POROUS PAVEMENTS INCREASE ABOVE-GROUND GROWTH OF *PLATANUS ORIENTALIS*

Justin Morgenroth and Rien Visser
New Zealand School of Forestry
University of Canterbury
Impervious Urban Surfaces

Source: 1. Soil Conservation Service 1975
Impervious Urban Surfaces

• Disrupt hydrological cycle
 • Local flooding, drought, limits evaporation, etc
• Associated with urban heat island effect
• Believed to hinder tree growth and physiology
Pavement is Pervasive

- 93% of roads in America unpaved in 1904\(^2\)
- Change came with the ascendancy of the automobile
- Now, >50% of dense urban cores paved\(^1\)

Photo credit: Joel Tauber
Porous Paving

• Monolithic construction:
 • Pervious paving
 • No-fines paving
 • Open-graded paving
 • Gap-graded paving
 • Percolating paving
 • Percrete
Permeable vs. Porous Paving

• Results apply only to monolithic construction
• Pervious surfaces affect hydrology
 • Infiltration
 • Evaporation
• Infiltration unaffected by porous/permeable
• Evaporation from soil
 • Permeable → direct
 • Porous → indirect
Permeable vs. Porous Paving

- Results apply only to monolithic construction
- Pervious surfaces affect hydrology
 - Infiltration
 - Evaporation
- Infiltration b/w porous and permeable ~ equal
- Evaporation from soil
 - Permeable → direct
 - Porous → indirect
Porous Paving in the Literature

• Search for porous paving on Scopus yielded:
 – 61 articles prior to 1980
 – 118 between 1990 – 2000
 – 409 since 2000

• Research mirrors increased installation of PP
The Motivation

- Too many “factoids”
- Prof. Bruce Ferguson, University of Georgia
 “ideal for protecting trees in a paved environment”\(^1\)
- Tennis et al. 2004, Portland Cement Association
 “increase the longevity of trees by improving moisture and oxygen relations”\(^2\)
- Prof. Vern Schaefer, University of Iowa
 “preserving native ecosystems”\(^3\)
- Where’s the proof?
More Motivation

• Is pervious paving ‘good’ for urban trees?
• Theoretically possible, but we don’t know for certain
 – Research has often found unexpected results
• If true, there may be unintended consequences
 – Increased root growth → Increased conflicts
Hypothesis

Across varying pavement profile designs, porous paving affects tree growth relative to standard impervious paving.
Experiment Site
Experiment Site – Christchurch, NZ

- Population ~ 400,000
- Mean temperature:
 - 10°C in July to 21°C in January
- Mean Annual Rainfall:
 - 600-700mm
 - evenly distributed throughout the year
Treatments

Augmented Factorial Arrangement:

- Control & Pavement Type * Pavement Profile Design
- Pavement Type → Porous, Impervious
- Pavement Profile Design → +/- Compacted subgrade, gravel base
Pavement Profile Design

Structural

Non-Structural
Data Collection

Tree Growth:
- Stem Height
- Stem Diameter
- Shoot/Root Biomass
- Root Diameter and Distribution

Edaphic Factors:
- Water content
- Aeration
- pH
- Nutrient availability
Stem Height Growth

- **Control**
- **Porous**
- **Impervious**

Pavement Treatment

- Excluding base and subgrade
- Including base and subgrade

Total Height Growth (cm):

- Control
- Porous
- Impervious
- Porous
- Impervious
Stem Diameter Growth

- Control
- Porous
- Impervious

Excluding base and subgrade:
- Porous
- Impervious

Including base and subgrade:
- Porous
- Impervious
Shoot Biomass

Above-Ground Biomass (g)

- Control
- Porous
- Impervious

Pavement Treatment

Excluding base and subgrade
Including base and subgrade
Summary of Findings

- Pavements never reduced any growth attribute relative to controls

- Porous paving yielded greater:
 - Stem height growth
 - Stem diameter growth
 - Above-ground biomass

- True only when pavement profile design excluded structural elements
 - compacted subgrade and gravel base
Implications

• Pavement often blamed for decreased growth or premature mortality6,7,8

• In absence of ‘other’ stressors, trees surrounded by pavement are not disadvantaged
 • Vandalism, air/soil pollution, soil volume, soil compaction, etc.
Further Implications

• If porous pavement is installed to improve conditions for tree growth, important to remember:
 • Profile design supersedes surface course porosity
 • Care for rhizosphere necessary if porous pavement is intended to improve tree growth
 • Take care of the soil and the soil will care for the tree
Further Implications

- Porous pavement may be used effectively in conjunction with:
 - Suspended pavements
 - Engineered soils
Further Implications

• Allometry \rightarrow Increased above-ground growth implies increased below-ground growth

• Greater growth with porous paving not always desirable

• If increased root growth occurs beneath sidewalks \rightarrow increased incidence of infrastructure conflict
 • Very Expensive Problem

Photo: Cracked, uneven sidewalk along Cabanas Avenue in Tujunga in 2006. Credit: Richard Hartog / Los Angeles Times
Limitations and Future Research

• 1 tree species
 • *Platanus orientalis* very hardy

• 1 soil type
 • Fine sandy loam
 • Different texture/compaction levels will affect hydrology completely differently

• Size of pavement treatments
 • Results only applicable to small-scale installations
 • Larger sizes would exaggerate response

• Porous v. Permeable
 • Comparison of response to both types
Acknowledgements and References

Funding: TREE Fund, University of Canterbury, New Zealand School of Forestry, Auckland City Council, The McKelvey Fund, The Robert Bruce Trust

Supervisors: Dr. Rien Visser, Dr. Graeme Buchan, Dr. James Mackechnie

Field work: Joe Cartman, Lachlan Kirk, Nigel Pink, Alwyn Williams, Lisa Kulpczycki, Neil Smith

References