Using the iPhone for Voice Recording in Laryngology

Jeremy Hornibrook,¹ Emily Lin,² & Tika Ormond²

¹Department of Otolaryngology, Christchurch Hospital
²Department of Communication Disorders, University of Canterbury
Christchurch, New Zealand
Background

- iPhone (first released in: Year 2007): a multi-media enabled mobile phone with advanced computing capabilities
 - Connectivity: Internet and email access
- iPhone 3G & up: sampling rate = 48,000 Hz (Lossless)
Research Question

- Can the iPhone be used to record voices for acoustic analysis to:
 - Identify voice aberrations
 - Monitor voice changes: e.g., pre- and post-treatment differences?
Participants

- Twenty-two voice patients (10 males & 12 females), aged 25-92 years (Mean = 54.8, SD = 18.5), including:
 - 10 patients (6 males & 4 females) who underwent phonosurgery:
 - Aged 33-79 years (Mean = 47.6, SD = 15.3)
 - Pathology:
 - **Mass Lesions** (8 cases): cyst (2), nodules (2), edema (1), papilloma (1), polyps (1), benign tumor (1)
 - Treatment: microsurgery
 - **Vocal Paralysis** (2 cases)
 - Treatment: medialization laryngoplasty
Participant’s Task

- To read the first 6 sentences of “Rainbow passage” *(Fairbanks, 1960)*
- Recordings:
 - Before treatment: for all of the 22 participants
 - After treatment: for 10 of the participants
 - Time between pre- and post-surgery recordings: 22-259 days (Mean = 103, SD = 95.5)
Instrumentation

- Apple iPhone (Model A1303)
- Wav MP3 converter software (Hoo Technologies, USA)
- TF32 voice analysis software (*Milenkovic*, 1987)
Procedure

- Laryngostroboscopic examination
- Acoustic recording
Case One: Left Vocal Fold Paralysis

- Male, aged 79 years, aortic arch aneurysm
Case Two: Polyp on LVF

- Male, aged 33 years
Case Three: Inflammatory myoblastic tumor

- Male, aged 34 years
Case Four: Mass lesion on RVF

- Male, aged 46 years

PRE POST (microsurgery)
Case Five: Nodules

- Female, aged 39 years

PRE

POST (microsurgery)
Data Analysis

Vowel-based measures: F0, perturbation measures (%Jit, %Shim, SNR), H1-H1, SPR, F1, F2
Sentence-based measures: ST

"These take the shape of a long round arch, with its path high above, and its two ends apparently beyond the horizon."
These take the shape of a long, round arch, with its path high above, and its two ends apparently beyond the horizon.

Vowel-based measures: F0, perturbation measures (%Jit, %Shim, SNR), H1-H1, SPR, F1, F2
Sentence-based measures: ST
Measurement

- **Vowel-based measures** (time waveform analysis):
 - Fundamental frequency (F0):
 - Edema: decreased F0 \((Sorensen & Horii, 1982)\)
 - Speaking F0 changes after treatment of functional voice \((Roy & Taskco, 1994)\)
 - Changes in mass and stiffness \(\rightarrow\) Change in F0
 - Perturbation measures:
 - Jitter (or percent jitter; \(\%\text{Jit}\)): cycle-to-cycle pitch variation
 \((e.g., Lieberman, 1961; Eskenazi et al., 1990; Dejonckere et al., 1996; Wolfe & Martin, 1997; Bhuta et al., 2004)\)
 - Shimmer (or percent shimmer, \(\%\text{Shim}\)): cycle-to-cycle amplitude variation
 \((e.g., Dejonckere et al., 1996; Wolfe & Martin, 1997; Bhuta et al., 2004)\)
 - Signal-to-noise ratio (SNR): energy ratio between periodic & aperiodic components
 \((Yanagihara, 1967; Wolfe & Martin, 1997; Brockmann, Storck, Carding, & Drinnan, 2008)\)
 - Less hoarse \(\rightarrow\) decreased jitter & shimmer; increased SNR
Measurement – continued

- **Vowel-based measures** (spectral analysis):
 - Amplitude difference between the first two harmonics (H1-H2) as measured from a spectrum (without pre-emphasis)

 Less breathy voice → Smaller H1-H2 (i.e. less H1 dominance)
 (Klatt & Klatt, 1990; Hillenbrand, Cleveland, & Erickson, 1994; de Krom, 1995; Hillenbrand & Houde, 1996; Stone, Cleveland, Sundberg, & Prokop, 2003)

![Amplitude comparison between PRE (M79-paralysis) and POST-surgery](image)
Vowel-based measures (spectral analysis) - continued:

- Singing power ratio (SPR):
 - Defined as: amplitude difference between the highest spectral peak between 0 and 2 kHz and that between 2 and 4 kHz as measured from a spectrum (with pre-emphasis).

Greater voice projection power \(\rightarrow\) Smaller SPR

(Omori, Kacker, Carroll, Riley, & Blaugrund, 1996)
Measurement – continued

- **Vowel-based measures** (spectral analysis) - continued:
 - Formants One and Two frequencies (F1 and F2):
 - Defined as: the highest two spectral peaks in a LPC (linear predictive coding) spectrum
 - Related to vocal tract configuration (constriction or tongue placement)
 - Space enclosed by the corner vowels /i, a, u/ in a F1-F2 plot = vowel space

 Increased vowel differentiation → Larger vowel space area
 (Bradlow, Toretta, & Pisoni, 1996; Roy, Nissen, Dromey, & Sapir, 2009; Turner, Tjaden, & Weismer, 1995; Weismer, Jeng, Laures, Kent, & Kent, 2001)

 ![Formant Plot](image)

 - **PRE (M34-tumor)**
 - /i/
 - /a/
 - /u/

 - **POST-surgery**
 - /i/
 - /a/
 - /u/
Measurement - continued

- **Sentence-based measures:**
 - **Spectral tilt (ST):** amplitude difference between the highest spectral peak between 0 and 1 kHz and that between 1 and 5 kHz as measured from a LTA (long-time average) spectrum (without pre-emphasis)

 More lax vocal fold adduction \rightarrow higher ST (i.e., steeper slope)

 (Löfqvist, 1987; Mendoza et al., 1996)

Graphs:

- PRE (F67-edema)
- POST-surgery
Reliability

- Automatic computer derivations of acoustic measures: **100% reliability**, except for errors due to variation in vowel segmentation.
- **One third** of the data for the ten patients with pre- and post-treatment recordings were re-segmented and analyzed. The measure-remeasure reliabilities (Pearson’s r) were **high** for all vowel-based measures:

<table>
<thead>
<tr>
<th>Measure</th>
<th>n</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>20</td>
<td>0.99</td>
</tr>
<tr>
<td>%Jit</td>
<td>20</td>
<td>0.99</td>
</tr>
<tr>
<td>%Shim</td>
<td>20</td>
<td>0.98</td>
</tr>
<tr>
<td>SNR</td>
<td>20</td>
<td>0.97</td>
</tr>
<tr>
<td>F1</td>
<td>20</td>
<td>0.93</td>
</tr>
<tr>
<td>F2</td>
<td>20</td>
<td>0.88</td>
</tr>
<tr>
<td>H1-H2</td>
<td>20</td>
<td>0.97</td>
</tr>
<tr>
<td>SPR</td>
<td>20</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Statistical Analysis

- A series of two-way (2 groups X 3 vowels) mixed model ANOVAs on F0, %Jit, %Shim, SNR, H1-H2, SPR, F1, & F2.
 - Between-subject variable: group (Pre vs. Post)
 - Within-subject variable: vowel (/i/, /a/, & /u/)
- A series of paired t tests on vowel space area & ST (averaged from six sentences).
- Significance level set at 0.05.
Results

- After surgery: Significantly lower F0, %Jit, & %Shim and higher SNR & vowel space area.
 - Vowel space area: significant larger vowel space area ($t = -3.746$, df = 9, $p = 0.007$)
 - ANOVA results:
 - No significant vowel by group interaction effect.
 - Significant vowel effect on F0, SNR, SPR, F1, & F2
 - Significant group effect on F0, %Jit, %Shim, & SNR.
 - Shown below with the average pre- and post-surgery scores normalized based on the pre-treatment data of 22 patients:
Results - continued

- F0 & H1-H2 change varied by pathology:
 - Mass lesion (8 cases): After surgery,
 - Lower pitch (except for edema): Significantly lower F0 as a whole
 \[F(1, 14) = 6.788, \ p = 0.035, \eta^2 = 0.08 \].
 - No significant H1-H2 change
 - Paralysis (2 cases): After surgery,
 - No significant F0 change
 - Less breathy: Significantly lower H1-H2 \(F(1, 2) = 996.755, \ p = 0.002, \eta^2 = 0.71 \)

![Graph showing F0 changes before and after surgery for different pathologies.](image-url)
Results - continued

- **SPR change varied by vowel:**
 - With the vowel /a/, the majority (7 out of 10) showed a high preoperative SPR value (i.e., less voice projection power)
 - **More voice projection power:** This subgroup showed a significantly lower SPR after surgery ($t = 3.383$, df = 6, $p = 0.015$).

- **ST change varied by gender:** After surgery,
 - **Females (n = 4):**
 - More lax vocal fold adduction: Significantly higher ($t = -7.683$, df = 3, $p = 0.005$).
 - **Males (n = 6):** no significant change
Discussion - Continued

- Signs of voice improvement:
 - The decrease in %Jit & %Shim and the increase in SNR found in the postoperative voices were expected as previous studies have shown that phonatory stability could be compromised by vocal pathology and improved with effective treatment.
 - The expansion of vowel space area after surgery reflects improved speech clarity, suggesting that voice quality may affect vowel intelligibility.

- No consistent F0 change after surgery for patients with vocal fold paralysis: this agrees with previous findings (LaBlance & Maves, 1992).
Limitations

- Small sample size
- Observations made in the subgroups regarding the confounding effects of pathology, vowel, and gender on the pre- and post-surgery acoustic changes require further investigations
Conclusions

- Voice recordings using iPhone are adequate for voice recording in acoustic assessment of voice quality in.

- However, due to large inter-subject variations, most of these measures are more useful for intra-subject comparison (to monitor changes within individuals) than for norm-referenced comparisons.
References

References - continued

References - continued

