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Abstract—This paper investigates the distribution of the con-
dition number of complex Wishart matrices. Two closely related
measures are considered: the standard condition number (SCN)
and the Demmel condition number (DCN), both of which have
important applications in the context of multiple-input multiple-
output (MIMO) communication systems, as well as in various
branches of mathematics. We first present a novel generic
framework for the SCN distribution which accounts for both
central and non-central Wishart matrices of arbitrary dimension.
This result is a simple unified expression which involves only a
single scalar integral, and therefore allows for fast and efficient
computation. For the case of dual Wishart matrices, we derive
new exact polynomial expressions for both the SCN and DCN
distributions. We also formulate a new closed-form expression
for the tail SCN distribution which applies for correlated central
Wishart matrices of arbitrary dimension and demonstrates an
interesting connection to the maximum eigenvalue moments of
Wishart matrices of smaller dimension.

Based on our analytical results, we gain valuable insights into
the statistical behavior of the channel conditioning for various
MIMO fading scenarios, such as uncorrelated/semi-correlated
Rayleigh fading and Ricean fading.

Index Terms—MIMO systems, complex Wishart matrices,
condition number, joint eigenvalue distribution.

I. INTRODUCTION

OVER the past decade, multiple-input multiple-output
(MIMO) systems have been at the forefront of wireless

communications research and development, due to their huge
potential for delivering significant capacity gains compared
with conventional systems. The capacity and performance of
practical MIMO transmission schemes are often dictated by
the statistical eigenproperties of the instantaneous channel
correlation matrix1 W = HH† or W = H†H, with H
denoting the matrix of random MIMO channel gains. The
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1The notation (⋅)† denotes the conjugate-transpose operation.

matrix H is typically modeled via a complex Gaussian dis-
tribution with mean and covariance structure defined by the
system configuration (eg. antenna spacing) and the nature
of the surrounding environment (eg. line-of-sight (LoS)). As
such, W is known to follow a complex Wishart distribution.

In recent years, the statistical properties of Wishart matrices
have been extensively studied and applied to a large number
of MIMO applications. For example, the unordered eigenvalue
distributions and determinant properties of Wishart matrices
have been derived in [1–16] and applied to explore the ergodic
capacity of the MIMO channel under different conditions,
whereas ordered/marginal eigenvalue distributions have been
derived in [17–26] and used to investigate the performance of
MIMO beamforming strategies. Many other statistical prop-
erties of Wishart matrices, such as those involving Gaussian
quadratic forms, have also been applied to MIMO analysis
in different contexts (eg. [27]). For a contemporary review of
random matrix theory and its application to wireless commu-
nications, see [28].

In this paper, we investigate the distribution of the condition
number of Wishart matrices, considering two closely related
measures: (i) the standard condition number (SCN), defined
as the ratio of the largest to the smallest eigenvalue, and
(ii) the Demmel condition number (DCN), which returns the
ratio of the matrix trace to the minimum eigenvalue [29].
Both of these condition numbers give a measure of the
relative conditioning (or rank-deficiency) of a matrix, and
the statistical properties of both have been shown to be
important for a variety of applications. For example, the SCN
has been used to indicate the degree of multipath activity
in MIMO communication channels [30, 31], and has been
shown to have a close connection with the performance of
linear MIMO receivers in spatial multiplexing systems [32–
34]; further, it has been adopted to formulate novel spectrum
sensing algorithms in cognitive radio applications [35–37].
The distribution of the SCN also has many applications beyond
the realm of wireless communications; for example, it has
been employed in classical linear algebra for investigating
the sensitivity of matrix inversion problems to perturbation
errors and the convergence rate of iterative schemes [38]. The
distribution of the DCN, on the other hand, has been employed
in the context of MIMO to determine diversity-multiplexing
switching criteria for adaptive MIMO systems [39], and also
in the design of link adaptation protocols [40].

Despite the importance of the SCN and DCN of Wishart
matrices, little is still known about their statistical properties.
In particular, this issue was first considered in the pioneering
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work of Edelman [41] whose SCN analysis focused on 2× 2
(i.e. dual) uncorrelated central Wishart matrices with arbitrary
degrees of freedom (DoF), and also on asymptotic distribu-
tions, valid for infinitely large dimensions. Some results on
the DCN were also presented, which gave asymptotic approx-
imations for the DCN distribution under certain conditions.
In [42–44], the authors proposed simple efficient bounds on
the high-tails of the SCN distributions, which again focused
primarily on uncorrelated central Wishart matrices. The SCN
probability density function (PDF) for the uncorrelated central
case was recently presented in tensor form in [45], using the
results of [46] for the ordered eigenvalues of Wishart matrices.
The SCN analysis of [41] was extended in [47] to allow for
matrices of arbitrary size and arbitrary correlation structures;
however, the final result for the SCN PDF was given as a
complicated expression involving an infinite series of zonal
polynomials, and is thus difficult to manage. Finally, the
exact SCN distributions for dual complex non-central Wishart
matrices with two DoF were recently presented in [48].

In this paper, we first present a novel generic framework
for the exact SCN distribution for different classes of complex
Wishart matrices. This key result is a unified expression which
applies for both central and non-central Wishart matrices of
arbitrary dimension (for the central case, allowing for arbitrary
correlation structure), and involves only a single scalar integral
which allows for fast and efficient computation. We note that
the analysis of non-central Wishart matrices is based on both
an exact infinite series representation as well as on a tractable
approximation which extensively simplifies the mathematical
formulations. For the specific case of dual uncorrelated and
correlated central Wishart matrices, we also derive exact
polynomial expressions for the SCN and DCN distributions.
Moreover, for correlated central Wishart matrices of arbitrary
dimension, we propose a new closed-form expression for
the SCN tail distribution. This result generalizes recent work
from [44] to account for arbitrary correlation structures, and
reveals an interesting connection between the tail behavior of
the SCN distribution and the maximum eigenvalue moments
of a Wishart matrix of smaller dimension. Based on our
analytical results, we gain valuable insights into the statistical
behavior of the channel conditioning for various MIMO fading
scenarios, such as uncorrelated/semi-correlated Rayleigh and
Ricean fading.

The rest of the paper is organized as follows. In Section II,
three common MIMO Gaussian fading models are introduced,
along with their connections to different classes of complex
Wishart distributions. The corresponding joint ordered eigen-
value distributions are also addressed. In Section III, our
new results on the SCN distribution are presented, whereas
Section IV deals with the DCN. In Section V, the theoretical
results are validated via Monte-Carlo simulations, while Sec-
tion VI concludes the paper and summarizes the key findings.

Notation: We use upper and lower case boldface for ma-
trices and vectors, respectively. The 𝑛 × 𝑛 identity matrix is
expressed as I𝑛, while the (𝑖, 𝑗)-th entry of a matrix A is
denoted as 𝑎𝑖,𝑗 . The symbol (⋅)𝑇 denotes the transpose, tr(⋅)
yields the matrix trace, etr(⋅) is shorthand for exp(tr(⋅)),
and ∣ ⋅ ∣ represents the determinant. The symbol

d∼ denotes

“distributed as”, while ∼ will be used for asymptotic notation.

II. MIMO CHANNELS MODELS AND THEIR EIGENVALUE

DISTRIBUTIONS

Consider a MIMO system equipped with 𝑁𝑡 transmit and
𝑁𝑟 receive antennas. The wireless channel can be effectively
characterized by the matrix H ∈ ℂ𝑁𝑟×𝑁𝑡 , whose entries rep-
resent the complex responses between each antenna pair. For
most performance measures of interest, such as the ergodic and
outage capacities [1, 2, 4, 5, 20, 25], the diversity-multiplexing
trade-off [49], and symbol error rate of practical transmission
schemes [18, 19, 21, 26, 27], the effect of the channel is re-
flected via the statistical properties of the instantaneous MIMO
correlation matrix

W ≜
{

HH†, if 𝑁𝑟 ≤ 𝑁𝑡

H†H, if 𝑁𝑟 > 𝑁𝑡.
(1)

The channel matrix H is typically modeled as complex
Gaussian. In this paper, we consider three common classes of
channels, for which W ∈ ℂ𝑠×𝑠 follows a Wishart distribution
with 𝑡 DoF, where 𝑠 ≜ min(𝑁𝑡, 𝑁𝑟) and 𝑡 ≜ max(𝑁𝑡, 𝑁𝑟).
Note that, in all cases, the channel is normalized such that
𝐸 [tr (W)] = 𝑁𝑟𝑁𝑡. Hereafter, we wiil use H𝑤 to represent
an 𝑁𝑟×𝑁𝑡 matrix whose entries are i.i.d.

d∼ 𝒞𝒩 (0, 1) random
variables.

Definition 1 (Uncorrelated Rayleigh Fading): The uncor-
related Rayleigh model is valid when the antenna spacings
and/or the angular spreads are high enough to induce indepen-
dent fading, and there is no LoS path between the transmitter
and receiver. Under these conditions,

H = H𝑤 (2)

and W is uncorrelated central Wishart with 𝑡 DoF, commonly
denoted as W

d∼ 𝒞𝒲𝑠(𝑡, I𝑠) [50].
Definition 2 (Semi-Correlated Rayleigh Fading): In prac-

tice, the MIMO spatial subchannels are often correlated due to
the limited angular spreads or restrictions on the array sizes.
The effect of spatial correlation can be reflected as follows

H =

{
Σ

1/2
𝑠 H𝑤, if 𝑁𝑟 ≤ 𝑁𝑡

H𝑤Σ
1/2
𝑠 , if 𝑁𝑟 > 𝑁𝑡

(3)

where Σ𝑠 ∈ ℂ
𝑠×𝑠 > 0 denotes the spatial correlation

matrix. Note that here we have assumed that correlation occurs
only at the side with minimum number of antennas2, in
which case W is semi-correlated central Wishart, expressed
as W

d∼ 𝒞𝒲𝑠(𝑡,Σ𝑠).
Definition 3 (Uncorrelated Ricean Fading): This scenario

is relevant when there is a direct LoS path between the
transmitter and receiver. Then, the channel matrix consists of
a deterministic component, HL, and a Rayleigh-distributed
random component, H𝑤, which accounts for the scattered
signals, or

H =

√
𝐾𝑟

𝐾𝑟 + 1
HL +

√
1

𝐾𝑟 + 1
H𝑤 (4)

2Correlation at the side with the maximum number of antennas can also
be handled, however the notation is more cumbersome. Thus, we choose to
omit the explicit presentation of this scenario throughout the paper.
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where 𝐾𝑟 stands for the Ricean 𝐾-factor, representing the
ratio of the power of the deterministic component to the power
of the fading component. Clearly, H has a non-zero mean,
given by 𝐸 {H} = M =

√
𝐾𝑟/(𝐾𝑟 + 1)HL. In this case,

W is uncorrelated non-central Wishart, usually expressed as
W

d∼ 𝒞𝒲𝑠

(
𝑡, 𝜀2I𝑠,Ω

)
, where 𝜀 = 1/

√
𝐾𝑟 + 1 is a power

scaling factor, and

Ω =

{
𝜀−2MM†, if 𝑁𝑟 ≤ 𝑁𝑡

𝜀−2M†M, if 𝑁𝑟 > 𝑁𝑡
(5)

is the non-centrality matrix. For the sake of consistency with
previous studies, we consider a scaled version of W, that is
S = 𝜀−2W

d∼ 𝒞𝒲𝑠 (𝑡, I𝑠,Ω) [18, 19, 50]. Note that S and
W have, by definition, the same SCN.

Explicit solutions can sometimes be obtained for the distri-
butional properties of non-central Wishart matrices. However,
they are usually more complicated than the corresponding
expressions for central Wishart matrices. In this light, the fol-
lowing well-known result, which approximates a non-central
Wishart distribution with a central Wishart distribution of
modified correlation structure, will be particularly useful.

Lemma 1 ([51]): A complex semi-correlated central
Wishart matrix W

d∼ 𝒞𝒲𝑠(𝑡, Σ̂𝑠), with the effective
correlation matrix being Σ̂𝑠 = 𝜀2I𝑠 + (1/𝑡)Ω, has the same
first-order moments and second-order moments differing
by (1/𝑡)Ω, as the complex non-central Wishart matrix

W
d∼ 𝒞𝒲𝑠(𝑡, 𝜀

2I𝑠,Ω).

A. Joint Ordered Eigenvalue Distributions

The instantaneous MIMO correlation matrix W (or S) is
Hermitian and positive definite, hence its eigenvalues are real
and strictly positive. Let us denote these eigenvalues by the
vector 𝝀 ≜ [𝜆1, 𝜆2, . . . , 𝜆𝑠]

𝑇 , with 𝜆1 ≥ 𝜆2 . . . ≥ 𝜆𝑠 > 0. For
each of the three channel models introduced in Definitions 1–
3, the corresponding joint ordered eigenvalue distributions
admit the following generic form [8, 22, 23, 52]

𝑓(𝝀) = 𝐾∣Φ(𝝀)∣ × ∣Ψ(𝝀)∣
𝑠∏

ℓ=1

𝜉(𝜆ℓ). (6)

Table I on the next page lists the associated parameters for
each of the channel scenarios considered. Note that here we
adopt similar notation as in [23]. In Table I, V1(𝝀) is a
Vandermonde matrix with (𝑖, 𝑗)-th entry 𝜆𝑖−1

𝑗 ; the vectors
𝝈 ≜ [𝜎1, 𝜎2, . . . , 𝜎𝑠]

𝑇 and 𝝎 ≜ [𝜔1, 𝜔2, . . . , 𝜔𝑠]
𝑇 contain the

non-zero ordered eigenvalues (assumed distinct) of Σ𝑠 and Ω,
respectively, i.e. 𝜎1 > 𝜎2 . . . > 𝜎𝑠 > 0 and 𝜔1 > 𝜔2 . . . >
𝜔𝑠 > 0; also, F(𝝀,𝝎) and E(𝝀,𝝈) have (𝑖, 𝑗)-th entries
0ℱ1(𝑡 − 𝑠 + 1;𝜆𝑗𝜔𝑖) and exp(−𝜆𝑗/𝜎𝑖) respectively, with
0ℱ1(⋅; ⋅) denoting the standard generalized hypergeometric
function [53, Eq. (9.14.1)]. Note that in all cases, the (𝑖, 𝑗)-th
element of Φ(𝝀) and Ψ(𝝀) has the same general form:

{Φ(𝝀)}𝑖,𝑗 = 𝜙𝑖(𝜆𝑗), {Ψ(𝝀)}𝑖,𝑗 = 𝜓𝑖(𝜆𝑗) (7)

with 𝜙𝑖(⋅) and 𝜓𝑖(⋅) defined according to the specific channel
scenario, as described above. The generic eigenvalue distribu-
tion (6) will be particularly important for deriving the SCN
distribution in the following.

III. STATISTICS OF THE STANDARD CONDITION NUMBER

The SCN, defined as

𝑧 ≜ 𝜆1

𝜆𝑠
, 𝑧 ≥ 1 (8)

is a metric which determines the invertibility of a matrix. A
condition number close to one indicates a well-conditioned
full-rank matrix with almost equal eigenvalues, whereas a very
high condition number implies a near rank-deficient matrix.
As was previously stated, the SCN arises in various areas in
MIMO communications, as well as other mathematical fields
such as numerical analysis and linear algebra. In general, the
statistical properties of the SCN of MIMO communication
channels have not been well investigated. In this section, we
present new expressions for the distribution of the SCN, which
embraces each of the channel models introduced in Section II.

A. General Framework for the SCN Distribution of Wishart
Matrices

The following theorem establishes a new general framework
for the cumulative distribution function (CDF) of the SCN
of different classes of Wishart matrices, which applies for
arbitrary matrix dimensions and arbitrary DoF. This constitutes
a key contribution of the paper.

Theorem 1: The CDF, 𝐹𝑧(𝑥) = Pr(𝑧 ≤ 𝑥), with 𝑥 ≥
1, of the SCN of an uncorrelated central Wishart matrix,
W

d∼ 𝒞𝒲𝑠 (𝑡, I𝑠), semi-correlated central Wishart matrix,
W

d∼ 𝒞𝒲𝑠 (𝑡,Σ𝑠), and uncorrelated non-central Wishart

matrix, S
d∼ 𝒞𝒲𝑠 (𝑡, I𝑠,Ω), can be represented as3

𝐹𝑧(𝑥)=𝐾

𝑠∑
ℓ=1

∫ ∞

0

∣∣∣∣∣
[ ∫ 𝑥𝜆𝑠

𝜆𝑠
𝜙𝑖(𝑢)𝜓𝑗(𝑢)𝜉(𝑢)𝑑𝑢, 𝑖 ∕= ℓ

𝜙𝑖(𝜆𝑠)𝜓𝑗(𝜆𝑠)𝜉(𝜆𝑠), 𝑖 = ℓ

]∣∣∣∣∣ 𝑑𝜆𝑠

(9)

with 𝜙𝑖(⋅) and 𝜓𝑖(⋅) defined as in (7), while 𝐾 is the
normalization constant given in Table I.

Proof: See Appendix A.
It is important to note that all integrals inside the determi-

nant admit a closed-form solution, for all cases of interest.
Thus, only a single integration is required, whose numerical
evaluation is more robust and efficient compared to conven-
tional Monte-Carlo simulations. The closed-form solutions for
the definite integrals in (9) are summarized in Table II, where
we have made use of [53, Eq. (3.381.1)] and [18, Eq. (4)].
In these expressions, 𝛾(𝑎, 𝑥) denotes the lower incomplete
gamma function [53, Eq. (8.350.1)], and 𝑄𝑝,𝑞(𝑎, 𝑏) is the
Nuttall 𝑄-function defined as [54]

𝑄𝑝,𝑞(𝑎, 𝑏) =

∫ ∞

𝑏

𝑥𝑝 exp

(
−𝑥2 + 𝑎2

2

)
𝐼𝑞(𝑎𝑥)𝑑𝑥 (10)

with 𝐼𝑞(⋅) denoting the 𝑞-th order modified Bessel function of
the first kind.

We now take a deeper look at the numerical evaluation of
the non-central case. We first recall that since the sum of
the indices of the Nuttall-𝑄 function in Table II is always
odd, a closed-form representation is given in [55, Eq. (13)]

3Here we adopt the compact notation for the determinant of a matrix,
written in terms of the (𝑖, 𝑗)-th element.
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TABLE I
JOINT EIGENVALUE PDF OF COMPLEX WISHART MATRICES: PARAMETERS AND NORMALIZATION CONSTANTS

Φ(𝝀) Ψ(𝝀) 𝜉(𝜆ℓ) 𝐾

Uncorrelated central (UC) V1(𝝀) V1(𝝀) 𝜆𝑡−𝑠
ℓ 𝑒−𝜆ℓ 𝐾𝑢𝑐 =

⎡⎣ 𝑠∏
𝑖=1

(𝑠− 𝑖)!

𝑠∏
𝑗=1

(𝑡− 𝑗)!

⎤⎦−1

Semi-correlated central (CC) V1(𝝀) E(𝝀,𝝈) 𝜆𝑡−𝑠
ℓ 𝐾𝑐𝑐 =

𝑠∏
𝑖=1

1

𝜎𝑡
𝑖(𝑡− 𝑖)!

𝑠∏
𝑖<𝑗

𝜎𝑖𝜎𝑗

𝜎𝑗 − 𝜎𝑖

Uncorrelated non-central (UN) V1(𝝀) F(𝝀,𝝎) 𝜆𝑡−𝑠
ℓ 𝑒−𝜆ℓ 𝐾𝑢𝑛 = (𝑡− 𝑠)!−𝑠etr(−𝝎)∣V1(𝝎)∣−1

in terms of Marcum 𝑄-functions and a finite weighted sum
of Bessel functions. Hence, a direct evaluation of (9) involves
either Nuttall-𝑄 or Marcum-𝑄 functions both of which are
somehow difficult to manipulate. In order to simplify the
procedure, a second alternative is to apply the central/non-
central approximation of Lemma 1 on (4), so that the resulting
SCN CDF expression does not involve the Nuttall-𝑄 function.
While this approximation simplifies the non-central analysis,
its accuracy deteriorates at high Ricean 𝐾-factors.

The third alternative, which still leads to an exact solution,
is to expand the involved hypergeometric function in the
integrand of (9), according to [53, Eq. (9.14.1)]

0ℱ1(𝑚;𝑥) =

∞∑
𝑘=0

𝑧𝑘(𝑚− 1)!

𝑘!(𝑚+ 𝑘 − 1)!
(11)

so that the corresponding definite integral inside the determi-
nant for the non-central case becomes

ℐ𝑖,𝑗=
∞∑
𝑘=0

(
(𝑡− 𝑠)!𝜔𝑘

𝑗

𝑘!(𝑡− 𝑠+ 𝑘)!

)(
𝛾(𝑡− 𝑠+ 𝑘 + 𝑖, 𝑥𝜆𝑠)

− 𝛾(𝑡− 𝑠+ 𝑘 + 𝑖, 𝜆𝑠)

)
. (12)

This expression converges quickly for most practical MIMO
configurations and 𝐾-factors, e.g. 𝑡 ≤ 20 and 𝐾𝑟 ≤ 10 dB,
and thus can be truncated to a finite number of terms while still
yielding good accuracy. This accuracy will be demonstrated
through simulations in Section V.

B. Exact Expressions for the SCN Distribution of Dual
Wishart Matrices

We now focus on the case of dual Wishart matrices with
arbitrary DoF, i.e. 𝑠 = 2 and 𝑡 ≥ 2. This scenario is particu-
larly important for MIMO systems, where size/implementation
cost limitations of the mobile terminals typically restrict the
numbers of antennas to be small (e.g. hand-held devices). In
the following, we present a closed-form polynomial expres-
sions for the CDF and PDF of the SCN for the case of dual
uncorrelated central Wishart matrices. We then consider the
more general case of semi-correlated central Wishart.

Theorem 2: The CDF of the SCN of W
d∼ 𝒞𝒲2(𝑡, I2) is

given by

𝐹𝑧(𝑥) = 𝐾𝑢𝑐(𝑝1(𝑥)− 𝑝1(1)), 𝑥 ≥ 1 (13)

TABLE II
CLOSED-FORM EXPRESSIONS FOR THE DEFINITE INTEGRAL IN (9)

ℐ𝑖,𝑗 =
∫ 𝑥𝜆𝑠

𝜆𝑠
𝜙𝑖(𝑢)𝜓𝑗(𝑢)𝜉(𝑢)𝑑𝑢

UC 𝛾(𝑡− 𝑠+ 𝑖+ 𝑗 − 1, 𝑥𝜆𝑠)− 𝛾(𝑡− 𝑠+ 𝑖+ 𝑗 − 1, 𝜆𝑠)

CC (𝛾(𝑡− 𝑠+ 𝑖, 𝑥𝜆𝑠/𝜎𝑗)− 𝛾(𝑡− 𝑠+ 𝑖), 𝜆𝑠/𝜎𝑗))𝜎
𝑡−𝑠+𝑖
𝑗

UN

(𝑡− 𝑠)!𝑒𝜔𝑗𝜔
(𝑠−𝑡)/2
𝑗 2(𝑠−𝑡−2𝑖+2)/2

×
(
𝑄𝑡−𝑠+2𝑖−1,𝑡−𝑠

(√
2𝜔𝑗,

√
2𝜆𝑠

)
−𝑄𝑡−𝑠+2𝑖−1,𝑡−𝑠

(√
2𝜔𝑗,

√
2𝑥𝜆𝑠

))

where

𝑝1(𝑦) = Δ1(𝑡, 𝑡− 1, 𝑦)− 2Δ1(𝑡− 1, 𝑡, 𝑦)+Δ1(𝑡− 2, 𝑡+1, 𝑦)

and

Δ1(𝑚,𝑛, 𝑦) = (𝑛− 1)!

(
𝑚!−

𝑛−1∑
𝑘=0

(𝑚+ 𝑘)!𝑦𝑘

𝑘!(𝑦 + 1)𝑚+𝑘+1

)
.

Proof: We start by particularizing (9) to the uncorrelated
central Wishart scenario using Table I. Then, by substituting
𝑠 = 2 and expanding the determinant gives

𝐹𝑧(𝑥) = 𝐾𝑢𝑐

{∫ ∞

0

𝑒−𝜆2𝜆𝑡−2
2

(
𝜆2
2

∫ 𝑥𝜆2

𝜆2

𝑢𝑡−2𝑒−𝑢𝑑𝑢

−2𝜆2

∫ 𝑥𝜆2

𝜆2

𝑢𝑡−1𝑒−𝑢𝑑𝑢+

∫ 𝑥𝜆2

𝜆2

𝑢𝑡𝑒−𝑢𝑑𝑢

)
𝑑𝜆2

}
. (14)

The result follows by integrating using [53, Eq. (3.351.1)] and
[53, Eq. (3.351.3)], and simplifying.

Corollary 1: The PDF of the SCN of W
d∼ 𝒞𝒲2(𝑡, I2) is

given by

𝑓(𝑧) = 𝐾𝑢𝑐

(
Δ2(𝑡, 𝑡− 1, 𝑧)− 2Δ2(𝑡− 1, 𝑡, 𝑧)

+Δ2(𝑡− 2, 𝑡+ 1, 𝑧)

)
, 𝑧 ≥ 1 (15)

where

Δ2(𝑚,𝑛, 𝑦) = −(𝑛− 1)!

𝑛−1∑
𝑘=0

(𝑚+ 𝑘)!𝑦𝑘−1(𝑘 − (𝑚+ 1)𝑦)

𝑘!(𝑦 + 1)𝑚+𝑘+2
.

Proof: Obtained by differentiating (13).
Note that an alternative expression for the SCN PDF of
uncorrelated central Wishart matrices was also originally given
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by Edelman in [41, Eq. (7.2)].4 We have, however, included the
result (15), derived using different methods and in the context
of our new general framework, for the sake of completeness.
In the following, we derive exact closed-form expressions for
the CDF and PDF of the SCN for dual semi-correlated central
Wishart matrices. To the best of our knowledge, these results
are new.

Theorem 3: The CDF of the SCN of W
d∼ 𝒞𝒲2(𝑡,Σ2) is

given as

𝐹𝑧(𝑥) = 𝐾𝑐𝑐(𝑝2(𝑥) − 𝑝2(1)), 𝑧 ≥ 1 (16)

where 𝑝2(𝑦) is defined in (17) while

Δ3(𝑚,𝑛, 𝜇, 𝜈, 𝑦)

= (𝑛− 1)!

(
𝑚!

𝜇𝑛𝜈𝑚+1
−

𝑛−1∑
𝑘=0

(𝑚+ 𝑘)!𝑦𝑘

𝑘!𝜇𝑛−𝑘(𝜇𝑦 + 𝜈)𝑚+𝑘+1

)
.

Proof: We start by particularizing (9) to the semi-
correlated central Wishart scenario using Table I. Then, sub-
stituting 𝑠 = 2 and expanding the determinant gives (18).
Integrating using [53, Eq. (3.351.1)] and [53, Eq. (3.351.3)],
we readily obtain (16).

Corollary 2: The PDF of the SCN of W
d∼ 𝒞𝒲2(𝑡,Σ2) is

given in (19) at the bottom of the page while

Δ4(𝑚,𝑛, 𝜇, 𝜈, 𝑦)

= −(𝑛− 1)!

𝑛−1∑
𝑘=0

(𝑚+ 𝑘)!𝑦𝑘−1(𝑘𝜈 − 𝜇(𝑚+ 1)𝑦)

𝑘!𝜇𝑛−𝑘(𝜇𝑦 + 𝜈)𝑚+𝑘+2
.

Proof: Obtained by differentiating (16).
In contrast to the dual central uncorrelated and semi-

correlated Wishart scenarios considered above, the case of
dual uncorrelated non-central Wishart matrices does not lend
itself to a tractable representation. This is due, primarily, to
the cross-products of hypergeometric and Nuttall-𝑄 functions
that arise upon the determinant expansion in (9). However,
an infinite series representation can be obtained as in [48],

4Reference [41] adopts a slightly different definition of the SCN, given by
the square root of (8).

while a closed-form approximation for the SCN CDF/PDF of
dual complex non-central Wishart matrices is directly obtained
from Theorem 3 and Corollary 2 respectively, upon application
of Lemma 1 (i.e. by invoking the central/non-central Wishart
approximation).

C. High-Tail Distribution for the SCN of Wishart Matrices

We now investigate the probability of experiencing an
“extremely large” condition number. This is an important
issue for various practical applications. For example, in the
MIMO context, it predicts the probability of experiencing an
extremely poor channel due to fading. Moreover, since the
performance of MIMO linear receivers is intimately related
to the channel condition number, the asymptotic analysis
provides insights into the likelihood of such receivers failing
in practice [32]. The asymptotic analysis is also important
for characterizing the performance and complexity of adaptive
MIMO detectors [34] or lattice-aided MIMO receivers [56],
and has direct implications for the design of detection thresh-
olds for spectrum sensing algorithms (see for instance [35–
37]).

The high-tail distribution of uncorrelated central Wishart
matrices was recently established in [44, Theorem 3.2], which
revealed an interesting relationship in terms of the maximum
eigenvalue moments of a smaller Wishart matrix. Using a
similar technique to that of [44], we herein generalize that
result to the case of semi-correlated central Wishart matrices,
and demonstrate a similar interesting relationship in terms of
maximum eigenvalue moments.

We first require the following lemma:
Lemma 2: Let 𝑓(𝜆1, 𝜆𝑠) be the joint density of the maxi-

mum and minimum eigenvalues of W
d∼ 𝒞𝒲𝑠(𝑡,Σ𝑠). Then,

for fixed 𝜆1,

𝑓(𝜆1, 𝜆𝑠) ∼ 𝑓asy(𝜆1, 𝜆𝑠)

= (𝑡− 𝑠+ 1)𝜆𝑡−𝑠
𝑠

𝑠∑
ℓ=1

𝒦ℓ 𝑔𝑠−1,𝑡

(
𝜆1, 𝜎[ℓ]

)
, (𝜆𝑠 → 0)

(20)

𝑝2(𝑦) = Δ3(𝑡− 1, 𝑡− 1, 1/𝜎1, 1/𝜎2, 𝑦)−Δ3(𝑡− 2, 𝑡, 1/𝜎1, 1/𝜎2, 𝑦)

− Δ3(𝑡− 1, 𝑡− 1, 1/𝜎2, 1/𝜎1, 𝑦) + Δ3(𝑡− 2, 𝑡, 1/𝜎2, 1/𝜎1, 𝑦). (17)

𝐹𝑧(𝑥) = 𝐾𝑐𝑐

{∫ ∞

0

𝑒−𝜆2/𝜎2𝜆𝑡−2
2

(
𝜆2

∫ 𝑥𝜆2

𝜆2

𝑢𝑡−2𝑒−𝑢/𝜎1𝑑𝑢−
∫ 𝑥𝜆2

𝜆2

𝑢𝑡−1𝑒−𝑢/𝜎1𝑑𝑢

)
𝑑𝜆2

−
∫ ∞

0

𝑒−𝜆2/𝜎1𝜆𝑡−2
2

(
𝜆2

∫ 𝑥𝜆2

𝜆2

𝑢𝑡−2𝑒−𝑢/𝜎2𝑑𝑢−
∫ 𝑥𝜆2

𝜆2

𝑢𝑡−1𝑒−𝑢/𝜎2𝑑𝑢

)
𝑑𝜆2

}
. (18)

𝑓(𝑧) = 𝐾𝑐𝑐

(
Δ4(𝑡− 1, 𝑡− 1, 1/𝜎1, 1/𝜎2, 𝑧)−Δ4(𝑡− 2, 𝑡, 1/𝜎1, 1/𝜎2, 𝑧)

−Δ4(𝑡− 1, 𝑡− 1, 1/𝜎2, 1/𝜎1, 𝑧) + Δ4(𝑡− 2, 𝑡, 1/𝜎2, 1/𝜎1, 𝑧)

)
, 𝑧 ≥ 1 (19)
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where 𝝈[ℓ] is the set of eigenvalues of Σ𝑠 with the ℓ-th
eigenvalue removed, and 𝑔𝑠−1,𝑡

(
𝜆1, 𝜎[ℓ]

)
denotes the density

of the maximum eigenvalue of a reduced-dimension semi-
correlated Wishart matrix W

d∼ 𝒞𝒲𝑠−1

(
𝑡, diag

(
𝝈[ℓ]

))
. The

constant, 𝒦ℓ, is given by

𝒦ℓ =
(−1)ℓ(ℓ−1)/2

(𝑡− 𝑠+ 1)!
𝜎𝑠−𝑡−1
ℓ

𝑠∏
𝑖=1
𝑖∕=ℓ

𝜎𝑖

𝜎𝑖 − 𝜎ℓ
. (21)

In addition, the density 𝑓(𝜆1, 𝜆𝑠) is bounded above by
𝑓(𝜆1, 𝜆𝑠) ≤ 𝑓asy(𝜆1, 𝜆𝑠).

Proof: See Appendix B.

We can now present the main theorem for the asymptotic
SCN complementary CDF (CCDF).

Theorem 4: Let 𝑧 denote the SCN of W
d∼ 𝒞𝒲𝑠(𝑡,Σ𝑠).

Then, as 𝑥 tends to infinity

Pr(𝑧 > 𝑥) ∼ 𝑝asy(𝑥) =

(
𝑠∑

ℓ=1

𝒦ℓ 𝜇ℓ

)
𝑥−(𝑡−𝑠+1), (𝑥 → ∞)

(22)

where 𝜇ℓ denotes the (𝑡− 𝑠+1)-th moment of the maximum
eigenvalue of a reduced-dimension semi-correlated Wishart
matrix W

d∼ 𝒞𝒲𝑠−1

(
𝑡, diag

(
𝝈[ℓ]

))
, i.e.

𝜇ℓ =

∫ ∞

0

𝜆𝑡−𝑠+1
1 𝑔𝑠−1,𝑡

(
𝜆1,𝝈[ℓ]

)
𝑑𝜆1. (23)

Moreover, we have that Pr(𝑧 > 𝑥) ≤ 𝑝asy(𝑥).

Proof: See Appendix C.

A closed-form expression for 𝜇ℓ, which relies on the
marginal eigenvalue statistics of central Wishart matrices, can
be found in [24, Eq. (23)]; therefore, Theorem 4 represents a
new closed-form solution for the asymptotic tail distribution
of semi-correlated central Wishart matrices of arbitrary di-
mension. Combined with Lemma 1, this result also provides
a closed-form approximation for the high-tail distribution of
complex non-central Wishart matrices.

To gain more insights, it is convenient to consider the case
of dual Wishart matrices, for which the asymptotic tail distri-
butions admit particularly simple forms. These are given in the
following two corollaries, for the case of central uncorrelated
and semi-correlated Wishart matrices, respectively.

Corollary 3: Let 𝑧 denote the SCN of W
d∼ 𝒞𝒲2(𝑡, I2).

Then, as 𝑥 tends to infinity,

Pr(𝑧 > 𝑥) ∼ (2𝑡− 1)!

((𝑡− 1)!)
2
𝑥𝑡−1

, (𝑥 → ∞). (24)

Proof: Obtained by taking 𝑧 large in (15) and integrating.

Note that an analogous expression has also been derived in
[44, Page 13]. In the context of MIMO communications, this
result shows that by increasing the number of antennas, 𝑡, we
can reduce the probability of experiencing an ill-conditioned
channel in an uncorrelated Rayleigh fading environment.

Corollary 4: Let 𝑧 denote the SCN of W
d∼ 𝒞𝒲2(𝑡,Σ2).

Then, as 𝑥 tends to infinity,

Pr(𝑧 > 𝑥) ∼ (2𝑡− 2)!

((𝑡− 1)!)
2

(
𝜎2𝑡−1
2 − 𝜎2𝑡−1

1

)
∣Σ2∣𝑡−1(𝜎2 − 𝜎1)𝑥𝑡−1

, (𝑥 → ∞).

(25)

Proof: Obtained by taking 𝑧 large in (19) and integrating.

This result shows that the presence of spatial correlation
tends to increase the probability of experiencing a highly ill-
conditioned channel. To see this, note that the determinant
in the denominator of (25) varies inversely with the level of
correlation, satisfying 0 ≤ ∣Σ2∣ ≤ 1, with the right-hand
side equality holding when the channel is uncorrelated (i.e.
Σ2 = I2). Moreover, the ratio

(
𝜎2𝑡−1
2 − 𝜎2𝑡−1

1

)
/(𝜎2 − 𝜎1)

varies monotonically with the level of correlation, attaining
its minimal value, 2𝑡− 1, when 𝜎1 = 𝜎2 = 1.

For all results in this section, we have shown that the
probability of drawing a highly ill-conditioned channel goes
to zero polynomially as 𝑥−(𝑡−𝑠+1). This implies that the con-
ditioning of the channel is significantly improved for highly
“rectangular” matrices (i.e. 𝑡 ≫ 𝑠), compared with “square”
Wishart matrices (i.e. 𝑡 = 𝑠). To further investigate this
phenomenon, we note that the upper tail behavior is intimately
related to the existence of moments of the distribution.

The existence of the moments for both central uncorrelated
and semi-correlated Wishart matrices is given by the following
theorem:

Theorem 5: Let 𝑧 denote the SCN of W
d∼ 𝒞𝒲𝑠(𝑡, I𝑠) or

W
d∼ 𝒞𝒲𝑠(𝑡,Σ𝑠). Then, only the first 𝑡 − 𝑠 moments of 𝑧

exist.
Proof: See Appendix D.

This property helps to explain the badly behaved nature of
the condition number distributions, especially when 𝑡 ≈ 𝑠. For
example, when 𝑡 = 𝑠, the mean does not exist; for 𝑡 = 𝑠+ 1,
the mean does exist but not the variance; for 𝑡 = 𝑠 + 2, the
variance exists but no higher order moments, and so forth.

IV. STATISTICS OF THE DEMMEL CONDITION NUMBER

The DCN, defined as

𝜅 =
𝜂𝑠
𝜆𝑠

, 𝜅 ≥ 𝑠 (26)

with 𝜂𝑠 =
∑𝑠

𝑘=1 𝜆𝑘 denoting the matrix trace, is another
important metric which has been considered in various areas,
such as numerical analysis, sphericity tests in multivariate
statistics, eigenvalue computation, and matrix inversion. For a
detailed review of DCN mathematical applications, see [57].
Apart from [39, 40], the DCN has also found application in
the analysis of indoor MIMO-OFDM systems [58], and in
the analytical prediction of level-crossing and fade duration
statistics of i.i.d. Rayleigh channels [59]. We now derive new
expressions for the distribution of the DCN for the channel
models introduced in Section II.

A. Exact Expressions for the DCN of Dual Wishart Matrices

In general, it appears quite difficult to obtain an exact
characterization of the DCN statistics for arbitrary dimensions,
as was presented for the SCN in Theorem 1. The main
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challenge is the complexity of the required multi-dimensional
integration in this case, which, for matrix dimensions 𝑠 > 2,
needs to be performed over a complicated surface. For more
details, see [60, Eq. (24)] and the subsequent discussion,
which tackled a similar problem in the context of radar signal
processing.

For this reason, we explicitly focus on the case of dual
Wishart matrices. We start by presenting a new expression
for the CDF and PDF of the DCN for the case of dual
uncorrelated central Wishart matrices, and then consider the
more general case of semi-correlated central Wishart. We
note that alternative DCN expressions can be directly derived
by combining the SCN results of Section III-B with the
relationship 𝜅 = 𝑧 + 1, which holds for the dual case. The
following analysis, however, follows a slightly different line
of reasoning and leads to simplified expressions.

Theorem 6: The PDF of the DCN of W
d∼ 𝒞𝒲2(𝑡, I2) is

given by

𝑓(𝜅) = 𝑐1𝜅
−2𝑡(𝜅− 1)𝑡−2(2− 𝜅)2, 𝜅 ≥ 2 (27)

where 𝑐1 = Γ(2𝑡)/(Γ(𝑡)Γ(𝑡−1)), and Γ(⋅) denotes the gamma
function.

Proof: The proof stems from a result presented recently
in [60, Eq. (25)], which returns the PDF of the ratio of the
maximum eigenvalue to the matrix trace, i.e. 𝛽 = 𝜆1/𝜂𝑠. Due
to symmetry, this also holds for the inverse of the DCN, 𝜁 =
1/𝜅, with the only difference pertaining to the interval bounds,
i.e. 0 ≤ 𝜁 ≤ 1/2. Thus, by applying a transformation of
variables, the result is obtained.

Corollary 5: The CDF of the DCN of W
d∼ 𝒞𝒲2(𝑡, I2) is

given by
𝐹𝜅(𝑥) = 𝑐1(Δ5(𝑡, 𝑥) −Δ5(𝑡, 2)) (28)

where

Δ5(𝑛, 𝑦) =

𝑛−2∑
𝑘=0

(
𝑛− 2

𝑘

)
(−1)𝑘+1

×
(
4𝑦−(𝑛+𝑘+1)

𝑛+ 𝑘 + 1
− 4𝑦−(𝑛+𝑘)

𝑛+ 𝑘
+

4𝑦−(𝑛+𝑘−1)

𝑛+ 𝑘 − 1

)
. (29)

Proof: Referring back to (27), the CDF is equal to
𝐹𝜅(𝑥) =

∫ 𝑥

2
𝑓(𝜅)𝑑𝜅 which upon applying a binomial expan-

sion and evaluating all integrals term-by-term, yields (28).

Theorem 7: The PDF of the DCN of W
d∼ 𝒞𝒲2(𝑡,Σ2) is

given by

𝑓(𝜅) = 𝑐2(𝜅− 2)(𝜅− 1)𝑡−2

×
(
Δ6(𝜎1, 𝜎2, 𝜅)

1−2𝑡 −Δ6(𝜎2, 𝜎1, 𝜅)
1−2𝑡

)
, 𝜅 ≥ 2 (30)

where 𝑐2 = Γ(2𝑡−1)(𝜎1𝜎2)
1−𝑡/(Γ(𝑡)Γ(𝑡−1)(𝜎1−𝜎2)), and

Δ6(𝑎, 𝑏, 𝑦) =
𝑦 − 1

𝑎
+

1

𝑏
. (31)

Proof: We begin with the joint eigenvalue PDF of a dual
semi-correlated central Wishart matrix

𝑓(𝜆1, 𝜆2) = 𝐾𝑐𝑐(𝜆2 − 𝜆1)(𝜆1𝜆2)
𝑡−2

×
(
𝑒−(𝜆1/𝜎1+𝜆2/𝜎2) − 𝑒−(𝜆2/𝜎1+𝜆1/𝜎2)

)
. (32)

Setting 𝜂2 = 𝜆1 + 𝜆2 and 𝜁 = 𝜆2/𝜂2, we apply the trans-
formation: (𝜆1, 𝜆2) �→ (𝜂2, 𝜁). Integrating out 𝜂2 using the
integral identity [53, Eq. (3.351.3)] and after some algebraic
manipulations and simplifications we can obtain the desired
result.

Corollary 6: The CDF of the DCN of W
d∼ 𝒞𝒲2(𝑡,Σ𝑠)

is given by (33) at the bottom of the page where

Δ7(𝑎, 𝑏, 𝜈, 𝑦) =
(𝜈
𝑎

)2𝑡−1 𝑡−2∑
𝑘=0

(
𝑡− 2

𝑘

)
(−1)𝑘

×
(
𝐼1(𝑡− 𝑘 − 1, 𝑏, 𝑎, 2𝑡− 1, 𝑥)

− 2𝐼1(𝑡− 𝑘 − 2, 𝑏, 𝑎, 2𝑡− 1, 𝑥)

)
(34)

with

𝐼1(𝑛, 𝑏, 𝑎,𝑚, 𝑦) =
𝑦𝑛+1

𝑛+ 1
2𝐹1(𝑚,𝑛+ 1;𝑛+ 2;−𝑦𝑏/𝑎)

(35)

where 2𝐹1(⋅, ⋅; ⋅; ⋅) denotes the classical Gaussian hypergeo-
metric function [53, Eq. (9.14.2)].

Proof: The result is obtained by substituting (30) in
𝐹𝜅(𝑥) =

∫ 𝑥

2
𝑓(𝜅)𝑑𝜅, applying the binomial expansion and

solving the resulting integrals using [53, Eq. (3.194)].
As before, the case of dual uncorrelated non-central Wishart

matrices can be tackled via Theorem 7 and Corollary 6
respectively, upon application of Lemma 1. Finally, for the
case of dual Wishart matrices, the DCN limiting distributions
(for asymptotically large values) are identical to those of the
SCN, as given in Corollary 3 and Corollary 4 for central un-
correlated and semi-correlated Wishart matrices respectively.
This follows since 𝜅 = 𝑧 + 1 and in the high-tail 𝑧 ≫ 1.

V. NUMERICAL RESULTS

In this section, we validate the theoretical analysis pre-
sented in Sections III and IV through comparison with Monte-
Carlo simulations. We also investigate the implications of the
model parameters on the condition number distributions. The
simulation results are obtained by generating 50,000 random
samples of the random matrix H according to (2)–(4), for
the three different Wishart scenarios under investigation. For

𝐹𝜅(𝑥) = 𝑐2

(
Δ7

(
𝜎1 − 𝜎2

𝜎1
,
𝜎2

𝜎1
, 𝜎2, 𝑥

)
−Δ7

(
𝜎2 − 𝜎1

𝜎2
,
𝜎1

𝜎2
, 𝜎1, 𝑥

)
−Δ7

(
𝜎1 − 𝜎2

𝜎1
,
𝜎2

𝜎1
, 𝜎2, 2

)
+Δ7

(
𝜎2 − 𝜎1

𝜎2
,
𝜎1

𝜎2
, 𝜎1, 2

))
, 𝑥 ≥ 2 (33)
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Fig. 1. SCN CDF of an 8× 3 MIMO channel under uncorrelated Rayleigh,
semi-correlated Rayleigh (𝜌 = 0.6) and uncorrelated Ricean (𝐾𝑟 = 3 dB)
fading.

the semi-correlated Wishart case, we construct Σ𝑠 according
to the widely used exponential correlation model [61], due
to its simplicity. Specifically, the entries of Σ𝑠 are generated
as (Σ𝑠)𝑖,𝑗 = 𝜌∣𝑖−𝑗∣, where 𝜌 ∈ [0, 1). For the uncorrelated
non-central Wishart case, we model the deterministic channel
component (channel mean) using the conventional configura-
tion [48], which returns a single dominant eigenvalue. It is
important to note, however, that our analytical results apply
to arbitrary correlation structures (with distinct eigenvalues),
and to LoS MIMO configurations with arbitrary rank of the
mean channel matrix.

Figure 1 validates the generic framework for the SCN CDF,
presented in Theorem 1. An 8×3 MIMO channel is considered
under all three different fading conditions: uncorrelated, semi-
correlated Rayleigh (with 𝜌 = 0.6), and uncorrelated Ricean
(with 𝐾𝑟 = 3 dB). For the latter case, we consider both
the infinite series expansion introduced in (12) (truncated
to the first thirty dominant terms) as well as the simplified
approximation based on Lemma 1. We see that the analytical
curves for all cases agree precisely with the simulations, and
that the analytical central-non-central Wishart approximation
is accurate. Moreover, the presence of either spatial correlation
or non-zero mean tends to increase the SCN spread and shifts
the corresponding CDF to the right, thereby degrading the
channel conditioning.

Figure 2 investigates the asymptotic high-tail behavior of
the SCN distribution under semi-correlated Rayleigh fading.
Results are shown for the same MIMO configuration as in
Fig. 1, for various values of 𝜌. The simulated curves represent
the scaled probability, 𝑥𝑡−𝑠+1Pr(𝑧 > 𝑥), and are clearly seen
to converge to the analytical limiting values predicted by
Theorem 4. Moreover, we see that higher values of 𝜌 tend
to increase the probability of experiencing an ill-conditioned
channel, whilst also reducing the convergence speed of the
associated curves.

Figure 3 verifies the closed-form expressions for the CDF
and PDF of the DCN of dual central uncorrelated Wishart
matrices, given in Corollary 5 and Theorem 6 respectively. Re-
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Fig. 2. High-tail behavior of SCN CDF of an 8× 3 MIMO channel under
semi-correlated Rayleigh fading.

sults are shown for 𝑁𝑡 = 2 and various 𝑁𝑟. As expected, there
is a precise match between the analysis and simulations. We
clearly see that the conditioning of the channel significantly
improves as 𝑁𝑟 increases (i.e. the channel matrix becomes
“more rectangular”).

Figure 4 more closely investigates the effect of spatial
correlation on the SCN and DCN distributions. The analytical
results are based on Theorem 3 and Corollary 6, respectively.
Both figures confirm that the presence of spatial correlation
leads to a significant reduction in the conditioning of the
channel. Note also that the corresponding SCN and DCN
curves (i.e. for a given 𝜌) are very similar. This is explained
by recalling that for the dual case under consideration the
following relationship holds 𝜅 = 𝑧 + 1.

Finally, the effect of the 𝐾-factor on the SCN is depicted in
Fig. 5. The analytical results are based on Corollary 2, and the
simplified approximation in Lemma 1. We see that in all cases,
the analytical approximation yields good accuracy. Moreover,
as 𝐾𝑟 increases, the mean and the variance of SCN increase
as well, demonstrating that the conditioning of the channel
degrades with 𝐾𝑟. Note however, that this behavior is due to
the assumption that the channel mean has a single dominant
eigenvalue; consequently, as 𝐾𝑟 → ∞, the SCN becomes
infinitely large. In contrast, for more well conditioned LoS
configurations, the effect of 𝐾𝑟 may not be so severe.

VI. CONCLUSION

The statistical properties of the SCN of complex Wishart
matrices have key importance in the field of MIMO systems,
as well as various other applications. In this contribution, we
have presented a new generic framework for characterizing
the SCN distribution of complex Wishart matrices, which
yields a simple unified expression applying for both central
and non-central Wishart distributions of arbitrary dimension.
For the special and practically important case of dual Wishart
matrices, we also derived exact polynomial expressions for the
SCN and DCN distributions.

In addition, we proposed a novel closed-form expression
for the asymptotic tail distribution of the SCN for correlated
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Fig. 3. DCN CDF and PDF of a dual uncorrelated Rayleigh MIMO channel
for different numbers of receive antennas.

central Wishart matrices of arbitrary dimension, and demon-
strated an interesting relationship to the maximum eigenvalue
moments of Wishart matrices of smaller dimension. Our ana-
lytical results were verified through comparison with Monte-
Carlo simulations and were used to gain fundamental insights
of the statistical behavior of the channel conditioning for
various MIMO fading scenarios, such as uncorrelated/semi-
correlated Rayleigh fading and Ricean fading.

APPENDIX A
PROOF OF THEOREM 1

The CDF of the SCN can be evaluated in an integral form
as follows

𝐹𝑧(𝑥) =

∫ ∞

0

[∫ 𝑥𝜆𝑠

𝜆2

⋅ ⋅ ⋅
∫ 𝑥𝜆𝑠

𝜆𝑠

𝑓(𝝀)𝑑𝜆𝑠−1 . . . 𝑑𝜆1

]
𝑑𝜆𝑠.

(36)
We emphasize the fact that the multiple integral term

inside the square brackets of (36) denotes the probability that
(𝜆1, 𝜆2, . . . , 𝜆𝑠−1) all lie within the interval [𝜆𝑠, 𝑥𝜆𝑠]. Since
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Fig. 4. SCN and DCN CDF of a 6 × 2 semi-correlated Rayleigh MIMO
channel for different correlation coefficients, 𝜌.

𝑓(𝝀) is symmetric in all of its arguments, we can reformulate
(36) as

𝐹𝑧(𝑥) =
1

(𝑠− 1)!

∫ ∞

0

∫ 𝑥𝜆𝑠

𝜆𝑠

⋅ ⋅ ⋅
∫ 𝑥𝜆𝑠

𝜆𝑠

𝑓(𝝀)𝑑𝜆1 . . . 𝑑𝜆𝑠−1𝑑𝜆𝑠.

(37)
Now, substituting (6) into (37) and expanding ∣Φ(𝝀)∣ using
the definition of the determinant (i.e. Liebniz determinant
formula), we obtain

𝐹𝑧(𝑥) =
𝐾

(𝑠− 1)!

∫ ∞

0

∑
𝛼

(−1)𝛼
∫ 𝑥𝜆𝑠

𝜆𝑠

⋅ ⋅ ⋅
∫ 𝑥𝜆𝑠

𝜆𝑠

∣𝜙𝛼𝑖(𝜆𝑖)

×𝜓𝑗(𝜆𝑖)𝜉(𝜆𝑖)∣𝑑𝜆1 . . . 𝑑𝜆𝑠−1𝑑𝜆𝑠

(38)

where 𝛼 = {𝛼1, 𝛼2, . . . , 𝛼𝑠} is a permutation of the integers
{1, 2, . . . , 𝑠}, and the summation is taken over all such per-
mutations. This can be further simplified as

𝐹𝑧(𝑥) =
𝐾

(𝑠− 1)!

∫ ∞

0

∑
𝛼

(−1)𝛼∣𝐼𝛼𝑖,𝑗∣𝑑𝜆𝑠 (39)
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Fig. 5. SCN PDF of a 2×5 uncorrelated Ricean MIMO channel for different
Ricean 𝐾-factors, 𝐾𝑟 .

where the elements of the matrix 𝐼𝑎𝑖,𝑗 , (1 ≤ 𝑖, 𝑗 ≤ 𝑠), are
given by

𝐼𝛼𝑖,𝑗 =

⎧⎨⎩
∫ 𝑥𝜆𝑠

𝜆𝑠

𝜙𝛼𝑖(𝑢)𝜓𝑗(𝑢)𝜉(𝑢)𝑑𝑢, if 𝑖 ∕= 𝑠

𝜙𝛼𝑖(𝜆𝑠)𝜓𝑗(𝜆𝑠)𝜉(𝜆𝑠), if 𝑖 = 𝑠.

(40)

After reordering the rows, the determinant of 𝐼𝑎𝑖,𝑗 can be
written as

∣𝐼𝛼𝑖,𝑗 ∣ = (−1)𝛼

∣∣∣∣∣
[ ∫ 𝑥𝜆𝑠

𝜆𝑠
𝜙𝛼𝑖(𝑢)𝜓𝑗(𝑢)𝜉(𝑢)𝑑𝑢, if 𝑖 ∕= 𝛼𝑠

𝜙𝛼𝑖(𝜆𝑠)𝜓𝑗(𝜆𝑠)𝜉(𝜆𝑠), if 𝑖 = 𝛼𝑠

]∣∣∣∣∣
(41)

The result now follows by substituting (41) into (39) and
collecting common terms in the summation.

APPENDIX B
PROOF OF LEMMA 2

The joint distribution of the maximum and minimum eigen-
values is calculated by integrating the joint eigenvalue PDF (6)
as follows

𝑓(𝜆1, 𝜆𝑠) =

∫
⋅ ⋅ ⋅
∫
𝒟
𝑓(𝝀)𝑑𝜆𝑠−1 . . . 𝑑𝜆2 (42)

where the multiple integration is taken over the region 𝒟 =
{𝜆𝑠 ≤ 𝜆𝑠−1 ≤ . . . ≤ 𝜆2 ≤ 𝜆1}. To address this integration,
we first aim to isolate terms involving 𝜆𝑠 in the joint eigen-
value PDF (6). To this end, first note that

∣Φ(𝝀)∣ = ∣𝜆𝑖−1
𝑗 ∣ =

∏
1≤𝑖<𝑗≤𝑠

(𝜆𝑗 − 𝜆𝑖)

= (−1)𝑠−1
∏

1≤𝑖<𝑗≤𝑠−1

(𝜆𝑗 − 𝜆𝑖)

𝑠−1∏
𝑖=1

(𝜆𝑖 − 𝜆𝑠) (43)

and apply Laplace’s expansion to expand the determinant
∣Ψ(𝝀)∣ along its last column as

∣Ψ(𝝀)∣ = ∣𝜓𝑖(𝜆𝑗)∣ =
𝑠∑

ℓ=1

(−1)ℓ+𝑠𝜓ℓ(𝜆𝑠)∣Ψℓ(𝜆1, . . . , 𝜆𝑠−1)∣
(44)

where Ψℓ(𝜆1, . . . , 𝜆𝑠−1) is the minor of Ψ(𝝀) with the last
column and ℓ-th row removed.

Substituting (6) into (42) and using (43) and (44), we obtain

𝑓(𝜆1, 𝜆𝑠) = 𝐾𝜉(𝜆𝑠)

𝑠∑
ℓ=1

(−1)ℓ−1𝜓ℓ(𝜆𝑠)ℐℓ (𝜆1, 𝜆𝑠) (45)

where

ℐℓ (𝜆1, 𝜆𝑠) =

∫
⋅ ⋅ ⋅
∫
𝒟

𝑠−1∏
𝑖=1

𝜉(𝜆𝑖)
∏

1≤𝑖<𝑗≤𝑠−1

(𝜆𝑗 − 𝜆𝑖)

×
𝑠−1∏
𝑖=1

(𝜆𝑖 − 𝜆𝑠) ∣Ψℓ(𝜆1, . . . , 𝜆𝑠−1)∣ 𝑑𝜆𝑠−1 . . . 𝑑𝜆2. (46)

Now, using similar arguments to [44, Lemma 3.1], we
can apply the Dominated Convergence Theorem and observe
that as 𝜆𝑠 → 0 the integrand converges upwards to a
constant which, by comparison with (6), matches precisely
with the joint eigenvalue density of a reduced-dimension semi-
correlated Wishart matrix W

d∼ 𝒞𝒲𝑠−1

(
𝑡, diag

(
𝝈[ℓ]

))
, but

without the normalization constant 𝐾 . As such, all eigenvalues
except for 𝜆1 are integrated out, and we have

lim
𝜆1→0

ℐℓ (𝜆1, 𝜆𝑠) =
𝑔𝑠−1,𝑡

(
𝜆1,𝝈[ℓ]

)
𝐾𝑐𝑐(𝝈[ℓ])

(47)

with 𝐾𝑐𝑐(𝝈[ℓ]) denoting the integration constant 𝐾𝑐𝑐 for

the distribution W
d∼ 𝒞𝒲𝑠−1

(
𝑡, diag

(
𝝈[ℓ]

))
(see Table I).

Finally, substituting (47) into (45), noting that 𝜉(𝜆𝑠) = 𝜆𝑡−𝑠
𝑠

and that

𝜓ℓ(𝜆𝑠) = 𝑒−𝜆𝑠/𝜎ℓ = 1 + 𝑜(1), (𝜆𝑠 → 0) (48)

and performing some basic algebraic manipulations yields the
desired result.

In order to validate the upper bound for the joint eigen-
value PDF 𝑓(𝜆1, 𝜆𝑠) ≤ 𝑓asy(𝜆1, 𝜆𝑠), we refer back to (42)
and upper bound the joint distribution of the maximum and
minimum eigenvalues as follows

𝑓(𝜆1, 𝜆𝑠) ≤
∫

⋅ ⋅ ⋅
∫

˜𝒟
𝑓(𝝀)𝑑𝜆𝑠−1 . . . 𝑑𝜆2 (49)

where the integration is performed over the expanded region
𝒟̃ = {0 ≤ 𝜆𝑠−1 ≤ . . . ≤ 𝜆2 ≤ 𝜆1}. Omitting explicit details
for the sake of clarity, the final result is obtained by substi-
tuting the joint eigenvalue PDF (6), further upper bounding it
via
∏𝑠−1

𝑖=1 (𝜆𝑖 − 𝜆𝑠) ≤
∏𝑠−1

𝑖=1 𝜆𝑖, and then following the same
procedure as above.

APPENDIX C
PROOF OF THEOREM 4

To prove (22), we are required to show

lim
𝑥→∞𝑥𝑡−𝑠+1Pr(𝑧 > 𝑥) =

𝑠∑
ℓ=1

𝒦ℓ 𝜇ℓ. (50)

The exact tail distribution is given by

Pr(𝑧 > 𝑥) =

∫ ∞

0

∫ 𝑥−1𝜆1

0

𝑓(𝜆1, 𝜆𝑠)𝑑𝜆𝑠𝑑𝜆1. (51)
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Therefore, let us write

lim
𝑥→∞𝑥𝑡−𝑠+1Pr(𝑧 > 𝑥) = lim

𝑥→∞

∫ ∞

0

𝒥 (𝜆1, 𝑥)𝑑𝜆1 (52)

where

𝒥 (𝜆1, 𝑥) = 𝑥𝑡−𝑠+1

∫ 𝑥−1𝜆1

0

𝑓(𝜆1, 𝜆𝑠)𝑑𝜆𝑠. (53)

From (20), since

𝑓(𝜆1, 𝜆𝑠) = (𝑡− 𝑠+ 1)𝜆𝑡−𝑠
𝑠

×
𝑠∑

ℓ=1

𝒦ℓ 𝑔𝑠−1,𝑡

(
𝜆1,𝝈[ℓ]

)
+𝑜(𝜆𝑡−𝑠

𝑠 ) (54)

as 𝜆𝑠 → 0, we see that 𝒥 (𝜆1, 𝑥) converges pointwise to

lim
𝑥→∞𝒥 (𝜆1, 𝑥) = 𝜆𝑡−𝑠+1

1

𝑠∑
ℓ=1

𝒦ℓ 𝑔𝑠−1,𝑡

(
𝜆1,𝝈[ℓ]

)
. (55)

We now show that the limit and integral in (52) can be ex-
changed. To this end, recall from Lemma 2 that 𝑓asy(𝜆1, 𝜆𝑠),
the asymptotic expression for 𝑓(𝜆1, 𝜆𝑠), is also an upper
bound (and thus dominates) the exact expression for 𝑓(𝜆1, 𝜆𝑠).
Therefore, by substituting the right-hand side of (20) into (53)
(i.e., substituting the expression for 𝑓asy(𝜆1, 𝜆𝑠) in place of
𝑓(𝜆1, 𝜆𝑠)), we can immediately obtain an upper bound on
𝒥 (𝜆1, 𝑥), and this bound evaluates to the right-hand side of
(55).

It then follows that the limiting expression for 𝒥 (𝜆1, 𝑥) in
(55) (which is clearly independent of 𝑥), serves also as an
upper bound for 𝒥 (𝜆1, 𝑥) for all 𝑥. Since this upper bound
is integrable with respect to 𝜆1 over the range [0,∞], the
Dominated Convergence Theorem can be applied to exchange
the limit and integral in (52). As a consequence, (52) evaluates
to

lim
𝑥→∞𝑥𝑡−𝑠+1Pr(𝑧 > 𝑥)

=

𝑠∑
ℓ=1

𝒦ℓ

∫ ∞

0

𝜆𝑡−𝑠+1
1 𝑔𝑠−1,𝑡

(
𝜆1,𝝈[ℓ]

)
𝑑𝜆1 (56)

which is precisely (50).
Finally, the upper bound Pr(𝑧 > 𝑥) ≤ 𝑝asy(𝑥) follows by

simply substituting the upper bound for 𝑓(𝜆1, 𝜆𝑠), as given
previously in Lemma 2, into (51) and performing the double
integration.

APPENDIX D
PROOF OF THEOREM 5

Given that 𝑧𝑟 contains the term 𝜆𝑟
1𝜆

−𝑟
𝑠 , the 𝑟-th moment,

𝐸(𝑧𝑟), of the SCN contains the integral

𝐼𝑟 =

∫ ∞

0

∫ 𝜆1

0

. . .

∫ 𝜆𝑠−1

0

𝜆𝑟
1𝜆

−𝑟
𝑠 𝑓(𝝀)𝑑𝜆𝑠 . . . 𝑑𝜆1.

Combining (6) and Table I, we can write the joint eigenvalue
PDF for the uncorrelated and semi-correlated central cases in
the following form

𝑓(𝝀) =
∑
𝑖

𝑏𝑖

𝑠∏
𝑗=1

(
𝜆
𝑡−𝑠+𝑐𝑖𝑗
𝑗 𝑒−𝜆𝑗𝑑𝑖𝑗

)
, 1 ≤ 𝑖, 𝑗 ≤ 𝑠

where 𝑏𝑖, 𝑐𝑖𝑗 , 𝑑𝑖𝑗 are constants and 𝑐𝑖𝑗 , 𝑑𝑖𝑗 ≥ 0. Clearly, the
smallest power of 𝜆𝑠 in 𝑓(𝝀) is 𝜆𝑡−𝑠

𝑠 , so that 𝐼𝑟 contains the
integral ∫ 𝜆𝑠−1

0

𝜆𝑡−𝑠−𝑟
𝑠 𝑒−𝜆𝑠𝑑𝑖𝑠𝑑𝜆𝑠.

The proof follows trivially after noticing that the above integral
does not exist for 𝑟 > 𝑡− 𝑠.
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