Why Protocolised Care Works in My Unit

A case study in glycemic control

Geoffrey M Shaw and J Geoffrey Chase

Senior Consultant, Dept of Intensive Care, Christchurch Hospital
and Unpaid Clinical Senior Lecturer, Department of Medicine,
University of Otago, Christchurch, New Zealand

Prof, Dept of Mechanical Engineering, Center for Bio-Engineering,
University of Canterbury, Christchurch New Zealand
A Well Known Story

- Hyperglycaemia is prevalent in critical care
 - Impaired insulin production + Increased insulin resistance = High BG
 - Average blood glucose values > 10mmol/L are not uncommon
 - Higher mean, median and variation of BG all increase odds risk of death by 2-4x vs lower levels around 6 mmol/L and low variability

- Tight control → better outcomes:
 - Reduced mortality ~17-43% (6.1-7.75 mmol/L) [van den Berghe, Krinsley]
 - SPRINT reduces mortality 32-45% depending on LoS in ICU (details to come)
 - Costly treatments & tests (mech. ventilation, transfusions, …) are also reduced

- However, how to get this result w/o all the hypoglycemia and other difficult to repeat control issues
 - SPRINT reduced hypoglycemia by 50%, others see 200-400% increases
 - Model-based methods and engineering approach offer an answer
Between a rock and a hard place: Pitfalls or just a hard problem?

• Hypoglycaemia?
 – Risk of neurological damage?
 – Fear of hypoglycaemia?
 • Lack of ‘buy-in’ by physicians and nursing staff

• Hyperglycaemia?
 – Patients evolve rapidly
 – High insulin resistance and insulin requirements
 – Insulin effect saturation
 – Infrequent measurement ← or → Burden

• Not doing anything …? Too hard?

The real question is how to manage the risk and reward in an optimal fashion for each patient.
Our Approach – A fat man on a see-saw

- Rising Glucose
 - Nutritional Inputs
 - Endogenous Glucose Production
 - Exogenous Insulin
 - Endogenous Insulin
 - Non-insulin Removal

- Falling Glucose
Semi-Automated feedback control

Identify and utilise patient specific parameters to optimise therapy

Minimal time & training – Minimal interruption – Easy to understand → Transparent
The Cohorts: Before/After Study

Retrospective before-after study – 1.2 yr SPRINT vs 2.5 yr past

- ROD is higher for SPRINT
 - Different case mix with retrospective cohort having much more cardiovascular surgery than recently (non-clinical causes)

- Otherwise statistically similar
 - Retrospective more cardiovascular surgery so ROD likely lower again
 - More similar for LoS > 2 days

Overall

<table>
<thead>
<tr>
<th></th>
<th>Retrospective</th>
<th>SPRINT</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>516</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>65 [53 - 74]</td>
<td>65 [50 – 74]</td>
<td>0.22</td>
</tr>
<tr>
<td>% Male</td>
<td>60.1%</td>
<td>62.9%</td>
<td>0.38</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>19 [15 - 24]</td>
<td>18 [14 – 24]</td>
<td>0.06</td>
</tr>
<tr>
<td>APACHE II risk of death</td>
<td>24.1% [11.2% - 45.3%]</td>
<td>25.7% [13.3% - 48.1%]</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Admission: 2 BG > 8 mmol/L or 1 BG > 10 mmol/L
No exclusions
Cumulative Distribution of BG

- Blood Glucose [mg/dl]
- Proportion of measurements

- SPRINT
- Pre SPRINT

- 60% in 72-110 band
- 28%

GlucoCard™ measurements (Arkray Inc) from venous cannula – whole blood measurements
Overall SPRINT Glycaemic control

Overall cohort data

<table>
<thead>
<tr>
<th></th>
<th>Retrospective</th>
<th>SPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>516</td>
<td>394</td>
</tr>
<tr>
<td>Hours of control</td>
<td>62,769</td>
<td>47,290</td>
</tr>
<tr>
<td>Total BG measurements</td>
<td>15,618</td>
<td>29,983</td>
</tr>
<tr>
<td>BG mean (lognormal)</td>
<td>7.3</td>
<td>6.0</td>
</tr>
<tr>
<td>BG standard deviation</td>
<td>2.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Percentage of measurements between:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 – 6.1 mmol/L</td>
<td>31.5%</td>
<td>59.2%</td>
</tr>
<tr>
<td>4.0 – 7.0 mmol/L</td>
<td>50.3%</td>
<td>79.1%</td>
</tr>
<tr>
<td>4.0 – 7.75 mmol/L</td>
<td>62.9%</td>
<td>86.5%</td>
</tr>
<tr>
<td>Percentage of measurements less than:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 mmol/L</td>
<td>3.6%</td>
<td>3.9%</td>
</tr>
<tr>
<td>2.2 mmol/L</td>
<td>0.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Mean insulin usage</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Mean nutrition rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During periods of feeding</td>
<td>1611</td>
<td>1279</td>
</tr>
<tr>
<td>Entire duration of SPRINT usage</td>
<td>-</td>
<td>1055</td>
</tr>
<tr>
<td>Mean % of goal feed</td>
<td>-</td>
<td>66%</td>
</tr>
</tbody>
</table>
Nutrition and Insulin Concerns

Focuses on increasing feed as possible using “moderate” insulin

Avg feed rate exceeded @ 2.8 days

- 1279 kcal/day \rightarrow 110g/day CHO
- In optimal middle tertile for ROD from Krishnan et al, 2005 study
- Nutrition is only useful if it is utilised

SPRINT stopped at 2U/hr and ~1300+ kcal/day

Matches recent results where tight control via IIT decreased insulin required over days 2-7 and thus allows increased nutrition (Langouche et al, 2007)
SPRINT Glycaemic Control Per Patient

<table>
<thead>
<tr>
<th>Per-patient data</th>
<th>Retrospective</th>
<th>SPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours of control</td>
<td>57 [25 – 162]</td>
<td>53 [19 – 147]</td>
</tr>
<tr>
<td>Number of BG measurements</td>
<td>17 [8 – 40]</td>
<td>37 [16 – 97]</td>
</tr>
<tr>
<td>BG mean (lognormal)</td>
<td>7.5 [6.7 – 8.4]</td>
<td>6.0 [5.5 – 6.6]</td>
</tr>
<tr>
<td>BG standard deviation (lognormal)</td>
<td>1.6 [1.2 – 2.4]</td>
<td>1.3 [1.0 – 1.8]</td>
</tr>
<tr>
<td>Percentage of patients < 7 mmol/L</td>
<td>82%</td>
<td>99%</td>
</tr>
<tr>
<td>Percentage of patients < 6.1 mmol/L</td>
<td>73%</td>
<td>96%</td>
</tr>
<tr>
<td>Insulin usage</td>
<td>0.9 [0.1 – 1.6]</td>
<td>2.6 [2.1 – 3.3]</td>
</tr>
<tr>
<td>Nutrition rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During periods of feeding</td>
<td>724 [0 – 1596]</td>
<td>938 [0 – 1304]</td>
</tr>
<tr>
<td>Entire duration of SPRINT usage</td>
<td>-</td>
<td>708 [0 – 1174]</td>
</tr>
<tr>
<td>% of goal feed</td>
<td>-</td>
<td>50% [0% - 71%]</td>
</tr>
</tbody>
</table>

- Tighter per patient std deviation – indicates each patient is tighter than the cohort to their patient specific mean
- Variability (std deviation) is 20% lower/tighter than retrospective
- Nutrition is actually higher (due to tighter control and less shutoff?)
- Feed shutoff for other clinical reasons can skew results
- Effectively all patients are brought under 7 mmol/L and 96% under 6.1 mmol/L
Per-Patient cumulative BG distribution: median, IQR & 90% CI

→ Each individual patient’s BG cumulative distribution underneath

NOTE: only included patients with at least 20 measurements
Hospital Mortality: SPRINT/Pre-SPRINT

LOS ≥ 1 day LOS ≥ 2 days LOS ≥ 3 days LOS ≥ 4 days LOS ≥ 5 days

P=0.244 P=0.077 P=0.023 P=0.012 P=0.010

The horizontal line shows the mortality for the retro cohort. The green line is the total mortality of SPRINT patients against total number of patients treated on the protocol.
Nursing Feedback at 2 Months

Survey completed by 26 Christchurch Hospital ICU Nurses

Bottom line: Intuitive and easy for staff to use. ICU staff workload reduced. Compliance over 97% (dose)
But Why? The answer is by the SOFA!

We examined daily SOFA score for every patient (ignored CNS score)

Initial SOFA and maximum SOFA are similar and in a similar number of days

So, how did TGC affect reduction of organ failure as reflected by SOFA score? Does SPRINT get patients organ failure down faster providing a better platform for (later) survival?

Table 2: Day 1 and Maximum total SOFA score for each cohort plus percent mortality and number of patients [died, lived] by maximum SOFA score range.

<table>
<thead>
<tr>
<th></th>
<th>SPRINT</th>
<th>Pre-SPRINT</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 SOFA (Mean ± SD)</td>
<td>5.6 ± 2.8</td>
<td>5.4 ± 3.0</td>
<td>0.20</td>
</tr>
<tr>
<td>Maximum SOFA (Mean ± SD)</td>
<td>6.8 ± 3.0</td>
<td>7.0 ± 3.2</td>
<td>0.76</td>
</tr>
<tr>
<td>Day of Maximum SOFA score (Median [IQR])</td>
<td>1 [1, 3]</td>
<td>1 [1, 3]</td>
<td>0.99</td>
</tr>
<tr>
<td>Mortality (%) [#Died, #Lived] by Maximum SOFA Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>4.4% [4, 86]</td>
<td>5.2% [5, 92]</td>
<td>1.00</td>
</tr>
<tr>
<td>5-9</td>
<td>14.2% [30, 185]</td>
<td>15.3% [36, 199]</td>
<td>0.70</td>
</tr>
<tr>
<td>10-14</td>
<td>33.9% [21, 41]</td>
<td>40.9% [29,42]</td>
<td>0.47</td>
</tr>
<tr>
<td>15-19</td>
<td>75.0% [3, 1]</td>
<td>70.0% [7, 3]</td>
<td>1.00</td>
</tr>
</tbody>
</table>
SOFA scores reduce faster with SPRINT and do so from day 2

Organ failure free days: SPRINT = 41.6% > Retro = 36.6% (p<0.0001)

Number of organ failures (% total possible) defined as SOFA > 2 for 1 SOFA score component: SPRINT = 16% < Retro = 19% (p<0.0001)
The impact on cost?

- Organ failures = increased cost due to increased need for care
- Therefore, cost should be lower (as seen in other studies)

ICU cost comparison

Cost comparison between wards

Cost per patient

ICU cost comparison

Cost per annum

ICU

$4,425

Ward

$2,725

HDU

$642

ICU

$5,466

Ward

$3,521

HDU

$437

SPRINT

Pre-SPRINT

Transfusions
Dialysis
Inotropes
Lab

Ventilation
Antimicrobials
Glucose control
ICU costs
Cost was mostly saved in …

- Relatively well patients were most cost effective under SPRINT

SPRINT cost savings by max SOFA score

![Bar chart showing cost savings by maximum SOFA score](chart.png)
The Future?

• Stochastic Targeted (STAR) glycemic control

• Model-based and computer driven

• Forecasts changes in patient-specific behaviour using validated models to provide **guaranteed levels of safety from hypoglycemia**!

• To be trialled in Christchurch and Liege, Belgium in 2010.
Stochastic model in action

Stochastic model:

- BG [mmol/L]
- SI [L/(mU.min)]
- Dextrose [mmol/min]

Time [hours]

Patient 7
Stochastic model in action

Insulin sensitivity might not change much, so expect a ~constant BG response.
Stochastic model in action

Stochastic model:

Insulin sensitivity might rise suddenly, so there is a possibility of lower BG.
Stochastic model in action

Stochastic model:

Insulin sensitivity might drop suddenly, so there may spike in BG
Stochastic model in action

Stochastic model:

Work out the 90% confidence range for future insulin sensitivity and BG values.
Stochastic model in action

Stochastic model:

Forecasted BG values are used to make sure BG doesn’t go too low.
Kernel density model (lag-1)

1) Hourly changes in $S_{i,n}$ insulin sensitivity

2) Kernel density model

3) Conditional probability used for forecasting

4) Probability bounds for data set
Kernel density model (lag-1)

- Likelihood of a future level of insulin sensitivity can be quantified

4) Probability bounds for data set
So, what does it look like in action?

- STAR was trialled with a neonate specific model in the Christchurch NICU
- 8 patients have undergone 24 hour trials
- A further 8 have used system for entire length of hyperglycemia
- So, one example to show what a “STAR” glycemic controller can do…
• Very insulin resistant → high insulin requirements (~2-3x other trial patients)

• High insulin rates → greater risk of hypo events, thus the stochastic model forecasts drove BG control

• Controller targeted ~7 mmol/L, based on possible change in insulin sensitivity in the future

• In essence, stochastic model said that 95th percentile rise in insulin sensitivity would lead to a BG < 4 mmol/L so target (median) was raised to ~7mmol/L to guarantee safety (5% max risk of BG < 4) → automatically

• Here we have the first ~10 hours of the trial…
• Two hours later, and baby is still very insulin resistant.

• Controller targeting 7 mmol/L (to keep bottom of green shaded area at 4 mmol/L)…

• Thus, a 5% maximum risk of getting a BG < 4 mmol/L for a given 2-3 hourly intervention
• Baby still very insulin resistant…
Patient G

• Baby still very insulin resistant…
• Sudden BG drop of ~2 mmol/L
• If insulin infusions had been more ‘aggressive’, may have caused a hypo event → tolerated period of higher BG to create buffer against hypo.
• No clinically observable change in baby over this time → something inside ‘switched on’
• Stochastic model forecasts to account for un-measurable and un-modelled effects
Patient G

- Change in insulin sensitivity contained
- Insulin infusion rate adjusted

- Rebound hyperglycaemia when insulin stopped
In Summary:

• **SPRINT**
 – Successful in reducing mortality, organ failure and cost = 240 lives and $2M over last 4 years
 – Model derived, but implemented in paper
 – Not adaptive to clinical needs or practice

• **The Future**: Flexible, stochastic, targeted and thus customisable across cohorts and practices
 – But, equally effective
 – Coming in 2010! (already here if you are a <1kg neonate in Chch)

• **The Moral**: It’s not the car, it’s how you drive it!
 – Anyone can drive a Ferrari F1 car, but only Michael Schumacher can control it and win world championships!
 – I.e. it’s not the therapy or the target, it’s the protocol or how you do it that defines success ➔ protocolised computer based TGC can make everyone an expert!