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Abstract Wood basic density is among the selection criteria for many fast-grown tree species, including Pinus6

radiata D. Don in New Zealand. Basic density was assessed in 23,330 stem cores from 18 trials to study7

the heritability, the relevance of environmental effects and the magnitude of genotype by environment (GxE)8

interaction. Site differences in annual average temperature dominated variability in this dataset, with lower9

latitude and altitude (i.e. warmer) sites displaying higher average density. Between highest- and lowest-density10

sites there was an 18% difference (302.7 vs 358.4 kg m−3) for the linear mean for cores of rings 1–5 and a 39%11

difference (329.7 vs 459.1 kg m−3) for the linear mean of rings 6–10. The estimated heritabilities fluctuated12

between 0.28 and 0.94 (mean 0.6); however, basic density displayed little within-site variability (phenotypic13

coefficient of variation < 8%). Bivariate analyses were used to estimate between-site genetic correlations as an14

indication of GxE interaction. Only 57 out of the 153 pairs of trials contained enough information to estimate15

the between-site genetic correlations and, out of those, 15 estimates were not statistically significant. Moderate16

to high (0.46–0.96) significant genetic correlation estimates indicated that there was little interaction for basic17

density, suggesting no need to modify the breeding strategy to account for differential performance in this trait.18

Poor connectedness between trials could be depressing estimates of genetic correlations. This situation should19

be considered when designing genetic testing schemes, particularly when purposely inducing imbalance as in20

rolling front strategies.21

Keywords genetic correlation, genotype-by-environment interaction, wood properties, connectedness, Pinus22

radiata23

Introduction24

Predicting the genetic worth of individuals is crucial to tree breeding programs and it is often based upon data25

from multiple genetic trials. Forest plantations are deployed in extensive, heterogeneous environments and the26

spatial allocation of genetic trials aims to reflect this situation.27

Environmental differences affect both the quantity and quality of wood produced. In terms of quantity,28

potential site productivity is commonly expressed using indices of tree height (e.g. site index) or volume (e.g.29

300 index, Kimberley et al. 2005) at a standard age. The environmental effects on wood properties are some-30

times mapped as ‘quality regions’; as an example, Cown (1992, page 8) divided New Zealand in to three basic31

density regions: high, medium and low. It is expected that the average quantity and quality of wood will rise or32

fall depending on the productivity index or quality region where the trees are growing.33
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Nevertheless, one of the main questions during genetic testing is ‘Will superior genotypes perform satisfac-34

torily across heterogeneous environments?’. The varying effect of environmental conditions on the performance35

of different genotypes is termed Genotype by Environment interaction (hereafter termed GxE interaction). GxE36

interaction can be partitioned into effects due to heterogeneity of variances and to lack of correlation (Muir et al.37

1992). Heterogeneous variances—related to changes of scale like site index—are not necessarily a problem.38

However, changes of ranking depending on testing environment may lead to more complex breeding and/or39

deployment strategies that require multiple breeding objectives (Howarth et al. 1997, Goddard 1998).40

There are two naı̈ve extremes when dealing with GxE interaction: assuming that either there is complete41

lack of interaction or that the interaction is important for every trait, site and genotype. Most breeding programs42

will fall between these extremes. In general terms, GxE interaction appears to be relatively important in part of43

the forest estate for growth traits (e.g. stem diameter, height and volume see Johnson and Burdon 1990, Carson44

1991, Matheson and Wu 2005), but presents a small magnitude for wood properties (e.g. Kumar 2004, Gapare45

et al. 2009). Unfortunately, most studies for wood traits rely on a small number of both sites and genotypes or46

on indirect—and less accurate—assessments, like penetrometer readings to estimate basic density.47

Pinus radiata D. Don is the most important temperate plantation species in the Southern hemisphere,48

covering over 3.7 million ha, mostly in New Zealand, Chile and Australia. The New Zealand radiata pine49

breeding program started in the 1950s initially focusing on growth, form and health traits—as did many tree50

breeding strategies around the world. The selection criteria were later extended to encompass traits that relate51

to the quantity and quality of wood produced (Jayawickrama and Carson 2000, Dungey et al. 2007). One such52

trait is wood basic density. While for solid wood production basic density should no longer be considered the53

paramount structural and appearance timber property (Apiolaza 2009) it is still an important trait, particularly54

for fiber and energy production as well as for ‘carbon forestry’.55

A thorough genetic testing system requires high connectedness (pedigree relationships) among trials, lead-56

ing to a more precise estimate of genetic correlation, a more accurate comparison of estimated breeding values57

between trials and higher accuracy of selection (Kennedy and Trus 1993). Unfortunately, poor connectedness58

is not unusual in tree breeding, where often there are few parents in common among trials, even when tracing59

back the pedigree. This may be due to technical problems (propagation difficulties, differential site mortality,60

etc), limited resources, or simply oversight. In spite of connectedness issues, trials are frequently incorporated61

in genetic evaluations that attempt to compare genetic material among trials (e.g. Baltunis et al. 2009, for stem62

diameter). The implicit assumption is that GxE interaction is negligible; however, there is evidence to sug-63
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Table 1 Establishment year, location (Latitude South and Longitude East), and environmental data from NIWA for the trials.
Variables derived from GIS layers correspond to altitude (masl), temperature (annual average, °C), and rainfall (annual, mm)

Trial Year Latitude Longitude Altitude Temperature Rainfall
A 1987 36°21´49´́ 174°07´39´́ 100 14.5 1202
B 1990 45°59´38´́ 170°11´43´́ 27 10.6 759
C 1993 39°13´56´́ 176°51´51´́ 451 11.1 1553
D 1993 33°28´42´́ 149°01´31´́ 800 12.4 842
E 1995 38°16´52´́ 176°43´30´́ 332 12.9 1762
F 1995 38°08´31´́ 176°34´14´́ 117 12.9 2161
G 1988 36°21´39´́ 174°06´15´́ 81 15.0 1283
H 1988 38°16´25´́ 175°52´09´́ 372 12.2 1689
I 1988 37°53´17´́ 176°23´18´́ 98 13.8 1839
J 2000 38°09´07´́ 176°36´41´́ 85 13.3 2111
K 1989 36°21´39´́ 174°06´15´́ 81 15.6 1259
L 1981 37°58´35´́ 176°32´22´́ 280 13.4 2156
M 1985 38°13´39´́ 176°08´01´́ 678 10.7 1561
N 1985 38°14´20´́ 175°59´40´́ 495 11.2 1564
O 1987 38°37´30´́ 176°20´40´́ 565 10.9 1358
P 1968 38°16´27´́ 176°41´15´́ 415 12.7 1724
Q 1968 38°16´27´́ 176°41´15´́ 415 12.5 1634
R 1969 38°45´54´́ 176°15´43´́ 700 10.6 1720

gest that this interaction can be significant for stem diameter in New Zealand (e.g. Johnson and Burdon 1990,64

McDonald 2009).65

In this research the combined analysis of stem core data for basic density from over 23000 trees distributed66

in 18 trials is presented. Then the variation of additive genetic control, the relevance of environmental effects67

and the magnitude of the interaction between genotypes and environment are reviewed. Finally, the role poor68

connectedness plays in our understanding of genetic parameters is discussed.69

Materials and methods70

This study considered 17 progeny trials across the New Zealand forest estate and one trial (D) in New South71

Wales (Australia), including a range of mating designs and field designs, as well as of environmental conditions72

(Table 1) and ages of assessment. Until recently, the New Zealand breeding program focused most testing in73

the Central North Island; only one of the trials (B) in Table 1 is located in the South Island, as shown in Figure74

1.75

Basic density—oven dry weight divided by green volume expressed in kg m−3—was calculated for 5mm76

diameter stem cores at breast height (1.3 m). A total of 23330 trees were assessed, ranging from 246 trees in77

trial B to 3000 trees in trials P and Q. There are 768 parents in the dataset (695 with progeny data), most of78
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Fig. 1 Locations of trials in New Zealand, where letters correspond to trial codes in Table 1. Notice the poor coverage in the South
Island (only trial B) and the absence of trial D located in Australia

them representing the New Zealand land race, with the exception of parents in trial J, which contains Guadalupe79

Island hybrids. The stem cores include different numbers of rings (see Table 2), with more than half of the trials80

including rings 6 to 10, although there are cores covering rings 1–5, 1–7 and 1–8.81

The genetic analyses considered two stages:82

First, univariate analyses were run considering all genetic (additive and, when appropriate, dominance83

effects) and experimental design features (replicates, sets and plots). All effects, except for the overall mean,84

were considered as random.85

For most trials the only significant (p < 0.05) random effect was additive genetic. Furthermore, dropping86

additional significant effects (in trials that presented them) changed heritability estimates by less than 2%.87

Therefore, univariate analyses were simplified from a general model including a fixed overall mean, and random88

replicate, plot and additive effects to the following model:89

y = Xb+Za+ e (1)

where y is the vector of phenotypic observations for a single site, b the vector of the fixed effect (overall mean),90

a the vector of additive genetic effects and e is the vector of residuals. X and Z are incidence matrices linking91

the phenotypes to the overall mean and additive genetic values vectors respectively. The expected value and92
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variances were E[y] = Xb, Var[a] = G = σ2
a A and Var[e] = R = σ2

e I for A the numerator relationship matrix93

and I an identity matrix. The residuals were assumed to be identically and independently normally distributed.94

In a second stage all pairs of trials were run as bivariate analyses, fitting only overall mean and additive95

genetic effects. Equation 1 was expanded to accommodate two traits (stacking up the vectors), in such a way96

that b, a and e now contain the values for both trials. The variances were then Var[a] = G = G0 ⊗ A and97

Var[e] = R = R0⊗ I, where ⊗ represents the Kronecker matrix product and:98

G0 =

 σ2
a1

σa12

σa12 σ2
a2

 R0 =

 σ2
e1

σe12

σe12 σ2
e2

 (2)

Heritabilities (h2) and genetic correlations (r12) were estimated using the standard formulas:99

ĥ2 =
σ̂2

a

σ̂2
a + σ̂2

e
r12 =

σ̂a12√
σ̂2

a1
σ̂2

a2

All analyses were performed using asreml-r, which is an implementation of ASReml (Gilmour et al. 2002)100

for the R statistical software system (R Development Core Team 2008). An R script fitted all 18 single-site101

univariate analyses, as well as the 18(18-1)/2 = 153 bivariate analyses for all pairs of trials. The statistical102

significance of all covariance components was tested using a Likelihood Ratio Test, while standard errors for103

heritabilities and genetic correlations were approximated using a Taylor series (Gilmour et al. 2002).104

GPS trial coordinates were matched to New Zealand’s National Institute of Water & Atmospheric Research105

(NIWA) climate data GIS layers, to link genetic performance and parameters with climatic descriptors. Climate106

data for trial D (in Australia) was obtained from ANUCLIM (Houlder et al. 2001).107

Finally, the relationship between mean basic density and environmental factors was modeled using multiple108

linear regression. The mean basic density for each trial presented in Table 2 was treated as the response variable,109

while centered (i.e. expressed as deviation from the mean) temperature and rainfall from Table 1 were used as110

predictors. Centered regressions are easier to interpret, as the slopes are interpreted based on deviations from111

the mean of the data (Gelman and Hill 2007, page 55). A dummy variable—coding for rings 1–5 and 6–10—112

was used to test for differences of intercept and slope between ring groups. The regression model was fitted113

using R.114
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Table 2 Descriptive statistics for phenotypic wood basic density, including range of rings sampled (Rings), number of extracted
cores (Cores), mean trial density (Mean, kg m−3), standard deviation (Stdev) and coefficient of variation (CV, %)

Trial Rings Cores Mean Stdev CV
A 6–10 1129 459.1 34.2 7.5
B 6–10 246 363.5 26.9 7.4
C 1–5 1524 343.0 20.5 6.0
D 1–8 2562 352.8 20.8 5.9
E 1–7 590 345.4 22.1 6.4
F 1–7 656 351.7 18.5 5.3
G 6–10 1054 448.4 35.0 7.8
H 6–10 642 329.7 21.2 6.4
I 1–10 288 344.3 24.4 7.1
J 1–5 2032 358.4 25.7 7.2
K 6–10 639 429.3 35.0 8.1
L 6–10 885 383.9 27.4 7.1
M 6–10 1745 365.6 27.8 7.6
N 6–10 1282 379.9 28.2 7.4
O 6–10 1631 356.9 24.2 6.8
P 1–5 3000 302.7 19.0 6.3
Q 6–10 425 375.9 29.9 8.0
R 1–5 3000 311.1 18.9 6.1

Results115

Table 2 provides phenotypic descriptive statistics for the trials. Basic density ranged from 302.7 kg m−3 in116

trial P to 459.1 kg m−3 in trial A. However, the difference was accentuated by including different sets of rings117

in the samples, as basic density increases from pith to bark. A simple way to consider ring differences is to118

take the average of the ring numbers included in the sample and then compare trials with similar ring average.119

For example, a sample including rings 1–5 has an average of 3, while a sample including rings 6–10 has an120

average of 8. Note that these are linear averages derived from increment cores, not the true cross-sectional121

area-weighted averages; i.e. the averages are biased toward lower values.122

When considering the 10 trials with average ring 8, basic density ranged from 329.7 to 459.1 kg m−3 (a123

range of 129.4 kg m−3). In trials with average ring 3–4 the range was smaller from 302.7 to 358.4 kg m−3 (a124

difference of 55.7 kg m−3). Phenotypic variability was also related to ring average (or age), with the coefficient125

of variation ranging between 5.3% and 7.2% for trials with average ring 3–4, while ranging between 6.4% and126

8.1% for older samples.127

Genetic parameter estimates and connectedness between trials are summarized in Table 3. In the lower128

triangle the table displays the number of common parents across pairs of trials, considering both female and129

male parents, as well as controls. Any pair with less than five parents in common was either linked only by130
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controls or only through the pedigree more than one generation ago (i.e. by grandparents). An example of the131

latter is the relationship between trials P, Q and R (which correspond to the so-called 268 series) and trials132

L and N (which contain parents that are progeny of the 268 series). Most pairs of trials show low levels of133

connectedness, which will influence the ability to estimate GxE interaction across the breeding program.134

The diagonal of Table 3 shows in boldface estimates of individual-site heritabilities (and their standard135

errors), which ranged from 0.28 (0.13) to 0.94 (0.09), with most values falling between moderate and high.136

The additive variances (and heritabilities) were significantly different from zero for all trials.137

All possible pairs of sites were then analyzed as bivariate tree models, where density in each site was con-138

sidered as a different trait. Out of the 153 pairs of trials only 47 pairs contained enough information to estimate139

the genetic correlation between them. These correlation estimates (and their standard errors) are displayed in140

the upper triangle of Table 3. Out of those, 15 estimates for the correlation between traits were not statistically141

significant.142

Some of the between-site genetic correlations include an element of age-age correlation, because they cover143

different sets of rings (e.g. 1–5 and 6–10). However, the age-age correlations between these sets are expected144

to be high (see, for example, Apiolaza and Garrick 2001, Bouffier et al. 2008).145
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As expected, Figure 2 shows a positive association between number of parents in common across trials and146

the magnitude of the standard error of the estimated correlation. In addition, the estimated genetic correlation147

tends to drop when fewer parents can be used.148

Parents in common

G
en

et
ic

 c
or

re
la

tio
n

-0.5

0.0

0.5

1.0

0 50 100 150

Fig. 2 The magnitude of the estimated genetic correlations between trials and their standard errors (vertical lines) are associated to
the number of parents in common across trials. The magnitude of GxE, estimated as departure from genetic correlation of +1, can
be confounded with the genetic connectedness between trials

Figure 3 displays the relationship between the average basic density for a trial and its average annual149

temperature. There is an increase of basic density for warmer sites; however, there is also a large difference150

between average rings. That is, samples closer to the pith (triangles) have lower average densities than samples151

farther away from the pith (circles). There are two trials that show much lower values than expected: H and P,152

for which it is still needed to find a satisfactory explanation.153

The coefficients for the regression lines (and their standard errors) were 387.60 (7.46) for the intercept,154

18.36 (4.19) for the slope of temperature and -48.01 (11.22) for the low ring class effect. All these coefficients155

were statistically significant (P < 0.01), with the regression lines for different ring classes showing a different156
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Fig. 3 Relationship between average basic density and average annual temperature for a trial. Letters correspond to trial codes in
Table 1 and shapes to average ring number sampled in a trial, considering 3 (triangles, rings 1–5) and 8 (circles, rings 6–10). Notice
the increase of basic density with average temperature. Gray shades represent the 95% confidence interval for the linear regression
lines

intercept (387.60 - 48.01 = 339.59) but sharing a common slope. This model explained 75% of the observed157

variability. Adding annual rainfall did not significantly improve model fit.158

Discussion159

Variability and genetic control160

The high degree of additive genetic control (average ĥ2 = 0.6) in these trials supports previous results obtained161

by Nicholls et al. (1980), Kumar (2004) and Wielinga et al. (2009) In contrast, other researchers have reported162

lower values of heritability for this species (Zamudio et al. 2002, Li and Wu 2005, Dungey et al. 2006). It is163

not possible with this data set to disentangle the sources of variability for the estimated heritabilities. The trials164

represent different environments, genetic backgrounds, sample sizes, ages of assessment and overall quality of165

site preparation. There was a clear reduction of the standard error of the heritability estimates with sample size166
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(see Table 3), with values stabilizing beyond 1700 samples per trial. There was no trend between number of167

samples and the magnitude of estimated heritabilities.168

It is easy to see how a readily assessable and highly heritable trait like basic density became the most169

commonly studied wood trait in breeding programs. It is important to remember, however, that with coefficients170

of phenotypic variation close to 8% the within-site variability is very small. The narrow genetic variability171

is dwarfed by environmental differences due to site factors (e.g. mean annual temperature), presenting one172

of the largest limitations to the operational improvement of basic density. On the other hand, from a purely173

deployment perspective, forest companies will make their biggest gains from careful site selection.174

Estimation of GxE interaction175

In forestry, the use of ANOVA with a Site x Genetics (usually family or clones) interaction term was tradition-176

ally the most commonly used method (e.g. Burdon 1977). The main issues of this approach are that it assumes177

homogeneous additive variance and identical correlation between all pairs of trials (thus the covariance ma-178

trix follows compound symmetry), and it is difficult to frame when using animal model BLUP, although it is179

relatively simple when using a sire model.180

Nevertheless, there are numerous alternative methodologies to study GxE interaction; for example, Free-181

man (1973), Westcott (1986) and Cooper and DeLacy (1994) presented broad, although by no means ex-182

haustive, reviews. Treating each site as a different trait was suggested by Falconer in 1952 and many recent183

approaches use multivariate evaluation, assuming that performance in one site is a different, although related,184

trait to performance in a second site. Fitting this model becomes more difficult with increasing number of sites185

due to overparameterization and connectedness issues. While there is not much one can do about the latter (ex-186

cept to run pairs of bivariate analyses) the former can be tackled through the use of a factor analytic structure187

(e.g., Costa e Silva et al. 2006).188

Shelbourne (1972) proposed an approximate threshold of 0.7 for genetic correlation to evaluate the practical189

importance of GxE interaction (when the GxE variance is half the size of the additive variance using an ANOVA190

approach). Only three of the significant correlations are below that threshold (0.46, 0.65 and 0.68), which191

suggests that GxE interaction for basic density should not be a major issue in the New Zealand breeding192

program. Furthermore, the reported genetic correlations (and their corresponding changes of ranking) are an193

average for the breeding population. Focusing on the deployment population, with material that on average194

present better performance, could reduce the importance of GxE interaction for basic density even more.195
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Connectedness196

This paper highlights the problems created by poor connectedness among trials. In general, any pair of trials197

with less than 20 parents in common (either directly or via previous generations in the pedigree) had conver-198

gence problems in obtaining estimates of genetic correlation. This should be a concern for breeders designing199

breeding programs, particularly when inducing lower degrees of connectedness as a side-effect of rolling front200

strategies (see, for example, Borralho and Dutkowski 1998). This result would be further exacerbated by using201

small trials (e.g. Li et al. 2007).202

Simulation work has suggested that as few as four to six families in common would be enough to connect203

trials for analyses (Johnson 2004). However, this ignores both the biases and large standard errors surrounding204

the estimation of genetic correlations with too small a sample size (Apiolaza et al. 1999). This problem becomes205

even more acute when dealing with low-heritability traits (e.g. growth traits).206

In addition, the process to generate the composition of paired trials is not necessarily random, with some207

parents represented in much higher proportions (due to seed availability, survival, unbalanced mating designs,208

etc.) than others. While in theory BLUP takes into account selection information to produce unbiased pre-209

dictions, this assumes known genetic parameters (Henderson 1975). In contrast, tree breeding programs are210

using these trials to estimate covariance components, which are in turn used to estimate the magnitude of GxE211

interaction.212

Figure 2 presented a relationship between the estimated genetic correlations and the number of parents213

in common, where poorly connected trials could underestimate the correlation. In a simulation study Sae-214

Lim et al. (2010) reported that small sample sizes, exacerbated by particular population structures, were more215

prone to produce downwardly biased estimates of between-site genetic correlations. In addition, the trials come216

from different selection series (there are first-, second-generation and Guadalupe hybrids), which would make217

possible that part of that bias comes from selection effects. If this trend is correct, this would suggest that GxE218

interaction for basic density could be completely ignored in the New Zealand radiata pine breeding program,219

as the lowest correlations would be due in part to poor connectedness. To address the estimation problem,220

testing and sampling procedures will have to be modified, increasing the number of related genetic material221

in common across trials. The over-reliance on control seedlots of unknown or unclear genetic composition—222

often problematic in trial analyses—to connect trials is another problem that must be addressed in a breeding223

program.224
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Environmental drivers225

Cown et al. (1991, page 19) presented clear latitudinal trends for wood basic density in New Zealand, with226

decreasing average from North to South, while Figure 3 combines latitudinal and altitudinal effects by using227

temperature. The results from the New Zealand radiata pine breeding program progeny trials support the trends228

suggested by Harris (1965) and Cown et al. (1991), with some differences explained by the different numbers229

of rings sampled in each study.230

Still one needs to be cautious before claiming the presence of a simple story for environmental drivers.231

There seems to be a positive association between number of parents in common and genetic correlation; that232

is, poor correlation (and therefore claims of high interaction) could derive from poor testing practices.233

Warmer sites tended to have higher average density. There is still within-trial genetic variability, although234

lower than 8%, which means that low-density sites could still benefit from using improved material.235

Using trial coordinates it was possible to obtain estimates for altitude, temperature, rainfall, wind and236

radiation. In principle, it would be possible to look for environmental variables that would separate groups of237

trials with high within-group and low between-group genetic correlations. Nevertheless the poor connectedness238

between trials meant that:239

1. the estimated correlations involved different sets of parents, and240

2. the highly variable number of parents in common between trials (previously discussed) made any conclu-241

sions difficult to sustain.242

Conclusions243

– The degree of genetic control for radiata pine wood density in New Zealand ranges between moderate244

and high values (mean ĥ2 = 0.6). However, the coefficient of variation for this trait is low (less than 8%),245

limiting the opportunities for increasing basic density.246

– Treating the expression in each site as a different trait permitted us to explore the presence of structure in247

the genetic correlation matrix. However, the gaps in connectedness did not permit fitting more meaningful248

correlation structures (e.g. factor analytic).249

– There was little genotype by environment interaction for basic density for radiata pine in New Zealand.250

Therefore there would be no need to modify the breeding strategy to account for GxE for this one trait.251
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– Poor connectedness between trials could be depressing the estimates of genetic correlations. This situation252

should be considered when designing genetic testing schemes, particularly when inducing imbalance as in253

rolling front strategies.254

– Site differences marked by annual average temperature dominate variability in this dataset. Lower latitude255

and altitude—that is warmer—sites display higher average basic density. This situation is clearer once age256

effects of the cores is taken into account.257
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