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Abstract 
Lumped parameter approaches for modeling the cardiovascular system typically have 

many parameters of which many are not identifiable. This paper considers the 

modeling and the parameter identification simultaneously, and creates models that are 

one to one with the measurements. That is, every input parameter into the model is 

uniquely optimized to capture the clinical data and no parameters are set at population 

values. In addition, simplified sub-structures of the six chamber model are created to 

provide very fast and accurate parameter identification from arbitrary starting points 

and with no prior knowledge on the parameters. Furthermore, by utilizing continuous 

information from the arterial/pulmonary pressure waveforms and the end-diastolic 

time, it is shown that only the stroke volumes of the ventricles are required for 

adequate cardiac diagnosis. This reduced data set is more practical for an intensive 

care unit as the maximum and minimum volumes are no longer needed, which was a 

requirement in prior work. The simplified models can also act as a bridge to 

identifying more sophisticated cardiac models, by providing a generating set of 

waveforms that the complex models can match to. Most importantly, this approach 

does not have any predefined assumptions on patient dynamics other than the basic 

model structure, and is thus suitable for improving cardiovascular management in 

critical care by optimizing therapy for individual patients. 

 

 

Keywords: model-based cardiac diagnosis, cardiovascular system, integral-based 

parameter identification, pressure waveform, ECG, Intensive Care Unit 

 

 

 

 

 

 

1. Introduction 
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In critical care, cardiovascular dysfunction can be easily misdiagnosed due to the 

array of sometimes conflicting data [1-3]. It is also a major cause of increased length 

of stay and death [4, 5]. Demand for critical care is also growing dramatically 

severely affecting healthcare delivery [6-8]. The overall goal of this research is to use 

computational cardiac models to better aggregate available clinical data in an 

intensive care unit (ICU) into a more readily understood physiological context for 

clinicians. The computational models can be used to reveal dynamics and interactions 

non-obviously hidden in the data, enabling simpler and more robust diagnosis. 

 

A major difficulty faced with cardiovascular modelling is the level of detail these 

models typically include. For example multi-scale modelling approaches utilizing 

finite elements have successfully explained complex behaviour of the heart [9-11]. 

However, a large gap exists between the computational results of these detailed 

models and clinical utility. 

 

Lumped parameter models (LPM) are a common approach to minimizing complexity 

in the cardiovascular system [12-16] but there are still many parameters involved. 

Thus typically, only small subsets of the parameter set can be identified (e.g. [14]). As 

a result, a majority of the parameter set has to be fixed at population values, which 

demands prior knowledge on the state of patients and a homogeneity between patients 

that may not exist.  

 

In critical care, a patient’s condition can change rapidly and therefore any pre-

assumption on parameters may jeopardise accurate diagnosis. Furthermore, the more 

complex a LPM becomes, the larger the set of unidentifiable parameters, and the 

greater the number of dynamics that may differ from the actual. Increased 

computational requirements with increasing parameters or model complexity will also 

limit real-time patient specific application at the bedside. 

 

This paper presents a different approach, by first developing simplified, fully 

identifiable, patient specific models, that are based around the clinical data available 

in an ICU. These models can serve as a bridge to identify more complicated and 



4 

physiologically accurate models as required to predict the observed patient 

hemodynamic responses. In the simplified models, patient specific dynamics are only 

considered if they can be uniquely identified from the given data. Due to the 

simplified structure of these models, it is then possible to analyze individual 

geometric effects of given input parameters on the output. This information will lead 

to the minimal set of features in the outputs, that are required for adequate cardiac 

diagnosis. 

 

Note that the word identifiability referred to here is “practical identifiability” with 

respect to noise and modelling error, which can currently only be tested numerically 

[17, 18]. General identifiability theory [19, 20] refers to the ideal case of perfect 

knowledge of the system and measurements, which does not guarantee that 

parameters can be identified uniquely in practice. Hence, this study views 

identifiability from the perspective of the final application. 

 

The starting baseline model structure considered is a six chamber cardiovascular 

model including ventricular interaction and inertial effects that has been previously 

developed [16] and validated in clinical animal trials [21-24]. However, note that the 

approach is general and could be applied to any cardiac model structure. 

 

A new concept developed in this paper matches simplified CVS model outputs to 

continuous information of arterial/pulmonary pressures and the end-diastolic time 

from an ECG or the “a wave” timing from the pulmonary pressure waveform. Adding 

continuous pressure waveforms and end-diastolic timing to current clinical data sets is 

shown to increase the diagnostic ability of the model and enable a more minimal data 

set that doesn’t require maximum and minimum volume measurements. Hence, this 

approach adds a simple and easy measurement to remove the need for a more 

invasive, difficult and noisy measurement.  

 

New methods are rigorously tested in simulation with noise corrupted measurements 

and modelling error to prove robustness. Finally, animal data is used to demonstrate 

the clinical potential of these methods. 

 
2. Methodology 
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2.1 Cardiac model 
 
The cardiovascular system model used in this paper consists of six elastic chambers, 

as shown in Figure 1. First developed in [16], it has been validated clinically [21-24]. 

All the input parameters for a healthy human baseline state are defined in Table 1. 

The output parameters are shown in Table 2 [25]. 

 

For simplicity, only the differential equations associated with the left ventricle are 

shown here, where [16] has a description of the full model. 
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     avavaolvavaolvavav QRPPQHPPHHQL  5.0  (2)

( ) ( )lv mt mt av avV H Q Q H Q Q   (3)

( )ao av av sysV H Q Q Q   (4)

aoaoao VEP   (5)

sys

vcao
sys R

PP
Q


  (6)

          peri
VV

lvfsptlvlvfeslv PePteVVEteP sptlvlvf   11 ,0,
  (7)

   22/80 periodtete   (8)

   ,0tKH    0tK  

               =1,   0tK  
(9)

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Six chamber CVS model with inertial effects and ventricular interaction 
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Table 1 – Healthy human parameters
Parameters                                                       Values             Units 

aoE  Elastance of aorta 0.6913 Hg/ml 

avR  Resistance of aortic valve 0.0180 mmHg s/ml 

avL  Inertance of aortic valve 1.2189e-004 mmHg s²/ml 

lvfesE ,  Elastance of left ventricle 2.8798 Hg/ml 

mtR  Resistance of mitral valve 0.0158 mmHg s/ml 

mtL  Inertance of mitral valve 7.6968e-005 mmHg s²/ml 

sysR  Systemic flow resistance 1.0889 mmHg s/ml 

paE  Elastance of pulmonary artery 0.3690 Hg/ml 

puE  Elastance of pulmonary vein 0.0073 Hg/ml 

rvfesE ,  Elastance of right ventricle 0.5850 Hg/ml 

vcE  Elastance of vena cava 0.0059 Hg/ml 

tcR  Resistance of tricuspid valve 0.0237 mmHg s/ml 

pvR  Resistance of pulmonary 
valve 

0.0055 mmHg s/ml 

pulR  Pulmonary flow resistance 0.1552 mmHg s/ml 

sptesE ,  Elastance of the septum 48.7540 Hg/ml 

Additional parameters 
Period Time of one heart beat 0.75 s 

lvfP ,0  Defines gradient of EDPVR at 0 
pressure 

0.1203 mmHg 

rvfP ,0  Defines gradient of EDPVR at 0 
pressure 

0.2157 mmHg 

pcdP ,0  Pressure in pericardium at 0 
volume 

0.5003 mmHg 

sptP ,0  Pressure in RV at 0 septum 
volume 

1.1101 mmHg 

thP  Pressure in the thoracic cavity -4 mmHg 

lvf  Parameter of the EDPVR 0.033 1/ml 

rvf  Parameter of the EDPVR 0.023 1/ml 

spt  Parameter of ventricular 
interaction (VI) 

0.435 1/ml 

pcd  Parameter of VI 0.03 1/ml 

sptV ,0  Parameter of VI 2 ml 

pcdV ,0  Parameter of VI 200 ml 
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In Equations (1)-(9), the parameter H(t) is the Heaviside function, avQ  and mtQ  are 

the flows through the aortic valve and mitral valve of the left ventricle, Pao, pvP  and 

lvP  are the pressures in the aorta, pulmonary vein and left ventricle, lvV  is the volume 

in the left ventricle, sptV  is the septum volume and periP  is the pressure in the 

pericardium. The Heaviside formulation of Equations (1) and (2) provides an open on 

pressure close on flow valve law such that: 

 

avavaolvavav QRPPQL  ,  0mtQ  (10)

mt mt pv lv mt mtL Q P P R Q   ,  0avQ  (11)

 

where Equation (10) holds during ejection and Equation (11) during filling. 

 

Ventricular interaction is included by modelling the septum volume sptV  by the 

following equation [16]: 

 

      )()1(1()( ,
)(

,0,,
,0

sptlvlvftes
VV

sptsptdsptsptes VVEteePteVVEte sptsptspt    

       )(11 ,
)(

,0 sptrvrvftes
VV

lvf VVEteePte sptlvlvft    

    11 )(
,0   sptrvrvft VV
rvf ePte   

 (12)

Note that, Equation (12) is derived by setting the septum pressure volume relationship 

equal to the difference between the left and right ventricle pressures, for more details 

see [16]. Equation (12) is solved for Vspt at each time step using a semi-analytical 

approach [15] for computational efficiency. 

Table 2 – Healthy human outputs 
Description Output 

lvV  Volume in left ventricle 111.6/45.6 mL 

SV Stroke volume 66.0 mL 
CO Cardiac output 5.28 L/min 

max,lvP  Max lvP  119.1 mmHg 

aoP  Pressure in aorta 116.5/79.0 mmHg 

rvV  Volume in the right ventricle 112.1/46.1 ml 

max,rvP  Max rvP  26.2 mmHg 

paP  Pressure in the pulmonary artery 25.7/7.8 mmHg 

pvP  Pressure in the pulmonary vein 2 mmHg 

vcP  Pressure in the vena cava 2 mmHg 
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2.2 Simplified model 
 
Simulation has shown that the pressure in the pulmonary vein pvP , and the pressure in 

the vena cava vcP , typically vary in this model by only approximately 0.5 mmHg over 

a cardiac cycle [26]. Thus, pvP  and vcP are essentially close to constant. If pvP  and vcP  

are held constant for the model of Figure 1, and ventricular interaction sptV  and the 

pressure in the pericardium pcdP  are set to zero, both the left and right systems of the 

CVS can be separated. However, note that the stroke volumes of the left and right 

ventricles would be the same in the measured data. Therefore, since the identification 

algorithm would match the left and right ventricle models to this data, there still 

remains an inherent coupling between the systems. 

 

The assumptions of 0sptV  , and 0pcdP  , are made primarily as an initial 

mathematical simplification to the model and to introduce modelling error to test the 

robustness of the derived methods. In all cases, the “measured data” used in this 

paper, includes both ventricular interaction and pericardium dynamics. 

Physiologically, the pressure in the pericardium pcdP  is typically close to zero, but can 

increase significantly with pericarditis, although it still only contributes up to about 

25% of left ventricular pressure [27, 28]. Ventricular interaction can have significant 

effects on the right ventricle, but has less of an effect on the left ventricle [29].  

 

Significant simulation studies have shown that changes in the inertances mtL and avL in 

Figure 1 and Equations (1) and (2) do not significantly effect parameter identification 

[26]. The parameter 0,lvfP has also been shown to have a limited effect [26] and for 

discrete data is typically identified to be close to 0 [21]. Therefore Lmt, Lav and P0,lvf  

are set to 0. The resulting two models are shown in Figure 2, where the direction of 

the left ventricle–systemic system has been reversed from Figure 1 to illustrate the 

similarities. 
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Figure 2: (a) The left ventricle-systemic system simplified model 

                      (b) The right ventricle-pulmonary system simplified model 

 
Replacing the input/output parameters 
 

LV Input parameters  ,, , , , , ,pv es lvf ao mt av sys vcP E E R R R P  

LV Output parameters  , , , , ,mt lv lv av ao sysQ P V Q P Q  
(13)

 
in the left ventricle-systemic system of Figure 2(a) with the parameters : 
 

RV Input parameters  ,, ,, ,, ,pa tcvc es rv pv pf pul uP E E R R PR  

RV Output parameters  , , , , ,rv rv ptc a ulv p pQ P V Q P Q  
(14)

 
the right ventricle-pulmonary model of Figure 2(b) is obtained. 
 
 

A final addition is to create an extended driver function e(t) to reduce the modelling 

error caused by the above simplified model assumptions. The new driver function and 

the model differential equations for the left ventricle-systemic system of Figure 2(a) 

are defined: 

 
The left ventricle-systemic system of Figure 2 (a) can be modelled: 
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where pvP and vcP are held constant. The parameters Plv,full and Vlv,full are defined 

to be the full model outputs of Figure 1 from a healthy human parameter set with a 

heart beat period of 0.75 seconds. Hence Equation (20) represents a population driver 

function, which could be scaled to represent different heart beats. However, the shape 

could be altered as required to capture individual patients. To obtain the model 

equations for the Right Ventricle-pulmonary system of Figure 2(b), the parameters of 

Equation (13) in Equations (15)-(20) are replaced by the parameters of Equation (14). 

 

 
2.3 Healthy and disease state comparisons 
 
To model a diseased human, the following set of parameter changes are made from 

Table 1: 

 

avav RR 4 ,  mtmt RR 4 , lvfeslvfes EE ,, 2

1
 , syssys RR

2

1
  (21)

 
The changes in Equation (21) are used as an initial mathematical validation of the 

simplified models in Figure 2, rather than a physiologically realistic study of the 

clinical mechanisms involved in cardiac dysfunction. However, a halving of 

contractility ,es lvfE and systemic resistance sysR  is not too unrealistic for septic shock, 

or myocardium infarction with the addition of a vasodilator [30-33]. Furthermore, 

valvular stenosis can be simulated by an increase in the resistances of the aortic and 
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mitral valves [30, 32, 33]. The disease states in Equation (21) would of course be 

unlikely to occur all at once, but it serves to provide an initial test of the methods. 

 
 
2.4 Unique Parameter identification 
 
 
The parameter identification method presented is an extension of the concept 

developed in [21, 26]. The idea in [21, 26] is to set up an iteration between a linear 

least squares optimization and a forward solution, which is partly based on a Picard 

iteration [34]. This approach is therefore distinctively different from other integral 

formulations like the modulating function approach [35] which does not iterate and is 

therefore not directly suitable for the discrete data and high non-linearities present in 

this application. Furthermore, the CVS model of Figure 1 typically requires many 

iterations to converge to steady state, which is highly dependent on the initial 

conditions. Therefore, the standard method of non-linear regression [36], is not 

suitable, as it is too computationally intense and can often result in local minima. In 

this section the method of [21] is significantly improved by avoiding the requirement 

of a continuous volume profile, which is typically not known. In addition the number 

of forward simulations and the computational requirements for each iteration are 

dramatically reduced. 

 

The unknown patient specific parameters, denoted X, that are optimized for the left 

ventricle are defined: 

 

 ,, , , , ,pv es lvf ao mt av sysP E E R R RX            (22) 

 

The parameter Pvc in Equation (13) is assumed known, since it would be found from 

either identifying the right ventricle system, or by direct measurement of the central 

venous pressure, which is common in an intensive care unit. 

 

There are 6 unknown parameters in Equation (22) to be identified in the model of 

Figure 2 (a). Therefore, the measured maximum/minimum left ventricle volume and 

aortic pressure can only uniquely identify 4 of these parameters. However, the timing 

of the mitral valve closure corresponds to the end of the atrial contraction which can 
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be detected by the end of the P wave on an electrocardiogram (ECG) [25]. 

Alternatively, since the left and right atriums contract close to simultaneously, the 

mitral valve closure can also be calculated from the “a wave” in the central venous 

pressure waveform [37]. The central venous pressure is commonly measured in the 

ICU. 

 

These observations demonstrate an important concept, which is to utilize features 

from physiological waveforms to improve identifiability without having to explicitly 

model the effects. The pressure in the pulmonary vein Ppv or the filling pressure of the 

simplified model of Figure 1(a) corresponds to the left ventricle pressure at the mitral 

valve closure. Hence, Ppv can be estimated by the formula: 

 

2 2( ),pv lv d dP t tP   time of mitral valve closure   (23) 

 

A further important feature available is the maximum gradient or inflection point in 

the ascending aortic pressure wave. The parameter which has a significant effect on 

the maximum aortic pressure gradient is the resistance in the aortic valve Rav. Define: 

 

, ,

, ,

( ) ( )
( )

( ) ( )
ao true inflect ao true min

av
ao approx inflect ao approx min

P t P t
R

P t P t






   (24) 

 
where  Pao,approx and Pao,true are the simulated and “measured” aortic pressures, tmin is 

the time of minimum aortic pressure and tinflect is the time of maximum aortic pressure 

gradient. Equation (24) is an approximation to the ratio of the maximum gradients of 

Pao,approx to Pao,true and is used to avoid having to differentiate the aortic pressure 

which may be noisy. Simulation has shown that the variable   in Equation (24), 

changes inversely proportional to Rav with all other parameters held at their nominal 

values. Specifically, if Rav increases by a factor of 2, with all other parameters fixed, 

 approximately reduces by a factor of 2, with a order of magnitude less effect on the 

maximum and minimum volumes/pressures. This result motivates an approximation 

to Rav: 
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, ,
,

, ,

( ) ( )

( ) ( )
ao approx inflect ao approx min

av approx
ao true inflect ao true min

P t P t

P t P t
R





   (25) 

 

 

However, for Equation (23) and (25) to be valid approximations, to Ppv and Rav, the 

approximations Plv,approx and Pao,approx need to be as accurate as possible. The solution 

proposed, is to first ensure that the maximum/minimum simulated volumes and aortic 

pressures are precisely matched to the measured values for given initial (but 

essentially arbitrary) estimates of Ppv and Rav. At the end of this optimization, Ppv and 

Rav are updated using Equations (23) and (25). 

 

Simulation has shown that increasing the parameters Ees,lvf, and Rmt separately by 

factors of 2 decrease the mean volume, and stroke volume by factors close to 2. On 

the other hand, increasing the parameters for Eao and Rsys proportionally increase the 

pulse pressure difference and the mean aortic pressure. These results motivate the 

following definitions: 

 

, , , ,
, , , ,

, , , ,

lv min approx lv max approx
es lvf approx es lvf old

lv min true lv max true

V V
E

V V
E

 
    

  (26) 

, ,
appro

mt approx mt o
x

tru
ld

e

SV
R

S
R

V

 
  
 

                       (27) 

, ,
true

ao approx ao old
approx

PP
E

P
E

P

 
   
 

                       (28) 

, , , ,
, ,

, , , ,

ao max true ao min true
sys approx sys old

ao max approx ao min approx

P P
R R

P P

 
    

         (29) 

 

Consider Rmt,approx in Equation (27). Integrating Equation (17) over one heart beat 

yields: 

,0
,

( )period
pv lv true

mt true
true

P P
R

SV

     (30) 

For a given Ppv, let mtR  be the current estimate of Rmt,true, with corresponding 

approximations lvP and SV  to Plv,true and SVtrue. Therefore: 
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0 ( )period
pv lv

mt

P P
R

SV

     (31) 

 

Dividing Equation (30) by Equation (31) yields: 

,, 0

0

( )

( )

period
pv lv truemt true

period
mt true pu lv

P PR SV

R SV P P

 


   (32) 

 

Assuming that lvP is much closer to ,lv trueP than SV is to trueSV it follows that: 

 

,mt true mt
true

SV
R

SV
R �            (33) 

 

Therefore, Equation (27) also follows from an integral formulation of Equation (17) 

over one heart beat period. A similar approach (not shown) can be used to derive 

Equations (26), (28) and (29).  

 

Note that an alternative approach would be to scale the approximate waveform lvV so 

that trueSV SV , then evaluate the ratio of the integrals in Equation (32). However, 

evaluating Equation (32) directly, which is effectively the method of [21], relies on 

approximating the continuous left ventricle waveform lvV throughout the heart beat, 

which can introduce errors.  In prior work [21], the estimates and the accuracy of 

convergence often relied on reasonable starting waveform shapes, and in some cases 

did not converge satisfactorily without some manual intervention. The method of 

Equations (26)-(29) only requires discrete data and is similar to proportional feedback 

control. Specifically, the parameters in Equations (26)-(29) continually change until 

the ratios are driven to one and is thus fully automatic.  

 

The method presented is also readily generalizable to parameter identification of other 

models, by locating the major geometric effects of each parameter on the measured 

data, and formulating a control system like Equations (26)-(29), to iterate the 

parameters. The specific equations that enable the parameters to converge are of 
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course model specific, but the overall approach and concept, including the breaking 

down of complex models into sub-models that are fully identifiable, is general. 

 

The tests for the parameter identification method are done first in simulation with 

noise, and then on animal data. In the tests with noise, the “measured data” is taken to 

be the output of the six chamber model of Figure 1. For the animal experiments, the 

measured data is from catheters [38]. In both cases:  

 

measured data  mean 2mean , ( ,, ), ,lv ao ao dP P tSV P tV P    (34) 

 

where:  

 

 

, ,
, , , ,

, ,
2

mean ,
2

mean , end diastolic time

,

2

lv max lv min
lv lv max lv min ao max ao min

ao max ao min
ao d

V V
V V PP P PS

P
P

V V

P
t


   


 


   (35) 

 

The overall parameter identification method is summarized in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1 Choose arbitrary set of input parameters including Ppv and Rav 

Step 2  Simulate model of Equations (15)-(20) 

Step 3  Compute approximations to Ees,lvf, Rmt, Eao and Rsys from Equations 

(25)-(28). 

Step 4  Simulate model of Equations (15)-(20). 

Step 5  If the maximum volumes and aortic pressures are matched within a 

given tolerance to data in Equation (34), go to Step 6, otherwise go 

back to Step 3. 

Step 6  Compute Ppv and Rav from Equations  (23) and (25). If they have 

changed by less than 1% go to Step 7 otherwise go back to Step 3. 

Step 7 Output final solution and identified parameters 

 

Figure 3: Parameter identification algorithm for Figure 2(a) 
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2.5  No volume measurement 
 
 
The algorithm of Figure 3 can be readily extended to the case where the mean Vlv in 

Equation (34) is removed. The method is to let the mean Vlv be an extra unknown 

parameter and optimized along with the parameters in Equation (22). To account for 

the increase in unknown parameters, more information from the aortic pressure 

waveform is used. Define: 
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where tmin and tinflect are from Equation (25), and n is on the sampling frequency of the 

aortic pressure catheter which is taken to be 1kHz. The metric error is dependent on 

the mean Vlv and the points t1 and tn are equally spaced about tinflect. It is important to 

note that the full aortic pressure waveform cannot be used in Equation (36). The 

reason is that the model does not capture the dicrotic notch so matching to this part of 

the waveform would introduce unnecessary error into the method. However, the 

continuous waveform in the interval [t1, tn] still provides significantly extra data that 

can be used to identify the mean volume and thus the maximum/minimum left 

ventricle volumes as well. 

 

The method starts with an approximation Vlv,max,approx to the maximum volume. The 

approximate mean volume is thus defined: 

 

, , ,mean 
2lv approx lv max approx

SV
V V     (38) 

The algorithm of Figure 3 is then applied and the error in Equation (36) is computed. 

The maximum volume Vlv,approx,max is then updated in a depth first search to minimize 

the error of Equation (36). The method is summarized in Figure 4. 
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3. Results and Discussion 
 
 
This section first validates the simplified modelling approach of Figures 2(a) and (b), 

and the parameters identification method of Figure 3, against simulated data from the 

full model of Figure 1. Measurement noise is simulated by corrupting the simulated 

data with random uniformly distributed noise. Due to the symmetry of Figures 2(a) 

and (b) only tests on the left-ventricle system are considered. The noise is defined: 

 

uniform noise  5% in ( )aoP t , 10% in SV, 10% in 2dt   (39) 

 

where for the end-diastolic filling time td2 in Equation (34), the 10% noise is relative 

to the length of time of the diastole. The noise is made less for the pressure, since it is 

assumed that a catheter measures the aortic pressure waveform, which is standard in 

an ICU. Modelling error is also present in the simplified models of Figure 2 with 

respect to the full model of Figure 1. 

 

Step 1 Choose a value of Vlv,approx,max, and determine the mean Vlv from 

Equation (38). 

Step 2  Apply the method of Figure 3 to identify Ppv, Rav, Ees,lvf, Rmt, Eao and 

Rsys. 

Step 3  Compute the error of Equation (36).  

Step 4  Repeat Steps 1-3 in a depth first search until Vlv,approx,max changes by 

less than 1%. 

Step 5 Output the final approximation Vlv,approx,max and identified 

parameters 

 

Figure 4: Parameter identification algorithm for Figure 2(a) without a 
volume measurement, but a known stroke volume. 
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The model and methods of the left ventricle-systemic system are then tested on 

clinical data from a pulmonary embolism animal model experiment [39]. 

 
3.1 Convergence of algorithm and effectiveness of modelling approach 
 
 

To demonstrate the fast and accurate convergence of the algorithm of Figure 3, and to 

assess the suitability of the simplified models of Figure 2 in describing the full model 

of Figure 1, a healthy human is first considered. The parameters for a healthy human 

are given in Tables 1-2. In this case no noise is added so an accurate characterization 

of the accuracy of the simplified models can be obtained. The assumed measured data 

is: 

 

measured data 2mean , , ,mea ( ),,n aolv ao dV SV PP P P t t  (40) 

 

where Pao is given as a function of time since it is continuously measured.  

 

The left ventricle volume matches very closely to the true volume with maximum 

errors of 1.6% and 2.6% during filling and ejection, and errors of 0.00016% and 

0.00014% in the maximum and minimum volumes respectively. Similarly, the 

identified aortic pressure closely captures the true pressure with maximum errors of 

1.8% and 0.2% during ejection and filling, and errors of 0.0026% and 0.0015% in the 

maximum and minimum aortic pressures respectively. The error in the maximum 

ventricle pressure is 2.1%.  

 

For the identified parameters, the largest error is 21.7% in Rav but this is largely due to 

the already small value. There is also an error of 8.1% in Ees,lvf which reflects the 

modelling error of Figure 2 with respect to Figure 1. These results show that the 

simplified model of Equations (15)-(20) is a very accurate representation of the full 

model of Figure 1, with small errors due to modelling error. 
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The accurate results also provide an initial validation of the parameter identification 

method of Figure 3, with very fast convergence obtained, even when starting 

significantly far away from the solution. Figure 5 plots the maximum volume and 

Figure 6 plots Rav against the number of iterations, for an initial guess containing 300-

400% error in all the parameters. One iteration is equivalent to one numerical 

simulation of Equations (15)-(20) that occurs in step 3 of Figure 3. The maximum 

volume converges in about 10 iterations, and remains largely unaffected by changes 

in Rav, where Rav takes about 24 iterations to converge within 1%. The convergence 

time of Rav can be reduced by a factor of 2 by re-defining Rav in Equation (25) by: 
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, ,
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  (41) 

 

and setting a gain of 3, as shown in Figure 6. Importantly, once the method converges, 

this implies that the ratios in Equations (26)-(29) must be unity, otherwise the 

parameters would keep changing. Hence, the method can never reach a local minima 

and must always stop at the global minimum. 
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Figure 5: Convergence of the maximum volume using algorithm of Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Convergence of Rav in the algorithm of Figure 3 using two gains of 1 and 3 
in Equation (41). 
 
 
 
Similarly accurate results are obtained for the diseased state human of Equation (21), 

so these results are not shown. In summary the parameter identification method of 

Figure 3 is very fast and accurate independent of starting point, and the simplified 

models of Figure 2 closely capture the full model dynamics of Figure 1. Importantly, 

the data of Equation (34) is sufficient to uniquely identify all six parameters in 
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Equation (22). The simpler nature of Figure 2 also means the model simulations are 

dramatically faster. 

 
 
 
3.2  Healthy and diseased human with noise – no volume measurement 
 
 

100 Monte Carlo simulations are performed for the algorithm of Figure 4 with noise 

levels defined in Equation (39). To optimize accuracy, a cubic smoothing spline is 

performed on the noisy aortic pressure waveform using standard in-built functions in 

Matlab. The identified parameters are summarized in Table 3: 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Comparing the identified parameters for a healthy and diseased human with 

noise from Equation (39). 

 

The median ratios of Ees,lvf,disease/Ees,lvf,healthy, Rav,disease/Rav,healthy, Rmt,disease/Rmt,healthy, and 

Rsys,disease/ Rsys,healthy are 0.48, 5.3, 4.1 and 0.48 respectively, which capture the reduced 

contractility, increased resistances and reduced systemic resistances as defined in 

Equation (20). There are also good separations in the 90% CI’s. In addition, 90% of 

the identified maximum volumes have an error less than 11.5% and 14.7% for the 

diseased and healthy human respectively. However, part of this error is due to the 

overestimation of the volume in each case. Taking the identified volumes with no 

noise as the “true” volumes gives 90% of all errors less than 8.7% and 12.2% 

Parameters Healthy  Diseased  

 Median 90% CI Median 90% CI 

Ppv 1.7 [0.8,3.0]  3.7 [1.2,7] 

Rav 0.012 [0.006,0.02]  0.064 [0.038,0.082] 

Ees,lvf 2.3 [2.0,2.8]  1.1 [0.9,1.3] 

Rmt 0.015 [0.01,0.02]  0.061 [0.042,0.09] 

Rsys 1.10 [1.00,1.20]  0.53 [0.49,0.58] 

Eao 0.70 [0.64,0.75] 0.68 [0.62,0.75] 
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respectively. Furthermore, 90% of the identified maximum left ventricle pressures 

have an error less than 1.5% and 9.4%, for the healthy and disease states. 

 
 
3.2 Validation on an animal model and clinical implementation 
 

 
To demonstrate the clinical potential for the methods developed, data from a porcine 

pulmonary embolism experiment is used. The data is obtained from the 

Hemodynamics Research Laboratory, University of Liege, Belgium. In the 

experiments, a pig is injected with autologous blood clots every two hours to simulate 

pulmonary embolism [38]. 

 

As a simple proof of concept, the left ventricle model of Figure 1(a) and the method 

of Figure 2 are applied using measured waveforms for one of the pigs at two time 

points of 30 minutes and 210 minutes. No ECG or the central venous pressure 

waveform was available, therefore, the end-diastolic filling time 2dt in Equation (34) 

was manually estimated from the left ventricle volume profile. A driver function is 

derived in a similar way to Equation (20), but with Plv,full and Vlv,full replaced by the 

measured left ventricle pressure and volume, and Pth is set to 0, since the pig is open 

chest. The resulting function is smoothed by least squares cubic splines and 

normalized so the maximum point is 1 and the time interval of one heart beat is the 

healthy value of 0.75. To account for different heart rates, the generic shape is 

defined: 

 

 
0.75

ˆ( )e t e t
period





 
 

      (42) 

 

where ( )e t is experimentally derived from the healthy state of several pigs based on 

an average response and is shown in Figure 7. 
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Figure 7: Experimentally derived driver function )(te based on Equation (20) 

 

To account for individual pig variations the final driver function is defined: 
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   (43) 

 

where ,ao mint  is the time of minimum aortic pressure, ,ao mint is the time of the 

minimum (or maximum negative) aortic pressure gradient, and ,1inflectt and ,2inflectt are 

the first and second inflection points of ê in Equation (43). Specifically, ,ao mint is well 

known to correspond to the minimum left ventricle pressure gradient (or inflection 

point) which always occurs just before the dicrotic notch, and thus corresponds to the 

aortic valve closure. The volume is approximately constant at this point, and 

therefore, the formula of Equation (20) shows that ,2inflectt should be equal to ,ao mint . 

The maximum left ventricle pressure gradient, is also known to occur just before the 

aortic valve opens, which corresponds closely to ,ao mint . Therefore since the volume is 

constant at this point as well, ,1inflectt should be equal to ,ao mint . The time scaling 

transformation in Equation (43) ensures that the inflection points of the driver 

function correspond to ,ao mint and ,ao mint as required. Equations (42) and (43) 

therefore provide a way of approximately identifying a patient (pig) specific driver 

function. Further clinical experiments and trials on humans are needed to classify to 

what degree of accuracy the driver function is required to be for adequate cardiac 

diagnosis. 
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3.2.1 Parameter identification with known volumes 

 

Figure 8(a) shows the result of applying the algorithm of Figure 3 on the one of the 

pigs at 30 minutes into the pulmonary embolism experiment. This figure is compared 

to a special case of a fixed Ppv=2 and Rav=0.46 in Figure 8(b). In both cases the 

maximum and minimum values of Vlv and Pao (not shown) are accurately captured, 

but there are errors of 34% and 84% in the parameters Ees,lvf and Rmt. The errors in Eao 

and Rsys are less than 5%. However, the parameter Ees,lvf appears relatively robust and 

is virtually unaffected by changes in Ppu.  For example if Rav<0.2, the errors of Ees,lvf 

are less than 10%. But these results highlight the importance of the data set in 

Equation (40) to accurately identify the model as well as finding a unique parameter 

set.  

 

The PV curve and aortic pressure waveform corresponding to the correct parameters 

in Figure 8(a) are plotted in Figure 9, showing a close match. Notice how the first 

third to a half of the ascending aortic pressure is matched almost exactly. The high 

degree of accuracy in this period is due to the parameter identification method forcing 

the inflection point of the model to match the inflection point of the data. This result 

further shows the power of the method of Figure 3 as any feature that the model of 

Figure 2(a) is capable of matching, can be precisely captured independent of starting 

point, with very fast convergence and very minimal computation. 
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Figure 8: Applying the algorithm of Figure 3 to the pig data. (a) identifying all 

parameters (b) fixing Ppv and Rav 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Identification results using correct parameters of Figure 8(a). (a) Pressure-

volume curve (b) Aortic pressure waveform 

 

It has been shown that the ascending aortic waveform inflection point is a predictive 

factor for all-cause and cardiovascular mortality in patients with chronic renal failure 

on hemodialysis [40]. Many other studies have also shown features in the continuous 

aortic pressure waveform to help diagnose disease states and to monitor 

improvements due to therapy. Therefore, this modelling and parameter identification 
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approach has the potential to aggregate key clinical information and any significant 

correlations between parameters observed in the literature. 

 

3.2.1 Parameter identification without volumes 

 

The method of Figure 4 with mean Vlv as an extra unknown, is applied on two 

separate time periods, at 30 minutes and 120 minutes. The results of the identified 

parameters are compared to the parameters identified with the algorithm of Figure 3, 

which are treated as the “true” parameters. 

 

For the pig at 30 minutes, the method identified Rmt, Rsys, Eao and Ppv with an accuracy 

less than 3% of the true values, with errors of 7.6% in Ees,lvf and 18.8% in Rav. 

However the larger error in Rav can be attributed to the small size of the true value for 

Rav. The errors for the identified left ventricle volume and pressure were 4.6% and 

1.0%. For the pig at 120 minutes, the method identified Rmt, Rsys, Eao and Ppv with an 

accuracy less than 2% of the true values, with errors of 5.1% in Ees,lvf and 14.7% in 

Rav. These results combined with the simulated results in the prior section suggest that 

the volume may not be needed to identify parameters, but requires further validation 

in clinical trials. These trials would need to use either ECG or the central pressure 

waveform to calculate the end diastolic filling time. In addition, it is required to 

determine/define what errors in  max,lvV  are acceptable for diagnosis. In summary, the 

simulated data and the pig data with a manually chosen end diastolic filling time from 

the volume profile, prove the concept that the reduced data set of Equation (70) is 

potentially sufficient for diagnosis and warrants further investigation. 

 

4. Summary and relevance to Biomedical Engineering 

 
Three major concepts were introduced in this paper. 
 

 Simplified fully identifiable sub-models that closely capture a six chamber 

model with ventricular interaction, pericardium and inertial effects, and are 

capable of uniquely characterizing measured clinical response of pig data 
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 A parameter identification method based on a proportional feedback control 

system that iterates between a forward solution and parameter updates until the 

measured clinical data is precisely matched. The formulation also allows any 

geometrical feature that the model is capable of producing, to be precisely 

captured with very minimal computation, for example the end-diastolic filling 

time and maximum ascending aortic gradient. Once the method converges, by 

definition of the control system reference input, the global minimum must be 

reached. Therefore there can be no local minima which can commonly occur 

in the more traditional non-linear regression. 

 
 The reduction of the measured data set by including the removed 

measurements as extra unknowns in the identification method. A fast and 

accurate parameter identification makes this reduction possible, with minimal 

effect on computation. Results in both simulation and clinical data suggest the 

maximum and minimum volumes are not needed for disease state diagnosis, 

with the addition of end-diastolic filling time and continuous ascending aortic 

pressure. 

 
 
Current models e.g. [41, 42] are good at capturing trends in data but do not typically 

capture precise quantitative pressure and volume changes, including the exact 

measured valve timing and ascending aortic pressure profile, for individual patients. 

Of course in principal, complex models could be made to match to any given data set. 

But for limited data in an ICU setting, unique parameter identification would only be 

obtained if a small subset of the parameter set is optimized. Thus, the majority of 

parameters have to be fixed at generic values which are only ever known on a 

population level, not for individual patients [43-45]. Therefore, pre-determined 

dynamics are assumed, which are likely wrong in fast changing critical care patients. 

Furthermore, a relatively large amount of computation is spent simulating these 

dynamics from the fixed parameters, which has no direct effect on matching a patient.  

 
The approach in this paper is different as it only simulates the precise subset of the 

model that is being identified to the data. Therefore, very fast and unique parameter 

identification methods can be developed that can capture virtually any desired 

features with minimal effect on computational time, high accuracy and avoidance of 
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local minima’s. For example, the methods in this paper quantitatively capture the 

measured valve timing, where usually the qualitative trend is reported [42]. In 

addition, a patient specific driver function is approximately identified, without 

requiring the measured pressure volume curve [46]. 

 
Finally, the completely patient specific approach in this paper, and the fast 

identification methods gives the potential to analyze clinical data in an ICU of time 

periods of days or weeks with minimal computational time. The identified parameter 

changes can then be characterized as time progresses. The result would be the creation 

of a more complex patient specific models in real-time, without any preassumptions 

on patient behaviour, for example reflex response [41, 45]. This paper therefore 

represents a set of modelling and computational tools with the potential to monitor 

and better manage the cardiovascular system in critical care patients. 

 
  
 
 
5. Conclusions 
 
Two simplified models of the left ventricle systemic and right ventricle pulmonary 

systems were developed that closely matched output data from a full cardiovascular 

system model with pericardium and ventricular interaction dynamics. The left 

ventricle system model was tested in simulation with up to 10% random uniformly 

distributed noise added to the data. The model was shown to be uniquely identifiable 

with the addition of the end-diastolic filling time and continuous information from the 

aortic pressure waveform. Furthermore, the extra data used, that is readily available in 

an ICU, enabled the mean volume to be added as an extra unknown parameter with 

minimal effect on identifiability. This result has significant potential clinically, as the 

mean or maximum/minimum volumes are much harder to measure, where the stroke 

volume is relatively easy and more common. 

 

The approach of breaking down the six chamber heart model into separate uniquely 

identifiable models is general and could be applied to any complex lumped parameter 

CVS model. In particular, future work will utilize the simpler models to allow rapid 

identification of the 8 chamber model [22] and any other added dynamics as required 

to diagnose cardiac disease states and characterize therapy response. 
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The clinical and simulated results both suggest that potentially better model-based 

diagnostic capability could be obtained with the addition of continuous aortic pressure 

information, and either ECG or the central venous pressure waveform to obtain the 

end-diastolic time. This enhanced capability has been shown to be not significantly 

reduced when removing volume max,lvV / min,lvV  measurements. The results thus show 

the potential for practical implementation of a model-based cardiac 

diagnosis/therapeutics system in the ICU based on readily measurable parameters. 
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