISCRIMINANT VALUES
INFO= IDENTIFICATION VECTOR

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

REMARKS SEE MAINLINE PROGRAM FOR FULL DESCRIPTION OF LSE

DIMENSION V(1),FC(30),TC(30),INFO(2)

T VALUES AT 5 PER CENT LEVEL OF SIGNIFICANCE

DATA T/12.706,4.303,3.182,2.776,2.571,2.447,2.365,2.306,2.262,2.228,2.201,2.179,2.150,2.128,2.110,2.103,2.088,2.079,2.072,2.064,2.058,2.052,2.046,2.041,2.036,2.031,2.026,2.021,2.016,2.011,2.007,2.002,2.000,2.000

T VALUES AT 1 PER CENT LEVEL OF SIGNIFICANCE

DATA T/19.675,9.925,5.841,4.604,4.032,3.707,3.355,3.250,3.143,3.031,2.920,2.810,2.700,2.593,2.484,2.378,2.272,2.169,2.064,2.058,2.052,2.046,2.041,2.036,2.031,2.026,2.021,2.016,2.011,2.007,2.002,2.000,2.000

READ PARAMETERS OF STANDARDIZATION SET OF DISCRIMINANT VALUES

REAL YEAR(52)

1 FORMAT('X,5F15.5')

N= NUMBER OF VALUES IN THE STANDARDIZATION SET
'SSV': MEAN OF STANDARDIZATION SET
'SN': VARIANCE OF STANDARDIZATION SET

5=SQTNT(2)
T05=75(N-1)
T0=75(N-1)
DL1=SQR(N-1)/5
DL2=SQR(N-1)/5

CHECK IF A VALUE LIES OUTSIDE THE 95 OR 99 PER CENT CONFIDENCE LIMITS

L1=L1+1
L2=L2+1
L3=L3+1
L4=L4+1
L5=L5+1
PL1-PL1+5
PC1-PC1-5

PRINT THE RESULTS OF THE ANALYSIS

WRITE(6,11)NC,SC,EL,CL,PL,PC
2 FORMAT(9D15.5)

3 WRITE(6,12)NC,SC,EL,CL,PL,PC
2 FORMAT(9D15.5)

4 RETURN
END
'As DeLury (1954) has pointed out, the term "random sample" is often misused by biologists: "... in certain circles, there cannot be such a thing as a plain sample; it must be a 'randomsample'. Like 'damyankee', it is all one word."

Appendix 5

Wainui Valley Stream sampling programme data

Set out of data AP 75

The data for each sample AP 80
There are three data cards per sample, set out as follows.

CARD 1

<table>
<thead>
<tr>
<th>Column(s)</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-25</td>
<td>Sample identification and characteristics</td>
</tr>
<tr>
<td>1</td>
<td>Identification column, W = Wainui Valley Stream.</td>
</tr>
<tr>
<td>2</td>
<td>Area, A = experimental channel, N = natural areas.</td>
</tr>
<tr>
<td>3-6</td>
<td>Day and month of 1971.</td>
</tr>
<tr>
<td>7-9</td>
<td>Day of the year.</td>
</tr>
<tr>
<td>10-11</td>
<td>Sample number</td>
</tr>
<tr>
<td>12</td>
<td>Section where sample collected.</td>
</tr>
<tr>
<td></td>
<td>Experimental channel, D = lower part</td>
</tr>
<tr>
<td></td>
<td>M = middle part</td>
</tr>
<tr>
<td></td>
<td>U = upper part</td>
</tr>
<tr>
<td></td>
<td>N = natural area</td>
</tr>
<tr>
<td>13-14</td>
<td>Water temperature (°C)</td>
</tr>
<tr>
<td>15</td>
<td>Water level in experimental channel,</td>
</tr>
<tr>
<td></td>
<td>L = low, M = medium, H = high.</td>
</tr>
<tr>
<td>16-25</td>
<td>Characteristics of the sample stones.</td>
</tr>
<tr>
<td>16</td>
<td>Number of stones to make a sample of about 50 cm² potential attachment area. blank = 1.</td>
</tr>
<tr>
<td>17-19</td>
<td>Potential attachment area in cm² (read as F3.1).</td>
</tr>
<tr>
<td>20</td>
<td>Type of stone, A = experimental stone, N = natural.</td>
</tr>
<tr>
<td>21</td>
<td>Thickness of stone, L = < 10 mm, G = > 10 mm.</td>
</tr>
<tr>
<td>22-24</td>
<td>Texture of stone</td>
</tr>
<tr>
<td>22</td>
<td>Smoothness, 1 = smooth, 0 = rough.</td>
</tr>
<tr>
<td>23</td>
<td>Pitting, 2 = pitted, 0 = otherwise.</td>
</tr>
<tr>
<td>24</td>
<td>Ridges, 3 = ridges present, 0 = otherwise.</td>
</tr>
<tr>
<td>25</td>
<td>Stone shape, 1 = round, 2 = square, 3 = rectangular, 4 = triangular.</td>
</tr>
<tr>
<td>26-63</td>
<td>Number of Austrosimulium tillyardianum Dumbleton (Diptera: Simuliidae).</td>
</tr>
<tr>
<td>26-28</td>
<td>1st larval instar.</td>
</tr>
<tr>
<td>29-30</td>
<td>2nd larval instar.</td>
</tr>
<tr>
<td>31-32</td>
<td>3rd larval instar.</td>
</tr>
</tbody>
</table>
33-34 4th larval instar.
35-36 5th larval instar.
37-38 6th larval instar.
39-40 7th larval instar.
41-42 8th larval instar.
43-44 9th larval instar.
45-47 Total number of larvae.
48-53 Number of unhatched pupae.
 48-49 Males.
 50-51 Females.
 52-53 Total number of unhatched pupae.
54-59 Number of hatched pupae.
 54-55 Males.
 56-57 Females.
 58-59 Total number of hatched pupae (includes those not able to be sexed and those showing evidence of predation).
60 Number of pupae smothered or showing evidence of predation.
61-62 Number of empty cocoons.
63 Number of egg masses on a sample stone (exceptional circumstances allowing laying).
64-76 Number of Neocurupira chiltoni (Campbell) (Diptera: Blephariceridae).
 64 Eggs, P = present.
65-66 1st instar larvae.
67-68 2nd instar larvae.
69-70 3rd instar larvae.
71-72 4th instar larvae.
73-74 Total number of larvae.
75-76 Number of pupae.
77-79 Number of chironomid larvae (2 species of subfamily Orthocladiinae) (Diptera: Chironomidae).
80 Identification as card number 1 of sample.

CARD 2

1 Number of chironomid pupae.
<table>
<thead>
<tr>
<th></th>
<th>Number of Tasiocera sp. (Diptera: Tipulidae).</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1st instar larvae.</td>
</tr>
<tr>
<td>3</td>
<td>2nd instar larvae.</td>
</tr>
<tr>
<td>4</td>
<td>3rd instar larvae.</td>
</tr>
<tr>
<td>5</td>
<td>4th instar larvae.</td>
</tr>
<tr>
<td>6</td>
<td>Total number of larvae.</td>
</tr>
<tr>
<td>7</td>
<td>Number of pupae.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total number of Helicopsyche sp. larvae (Trichoptera: Helicopsychidae).</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-9</td>
<td>Number of Pycnocentria evecta McLachlan (Trichoptera: Sericostomatidae).</td>
</tr>
<tr>
<td></td>
<td>1st instar larvae.</td>
</tr>
<tr>
<td></td>
<td>2nd instar larvae.</td>
</tr>
<tr>
<td></td>
<td>3rd instar larvae.</td>
</tr>
<tr>
<td></td>
<td>4th instar larvae.</td>
</tr>
<tr>
<td></td>
<td>5th instar larvae.</td>
</tr>
<tr>
<td></td>
<td>Total number of larvae.</td>
</tr>
<tr>
<td></td>
<td>Number of pupae.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Number of Pycnocentrodes aureola (McLachlan) (Trichoptera: Sericostomatidae).</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-23</td>
<td>1st instar larvae.</td>
</tr>
<tr>
<td>10-11</td>
<td>2nd instar larvae.</td>
</tr>
<tr>
<td>12-13</td>
<td>3rd instar larvae.</td>
</tr>
<tr>
<td>14-15</td>
<td>4th instar larvae.</td>
</tr>
<tr>
<td>16-17</td>
<td>5th instar larvae.</td>
</tr>
<tr>
<td>18-19</td>
<td>Total number of larvae.</td>
</tr>
<tr>
<td>20-22</td>
<td>Number of pupae.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Number of Hydrobiosis parumbripennis McFarlane (Trichoptera: Rhyacophilidae).</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-37</td>
<td>1st instar larvae.</td>
</tr>
<tr>
<td>24-25</td>
<td>2nd instar larvae.</td>
</tr>
<tr>
<td>26-27</td>
<td>3rd instar larvae.</td>
</tr>
<tr>
<td>28-29</td>
<td>4th instar larvae.</td>
</tr>
<tr>
<td>30-31</td>
<td>5th instar larvae.</td>
</tr>
<tr>
<td>32-33</td>
<td>Total number of larvae.</td>
</tr>
<tr>
<td>34-36</td>
<td>Number of pupae.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Number of pupae.</th>
</tr>
</thead>
<tbody>
<tr>
<td>38-44</td>
<td>Hydrobiosis parumbripennis McFarlane (Trichoptera: Rhyacophilidae).</td>
</tr>
<tr>
<td>38</td>
<td>1st instar larvae.</td>
</tr>
<tr>
<td>39</td>
<td>2nd instar larvae.</td>
</tr>
<tr>
<td>40</td>
<td>3rd instar larvae.</td>
</tr>
<tr>
<td>41</td>
<td>4th instar larvae.</td>
</tr>
<tr>
<td>42</td>
<td>5th instar larvae.</td>
</tr>
<tr>
<td>43</td>
<td>Total number of larvae.</td>
</tr>
<tr>
<td>44</td>
<td>Number of pupae.</td>
</tr>
</tbody>
</table>
| 45-51 | Number of *Hydropsyche colonica* McLachlan (Trichoptera: Hydropsychidae).
| 45 | 1st instar larvae.
| 46 | 2nd instar larvae.
| 47 | 3rd instar larvae.
| 48 | 4th instar larvae.
| 49 | 5th instar larvae.
| 50 | Total number of larvae.
| 51 | Number of pupae.

| 52 | Number of *Olinga feredayi* (McLachlan) larvae (Trichoptera: Sericostomatidae).

| 53 | Number of *Hudsonema amabilis* (McLachlan) larvae (Trichoptera: Leptoceridae).

| 54-61 | Number of *Zelandoperla maculata* (Hare) larvae (Plecoptera: Gripopterygidae).
| 54-55 | Small larvae.
| 56-57 | Medium sized larvae.
| 58-59 | Large larvae.
| 60-61 | Total number of larvae.

| 62-69 | Number of *Deleatidium* sp. larvae (Ephemeroptera: Leptophlebiidae).
| 62-63 | Small larvae.
| 64-65 | Medium sized larvae.
| 66-67 | Large larvae.
| 68-69 | Total number of larvae.

| 70-73 | Number of *Coloburiscus humeralis* (Walker) larvae (Ephemeroptera: Siphlonuridae).
| 70 | Small larvae.
| 71 | Medium sized larvae.
| 72 | Large larvae.
| 73 | Total number of larvae.

| 74-79 | Blank columns.

| 80 | Identification as card number 2 of sample.
1-8 Number of *Potamopyrgus antipodarum* (Gray) (Mollusca: Hydrobiidae). (In mm size classes according to shell height).

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 mm</td>
<td>1</td>
</tr>
<tr>
<td>1-2 mm</td>
<td>2</td>
</tr>
<tr>
<td>2-3 mm</td>
<td>3</td>
</tr>
<tr>
<td>3-4 mm</td>
<td>4</td>
</tr>
<tr>
<td>4-5 mm</td>
<td>5</td>
</tr>
<tr>
<td>> 5 mm</td>
<td>6</td>
</tr>
</tbody>
</table>

7-8 Total number of specimens.

9-12 Number of Hydrachnida mites.

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>9</td>
</tr>
<tr>
<td>Large</td>
<td>10</td>
</tr>
</tbody>
</table>

11-12 Total number of specimens.

13 Number of *Hydra* sp. (Coeleterata).

14 Number of *Dugesia montana* Nurse (Platyhelminthes).

15 Number of immature annelids.

17-24 Number of *Austrosimulium tillyardianum* larvae moulted between collection and preservation, each with the corresponding head capsule of the preceding larval instar.

<table>
<thead>
<tr>
<th>Instar</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>17</td>
</tr>
<tr>
<td>3rd</td>
<td>18</td>
</tr>
<tr>
<td>4th</td>
<td>19</td>
</tr>
<tr>
<td>5th</td>
<td>20</td>
</tr>
<tr>
<td>6th</td>
<td>21</td>
</tr>
<tr>
<td>7th</td>
<td>22</td>
</tr>
<tr>
<td>8th</td>
<td>23</td>
</tr>
<tr>
<td>9th</td>
<td>24</td>
</tr>
</tbody>
</table>

25 A "1" punched if a special feature had been noted on the data sheet.

26-79 Blank columns.

80 Identification as card number 3 of sample.
<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Weather Station</th>
<th>Sample Type</th>
<th>Temperature (°C)</th>
<th>Humidity (%)</th>
<th>Wind Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Location</td>
<td>Code</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>25 APR</td>
<td>WA25 4115 1M12L 412NG1232</td>
<td>2 3 6 1 10 5 1 6 3 1 16 1</td>
<td>11 2 2</td>
<td>8 3 11</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>1 1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>WA25 4115 2M12L 437NG1 34 2 1 2 2</td>
<td>7 1 1</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>1 8 9 1 18 723 2 2 3 37213</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>1 1 1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>WA25 4115 3M12L 569NG 23 2 7 2 7 1 6 6 3 2</td>
<td>2 2 9 1 1 2 2 2 4</td>
<td>1 1 1 2</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>113 7 2 23 9231215 5 64711 1 3</td>
<td>1 1 2 5</td>
<td>5 4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>1 1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>WA25 4115 4M12L 332NG1 32 5 8 1 3 3 4 2 5 31</td>
<td>1 2 3 1 1 2</td>
<td>1 1 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>4 7 1 1 1 2 1 1 5 2 1 1 2 6</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>1 1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>WA25 4115 5M12L2520NG1 2</td>
<td>1 1 1 1 4</td>
<td>1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>1 712 1 9 102211 6 49</td>
<td>2 2 3 3 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>1 1 2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>WA25 4115 6M12L 498NG1 32 4 4 8 5 7 2 3 7 2 42</td>
<td>3 3 3 3 5 2 2 101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>2 2 2 6 2 1 1 1 7 3 1 0221 3</td>
<td>1 1 2 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>1 1 1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>WA25 4115 7M12L 414NG12 2 2 5 3 2 3 7 7 32</td>
<td>1 2 2 1 3 41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>1 1 4 1 1 6 1 2 1 2 6</td>
<td>1 1 2 1 2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>1 1 2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>WA25 4115 8M12L 449NG1 4 5 3 2 2 3 1 1 5 3 25</td>
<td>1 1 119 31 7 4 11 1 1</td>
<td>3 1 4 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>WA25 4115 9M12L 420NG1 3 2021211330 1 712 6131 2 2 4</td>
<td>1 1 3 6 2 11 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>4 1 3 4 2 1 8 11 4 1 25 11 2</td>
<td>4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>1 1 2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>WA25 411510M12L 280NG12 3 5 7 3 410 3 211 3 48</td>
<td>1 1 1 1 71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>2 10 2 14 4 61010 6 36 1 1</td>
<td>15 15 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>WA25 411511M12L 550NG1 3 1 1 1 2 630 914 6 70</td>
<td>1 22 7 8 37 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>1 1 1 1 1 11 2 1 3 1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WAINUI VALLEY STREAM SAMPLES AP 81
	2 MAY	WA 2 5122 1H13L 492NG 232	7 3 5 3 2 11 1 23	1 1	2	1 3	71												
87																			
88																			
89	WA 2 5122 2H13L 342NL 12 2	1 2 1 3	1 2 1 11																
90		52 6 7 38	4 5 4 6 1 201 21 3	3 2	2 2 4 1 7														
91		52 7 2																	
92	WA 2 5122 3H13L 289NG 13 3 8 9 3 5 3 8 9 5 5	1 1	1 1 1 2																
93		1 3 3 7 1 2 2 4 9	22 2 24 2 2 2																
94	WA 2 5122 4H13L 290NL 232	6 4 4 4	1	1 1 5															
95																			
96	WA 2 5122 5H13L 408NG 1	4 5 0 12 6 3 1 4 5 2 4 6 2 2 4	5 5 5 10																
97																			
98	WA 2 5122 6H13L 362NG 1 32	251611138 8 6 6 6 9 6	1 1 2 2 1 3 4	2 1 4 7															
99		3 1 1 1	1 2 2 5 2 2	1 2 2 1 1															
100																			
101	WA 2 5122 7H13L 267NL 12 3	6 1 0 3 6 3 1 1	3 0																
102		6 1 0 1 6 4 3 2	9 1	9 1 1 0 1 1															
103	WA 2 5122 8H13L 42NG 1	2 5 4 1 2		1 1															
104																			
105	WA 2 5122 9H13L 394NL 12 2	3 7 3 3 1 1 2 1 1 19																	
106																			
107	WA 2 5122 10H13L 2532NG 1	2 5 1 6 9 7 1 2 5 6 5 5 6	1	3 1 4	2 1														
108																			
109																			
110	WA 2 5122 11H13L 459NL 1	3 1 4 4 5 5 1 4 1 5 3 0	1																
111																			
112																			
113																			
114																			
115																			
116																			
117																			
118																			

WAINUI VALLEY STREAM SAMPLES

AP 82
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Wa</th>
<th>9</th>
<th>5129</th>
<th>1m10l25</th>
<th>Stong12</th>
<th>2</th>
<th>5</th>
<th>3</th>
<th>6</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>9 May</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>156</td>
<td>16 MAY</td>
<td>WAI6 5136</td>
<td>1MR10L</td>
<td>3BG 236</td>
<td>210</td>
<td>322</td>
<td>210</td>
<td>1</td>
<td>32</td>
<td>120</td>
<td>61</td>
<td>31</td>
<td>51</td>
<td>91</td>
</tr>
<tr>
<td>157</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Valley</td>
<td>Sample Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 May</td>
<td>Natural</td>
<td>WN1651361N10L359NG12</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WN1651362N10L308NG12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>WN1651363N10L393NG12</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>424</td>
<td>41</td>
</tr>
<tr>
<td>WN1651364N10L364NG1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>34</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>WN1651365N10L470NG1</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>10</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>WN1651366N10L290NG1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN1651367N10L373NG1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>WN1651368N10L372NG1</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN1651369N10L535NG1</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>37</td>
<td>61</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>WN16513610N10L312NG1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN16513611N10L312NG1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Label</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MAY</td>
<td>WA30 5150 1M10L 320NG12</td>
<td>2 3 71233 9 1 1 8 2 76</td>
<td>1 2 3 71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 2M10L 308AG1</td>
<td>34 8121813 2 1 6 4 64</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 2</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 3M10L 261AG1</td>
<td>32 1 2 611 2 1 23</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 4M10L 468NG12</td>
<td>3 413 519 6 1 1 49</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 5 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 7 5 3 2 1 18 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 5M10L 237AG</td>
<td>32 4 3 715 4 3 810 54</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 2 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 1 1 2</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 6M10L 388AG</td>
<td>33 5 81011 4 2 2 1 43</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 7M10L 436NG</td>
<td>231 5 610 4 1 1 27</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 53317 1 56 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 8M10L 415AG</td>
<td>33 32216 6 3 510 5 70 1 1</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 9U10L 304AG</td>
<td>33 7 611 9 1 1 3 1 39</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>WA30 5150 10U10L 327AL</td>
<td>33 4 7 5 2 1 5 24</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WA30 515011U10L 302AG1</td>
<td>3 2 3 610 2 1 2 26</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 3 1 1 2 1 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>WA30 515012U10L 320AG1</td>
<td>34 5 4 6 2 3 1 3 24</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>6 JUNE</td>
<td>WA 6 6157 1U11H3445NG1 32</td>
<td>6 2 1 1 1 1 11</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>WA 6 6157 2U11H382NG12 3</td>
<td>1 1 3 6 1 1 13 11</td>
<td>610 2 16 41</td>
</tr>
<tr>
<td>276</td>
<td>1 1 14</td>
<td>3017 5 521</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>21 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>WA 6 6157 3U11H362NG1 32</td>
<td>1 1 3 1 6 2 2 4 1</td>
<td>1</td>
</tr>
<tr>
<td>279</td>
<td>13 1</td>
<td>1101910 39</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>42 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>WA 6 6157 4U11H2557AG 32</td>
<td>2 1 3 1 1 101 1 101</td>
<td>1</td>
</tr>
<tr>
<td>282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>WA 6 6157 5U11H230NG12 4</td>
<td>1 1 2 2 3 1 10 1 1 1 1 3 4 2 9 1</td>
<td>2</td>
</tr>
<tr>
<td>285</td>
<td>1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>WA 6 6157 6U11H343AG1 33</td>
<td>1 1 2 1 1 2 1 9 101</td>
<td>1</td>
</tr>
<tr>
<td>288</td>
<td>1 1 2</td>
<td>2 2 2</td>
<td></td>
</tr>
<tr>
<td>289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>WA 6 6157 7U11H2597AG1 33</td>
<td>1 4 3 3 6 1 10 1 1 1 3</td>
<td>2</td>
</tr>
<tr>
<td>291</td>
<td>1 1 2 1 3 1 1 1 3</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>WA 6 6157 8U11H288AG 234</td>
<td>1 1 3 1 1 2 61</td>
<td>1</td>
</tr>
<tr>
<td>293</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>WA 6 6157 9U11H344NG12 4</td>
<td>3 4 7 1 2 1 1 1 20 1 1 3 3 1 2 2521 891</td>
<td>2</td>
</tr>
<tr>
<td>297</td>
<td>5 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>WA 6 61570U11H330NG1 33</td>
<td>3 1 2 7 7 4 4 3 31 1 1</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>WA 6 61571M11H338AG 232 3 3</td>
<td>6 1 1 2 2 41</td>
<td>2</td>
</tr>
<tr>
<td>303</td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>WA 6 61571M11H319AG 233</td>
<td>1 2 1 1 3 1 9 81</td>
<td>2</td>
</tr>
<tr>
<td>306</td>
<td>1 1 2 3 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>1 1 2 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>WA 6 61572M11H2569AG1 33</td>
<td>3 4 1 4 1 1 1 1 16 211</td>
<td>3</td>
</tr>
<tr>
<td>309</td>
<td>1 1 1 1 1 1 1 5 3 2 1 1 1 1 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>WA 6 61571M11H300AG1 3 1 2 1 6 31</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>WA 6 61571M11H354AG1 33</td>
<td>1 2 1 1 7 1 71</td>
<td>1</td>
</tr>
<tr>
<td>315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Sample Name</td>
<td>Comment</td>
<td>S1</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>13 June</td>
<td>WA13 6164 1D WH 437AG1 4</td>
<td></td>
<td>5 5 1 3 3 1 1 22</td>
</tr>
<tr>
<td>318</td>
<td>WA13 6164 2D WH2475AG1 33</td>
<td></td>
<td>1 1 1 1 1 5</td>
</tr>
<tr>
<td>320</td>
<td>WA13 6164 3D WH2553AG1 34</td>
<td></td>
<td>1 8 6 3 2 1 1 2 24</td>
</tr>
<tr>
<td>322</td>
<td>WA13 6164 4D WH 310AG12 2</td>
<td></td>
<td>1 1 1 1 2 4 11</td>
</tr>
<tr>
<td>325</td>
<td>WA13 6164 5M WH 297AG1 33</td>
<td></td>
<td>1 3 1 2 1 1 9</td>
</tr>
<tr>
<td>328</td>
<td>WA13 6164 6M WH 323NG1 34</td>
<td></td>
<td>3 2 3 2 1 8</td>
</tr>
<tr>
<td>331</td>
<td>WA13 6164 7M WH 366NG1 34</td>
<td></td>
<td>1 3 3 3 1 2 3 3 22</td>
</tr>
<tr>
<td>334</td>
<td>WA13 6164 8M WHZ358AG 232</td>
<td></td>
<td>1 1 1</td>
</tr>
<tr>
<td>337</td>
<td>WA13 6164 10M WH 399AG1 34</td>
<td></td>
<td>3 4 5</td>
</tr>
<tr>
<td>340</td>
<td>WA13 6164 11M WH 351AG1 32</td>
<td></td>
<td>3 1 1 5</td>
</tr>
<tr>
<td>343</td>
<td>WA13 6164 12M WHZ288NG1 3</td>
<td></td>
<td>6 3 2 4 2 3 5 25</td>
</tr>
<tr>
<td>346</td>
<td>WA13 6164 13M WHZ204AG1 34</td>
<td></td>
<td>1 1 1 1 1 4</td>
</tr>
<tr>
<td>353</td>
<td>WA13 6164 14M WHZ206AG 232</td>
<td></td>
<td>3 2</td>
</tr>
<tr>
<td>356</td>
<td>WA13 6164 15M WH 379AG1 34</td>
<td></td>
<td>1 4</td>
</tr>
<tr>
<td>359</td>
<td>WA13 6164 16M WH 388AG1 34</td>
<td></td>
<td>3 2 1 1</td>
</tr>
<tr>
<td>Sample</td>
<td>Date</td>
<td>Depth</td>
<td>Collection</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>WA20 6171 1D 6M 474NG12</td>
<td>20 June</td>
<td>4</td>
<td>1 2</td>
</tr>
<tr>
<td>WA20 6171 2D 6M 360AG1</td>
<td>1 1 1</td>
<td>5 3 14</td>
<td>1 1 2</td>
</tr>
<tr>
<td>WA20 6171 3D 6M 256AG1</td>
<td>5 3 2</td>
<td>1 12</td>
<td>1 1</td>
</tr>
<tr>
<td>WA20 6171 4D 6M 389AG1</td>
<td>4 5 6 4 2</td>
<td>22 1 1</td>
<td>11 2 1 3 4</td>
</tr>
<tr>
<td>WA20 6171 5D 6M 366AG12</td>
<td>1 2 1</td>
<td>4 1 1</td>
<td>41</td>
</tr>
<tr>
<td>WA20 6171 6H 6M 398AG1</td>
<td>5 3 7 2 1 2 4 3 3 1</td>
<td>1 1 2</td>
<td>41</td>
</tr>
<tr>
<td>WA20 6171 7H 6M 2574A1</td>
<td>2 1 2 3 1 1 1 1 1</td>
<td>11 2</td>
<td>2</td>
</tr>
<tr>
<td>WA20 6171 8H 6M 2467A1</td>
<td>1 1 4 3 1 2 4 2 1 8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 9H 6M 501NG1</td>
<td>2 3 4 4 9 6 3 5 3 6</td>
<td>2 1 3 2</td>
<td>1 1 2</td>
</tr>
<tr>
<td>WA20 6171 10M 6H 446AG1</td>
<td>2 7 2 5</td>
<td>14</td>
<td>2 2</td>
</tr>
<tr>
<td>WA20 6171 11M 6H 310NG1</td>
<td>2 2 4 9 1 2 4 8 2 3 3 4 7</td>
<td>1 1 41</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 12M 6H 380N6</td>
<td>9 7 2 4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>WA20 6171 13M 6H 446AG1</td>
<td>2 1 4 1 2 2 1</td>
<td>1 1 2 1 1 1</td>
<td>41</td>
</tr>
<tr>
<td>WA20 6171 14M 6H 290NG</td>
<td>1 1</td>
<td>1 1 1</td>
<td>2</td>
</tr>
<tr>
<td>WA20 6171 15M 6H 409NG1</td>
<td>1 2 3</td>
<td>6 1 1 1 14</td>
<td>4</td>
</tr>
<tr>
<td>WA20 6171 16M 6H 417AG1</td>
<td>2 2 2 6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 17M 6H 417AG1</td>
<td>2 2 2</td>
<td>6</td>
<td>2 1 2</td>
</tr>
<tr>
<td>WA20 6171 18M 6H 417AG1</td>
<td>3 3 3 2 2 2</td>
<td>1 1</td>
<td>2</td>
</tr>
<tr>
<td>WA20 6171 19M 6H 417AG1</td>
<td>1 2 2 3 4 6 8 211</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 20M 6H 417AG1</td>
<td>1 5 2 4 112</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 21M 6H 417AG1</td>
<td>8</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 22M 6H 417AG1</td>
<td>1 2 2 2 2 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WA20 6171 23M 6H 417AG1</td>
<td>1 2 2 3 4 6 8 211</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Sample Description</td>
<td>Location</td>
<td>Code</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>27 JUNE</td>
<td>WA27 6178 1D T/L 2692AG</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>413</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>414</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>415</td>
<td>WA27 6178 2D T/L 495AG</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>416</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>417</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>418</td>
<td>WA27 6178 3D T/L 269AG</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>419</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>420</td>
<td>WA27 6178 4D T/L 342AG</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>421</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>422</td>
<td>WA27 6178 5D T/L 393AG</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>423</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>424</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>425</td>
<td>WA27 6178 6H T/L 269AG</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>426</td>
<td></td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>427</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>428</td>
<td>WA27 6178 7H T/L 279AG</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>429</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>430</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>431</td>
<td>WA27 6178 8H T/L 471AG</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>432</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>433</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>434</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>435</td>
<td>WA27 6178 9H T/L 2433AG</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>436</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>437</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>438</td>
<td>WA27 617810H T/L 2494NL</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>439</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>440</td>
<td>WA27 617811U T/L 2442NG</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>441</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>442</td>
<td>WA27 617811U T/L 2442NG</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>443</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>444</td>
<td>WA27 617812U T/L 373AG</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>445</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>446</td>
<td>WA27 617813U T/L 2959AG</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>447</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>448</td>
<td>WA27 617814U T/L 2597AG</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>449</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>450</td>
<td>WA27 617815U T/L 420AG</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>451</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>452</td>
<td>WA27 617816U T/L 420AG</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>453</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>454</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>455</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>456</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>457</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Date</td>
<td>Sampling Location</td>
<td>Sample ID</td>
<td>Stream Name</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>4 JULY</td>
<td>WA 4 7105 1010H 283ML12 4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>469</td>
<td>WA 4 7105 2010H2463AG1 33</td>
<td>1 2 2</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>WA 4 7105 3010H3653AG1 33</td>
<td>1 3 1 5</td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>WA 4 7105 4010H2517AG1 32</td>
<td>1 2 1 1 1</td>
<td></td>
</tr>
<tr>
<td>472</td>
<td>WA 4 7105 5010H2563NG1 34</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>WA 4 7105 6010H2576NG1 34</td>
<td>1 4</td>
<td></td>
</tr>
<tr>
<td>474</td>
<td>WA 4 7105 7010H331AG12 3</td>
<td>1 1 1 1 5</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>WA 4 7105 8010H573NG1 31</td>
<td>1 1 1 6 2</td>
<td></td>
</tr>
<tr>
<td>476</td>
<td>WA 4 7105 9010H468AG1 33</td>
<td>1 1 1 4</td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>WA 4 7105 1010H593NG12 3</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>WA 4 7105 1110H2491AL1 32</td>
<td>3 1 2 6</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>WA 4 7105 1210H317NG1 33</td>
<td>1 1 1 3</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>WA 4 7105 1310H2554AG1 31</td>
<td>1 1 1 2 3</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>WA 4 7105 1410H480AG1 32</td>
<td>2 1 1 6</td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>WA 4 7105 1510H2559AG1 32</td>
<td>2 3 1 2 1</td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>WA 4 7105 1610H303ML12 4</td>
<td>1 1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

...
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11 JULY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 1D 8H2459AG12 4</td>
<td>2 1 1</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 2D 8H 364AG1 33</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 3D 8H2564AG1 33</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 4D 8H2608AG1 33</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2 1 3</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 4D 8H2608AG1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 5D 8H 433AG1 33</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 6M 8H 389AG1 33</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 7D 8H 365AL1 32</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 8M 8H 453AG1 33</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 9M 8H2539AG1 33</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 10H 8H 463AG1 32</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 11U 8H 463AG1 32</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>WALL 7192 12U 8H2539AG1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 13U 8H2537AG1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 14U 8H2537AG1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 15U 8H2536AG1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 16U 8H 463AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 17U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 18U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 19U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 20U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 21U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 22U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 23U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 24U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WALL 7192 25U 8H 483AG1 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WAINUI VALLEY STREAM SAMPLES

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Sample</th>
<th>pH</th>
<th>Conductivity</th>
<th>Electrical Conductivity</th>
<th>Silica</th>
<th>TSS</th>
<th>Bedload</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 JULY</td>
<td>WA18 7199 10 DH 458AL1</td>
<td>33</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>WA18 7199 2D DH 456NG12</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>WA18 7199 3D DH2604AG1</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>WA18 7199 4D DH 370NG12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>WA18 7199 5D DH 460AG1</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>WA18 7199 6M DH2697AG1</td>
<td>33</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>WA18 7199 7M DH2625AG1</td>
<td>32</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>WA18 7199 8M DH2448NG12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>WA18 7199 9M DH 374NG1</td>
<td>34</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>WA18 7199 10M DH2634AG1</td>
<td>32</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>WA18 7199 11U DH2565AG1</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>WA18 7199 12U DH 344AG1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>WA18 7199 13U DH 366AG1</td>
<td>33</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>WA18 7199 14U DH 478NG12</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>WA18 7199 15U DH 501NG1</td>
<td>32</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>WA18 7199 16U DH 388NG12</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The above table represents the data collected from Wainui Valley stream samples, including dates, locations, and various measurements such as pH, conductivity, electrical conductivity, and bedload. The data is organized in a tabular format for easy reference and analysis.
<table>
<thead>
<tr>
<th>Date</th>
<th>Sample Name</th>
<th>Location</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
<th>Stage 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 July</td>
<td>WN18 7199 1N 8H2593NG1</td>
<td>1 2 3</td>
<td>5 5 31</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>WN18 7199 2N 8H 429NG1</td>
<td>1 2 1 2 6</td>
<td>1 11</td>
<td></td>
<td>1 1 2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>WN18 7199 3N 8H 302NG1</td>
<td>3 1 1 2 3 1 11</td>
<td>3 0 2 13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>WN18 7199 4N 8H 439NG12</td>
<td>1 1 2 1 4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>WN18 7199 5N 8H 410NG1</td>
<td>3 1 2 1 3 1 9 1 1</td>
<td>1 1 2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>WN18 7199 6N 8H 398NG1</td>
<td>1 2 2 1 2 8</td>
<td>1 1 1 5</td>
<td>7 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>WN18 7199 7N 8H 439NG12</td>
<td>1 1 3 2 1 3 11</td>
<td>1 2 1 3</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>WN18 7199 8N 8H 250NG12</td>
<td>1 1 1 2 1 3 9</td>
<td>1 1 3</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>WN18 7199 9N 8H 454NG12</td>
<td>1 1 2 1 2 1 0</td>
<td>1 1 2</td>
<td>2</td>
<td>2 1 3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>WN18 7199 10N 8H2464NG12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>618</td>
<td>WN18 7199 11N 8H2464NG12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Code</td>
<td>Location</td>
<td>Sample</td>
<td>Date</td>
<td>Time</td>
<td>Temperature</td>
<td>pH</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>630</td>
<td>25 JULY</td>
<td>WA25 7206 1D 8L2672AG1 33</td>
<td>1 6 5 1 1 1</td>
<td>15</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>632</td>
<td></td>
<td>WA25 7206 2D 8L 370AG1 33</td>
<td>2 4 6 2</td>
<td>1 15</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>633</td>
<td></td>
<td>WA25 7206 3D 8L 420AG1 1</td>
<td></td>
<td>4</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>634</td>
<td></td>
<td>WA25 7206 4D 8L 404AG123</td>
<td>3</td>
<td>2 3 1 1</td>
<td>1 2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td></td>
<td>WA25 7206 5D 8L256AG1 33</td>
<td>3 2</td>
<td>5</td>
<td></td>
<td>1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>636</td>
<td></td>
<td>WA25 7206 6D 8L 412AG1 33</td>
<td>2 1 1</td>
<td>6</td>
<td></td>
<td>3 3 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>637</td>
<td></td>
<td>WA25 7206 7D 8L2599AG1 32</td>
<td>3 1 2</td>
<td>1 9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>638</td>
<td></td>
<td>WA25 7206 8D 8L2524AG1 33</td>
<td>3 3 2</td>
<td>1 10</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639</td>
<td></td>
<td>WA25 7206 9D 8L2522AG1 32</td>
<td>3 2 1</td>
<td>5 3 44</td>
<td>1</td>
<td>1 2 2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td></td>
<td>WA25 7206 10D 8L 408AG1234</td>
<td>3 3 0 2</td>
<td>2 3 4 25</td>
<td></td>
<td>1</td>
<td>2 2 1</td>
<td></td>
</tr>
<tr>
<td>641</td>
<td></td>
<td>WA25 7206 11D 8L2492AG1 33</td>
<td>6 4 7 2</td>
<td>1 1 2 3</td>
<td></td>
<td>1 2 3 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>642</td>
<td></td>
<td>WA25 7206 12D 8L2488AG1 32</td>
<td>2 1 51</td>
<td>3 5 2</td>
<td>3 30</td>
<td>2 1 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>643</td>
<td></td>
<td>WA25 7206 13D 8L 397AG1 34</td>
<td>2 2 1</td>
<td></td>
<td>9</td>
<td>1 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>644</td>
<td></td>
<td>WA25 7206 14D 8L 440AG1 32</td>
<td>1</td>
<td>1 1 2 1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>740</td>
<td>8 AUGUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>741</td>
<td>WA 8 8220 1D 9L2640AG1 33 1 2 1 1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>742</td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>743</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>744</td>
<td>WA 8 8220 2D 9L2327AG1 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>745</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>746</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>747</td>
<td>WA 8 8220 3D 9L 411AG1 33 1 2 2</td>
<td>5</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>748</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>WA 8 8220 4D 9L 315NG1 3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752</td>
<td>WA 8 8220 5D 9L2521AG1 33 2 3 7 9 8 3 3 5</td>
<td>1 41</td>
<td></td>
<td>1</td>
<td>1</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>753</td>
<td></td>
<td>1</td>
<td>1 2 2 1 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>754</td>
<td>WA 8 8220 6D 9L 264NG1 2</td>
<td>1</td>
<td>1 1 1 1 1 1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>756</td>
<td>WA 8 8220 7N 9L 459AG1 32</td>
<td>2</td>
<td>3 5 7</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>757</td>
<td></td>
<td>1</td>
<td>310 2</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>758</td>
<td>WA 8 8220 8H 9L 408AG1 32</td>
<td>1</td>
<td>3</td>
<td>1 2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>759</td>
<td></td>
<td>4</td>
<td>6 3 2</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>760</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>761</td>
<td>WA 8 8220 9H 9L 370AG1 33</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>762</td>
<td></td>
<td>1</td>
<td>1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>763</td>
<td>WA 8 822010M 9L2504AL1 33</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>41</td>
</tr>
<tr>
<td>764</td>
<td></td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>765</td>
<td>WA 8 822011M 9L 450NG1231</td>
<td>7</td>
<td>3 6</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>766</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>767</td>
<td>WA 8 822012M 9L2512NG1 32</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>768</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>769</td>
<td>WA 8 822013U 9L2473AG1 32</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>770</td>
<td></td>
<td>1</td>
<td>1 1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>771</td>
<td>111</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>772</td>
<td>WA 8 822014U 9L2599AG1 33</td>
<td>1</td>
<td>1 3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>773</td>
<td></td>
<td>6</td>
<td>3</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>774</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>775</td>
<td>WA 8 822015U 9L2556AG12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>776</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>777</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>WA 8 822016U 9L2608NL12</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>779</td>
<td></td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>780</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>781</td>
<td>WA 8 822017U 9L2569AG1 33</td>
<td>1</td>
<td>1 2</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>782</td>
<td></td>
<td>10</td>
<td>1</td>
<td>1 10</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>783</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>784</td>
<td>WA 8 822018U 9L2453NG12</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>785</td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>786</td>
<td></td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 AUGUST</td>
<td>WA15 9227 1D 9L 30294G12 2</td>
<td>1 2 1 2 1 9</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>796</td>
<td></td>
<td>1 1</td>
<td>1 1 1 1 2 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>797</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>799</td>
<td></td>
<td>WA15 9227 2D 9L2558AG1 32 2</td>
<td>2</td>
<td>1 2 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td>1 1</td>
<td>1 1 1 2 4 6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802</td>
<td></td>
<td>WA15 9227 3D 9L2549AG1 32 4</td>
<td>1 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>803</td>
<td></td>
<td>2 1 2 3 2 5</td>
<td>3 2 5 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804</td>
<td></td>
<td>1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>805</td>
<td></td>
<td>WA15 9227 4D 9L2599AG1 32 1</td>
<td>1 1 1 3</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>806</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>807</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>808</td>
<td></td>
<td>WA15 9227 5D 9L 360AG1 33</td>
<td>4 4 5 3 1 5 2 24</td>
<td>1 4 3 8 1 21</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>809</td>
<td></td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>811</td>
<td></td>
<td>WA15 9227 6D 9L2571AG1 32 1</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>812</td>
<td></td>
<td>3 4 6 10</td>
<td>1 1 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>814</td>
<td></td>
<td>WA15 9227 7D 9L2518AG1 32 2</td>
<td>3 12 9 5 7 1 39</td>
<td>1 1 1</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>815</td>
<td></td>
<td>5 2420 7 3 5 6</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>816</td>
<td></td>
<td>1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>817</td>
<td></td>
<td>WA15 9227 8D 9L2535AG1 33 2</td>
<td>1 3 5 1 2 5 22</td>
<td>1 1</td>
<td>2 1 3 41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>818</td>
<td></td>
<td>2 2 4</td>
<td>1 1 1 2 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td></td>
<td>WA15 9227 9D 9L2572AG1 33</td>
<td>2 2 2 6</td>
<td>1 1 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>821</td>
<td></td>
<td>4 3 2 1 10</td>
<td>1 1 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>823</td>
<td></td>
<td>WA15 9271OM 9L 355AG1 33 1</td>
<td>1 2 1 1 2 3 11</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>824</td>
<td></td>
<td>15 314 6 2 25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>825</td>
<td></td>
<td>1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>826</td>
<td></td>
<td>WA15 92711H 9L2539AG1 32 2</td>
<td>1 2 2 2</td>
<td>1 1 1 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>827</td>
<td></td>
<td>1 1 1 3</td>
<td>1 2 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>829</td>
<td></td>
<td>WA15 92712H 9L2593AG1 33</td>
<td>9 6 6 8 2 1 43</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>830</td>
<td></td>
<td>1 1 3 310</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>832</td>
<td></td>
<td>WA15 92713U 9L2543AG1 33 1</td>
<td>2 3 1 1 1 1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>833</td>
<td></td>
<td>5 3 6 3 12</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>834</td>
<td></td>
<td>1 1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>835</td>
<td></td>
<td>WA15 92714U 9L 516AG1 34</td>
<td></td>
<td>11 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>836</td>
<td></td>
<td>12 3 2 2 9 1 13</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>837</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>838</td>
<td></td>
<td>WA15 92715U 9L2672AG1 32 2</td>
<td>1 2 4 9</td>
<td>2 2 61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>839</td>
<td></td>
<td>8 1 1</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>840</td>
<td></td>
<td>3 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>841</td>
<td></td>
<td>WA15 92716U 9L2604AG1 33 1</td>
<td>1 2</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>842</td>
<td></td>
<td>1 2 3 2 2 102712 8 57 1</td>
<td>3 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>843</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>844</td>
<td></td>
<td>WA15 92717U 9L3669AG1 33</td>
<td>3 3 1 1 8</td>
<td>1 1 2 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>845</td>
<td></td>
<td>6 3 4 7</td>
<td>1 1 3 1 4 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>846</td>
<td></td>
<td>12 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>847</td>
<td></td>
<td>WA15 92718U 9L3673AG1 33 1</td>
<td>1 2</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>848</td>
<td></td>
<td>1 2 7</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>849</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Location</td>
<td>Stream</td>
<td>Code</td>
<td>Code</td>
<td>Sample</td>
<td>Result 1</td>
<td>Result 2</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>050</td>
<td>22 AUG</td>
<td>WA22</td>
<td>8234</td>
<td>1D</td>
<td>TL27</td>
<td>35AG1</td>
<td>33 2 1</td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>850</td>
<td>1</td>
<td>11 2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>851</td>
<td>WA22</td>
<td>8234</td>
<td>2D</td>
<td>TL27</td>
<td>943AG1</td>
<td>33 2 1</td>
<td>1</td>
</tr>
<tr>
<td>053</td>
<td>852</td>
<td>2</td>
<td>2 1 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>853</td>
<td>WA22</td>
<td>8234</td>
<td>3D</td>
<td>TL27</td>
<td>490AG1</td>
<td>34 1 1</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>854</td>
<td>1</td>
<td>2 3 5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>855</td>
<td>WA22</td>
<td>8234</td>
<td>4D</td>
<td>TL27</td>
<td>2610NG1</td>
<td>23 1 1 4</td>
<td>3 1 2 1 2 2</td>
</tr>
<tr>
<td>057</td>
<td>856</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>058</td>
<td>857</td>
<td>WA22</td>
<td>8234</td>
<td>5D</td>
<td>TL27</td>
<td>2611NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>059</td>
<td>858</td>
<td>1</td>
<td>2 3 5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>859</td>
<td>WA22</td>
<td>8234</td>
<td>6D</td>
<td>TL27</td>
<td>2612NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>061</td>
<td>860</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>062</td>
<td>861</td>
<td>WA22</td>
<td>8234</td>
<td>7D</td>
<td>TL27</td>
<td>2613NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>063</td>
<td>862</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>064</td>
<td>863</td>
<td>WA22</td>
<td>8234</td>
<td>8D</td>
<td>TL27</td>
<td>2614NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>065</td>
<td>864</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>865</td>
<td>WA22</td>
<td>8234</td>
<td>9D</td>
<td>TL27</td>
<td>2615NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>067</td>
<td>866</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>068</td>
<td>867</td>
<td>WA22</td>
<td>8234</td>
<td>10D</td>
<td>TL27</td>
<td>2616NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>069</td>
<td>868</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>070</td>
<td>870</td>
<td>WA22</td>
<td>8234</td>
<td>11D</td>
<td>TL27</td>
<td>2617NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>071</td>
<td>871</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>072</td>
<td>872</td>
<td>WA22</td>
<td>8234</td>
<td>12D</td>
<td>TL27</td>
<td>2618NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>073</td>
<td>873</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>074</td>
<td>874</td>
<td>WA22</td>
<td>8234</td>
<td>13D</td>
<td>TL27</td>
<td>2619NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>075</td>
<td>875</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>076</td>
<td>876</td>
<td>WA22</td>
<td>8234</td>
<td>14D</td>
<td>TL27</td>
<td>2620NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>077</td>
<td>877</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>078</td>
<td>878</td>
<td>WA22</td>
<td>8234</td>
<td>15D</td>
<td>TL27</td>
<td>2621NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>079</td>
<td>879</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>080</td>
<td>880</td>
<td>WA22</td>
<td>8234</td>
<td>16D</td>
<td>TL27</td>
<td>2622NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>081</td>
<td>881</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082</td>
<td>882</td>
<td>WA22</td>
<td>8234</td>
<td>17D</td>
<td>TL27</td>
<td>2623NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>083</td>
<td>883</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>084</td>
<td>884</td>
<td>WA22</td>
<td>8234</td>
<td>18D</td>
<td>TL27</td>
<td>2624NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>085</td>
<td>885</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>086</td>
<td>886</td>
<td>WA22</td>
<td>8234</td>
<td>19D</td>
<td>TL27</td>
<td>2625NG1</td>
<td>32 1 1 3</td>
<td>1 1 1 1 2 2</td>
</tr>
<tr>
<td>087</td>
<td>887</td>
<td>2 1 1</td>
<td>1 1 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE LIBRARY
UNIVERSITY OF CANTERBURY
CHRISTCHURCH, N.Z.
<table>
<thead>
<tr>
<th>905</th>
<th>29 AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>906</td>
<td>WA29 8241 1D 9H2501NG1 32 1 2 2 2 5 1 1 14 2 2 1 6 6 1</td>
</tr>
<tr>
<td>907</td>
<td>1 7 1 1 4 7 911 2 33</td>
</tr>
<tr>
<td>908</td>
<td></td>
</tr>
<tr>
<td>909</td>
<td>WA29 8241 2D 9H2391NG1 32 2 3 2 1 2 10 1 111</td>
</tr>
<tr>
<td>910</td>
<td>3 6 1 1 6 1 3 11</td>
</tr>
<tr>
<td>911</td>
<td>3 3</td>
</tr>
<tr>
<td>912</td>
<td>WA29 8241 3D 9H2646AG1</td>
</tr>
<tr>
<td>913</td>
<td>7 4 7 9 28</td>
</tr>
<tr>
<td>914</td>
<td>1 1 2</td>
</tr>
<tr>
<td>915</td>
<td>1 3</td>
</tr>
<tr>
<td>916</td>
<td>WA29 8241 4D 9H2527YM12 2 3 1 1 1 2 3 2 13 21</td>
</tr>
<tr>
<td>917</td>
<td>25 11 6 6 33</td>
</tr>
<tr>
<td>918</td>
<td></td>
</tr>
<tr>
<td>919</td>
<td>WA29 8241 5D 9H2562AG1 33 1 1 3</td>
</tr>
<tr>
<td>920</td>
<td>1 1 41</td>
</tr>
<tr>
<td>921</td>
<td>WA29 8241 6D 9H2372AG1 33 4 1 5 1 1 1 31</td>
</tr>
<tr>
<td>922</td>
<td>2 2 1 5 1 1 2</td>
</tr>
<tr>
<td>923</td>
<td></td>
</tr>
<tr>
<td>924</td>
<td>WA29 8241 7W 9H3745AG1 33 1 3 1 2 1 1 1 10 4 2 1 3 41</td>
</tr>
<tr>
<td>925</td>
<td>9 1 1 1 5 4 1 11 2 11 2 2</td>
</tr>
<tr>
<td>926</td>
<td>1 1 3</td>
</tr>
<tr>
<td>927</td>
<td>WA29 8241 8W 9H3650NG1232 4 3 1 8 2 3 1 6 51</td>
</tr>
<tr>
<td>928</td>
<td>10 6 7 1 14</td>
</tr>
<tr>
<td>929</td>
<td></td>
</tr>
<tr>
<td>930</td>
<td>WA29 8241 9W 9H4199NG12 2 1 3 4 3 2 1 1 2 1 10 1 1 1 2</td>
</tr>
<tr>
<td>931</td>
<td>3 1 7 2 10</td>
</tr>
<tr>
<td>932</td>
<td>WA29 824110W 9H2687AG1 32 2 5 3 1 1 2 14 1 1 1 7 1 2</td>
</tr>
<tr>
<td>933</td>
<td>1 2 1 4</td>
</tr>
<tr>
<td>934</td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>WA29 824111W 9H 357AG1 34 2 2 2 2 2 4 2 2</td>
</tr>
<tr>
<td>936</td>
<td>2 1 1 2 1 1 4</td>
</tr>
<tr>
<td>937</td>
<td>2 1</td>
</tr>
<tr>
<td>938</td>
<td></td>
</tr>
<tr>
<td>939</td>
<td>WA29 824112W 9H2526NG1 31 1 5 2 5 3 6 7 1 9 39 1 1 1 1 1 51</td>
</tr>
<tr>
<td>940</td>
<td>2 4 3 3 10 2 2 2 2</td>
</tr>
<tr>
<td>941</td>
<td></td>
</tr>
<tr>
<td>942</td>
<td>WA29 824113U 9H 441NG1 31 1 1 4 1 1</td>
</tr>
<tr>
<td>943</td>
<td>16 5 5 2 12 2 2 2 41</td>
</tr>
<tr>
<td>944</td>
<td>11 2 3</td>
</tr>
<tr>
<td>945</td>
<td>WA29 824114U 9H3686AG1 32 2 1 2 2 1 3 11 1 1 1 2 2 61</td>
</tr>
<tr>
<td>946</td>
<td>27 0 7 3 10 1 1 2 2</td>
</tr>
<tr>
<td>947</td>
<td>1 1 3</td>
</tr>
<tr>
<td>948</td>
<td>WA29 824115U 9H3674AG1 33 2 1 1 1 5 1</td>
</tr>
<tr>
<td>949</td>
<td>59 61 415 35 1 1 1 2</td>
</tr>
<tr>
<td>950</td>
<td></td>
</tr>
<tr>
<td>951</td>
<td>WA29 824116U 9H 547NG1 2 1 3 5 4 10 4 2 3 32 2 2 61</td>
</tr>
<tr>
<td>952</td>
<td>1 3 8 10 3 211 1 1 2 2</td>
</tr>
<tr>
<td>953</td>
<td></td>
</tr>
<tr>
<td>954</td>
<td>WA29 824117U 9H2553AG1 32 1 1 2 10 2 12 61</td>
</tr>
<tr>
<td>955</td>
<td>20 16 161 43 2</td>
</tr>
<tr>
<td>956</td>
<td></td>
</tr>
<tr>
<td>957</td>
<td>WA29 824118U 9H2593AG1 32 1 1 3 2 1 8 1 1 31</td>
</tr>
<tr>
<td>958</td>
<td>8 8 8 1 1 1 1 2 2</td>
</tr>
<tr>
<td>959</td>
<td>32 1 6</td>
</tr>
<tr>
<td>Date</td>
<td>Location</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>5 SEPTEMBER</td>
<td>WA 5 9248</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>1015</th>
<th>12 SEPTEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1016</td>
<td>WA12 9255 1D10L3035AG1 32 1010 3 1 1 25</td>
</tr>
<tr>
<td>1017</td>
<td>1 1 1 1 2 5 8 15 1 3 4 2</td>
</tr>
<tr>
<td>1018</td>
<td></td>
</tr>
<tr>
<td>1019</td>
<td>WA12 9255 2D10L3597AG1 33 2 2 61</td>
</tr>
<tr>
<td>1020</td>
<td>1 5 1 1 228 7 1 30 1 1</td>
</tr>
<tr>
<td>1021</td>
<td>3 3</td>
</tr>
<tr>
<td>1022</td>
<td>WA12 9255 3D10L3633AG1 33 1 3 4 1 9 1 1 1 1 101 2 2 2</td>
</tr>
<tr>
<td>1023</td>
<td>16 1 2 3 2 8 10</td>
</tr>
<tr>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>1025</td>
<td>WA12 9255 4D10L2571AG1 32 3 9 1 4 5 1 2 1 1 27 31</td>
</tr>
<tr>
<td>1026</td>
<td>1 1</td>
</tr>
<tr>
<td>1027</td>
<td></td>
</tr>
<tr>
<td>1028</td>
<td>WA12 9255 5D10L2629AG1 32 5 12 1 1 19 1 1 71</td>
</tr>
<tr>
<td>1029</td>
<td>1 1</td>
</tr>
<tr>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>1031</td>
<td>WA12 9255 6D10L2434AG1 32 2 2 2 6 3 3 61</td>
</tr>
<tr>
<td>1032</td>
<td>3 2 3 5 2</td>
</tr>
<tr>
<td>1033</td>
<td></td>
</tr>
<tr>
<td>1034</td>
<td>WA12 9255 7M10L 380NG1 32 51010 5 9 2 3 3 3 3 46 1 3 2 5 91</td>
</tr>
<tr>
<td>1035</td>
<td>4 2 1 3 1</td>
</tr>
<tr>
<td>1036</td>
<td>1</td>
</tr>
<tr>
<td>1037</td>
<td>WA12 9255 8M10L2506AG1 33 1 3 2 2 1 1 1 11 1 1 21</td>
</tr>
<tr>
<td>1038</td>
<td>1 1 6 20 27 42</td>
</tr>
<tr>
<td>1039</td>
<td>1 1</td>
</tr>
<tr>
<td>1040</td>
<td>WA12 9255 9M10L2539AG1 32 717 5 4 1 34 1 3 3 81</td>
</tr>
<tr>
<td>1041</td>
<td>3 3 1 1 5 2 1 3 2</td>
</tr>
<tr>
<td>1042</td>
<td>WA12 925510M10L3783AG1 33 6 9 3 6 4 1 2 6 1 1 31</td>
</tr>
<tr>
<td>1043</td>
<td>1 2 4 6 3 2 5 2</td>
</tr>
<tr>
<td>1044</td>
<td></td>
</tr>
<tr>
<td>1045</td>
<td>WA12 925511M10L3725AG1 32 122310 7 5 3 1 61 21</td>
</tr>
<tr>
<td>1046</td>
<td>3 4 2 6 1 2 3 2</td>
</tr>
<tr>
<td>1047</td>
<td>1 1</td>
</tr>
<tr>
<td>1048</td>
<td></td>
</tr>
<tr>
<td>1049</td>
<td>WA12 925512M10L3619MG1 33 1 3 2 1 3 2 1 2 2 3 3 61</td>
</tr>
<tr>
<td>1050</td>
<td>10 711 2 1 21 2 2 2</td>
</tr>
<tr>
<td>1051</td>
<td>1 1</td>
</tr>
<tr>
<td>1052</td>
<td>WA12 925513U10L3643AG1 32 4 9 5 1 2 1 2 2 2 4 51</td>
</tr>
<tr>
<td>1053</td>
<td>1</td>
</tr>
<tr>
<td>1054</td>
<td></td>
</tr>
<tr>
<td>1055</td>
<td>WA12 925514U10L2526AG1 33 723 3 6 2 1 1 3 4 121</td>
</tr>
<tr>
<td>1056</td>
<td>0 6 1 1 0 2 2 2</td>
</tr>
<tr>
<td>1057</td>
<td>1</td>
</tr>
<tr>
<td>1058</td>
<td>WA12 925515U10L2770AG1 33 2555 7 2 6 1 1 2 99 21</td>
</tr>
<tr>
<td>1059</td>
<td>1 1 2 11 2</td>
</tr>
<tr>
<td>1060</td>
<td></td>
</tr>
<tr>
<td>1061</td>
<td>WA12 925516U10L3587MG12 1 2 2 2 2 1 9 1 1 61</td>
</tr>
<tr>
<td>1062</td>
<td>14 3 3 3 9 2</td>
</tr>
<tr>
<td>1063</td>
<td></td>
</tr>
<tr>
<td>1064</td>
<td>WA12 925517U10L2542AG1 33 1 0 3 5 3 2 2 2 4 6 1 71</td>
</tr>
<tr>
<td>1065</td>
<td>5 1 2 5 0 2</td>
</tr>
<tr>
<td>1066</td>
<td>3 1 2 6 1 1</td>
</tr>
<tr>
<td>1067</td>
<td>WA12 925518U10L2529AG1 32 1 2 3 1 1 1 1 91</td>
</tr>
<tr>
<td>1068</td>
<td>1 2 1 1 1 2 5 14 3 4 2 1 1</td>
</tr>
<tr>
<td>1069</td>
<td>4 1 5</td>
</tr>
<tr>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>Sample ID</td>
<td>Date</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>WA19 9262</td>
<td>19 September</td>
</tr>
<tr>
<td>WA19 9262</td>
<td>19 October</td>
</tr>
</tbody>
</table>

Notes:
- Water Temperature: 19 °C
- Solids Dissolved: 11 mg/L
- pH: 2
WAINUI VALLEY STREAM SAMPLES

26 SEPTEMBER

WA26 9269 1011L3585NG12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WA26 9269 2011L2650AG1 3 2 4 9 4 1 6 1 1 2 30

WA26 9269 3011L2581AG1 33 1 3 4 4 3 1 4 3 1 1 3 1 3 4

WA26 9269 4011L2719AG12 3 1174912 2 2 1 54 1 2 3 1 91

WA26 9269 5011L2572AG1 34 1 7 812 3 3 1 1 36 1 1 121

WA26 9269 6011L2557AG1 33 1 1 1 1 1 3 8 1 1 2 2 41

WA26 9269 7011L3715NG1 31 6 8 5 1 1 21 91

WA26 9269 8011L3801AG1 33 5212127 6 3 3 2 88 1 2 2 231

WA26 9269 9011L2666AG1 32 3201435 6 9 6 3 1 97 1 1 161

WA26 9269 10011L2604NG1 31 1 21 5 1 10 1 141

WA26 9269 11011L3506NG1 32 313516 3 1 1 1 43 1 1 181

WA26 9269 12011L2543NG12 3 6213630 5 7 9 6 4124 3 1 1 1 2 1 1 6 6 171

WA26 9269 13011L2530NG1 33 1 4 611 5 2 5 2 3 39 2 1 1 4 41

WA26 9269 14011L2525AG1 32 2 41519 1 11 1 46 81

WA26 9269 15011L2489AG1 33 419274013111 6 3136 1 1 3 2 2 1 5 111

WA26 9269 16011L2426AG1 33 1 6 3 5 1 16 101

WA26 9269 17011L2426AG1 33 1 6 3 5 1 16 101

WA26 9269 18011L2426AG1 33 1 6 3 5 1 16 101
<table>
<thead>
<tr>
<th>Date</th>
<th>Sample Code</th>
<th>Code Letters</th>
<th>Digits</th>
<th>Number of Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180</td>
<td>WA 310276</td>
<td>D11L2587MNl2</td>
<td>3 1115311</td>
<td>312 3 2</td>
<td>70</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>1181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1184</td>
<td>WA 310276</td>
<td>D11L3753MAGI</td>
<td>33 714101018</td>
<td>3 2 2 2 68</td>
<td>1 2 1 4</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1185</td>
<td>2</td>
<td>15</td>
<td>3 5 1 1 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1187</td>
<td>WA 310276</td>
<td>D11L2510MAGI</td>
<td>33 1111111310</td>
<td>4 4 4 1 69</td>
<td>1 1</td>
<td>151</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1188</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1190</td>
<td>WA 310276</td>
<td>D11L2669MAGI</td>
<td>32 4121111</td>
<td>9 3 3 1 1 55</td>
<td>291</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1191</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1193</td>
<td>WA 310276</td>
<td>D11L3462MAGI</td>
<td>32 1 3 2 2 3 1 1 13</td>
<td>3 3 201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td>4</td>
<td></td>
<td>810 3 2 23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1196</td>
<td>WA 310276</td>
<td>D11L4068MAGI</td>
<td>33 4131413</td>
<td>9 1 1 1 57</td>
<td>4 4 141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1199</td>
<td>WA 310276</td>
<td>7M11L4694MAGI</td>
<td>32 0 3 1</td>
<td>12</td>
<td>1 1 121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>11</td>
<td></td>
<td>1 5 2 3 11</td>
<td>1 1</td>
<td>1 1 2 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1202</td>
<td>WA 310276</td>
<td>8M11L2621MAG</td>
<td>3 1 1 2 2</td>
<td>7</td>
<td>1</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1203</td>
<td>8</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1205</td>
<td>WA 310276</td>
<td>9M11L2658MAGI</td>
<td>33 1 1 1 1 4</td>
<td></td>
<td></td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>19</td>
<td></td>
<td>816 6 1 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1207</td>
<td>11 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1208</td>
<td>WA 31027610M11L3718MAGI</td>
<td>33 1 5 3 4 7 2 2 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1209</td>
<td>1 15</td>
<td></td>
<td>411 1 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1211</td>
<td>WA 31027611M11L2474MAGI</td>
<td>3 7 71211 5</td>
<td></td>
<td></td>
<td>1 1 71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1212</td>
<td>3 1 1 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td>WA 31027612M11L2628MAGI</td>
<td>3 31510 9 5 1 43 1 1 2 4</td>
<td></td>
<td></td>
<td>1 2 3 151</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td>1 25</td>
<td></td>
<td>110 7 7 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1217</td>
<td>WA 31027613U11L4575MAGI</td>
<td>33 2 2 9 5 4 1 1 4 1 29</td>
<td></td>
<td></td>
<td>2 2 111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1218</td>
<td>15</td>
<td></td>
<td>45 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>WA 31027614U11L4808MAGI</td>
<td>2 1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1221</td>
<td>12</td>
<td></td>
<td>19 3 2 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1222</td>
<td>211</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1223</td>
<td>WA 31027615U11L4931MAGI</td>
<td>34 2 61613 9 5 1 2 5 4 2 2 4 2 2</td>
<td></td>
<td></td>
<td>1 1 2 281</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1224</td>
<td>1 4</td>
<td></td>
<td>7 1 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1225</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1226</td>
<td>WA 31027616U11L2703MAGI</td>
<td>33 5 717181 2 1 7 3 1 71</td>
<td></td>
<td></td>
<td>291</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1227</td>
<td>20</td>
<td></td>
<td>3 4 2 2 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1228</td>
<td>1 1 2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1229</td>
<td>WA 31027617U11L4732MAGI</td>
<td>3 1 4 7 511 7 3 1 39</td>
<td></td>
<td></td>
<td>1 1 111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>40</td>
<td></td>
<td>5 5 4 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1231</td>
<td>021</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1232</td>
<td>WA 31027618U11L3742MAGI</td>
<td>33 53231222514 5 2 1137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1233</td>
<td>3</td>
<td></td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td></td>
<td></td>
<td>1 1 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample ID</td>
<td>Date</td>
<td>Number 1</td>
<td>Number 2</td>
<td>Number 3</td>
<td>Number 4</td>
<td>Number 5</td>
<td>Number 6</td>
<td>Number 7</td>
<td>Number 8</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>WA1010203</td>
<td>10 OCTOBER</td>
<td>1011M3800AG1</td>
<td>33</td>
<td>41714</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>710</td>
<td>3</td>
</tr>
<tr>
<td>WA1010203</td>
<td>2011M2563AG1</td>
<td>33</td>
<td>311</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>WA1010203</td>
<td>3011M2667AL1</td>
<td>33</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>011</td>
<td>1</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>WA1010203</td>
<td>4011M3706AG1</td>
<td>33</td>
<td>2111610</td>
<td>414</td>
<td>1</td>
<td>1</td>
<td>59</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WA1010203</td>
<td>5011M2667AL1</td>
<td>33</td>
<td>21</td>
<td>2</td>
<td>51</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WA1010203</td>
<td>6011M3737AG1</td>
<td>33</td>
<td>912151112</td>
<td>7</td>
<td>62</td>
<td>1</td>
<td>1</td>
<td>621</td>
<td>2</td>
</tr>
<tr>
<td>WA1010203</td>
<td>7011M2661AG1</td>
<td>32</td>
<td>1</td>
<td>7121410</td>
<td>710</td>
<td>5</td>
<td>1</td>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>WA1010203</td>
<td>8011M3721ML1</td>
<td>31</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>171</td>
</tr>
<tr>
<td>WA1010203</td>
<td>9011M3737AG1</td>
<td>33</td>
<td>912151112</td>
<td>7</td>
<td>62</td>
<td>1</td>
<td>1</td>
<td>621</td>
<td>2</td>
</tr>
<tr>
<td>WA1010203</td>
<td>1011M3800AG1</td>
<td>33</td>
<td>41714</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>710</td>
<td>3</td>
<td>71</td>
</tr>
<tr>
<td>WA1010203</td>
<td>1111M2667AL1</td>
<td>33</td>
<td>2111610</td>
<td>414</td>
<td>1</td>
<td>1</td>
<td>59</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WA1010203</td>
<td>1211M3706AG1</td>
<td>33</td>
<td>2111610</td>
<td>414</td>
<td>1</td>
<td>1</td>
<td>59</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1290</td>
<td>17 OCTOBER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1291</td>
<td>WA1710290 1D14L3635NG1</td>
<td>33</td>
<td>51018252344 63816105</td>
<td>1</td>
<td>1</td>
<td>112</td>
<td>691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1292</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>112</td>
<td>2</td>
</tr>
<tr>
<td>1293</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1294</td>
<td>WA1710290 2D14L4657NG1</td>
<td>33</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>941</td>
<td></td>
</tr>
<tr>
<td>1295</td>
<td>1</td>
<td>15</td>
<td>17</td>
<td>9</td>
<td>1</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>1296</td>
<td>13</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1297</td>
<td>WA1710290 3D14L3680AG1</td>
<td>33</td>
<td>91033322018353014201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>1298</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1299</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>WA1710290 4D14L2610AG1</td>
<td>32</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1301</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>1302</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1303</td>
<td>WA1710290 5D14L2621NG1</td>
<td>33</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1304</td>
<td>1</td>
<td></td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1305</td>
<td>211</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1306</td>
<td>WA1710290 6D14L3797AG1</td>
<td>33</td>
<td>11930826172</td>
<td>0</td>
<td>1</td>
<td>5137</td>
<td></td>
<td></td>
<td>1341</td>
</tr>
<tr>
<td>1307</td>
<td>1</td>
<td>1</td>
<td>22</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td>WA1710290 7M14L3722AG1</td>
<td>33</td>
<td>2</td>
<td>52</td>
<td>27</td>
<td>20</td>
<td>8191011133</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1310</td>
<td>3</td>
<td></td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1311</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1312</td>
<td>WA1710290 8M14L3661AG1</td>
<td>33</td>
<td>612111712</td>
<td>1182419120</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1313</td>
<td>1</td>
<td>7</td>
<td></td>
<td>4</td>
<td>2</td>
<td>6</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1314</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1315</td>
<td>WA1710290 9M14L3717AG1</td>
<td>33</td>
<td>1219314517</td>
<td>41016</td>
<td>6160</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1316</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1318</td>
<td>WA171029010M14L2704NG2</td>
<td>3</td>
<td>71</td>
<td>637222225</td>
<td>616</td>
<td>7158</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1319</td>
<td>5</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1320</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1321</td>
<td>WA171029011M14L3693AG1</td>
<td>32</td>
<td>6101911</td>
<td>9</td>
<td>6131111</td>
<td>96</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1322</td>
<td>3</td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1323</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1324</td>
<td>WA171029012M14L3743AG1</td>
<td>32</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>52</td>
<td>1114</td>
</tr>
<tr>
<td>1325</td>
<td>12</td>
<td></td>
<td>4</td>
<td>2</td>
<td>6</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1327</td>
<td>WA171029013U14L2714NG12</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1328</td>
<td>20</td>
<td></td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>22</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1329</td>
<td>52</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td>WA171029014U14L2499AG1</td>
<td>32</td>
<td>72035421022336150280</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1331</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1332</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1333</td>
<td>WA171029015U14L3656AG1</td>
<td>32</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>01</td>
</tr>
<tr>
<td>1334</td>
<td>19</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1335</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1336</td>
<td>WA171029016U14L2555AG1</td>
<td>33</td>
<td>8</td>
<td>824322744103131223</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1337</td>
<td>1</td>
<td>4</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1338</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1339</td>
<td>WA171029017U14L2524NG12</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>51</td>
<td>10</td>
</tr>
<tr>
<td>1340</td>
<td>1</td>
<td>17</td>
<td></td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1341</td>
<td>121</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1342</td>
<td>WA171029018U14L3641AG1</td>
<td>32</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>1343</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1344</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Sample Code</td>
<td>Location</td>
<td>N-01</td>
<td>N-02</td>
<td>N-03</td>
<td>N-04</td>
<td>N-05</td>
<td>N-06</td>
<td>N-07</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>1D 9L3839A</td>
<td>33</td>
<td>7</td>
<td>121177</td>
<td>7 511</td>
<td>8 912</td>
<td>2</td>
<td>551</td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>2D 9L3576A</td>
<td>33</td>
<td>16</td>
<td>914</td>
<td>6 3 4 3 4 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>3D 9L2484A</td>
<td>33</td>
<td>1</td>
<td>1121</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>4D 9L3707N</td>
<td>33</td>
<td>7</td>
<td>91116</td>
<td>6 71110</td>
<td>85</td>
<td>1 1 2</td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>5D 9L3528N</td>
<td>33</td>
<td>72734565416133123261</td>
<td>2 2 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>6D 9L2557A</td>
<td>33</td>
<td>1317152114</td>
<td>9121421136</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>7M 9L2560N</td>
<td>33</td>
<td>2 4 614613162011102</td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>8M 9L2587A</td>
<td>33</td>
<td>916283556</td>
<td>601217166</td>
<td>1 1 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>9M 9L2527A</td>
<td>33</td>
<td>25210</td>
<td>8 2 411</td>
<td>517</td>
<td>94 2 1 3 3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>10M 9L2529A</td>
<td>32</td>
<td>41013241910</td>
<td>92112122</td>
<td>2 2 1</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>11M 9L2571A</td>
<td>33</td>
<td>4 4 2 6 4 511 9 45</td>
<td>2</td>
<td>2 2</td>
<td>1</td>
<td>2 3 1 201</td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>12M 9L2556N</td>
<td>32</td>
<td>141612426804195028209</td>
<td>5 3 8 2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>13M 9L2505A</td>
<td>33</td>
<td>6 9 7 7 6 7 8 516 711</td>
<td>1</td>
<td>1</td>
<td>1 2</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>14M 9L2641N</td>
<td>12</td>
<td>512 6 6 5 2 4</td>
<td>44 1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>15U 9L3631A</td>
<td>33</td>
<td>2 3 3</td>
<td>1 3 4 3 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>16U 9L2550A</td>
<td>33</td>
<td>29</td>
<td>2 2</td>
<td>4 1</td>
<td>1</td>
<td>1 2</td>
<td>2</td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>17U 9L2534N</td>
<td>32</td>
<td>3 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>18U 9L3431A</td>
<td>33</td>
<td>4 4 2 5 1 4 11 8 39 1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>19U 9L4831A</td>
<td>33</td>
<td>1 3</td>
<td>1 1</td>
<td>2 3</td>
<td>5 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct</td>
<td>WA410297</td>
<td>20U 9L3431A</td>
<td>33</td>
<td>4 4 2 5 1 4 11 8 39 1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Location</td>
<td>Sample Code</td>
<td>Codes</td>
<td>Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1495</td>
<td>7 November</td>
<td>WA 711311 10D13L2489NG1</td>
<td>34</td>
<td>3 4 5 1 2 2 3 4 24 1</td>
<td>1 1 1 1 26 2 331 861</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1457</td>
<td></td>
<td>WA 711311 20D13L2499NG12</td>
<td>1 179547322312 7 917259 2</td>
<td>2 1 1 3</td>
<td>1511</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1460</td>
<td></td>
<td>WA 711311 30D13L2498AG1</td>
<td>32</td>
<td>4755211716 01211 0195</td>
<td>1 22 1 1 1 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1463</td>
<td></td>
<td>WA 711311 40D13L2550AG1</td>
<td>33</td>
<td>4 1</td>
<td>5</td>
<td>1 2 2 801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1466</td>
<td></td>
<td>WA 711311 50D13L2462NG12</td>
<td>3</td>
<td>2 2 3 4 6 7 814 464 4</td>
<td>4 2 3 4 7 701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1468</td>
<td></td>
<td>WA 711311 60D13L2589NG1</td>
<td>31</td>
<td>2 7 4 1 2 1</td>
<td>1 1 1 1</td>
<td>2 2 1 571</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1472</td>
<td></td>
<td>WA 711311 7D13L3504AG1</td>
<td>34</td>
<td>1119 0 7 6 1 1 4 3 60</td>
<td>2</td>
<td>671</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1475</td>
<td></td>
<td>WA 711311 8M13L 564NG12</td>
<td>2</td>
<td>317 4 3 3</td>
<td>1 4 5 40</td>
<td>8</td>
<td>2 2 771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1478</td>
<td></td>
<td>WA 711311 9M13L2593AG1</td>
<td>33</td>
<td>94313 8 5 1 1 513 98 1 1 2 22</td>
<td>2 2 711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1480</td>
<td></td>
<td>WA 711311 10M13L 414AG1</td>
<td>33</td>
<td>1729 310 8 7 51217108 1 1 2 4 2 73</td>
<td>1161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1484</td>
<td></td>
<td>WA 711311 11M13L2439AG1</td>
<td>33</td>
<td>3 8 1 1</td>
<td>1 5 4 23 1 1</td>
<td>1</td>
<td>1 421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1487</td>
<td></td>
<td>WA 711311 12M13L 552NG12</td>
<td>2</td>
<td>163215 4 7 1 1 5 2 03</td>
<td>1 1 2</td>
<td>2 2 1501</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1490</td>
<td></td>
<td>WA 711311 13M13L397AG1</td>
<td>33</td>
<td>6431611 9 2 1 3 9100</td>
<td>1 1 3</td>
<td>1 1 861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1493</td>
<td></td>
<td>WA 711311 14U13L2591AG1</td>
<td>33</td>
<td>5 2 1 2</td>
<td>10</td>
<td>1</td>
<td>1 1191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1496</td>
<td></td>
<td>WA 711311 15U13L2445AG1</td>
<td>34</td>
<td>62912 8 2 1</td>
<td>416 70 8 2 3 5 1</td>
<td>1</td>
<td>1 21</td>
<td>2 2 1961</td>
<td></td>
</tr>
<tr>
<td>1499</td>
<td></td>
<td>WA 711311 16U13L2387NG12</td>
<td>2</td>
<td>112 1 1</td>
<td>1 1 17 1 1</td>
<td>2</td>
<td>1 1 571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1502</td>
<td></td>
<td>WA 711311 17U13L 428NG12</td>
<td>3</td>
<td>421 6 7 3</td>
<td>1 3 6 51 1</td>
<td>1</td>
<td>1 541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1505</td>
<td></td>
<td>WA 711311 18U13L 306NG1</td>
<td>33</td>
<td>514 6 3 2 2 1 6 2 41</td>
<td>2 1 32</td>
<td>2 2 381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1508</td>
<td></td>
<td>WA 711311 19U13L 306NG1</td>
<td>33</td>
<td>514 6 3 2 2 1 6 2 41</td>
<td>2 1 32</td>
<td>2 2 381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1509</td>
<td></td>
<td>WA 711311 20U13L 306NG1</td>
<td>33</td>
<td>514 6 3 2 2 1 6 2 41</td>
<td>2 1 32</td>
<td>2 2 381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1510</td>
<td>7 NOVEMBER NATURAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1511</td>
<td>WN 711311 1N13L 300NG12 4 419111413 5 4 7 4 81 2 2 1 1 10</td>
<td>2 1 3</td>
<td>511</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1512</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1513</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1514</td>
<td>WN 711311 2NI13L 281NG1 3 31 0 4 2 1 1 4 50 2 2</td>
<td>1 4 5</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1515</td>
<td>5 3 2</td>
<td>10</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1517</td>
<td>WN 711311 3NI13L2458NG12 4 3 4 6 6 5 1 25 1 1</td>
<td>2</td>
<td>2</td>
<td>371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td>6</td>
<td>2 3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1519</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1520</td>
<td>WN 711311 4NI13L 492NG1 3 4 11810 710 0 2 7 9 72</td>
<td>1 3 4 3</td>
<td>7</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1521</td>
<td>1 2 6</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1523</td>
<td>WN 711311 5NI13L3522NG1 3 2 533161412 4 3 1 2 90</td>
<td>1 1</td>
<td>1 2</td>
<td>781</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1524</td>
<td>5</td>
<td>1 1</td>
<td>7 2 2</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1526</td>
<td>WN 711311 6NI13L 304NG12 1 3 3</td>
<td>1 1 1 2 11</td>
<td>1 1</td>
<td>1 1</td>
<td>851</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1527</td>
<td>10</td>
<td>2 2</td>
<td>7 917 2 35</td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1529</td>
<td>WN 711311 7NI13L 333NG1 3 3 12 161 8 7 810 1 82</td>
<td>1 1 1 1 1</td>
<td>1 2</td>
<td>891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1530</td>
<td>3 2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1531</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1532</td>
<td>WN 711311 8NI13L2553NG123 3 143024383010 710 2173</td>
<td>3 5 8 3 2 5</td>
<td>4 2 2 513</td>
<td>1161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1533</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4 1</td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1534</td>
<td></td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1535</td>
<td>WN 711311 9NI13L2521NG123 2 1329 92014 9101214130</td>
<td>3 2 5 1 3 8311</td>
<td>1 1</td>
<td>1551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1536</td>
<td>1 2 1</td>
<td>3 2 5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 2</td>
</tr>
<tr>
<td>1537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1538</td>
<td>WN 71131110NI13L 568NG123 3 5251115</td>
<td>3 4 6 5 2 74 4 3 7 2 2 4318</td>
<td>3 1 4</td>
<td>1011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1539</td>
<td>1</td>
<td>1 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Code</td>
<td>Sonam</td>
<td>Samples</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>14 NOVEMBER</td>
<td>WA1411318</td>
<td>1012H2463NG12</td>
<td>2 14 5 8 1</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1542</td>
<td></td>
<td></td>
<td>1 4</td>
<td>36</td>
<td>5</td>
<td>5</td>
<td>46</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1543</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1544</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1545</td>
<td></td>
<td>1012H3497AG1</td>
<td>33 832421</td>
<td>9 3 1 2 1 144</td>
<td>1</td>
<td>1</td>
<td>2081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1546</td>
<td></td>
<td></td>
<td>1</td>
<td>8 2 3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1547</td>
<td></td>
<td></td>
<td>4 1 5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1548</td>
<td></td>
<td>1012H24230NG1</td>
<td>33 6 6 6 2 3 1</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1549</td>
<td></td>
<td></td>
<td>1 6</td>
<td>10 9 5</td>
<td>24</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1550</td>
<td></td>
<td></td>
<td>321 6 1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1551</td>
<td></td>
<td>1012H2402AG1</td>
<td>33 16 510 3 1</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1552</td>
<td></td>
<td></td>
<td>1 5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1553</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1554</td>
<td></td>
<td>1012H2502NG1</td>
<td>33 765945322</td>
<td>15</td>
<td>9 5346</td>
<td>2 2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1555</td>
<td></td>
<td></td>
<td>2</td>
<td>15 1 2 9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1556</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1557</td>
<td></td>
<td>1012H3495AG1</td>
<td>32 342013</td>
<td>6 5 1 7 8</td>
<td>95</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1558</td>
<td></td>
<td></td>
<td>6</td>
<td>6 2 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1559</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1560</td>
<td></td>
<td>1012H3546NG1232</td>
<td>19192613</td>
<td>2 7 1 3</td>
<td>90</td>
<td>1 1 2 1 2 3311</td>
<td>9 3</td>
<td>113</td>
<td>1161</td>
</tr>
<tr>
<td>1561</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1 2 3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1562</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1563</td>
<td></td>
<td>1012H2458AG1</td>
<td>32 12919</td>
<td>4 6 4 5 98</td>
<td>1</td>
<td>32</td>
<td>3</td>
<td>11941</td>
<td></td>
</tr>
<tr>
<td>1564</td>
<td></td>
<td></td>
<td>1 1 9</td>
<td>3 2 3 1 9 1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1565</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1566</td>
<td></td>
<td>1012H3666AG1</td>
<td>33 1218251114</td>
<td>9 4 3</td>
<td>96</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1567</td>
<td></td>
<td></td>
<td>5</td>
<td>4 2 1 2 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1568</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1569</td>
<td></td>
<td>1012H2411AG1</td>
<td>33 8 2 4 2 2 3</td>
<td>1 2 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1570</td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1571</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1572</td>
<td></td>
<td>1012H3493NG12</td>
<td>2334 910 7 2 4</td>
<td>1 367</td>
<td>29</td>
<td>1291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1573</td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1574</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1575</td>
<td></td>
<td>1012H2603NG12</td>
<td>1293422316</td>
<td>6 6 7 4</td>
<td>1358</td>
<td>1</td>
<td>1</td>
<td>2 9</td>
<td>3</td>
</tr>
<tr>
<td>1576</td>
<td></td>
<td></td>
<td>4</td>
<td>1 1 2 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1577</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1578</td>
<td></td>
<td>1012H36873120</td>
<td>3 3</td>
<td>3 1291</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>310</td>
</tr>
<tr>
<td>1579</td>
<td></td>
<td></td>
<td>1 1</td>
<td>2 2 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td></td>
<td>1012H2498NG1</td>
<td>33 63252614</td>
<td>2 7 2 3</td>
<td>142</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1582</td>
<td></td>
<td></td>
<td>4</td>
<td>1 3 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1583</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1584</td>
<td></td>
<td>1012H3553NG1231</td>
<td>20 913 8 8 6 5 3 7 4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>971</td>
<td></td>
</tr>
<tr>
<td>1585</td>
<td></td>
<td></td>
<td>1 10</td>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1586</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1587</td>
<td></td>
<td>1012H2516AG1</td>
<td>33 171623</td>
<td>6 4 1 4 2 2 7 5</td>
<td>1 1 2</td>
<td>2</td>
<td>2</td>
<td>1771</td>
<td></td>
</tr>
<tr>
<td>1588</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1589</td>
<td></td>
<td></td>
<td>1 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td></td>
<td>1012H3612NG1232</td>
<td>18 9 5 1</td>
<td>1 34</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>1491</td>
</tr>
<tr>
<td>1591</td>
<td></td>
<td></td>
<td>1 28</td>
<td>14 6 1 1 2 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1592</td>
<td></td>
<td></td>
<td>53 1 9 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1593</td>
<td></td>
<td>1012H3468AG1</td>
<td>31 27211912</td>
<td>7 6 5 3</td>
<td>2102</td>
<td>3</td>
<td>912</td>
<td>5</td>
<td>312</td>
</tr>
<tr>
<td>1594</td>
<td></td>
<td></td>
<td>2 3</td>
<td>5 5 2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1595</td>
<td></td>
<td></td>
<td>1 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Numbers</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1596</td>
<td>WA2111325</td>
<td>10111M2686AGI</td>
<td>33</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1598</td>
<td>23</td>
<td>2612</td>
<td>5</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1599</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>WA2111325</td>
<td>20111M2603AGI</td>
<td>32</td>
<td>51011</td>
<td>3</td>
<td>1</td>
<td>30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1601</td>
<td>13</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1603</td>
<td>WA2111325</td>
<td>30111M391AGI</td>
<td>33</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1604</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1605</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1606</td>
<td>WA2111325</td>
<td>40111M2498AGI</td>
<td>33</td>
<td>225181012</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>1607</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1609</td>
<td>WA2111325</td>
<td>50111M2567AGI</td>
<td>34</td>
<td>31372712</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2122</td>
<td>1</td>
</tr>
<tr>
<td>1610</td>
<td>5</td>
<td>221C</td>
<td>3</td>
<td>5</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1611</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1612</td>
<td>WA2111325</td>
<td>60111M2665NGI</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>210</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1613</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1614</td>
<td>WA2111325</td>
<td>70111M360NGI</td>
<td>3</td>
<td>1533201313</td>
<td>3</td>
<td>2</td>
<td>2101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1615</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1616</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1617</td>
<td>WA2111325</td>
<td>80111M2555AGI</td>
<td>32148283124</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3257</td>
<td></td>
</tr>
<tr>
<td>1619</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1620</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1621</td>
<td>WA2111325</td>
<td>90111M2505AGI</td>
<td>32</td>
<td>2854371914</td>
<td>1</td>
<td>4</td>
<td>2159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1622</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1623</td>
<td>WA2111325</td>
<td>100111M463NGI</td>
<td>233</td>
<td>7290381318</td>
<td>412</td>
<td>5</td>
<td>3274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1624</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1625</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1626</td>
<td>WA2111325</td>
<td>111111M2426NGI</td>
<td>33</td>
<td>18171312</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>1627</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1628</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1629</td>
<td>WA2111325</td>
<td>121111M2541AGI</td>
<td>33</td>
<td>2048394532</td>
<td>912</td>
<td>612231</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1631</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1632</td>
<td>WA2111325</td>
<td>131111M2443AGI</td>
<td>33</td>
<td>1623101314</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>1633</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1634</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1635</td>
<td>WA2111325</td>
<td>141111M390NGI</td>
<td>32</td>
<td>21131311</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1636</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1637</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1638</td>
<td>22</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1639</td>
<td>WA2111325</td>
<td>151111M422NGI</td>
<td>33</td>
<td>4271815</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>65</td>
</tr>
<tr>
<td>1640</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1641</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1642</td>
<td>WA2111325</td>
<td>161111M2660NGI</td>
<td>32</td>
<td>1431165</td>
<td>3</td>
<td>1</td>
<td>70</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1643</td>
<td>22</td>
<td>26</td>
<td>3109</td>
<td>1</td>
<td>543</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1644</td>
<td>2931</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1645</td>
<td>WA2111325</td>
<td>171111M2504NGI</td>
<td>33</td>
<td>243650361914</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1646</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1647</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1648</td>
<td>WA2111325</td>
<td>181111M318AGI</td>
<td>33</td>
<td>7223120826</td>
<td>815</td>
<td>6</td>
<td>5140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1649</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...