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Abstract 
 

This study aims to bring into information some important aspects of the 
inelastic cyclic response of reinforced concrete columns. Here, the behavior of 
reinforced concrete columns under lateral cyclic loading is studied using a three-
dimensional finite element analysis program. It consists of path dependent and 
nonlinear constitutive models representing the stress-strain relationships of the 
constituent materials. Inelastic material behaviors, such as cover concrete spalling 
and large lateral deformation of buckled reinforcement, which influence the post-peak 
inelastic response of RC columns, are modeled and included in the material models. 
Some experiments conducted by the authors and other researchers are adopted for the 
verification and discussion of the analytical results. Reasonable agreement between 
the analytical prediction and the experimental result is observed. In addition, 
importance of cover concrete spalling and reinforcement buckling is realized and 
their contribution to the overall post-peak response is assessed. A reinforced concrete 
column subjected to ground acceleration is analyzed and the seismic response of the 
column is also discussed. 
 
Introduction 
 

Recently, performance based design method is being widely discussed for 
reinforced concrete structures. Structures expected to be exposed to ground motion 
are designed according to their ductility and for such structures, the post-peak 
information is required to check the structural performance. Although 2D analysis 
can satisfactorily predict the response and ductility of pure 2D RC columns and shear 
walls, 3D analysis is a must for checking seismic performance of 3D RC columns 
with side reinforcements, the response of which will be over-estimated by 2D 
analysis. 3D diagonal shear crack profile develops in such columns and 3D crack 
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analysis is required for reliable prediction of capacity and ductility. Moreover, in 
order to consider the multidirectional loading due to ground motion also, 3D analysis 
is inevitable.  
 

Reinforced concrete columns subjected to cyclic loading or ground motion 
often experience high deformation and the load-displacement relationship frequently 
reaches the post-peak range. From the results of various experiments conducted in the 
past on laterally loaded reinforced concrete columns, considerable softening 
phenomenon can be distinguished in the load-displacement relationship in the 
inelastic region [Fukui et al., 1998]. It has been realized in the past that this inelastic 
softening behavior is mainly due to the spalling of cover concrete and buckling of 
longitudinal reinforcement [Suda et al. 1996]. These mechanisms significantly 
influence the  deformation capacity and ductility of the structure. The additional 
softening, due to spalling of cover concrete and buckling of reinforcement, causes 
significant difference in the ultimate displacement capacity. Consequently, if this 
inelastic softening behavior is overlooked in the analysis, the ductility is 
overestimated. The torsion resistance of RC column is also over-estimated if the 
diagonal cover concrete spalling is neglected. Hence, the cover spalling and 
reinforcement buckling should be paid due attention in the analysis. 
 

In the past, comparatively more attention was paid to the analytical prediction 
of pre-peak response and the reliability of post-peak prediction was compromised to a 
great extent. Through this study, the authors have attempted to understand the 
material mechanisms involved especially in the inelastic behavior of laterally loaded 
reinforced concrete columns. In addition, it is tried to enhance the analytical models 
by simulating and incorporating these highly inelastic material mechanisms in the 
material constitutive relationships so that the reliability of analytical prediction of 
inelastic response is improved. In order to achieve the mentioned goals, some lateral 
loading experiments are conducted on reinforced concrete columns and analyses of 
those structural members are performed.  
 
Analytical Models 
 

A three-dimensional finite-element analysis program called COM3 (Concrete 
Model in 3D), developed in Concrete Laboratory, The University of Tokyo, is used 
for the analytical prediction of the behavior of RC columns. It includes nonlinear and 
path-dependent material constitutive models applicable to loading, unloading and 
reloading conditions as well. They have been verified in the element and member 
levels with satisfactory results, and have been incorporated in the FEM program for 
the analysis of reinforced concrete under monotonic and cyclic loading [Okamura and 
Maekawa 1991]. However, the effect of spalling of cover concrete and the large 
lateral deformation of reinforcement are not incorporated in the path-dependent 
nonlinear models. These phenomena can be commonly observed in real structures 
and small-scale experiments subjected to ground motion. It is thought that these 
phenomena would have much to do with the inelastic response and should not be 
ignored especially in analysis of the structures designed for high ductility, as these 



structures may be subjected to higher strains. In order to study the effect of these 
mechanisms, the spalling of cover concrete and buckling of reinforcement are 
modeled and incorporated in COM3 to analyze reinforced concrete columns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Formulation of compressive stress-strain relationship of reinforcement 
 

Reinforcing bars in RC members, when subjected to high compressive strain, 
undergo large lateral deformation. This behavior is referred to as buckling of 
reinforcement and is mainly associated with high geometrical nonlinearity. However, 
in this study, this mechanism is implicitly incorporated in the material model of 
reinforcing bars. The formulation of stress-strain relationship of reinforcement fibers 
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in reinforced concrete structures is explained with the help of a flow chart and 
illustrations as shown in figure 1. The entire process comprises of three parts; 
formulation of bare bar buckling model, effect of lateral ties and effect of cover 
concrete spalling. These three components are separately described hereafter. A 
compressive stress-strain relationship is proposed based on the facts observed by 
previous researches [Monti and Nuti 1992, Mau and El-Mabsout 1989] related to bare 
bar buckling mechanism. Nevertheless, such constitutive relations of the bare bar 
cannot be directly applied to the reinforcing bars inside reinforced concrete members. 
For practical application in reinforced concrete structures, these relations need to be 
enhanced by considering various interrelated mechanisms, which affect the large 
lateral deformation of reinforcement. Spalling of cover concrete and geometrical and 
mechanical properties of lateral ties are thought to have significant influence on the 
geometrical nonlinearity of reinforcement and these factors should be incorporated in 
the buckling model. But, comparatively fewer researches in the past [Suda 1998] 
have addressed the integration of cover concrete spalling and buckling behavior of 
longitudinal reinforcements supported laterally by a system of transverse 
reinforcements (stirrups) inside structures. In this study, both spalling and buckling 
models are integrated and used in the analysis. The integrated model is verified and 
its application to the reinforced concrete structures is also discussed. 
 
Buckling Model of Bare Bar 
 

In the past, various experimental and analytical studies have been done on the 
buckling of bare reinforcing bars under compression [Mau 1990, Gomes and 
Appleton 1997, Rodriguez et al. 1999]. Through these studies, it has been understood 
that the stress-strain relationship of reinforcing bar follows an elastic path until 
compression yielding is reached. After compression yielding, the stress-strain 
relationship shows slight hardening followed by softening behavior. It can be 
observed that the hardening stiffness and the strain at the starting point of softening 
depend on the length to diameter ratio of the test bar [Monti and Nuti 1992]. The 
stress-strain relationship is also affected by the yield strength of the bar. It is found 
that the increase in the yield stress increases the hardening stiffness, decreases the 
hardening range and makes the response more brittle [Mau and El-Mabsout 1989]. 

 
Based on this information, a trilinear post-yielding compressive stress-strain 

relationship for bare bar is proposed. After the yielding strain in compression is 
reached, stiffness is determined depending on the bar yield strength and the bar length 
to bar diameter ratio. The inelastic softening behavior, induced by buckling 
mechanism, is also modeled according to the yield strength and the length to diameter 
ratio. For unloading and reloading behavior in a cyclic loop, a smooth transition curve 
asymptotic to the tangents at the point of stress reversal and the point of 
maximum/minimum strain in the loading history, as proposed by Giuffre-Menegotto-
Pinto [CEB 1996], is used. The monotonic and cyclic models of bare bar are shown in 
figure 2. 
 
 



 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2. Monotonic and cyclic buckling models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. Model verification for monotonic and cyclic cases. 
 

The proposed models are compared with the experimental results [Monti and 
Nuti 1992] and the comparison is illustrated in figure 3. The experiment consists of 
series of monotonic and cyclic tests on steel bars with different L/D ratio. It can be 
observed that the proposed model is in good agreement with the experimental results, 
both for monotonic and cyclic behaviors of reinforcing bars with different slenderness 
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ratio. It is found that the lower the L/D ratio is, the buckling effect decreases. For L/D 
ratio equal to 5, buckling effect nearly diminishes and the response becomes the same 
as that in tension. Moreover, the cyclic response of reinforcement in tension is 
independent of L/D ratio and the extent of buckling attained in the past. 
 
Buckling Length of Reinforcement  
 
The most important parameter that governs the stress-strain relationship of 
reinforcing bar in compression is length to diameter ratio. In the compression tests of 
bare bar, the buckling length is equal to the supported length of the test piece. But for 
the reinforcing bars inside reinforced concrete structures, this definition of buckling 
length does not apply. Hence, the determination of length to diameter ratio, in such 
cases, becomes difficult and requires proper consideration of interrelated mechanisms 
between main bar and lateral ties. 

 
Previous researchers [Bresler and Gilbert 1961, Scribner 1986] have adopted 

some contradictory assumptions regarding the buckling length. Bresler and Gilbert 
assumed that the lateral ties are sufficiently rigid to prevent the lateral displacement 
of the main bar at the level of the tie and replaced the buckling length with tie 
spacing. In contrast, Scribner reported that the plastic hinge in members subjected to 
repeated reverse inelastic flexure spans through a length equal to overall beam depth. 
By assuming that the distance between the consecutive ties is equal to one-quarter of 
the beam depth, it was concluded that the buckling length extends through the length 
equal to three times tie spacing. However, the reality seems to be different. Kato 
[Kato et al. 1995], in the experiments consisting of compression tests of reinforced 
concrete columns, observed that the buckling length varies from one to several times 
the tie spacing, depending on the geometrical and mechanical properties of the ties 
and main bar. 
 

It is realized that the buckling length may extend to several tie spacings 
depending on the arrangement and strength of lateral ties. If the size and spacing of 
the lateral ties are designed properly so that the stiffness of the stirrup is high enough 
to provide a rigid support to the longitudinal bar, it is ensured that the main 
reinforcement buckles between two adjacent stirrups. It is to be noted that if buckling 
length changes from one to two times tie spacing, the length to diameter ratio is 
doubled. Consequently, the reinforcement stress-strain relationship in compression is 
significantly changed. Hence, response of reinforcing bars is very sensitive to the 
buckling length, which is equal to the integral multiple of tie spacing in such a 
discrete system. Simplified assumptions or a small difference between projected and 
actual values of buckling length might lead to significantly inaccurate reinforcement 
behavior. Here, a theoretical method to determine the buckling length is proposed. 
 

The lateral ties are simulated by discrete elastic springs. The stiffness required 
by the spring, in order to prevent the lateral displacement of main bar at spring 
position, is calculated using the energy principle. This stiffness is compared with the 
actual stiffness of the lateral tie to determine whether the given strength and spacing 



of the ties are sufficient enough to hold the main bar in the first buckling mode, i.e. 
buckling length equal to tie spacing, or not. If the tie stiffness is less than the required 
spring stiffness, then required spring stiffness for the next mode is calculated and 
compared with tie stiffness. The same procedure is followed until a stable buckling 
mode is reached so that the required stiffness of spring is less than the actual stiffness 
of lateral tie. The product of this stable buckling mode and the tie spacing gives the 
potential buckling length of the main reinforcement for the given arrangement of the 
lateral ties. This buckling length is used to calculate L/D ratio, instead of the spacing 
of the stir rups. 
 

The derivation of required spring stiffness for an arbitrary mode (nth mode) is 
explained below. Figure 4 presents the two possible modes of deformation (n and 
n+1) considered for the derivation. Here, we have to consider these two modes 
because we want to assess the spring stiffness so that the higher mode (n+1) is 
avoided. The lower modes are not considered because they are already checked in the 
previous steps and proved not to exist. To define the deformational shape of the 
reinforcement, boundary conditions ensuring zero lateral displacement and no slope 
at the end springs, are assumed. To fulfill these boundary conditions, a cosine curve 
(normally used for deformation of fixed end column) is used for each mode and the 
total deformation of the entire system is given by the sum of the constituent modes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4. Calculation of required spring stiffness. 
 

The total energy of the system includes the elastic strain energy of the 
reinforcement, energy stored in the elastic springs, and the energy due to shortening 
of the reinforcement. Hence, the total energy associated with the system U can be 
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Here, Uf, Uk and UP are the flexural strain energy of the reinforcement, energy 
stored in the elastic springs and the energy due to the shortening of the reinforcement, 
respectively. Similarly, EI is the flexural stiffness of the reinforcement and kn and Pn 
are the critical spring stiffness and the axial load corresponding to the nth mode, 
respectively. By solving these equations in using the pre-described deformational 
shape, we have 

 
As explained by the following equations, the total energy of the system, U, is 

minimized with respect to each of the maximum amplitudes, an and an+1.  

 
Here, we get two linear equations including Pn and kn as the variables. 

However, the coefficients consist of maximum amplitudes of both modes because of 
the presence of the higher order terms. In case of the first mode, these higher order 
terms do not matter because the trigonometric functions, which multiplies these 
higher order terms, turn out to be zero. But for higher modes, these terms do not 
vanish and create a numerical problem. For numerical simplicity, two options are 
considered here. The first is to neglect these terms and the second is to assume  that 
the maximum amplitudes of the two adjacent modes are equal. It is found that both of 
these assumptions lead to almost similar results. Hence, the second assumption, i.e. 
equal maximum amplitudes for two consecutive modes, is used hereafter because it 
seems more rational than the first assumption. These two linear equations, now can be 
solved to get buckling load Pn and the required spring stiffness kn. 
 

TABLE 1. Required spring stiffness for different buckling modes 
 

Buckling 
mode, n 1 2 3 4 5 6 7 8 9 

Equivalent 
stiffness, k eq 

0.7500 0.2777 0.0488 0.0179 0.0080 0.0041 0.0023 0.0014 0.0009 
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The critical spring stiffness required for different buckling modes, calculated 
according to the proposed method, is shown in table 1. The equivalent stiffness (keq), 
mentioned in the table, is a dimensionless parameter. If keq is multiplied by π4EI/s3, 
the actual required stiffness can be obtained. As expected, the required spring 
stiffness becomes smaller for higher buckling modes. Hence, a stable buckling mode 
can be achieved for any arrangement of stirrups. 
 

In order to determine the stable buckling mode and buckling length, the actual 
stiffness of the stirrups with given strength and arrangement, has to be evaluated in 
advance and it should be compared with the calculated required spring stiffness for 
the corresponding mode. The calculation of actual stiffness of stirrup is illustrated in 
figure 5. As shown in the figure, the buckling tendency of the main reinforcement 
will cause axial tension in the legs of stirrups. Hence, the stirrup resistance against the 
lateral expansion is believed to be mainly governed by the axial stiffness of the 
stirrups. The axial stiffness can be easily calculated using the elastic modulus (Et), 
cross-sectional area (At) and the length of longer leg of the rectangular stirrup (b). For 
circular and spiral ties, the side length of equivalent square should be used. In case of 
multi- legged stirrups, the effective length of the stirrup leg should be calculated as 
explained in figure 5. 
 
 
 
 
 
 
 
 
 

FIGURE 5. Calculation of axial stiffness of stirrup. 
  
In reality, the lateral ties show elasto-plastic behavior and after reaching the yield 
strain, the stiffness of the tie is considerably reduced. To cope with this fact, the 
corresponding springs should be eliminated from the system for accurate prediction 
of required stiffness of other elastic springs. Because of the difficulty in evaluating 
the lateral displacements, this effect is not explicitly considered. However, the 
relative effect is investigated by neglecting the springs at the position of maximum 
displacement and all springs except at the two ends, respectively. It is found that the 
elimination of all springs, which is the extreme case, overestimates the required 
stiffness of the critical spring but the elimination of spring at maximum displacement 
does not influence the result so much. Hence, it is fairly assumed that the lateral 
springs are in the elastic range. 
 

The proposed analytical method to predict buckling length of reinforcement is 
compared with the buckling lengths observed during experiments [Bresler and Gilbert 
1961, Scribner 1986, Kato et al. 1995]. These experiments include the compression 
tests of reinforced concrete prisms and bending tests of reinforced concrete beams. 

b b k = Et*At/b 

b w 

c 

c 

b = (w-2c)/(n/2) 



The comparison is presented in figure 6. As can be seen in the illustration, the 
proposed method is in fair agreement with the experimental observations. Hence, it 
can be concluded that this model can be reliably used for the design of lateral ties to 
resist extensive buckling of main reinforcement. Furthermore, this model can also be 
applied for continuous systems such as steel fiber reinforced concrete (SFRC). The 
buckling length can be determined based on the first mode and it was found that the 
delay in buckling behavior in SFRC could well be predicted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6. Verification of buckling length prediction method. 
 
Effect of Cover Spalling 
 

Reinforced concrete structures exhibit the spalling of cover concrete prior to 
the buckling of longitudinal reinforcement. The cover concrete loses the load carrying 
capacity after a limiting value of compressive strain is reached. The determination of 
spalling strain is explained in figure 7.  
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 7. Spalling criteria for cover concrete. 
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Axial compression in the cover concrete induces tensile strain in the lateral 
direction. These two orthogonal strains are assumed to be related to each other by a 
factor α, equal to 0.2. Splitting cracks initiate after the induced lateral tensile strain 
reaches cracking strain. But, the concrete can still resist some axial tension due to the 
tension-softening behavior. The cover concrete can be treated as plain concrete in 
lateral direction and a tension softening factor c equal to 2 is assigned. The load 
resisting mechanism of the cracked concrete is neglected after the stress in the 
softening region becomes equal to 25% of the tensile strength. The tensile strain at 
this stage is found to be two times the cracking strain. The corresponding 
compressive strain, i.e. spalling strain, is calculated using factor α and it is found to 
be nearly equal to the peak strain of concrete. This model can satisfactorily explain 
the steel fiber reinforced concrete (SFRC) behavior, which doesn’t easily show 
complete cover spalling. For SFRC, the tension softening factor c is smaller and 
consequently the spalling strain calculated by this model is very high, which is rarely 
experienced in actual loading.  
 

Therefore, for the spalling of cover concrete, strain based criterion is used. 
Concrete in the cross-section is divided into two parts. The concrete portion outside 
the lateral reinforcement is modeled as cover concrete and the rest as core concrete. 
Once the compressive strain in the cover concrete exceeds the spalling strain, the 
stress transferred by cover concrete is reduced to zero. The buckling of reinforcement 
can occur only after spalling of the cover concrete. At this stage, the core concrete 
provides lateral support to the reinforcement so that the reinforcement buckles 
outwards, where the cover concrete is already spalled off. In order to cope with the 
fact that spalling precedes buckling, the reinforcement buckling model is modified so 
that the compressive stress-strain relationship does not undergo softening before the 
surrounding cover concrete is completely spalled out. Due to the compatibility 
condition, it can be said that if the strain in the reinforcement reaches the spalling 
strain, the surrounding cover concrete will spall out. After cover spalling, the 
reinforcement follows the bare bar stress-strain relationship. 
  
Verification at Member Level 
 
Experimental Setup and Analytical Simulation 
 

Some experiments were conducted to study the behavior of laterally loaded 
reinforced concrete cantilever columns. The experimental setup and the specimen 
layout are shown in figure 8. Rectangular columns were cast monolithically with rigid 
footings and were subjected to cyclic lateral displacement. A triaxial loading machine 
was used so that axial and lateral loading could be applied simultaneously. In order to 
make the column function as a cantilever beam; the footing was tightly fixed to the 
base slab using prestressed tendons. The footings and the connection were designed 
to be rigid enough to provide a fixed support to the columns. Intended axial 
compression was applied at the top of the column and cyclic lateral displacement was 
applied at a height of 1200 mm from the top of the footing. For columns under axial 
compression, the P-delta effect is influential to the lateral load-displacement 
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FIGURE 9. Pre-peak response of RC column. 

relationship. Hence, proper geometrical nonlinearity as shown in figure 8, depending 
on the experimental setup, is also considered in the finite element analysis. 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8. Experimental setup and geometrical nonlinearity in analysis. 
 

Performance of Existing Models without Spalling and Buckling  
 

To check the reliability of existing models for small displacement, an 
experiment was conducted so that the response does not reach the post-peak inelastic 
range. The experimental parameters are presented in table 2 and the results are 
depicted in figure 9. Small residual displacement was observed due to the 
significantly large cover, relatively lower reinforcement ratio and larger axial 
compression [Dhakal and Maekawa 1999]. 
 

As expected, the inelastic material mechanisms like cover concrete spalling 
and reinforcement buckling did not occur, as the response does not reach the peak. 
From the figure, it is clear that the existing models can predict the pre-peak behavior 
well. The analysis was performed with both three-dimensional solid elements and 
fiber technique. The analytical results with fiber technique and full 3-dimensional 
analysis are very close to each other, giving ample proof that fiber technique can be 
reliably used. 

 
TABLE 2. Experimental parameters  
 
Column cross section 250mm×250mm 
Main reinforcement 6 no. D10 bars 
Stirrups D6 @100mm c/c 
Cover thickness 80 mm  
Axial compression 250 kN 
Shear span  1200 mm 
Compressive strength, fc' 30 MPa 
Tensile strength, ft 2.5 MPa 
Young's Modulus, Es 197000 MPa 
Yield strength, fy 350 MPa 
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     FIGURE 10. Cross-section of specimen. 

Performance of Proposed Models 
 

For the verification of the proposed models, two columns were tested under 
cyclic lateral loading. The difference between these two cases is the axial 
compression only. In one test, a constant axial compression of 250 kN was applied 
whereas the next column was tested without axial load. The basic test parameters are 
included in table 3 and the column cross-section is shown in figure 10. 
 
     TABLE 3. Experimental parameters 
 
Column cross section 250mm×250mm 
Main reinforcement 6 no. D13 bars 
Stirrups D10 @100mm c/c 
Cover thickness 30 mm  
Axial compression 250 kN, 0 kN 
Shear span  1200 mm 
Compressive strength, fc' 29 MPa 
Tensile strength, ft 2.2 MPa 
Young's Modulus, Es 202000 MPa 
Yield strength, fy 360 MPa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 11. Load-displacement relation (with axial compression). 
 

 The experimental and analytical load-displacement curves of the column with 
axial compression are shown in figure 11. In experiment, spalling cracks at the base 
of the column emerged when the applied displacement reached around 15 mm, which 
is found to be very close to the analytical prediction. Gradual decrease in the lateral 
load can be observed after initiation of cover spalling in the experimental result. On 
the other hand, a sudden decrease in the load is seen in the analytical result. This is 
because of the spalling model, which abruptly neglects the strength contribution of 
cover concrete fibers, once the spalling strain is reached. In the analysis, buckling 
took place during the last loading cycle. However, in experiment, slightly buckled 
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reinforcements could be observed after scratching out the spalled cover concrete after 
the experiment. However, the starting point of buckling could not be distinguished. It 
is found that the analysis could predict the post-peak softening behavior and the 
analytical result is closer to the experimental result. However, some difference in the 
peak load can be seen and it is carried over throughout the post peak response.  
 
 
 
 
 
 
 
 
 
 
 

FIGURE 12. Load-displacement relation (without axial compression). 
 

The analytical and experimental results of similar column tested without axial 
compression are presented in figure 12. As can be observed in the figure, the 
analytical and experimental results are found to be in good agreement with each 
other. In the experiment, cover concrete spalling and reinforcement buckling did not 
take place. In spite of considering the spalling and buckling mechanisms in the 
analysis, these mechanisms did not occur in analysis, either. The proposed models are 
based on fiber strain and in this case, the compressive strain in the extreme fiber does 
not reach the spalling strain. Consequently, softening in the load-displacement 
relationship was not noticed in the high displacement range, both in experiment and 
analysis. Analysis without including the proposed models was performed and as 
expected, similar results were found. This comparison ensures the applicability of 
proposed models in adverse cases, i.e. where spalling and buckling do not take place.  
 
 
 
 
 
 
 
 
 
 

The final crack pattern in both cases is sketched in figure 13. It is found that 
the position and spacing of cracks in both cases are exactly the same as those of the 
lateral ties. In case of columns with small cover thickness, splitting of cover concrete 
can cause such cracks. But in this case, the clear cover outside lateral ties is more 
than 15 mm. Hence, the cause of such cracking pattern is still not clear and further 

FIGURE 13. Crack pattern at the end of testing. 
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investigation is beyond the scope of this study. As the specimens were designed to 
have comparatively higher shear strength, no diagonal shear cracks could be seen.  
 

In case of the column without axial compression, inclined cracks initiated 
from the column footing joint and under cyclic loading these inclined cracks from 
two sides merged as shown in figure 13. During further loading, these cracks opened 
and closed significantly. Although other flexural cracks appeared above the column-
footing joint, the behavior was mainly governed by these inclined cracks. It might be 
due to the effect of the joint and the pullout of the main bar. Pullout behavior could 
also be observed in the experiment. On the other hand, in case of column with axial 
compression, inclined cracks at the column-footing joint did not emerge. Uniform 
flexural cracks appeared gradually and the behavior was governed by the crack 
nearest to the footing. During the cyclic loading, alternate opening and closure of this 
crack was noticed and after a few cycles, spalling cracks developed. Because of high 
axial compression, pullout effect was also negligible. 
 
APPLICATIONS OF 3D FEM ANALYSIS ON RC PIERS  
 
High Strength Concrete Column under Lateral Cyclic Load 
 

The application of the proposed models to high strength concrete column is 
discussed hereafter. Experimental results of lateral cyclic loading tests of circular 
cantilever reinforced concrete columns with high strength concrete and steel under 
constant axial compression (150 kN) are considered [Fukui et al. 1998]. Two columns 
with different reinforcement arrangements are considered. The geometrical and 
mechanical properties of the columns are explained in table 4 and figure 14.  
 

TABLE 4. Experimental parameters 
 

Column a Column b  
Outer layer  Inner layer  Outer layer  Inner layer  

Diameter 300 mm 180 mm 300 mm 180 mm 
Main reinforcement 12 no. D7 bars _ 12 no. D7 bars 16 no. D10 bars 
Stirrups D6 @50mm  _ D3 @50mm  D6 @75mm  
Cover thickness 30 mm  _ 30 mm 30 mm 
Comp. strength, fc' 82.6 MPa 28 MPa 81.1 MPa 27.4 MPa 
Tensile strength, ft 3.9 MPa 2.6 MPa 4.8 MPa 2.4 MPa 
Young's Modulus, Es 2.06E5 MPa _ 2.06E5 MPa 1.79E5 MPa 
Yield strength, fy 1538 MPa _ 1538 MPa 354.7 MPa 

 
Both columns constitute of two layers of concrete with different strengths. 

The inner core consists of normal strength concrete whereas the peripheral (outer) 
layer consists of high strength concrete. Column a includes high strength 
reinforcement in the outer layer. On the other hand, column b has two layers of 
reinforcement, i.e. high strength reinforcement in the outer layer and normal 



reinforcement in the inner layer. Consequently, the reinforcement ratio of column a is 
significantly smaller than that of column b. The cover thickness is the same in both 
columns. In both columns, spiral reinforcement is used for the outer layer of 
longitudinal reinforcements. But for analytical convenience, they are treated as 
circular hoops with spacing equal to the pitch of the spiral reinforcement.  
 
 
 
 
 
 
 
 
 
 
 

The experimental results and analytical responses obtained by fiber technique, 
with and without including proposed spalling and buckling models, are illustrated in 
figure 15. Only the envelope curves are shown in the figure. The cyclic behavior in 
the analysis was different from the experimental cyclic response, notably the cyclic 
loops were larger and the residual displacement was higher in analysis. This might be 
because of the cyclic model used for the reinforcement, which adopts the Young’s 
modulus for unloading and reloading stiffness regardless of the absolute strain 
experienced in the loading history. Here, the discussion is mainly focussed on the 
response envelope (peak points of the cyclic loops).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 15. Post-peak response envelop. 
 

As can be seen from the figure, the peak load of column b is higher than that 
of column a and the post peak response of column b is relatively flatter and 
comparatively milder softening is observed. The additional resistance comes from the 
inner layer of reinforcement. Even after the yielding of the outer reinforcement in 
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FIGURE 14. Column cross-sections and test setup. 
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column b, the inner reinforcements are still behaving elastically. As a result, the post 
peak softening is comparatively milder. It is to be noted that these inelastic material 
mechanisms influence only the post peak response of column a but interestingly, peak 
load is also influenced in case of column b. Ultimately, in both cases, the analysis 
including the proposed models could predict the behaviors that are very close to the 
reality (experimental results). Conclusively, it can be said that the proposed analytical 
models can reliably predict the overall behavior of high strength columns, including 
the peak load and post-peak response. 

 
Eccentrically Loaded RC Bridge Piers Subjected to Ground Motion 
 
 In order to verify the applicability of proposed models in dynamic analysis, 
the result of a shaking table test of reinforced concrete column, eccentrically loaded 
in axial compression, is adopted [Kawashima et al. 1995]. The details and dimensions 
are explained in figure 16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The specimen consists of a rectangular reinforced concrete column fixed to a 

shaking table with a rigid footing. A superstructure consisting of two 200kN beams is 
eccentrically supported at the top of the column, as shown in the figure. Base 
acceleration, similar to Nihonkai-Chubu Earthquake in 1993, is applied to the base of 
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FIGURE 16. Experimental layout and specimen details. 
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the column through the shaking table. The time history of the base acceleration used 
in the experiment and fiber analysis is depicted in figure 17. 
 

The experimental result, i.e. the relationship between the base shear and the 
displacement at the top of the column, is demonstrated in figure 18. From the curve 
shown above, it can be guessed that there must be some technical or instrumental 
problems in measuring displacement greater than 130 mm during the experiment. 
Hence, the higher displacement could not be recorded and the load-displacement 
relationship in the later part is perfectly vertical, which does not reflect the actual 
behavior. Hence, the final values of maximum and residual displacements are 
expected to be more than as shown in the figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 19. Hysteresis loop (Analysis). 

 
The results of the fiber analysis with and without using the proposed spalling 

and buckling models are given in figure 19. In the analysis, geometrical nonlinearity 
was incorporated in order to include the P-delta effect. However, it was found that the 
effect of geometrical nonlinearity was not so significant because the maximum 
response predicted by conventional fiber models was very small (around 70 mm). As 
can be distinguished from the result, the residual displacement and ductility are 
underestimated if spalling and buckling mechanisms are not included. This result, if 
used for performance based seismic design, may lead to unsafe structures that might 
experience larger deformation during actual ground motion. On the other hand, the 
analytical results obtained by using proposed models are closer to reality. As the final 
value of residual displacement in experiment is not clearly known, exact comparison 
between the two results cannot be done. However, it can roughly be said that these 
enhanced analytical models yield more reliable results, which predict the ductility and 
residual displacement to be at least equal to or more than the experimental values. In 
both cases, the performance of the designed structure can be ensured, although it 
might be slightly conservative.  
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Box Type Hollow RC Columns under Cyclic Torsion, Shear and Bending 
 

3D FEM analysis using shell element has been carried out for verification of 
the analytical tool for complex loading. Figure 20 shows the analysis and results of a 
box type hollow RC column under cyclic torsion, shear and bending load [Masukawa 
et al. 1999]. The computed bending moment-curvature and torque-twist relationships 
are compared with the experimental data.  The computational tool can effectively 
predict the deformation and stiffness by shear and bending. However for the torsion, 
the post-cracking stiffness and ultimate capacity are considerably higher than 
experimental results, as the cover concrete spalling occurred in reality due to torsion. 
This torsion resistance reduction caused by spalling must be addressed in the near 
future. 
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FIGURE 20. Analysis of hollow RC columns under cyclic torsion, shear and bending. 
 

Solid RC Columns under Cyclic Torsion, Shear and Bending 
 

Furthermore, a solid RC column under combined cyclic torsion, shear and 
bending is analyzed using 3D solid elements. The proposed spalling and buckling 
models are not included in the material models used in this analysis. Three-
dimensional cracks in all directions are observed inside the column during the 
experiment. In figure 21, the analytical results are compared with the experimental 
data [MEPC 1997]. The computed horizontal force has been over estimated in the 
inelastic region, which is attributed to the cover concrete spalling and reinforcement 
buckling. Hence, these mechanisms should be incorporated in 3D analysis to reliably 
predict the post-peak behavior of such structures. 
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FIGURE 21. Simulation of solid RC columns under cyclic torsion, shear and bending. 
 
RC Short Columns Subjected to Bi-axial Shear 
 

Here, short RC columns [Yoshimura 1996] are used for verification of the full 
3D non- linear analysis frame. A constant axial load (1500 kN) and fixed horizontal 
load in Y-direction (0, 150, 250, 350 kN for different specimens) are applied. After 
setting these forces, varying enforced displacement in X-direction normal to the 
already applied shear is monotonically applied until failure. The reinforcement details 
and layout of the specimens are shown in figure 22. Under this load application 
scheme, spatial development of stress induced cracks is irregular due to the 
complexity of stress field unlike reinforced concrete of 2D in shear. In such cases, it 
is realised that isotropic tension stiffening overestimates the actual load capacity and 
anisotropic tension softening is taken into account [Hauke 1998]. 
 
 
 
 
 
 
 
 
 

 
FIGURE 22. Setup and reinforcement layout of short RC column loaded in bi-axial shear. 
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In figure 23, the experimental and the computed X-load - X-displacement 
curves are plotted. As the level of pre-imposed Y-load increases, the initial stiffness 
in X-direction decreases in computation due to pre-accumulated damage. The 
influence of the additional hoops in X-direction, improving stiffness and ultimate 
shear capacity in that direction is qualitatively and correctly reflected in analysis. Up 
to the peak of load displacement diagrams, full 3D constitutive models work well 
with reasonable accuracy for engineering purposes. Nevertheless, in the post peak 
range of the response, computation is not successful.  
 
 
 
 
 
 
 
 
 
 
 
FIGURE 24. Evolution of 3D inclined variable cracks under multi-directional loading (S35). 

 
Using a graphical tool based on Virtual Reality Modelling Language 

[Takahashi and Maekawa 1998], step by step development of predominant 3D 
variably inclined cracks for specimen S35 is obtained as shown in figure 24. In step 1, 
axial compressive load of 1500kN is applied and naturally no cracks can be found. In 
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FIGURE 23. Bi-axial shear load-displacement diagram (X-direction). 
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step 2 to 4, fixed horizontal Y-force is applied and after full Y-force is applied in step 
4, typical inclined shear cracks develop. As Y-direction is kept clamped and 
displacement controlled load is applied in the perpendicular X-direction from step 5 
onwards, final shear failure plane is slowly changed from the originally induced shear 
crack plane. Here, the full three-dimensional inclined shear plane can be clearly 
identified. 
 
Conclusions 
 

Based on the experimental facts of bare bar compression tests with local 
geometrical nonlinearity, an analytical model relating the averaged compressive 
stress and compressive strain of the reinforcement is proposed. Coupling this 
monotonic stress-strain relationship with tension envelope and Giuffre-Menegotto-
Pinto model for unloading and reloading formulate a cyclic stress-strain relationship. 
Both for monotonic and cyclic cases, the proposed model showed fair agreement with 
the experimental results of bare bar tests. Based on the interaction with cover 
concrete spalling and the geometrical and mechanical properties of the lateral 
reinforcements, the behavior of longitudinal reinforcements in compression was 
revised. Finally, versatile models for the spalling of cover concrete and buckling of 
reinforcement in reinforced concrete members were proposed. A design method was 
also proposed in terms of the lateral ties against the buckling of main bar. The 
proposed models were included in a finite element analysis program, COM3, and its 
applicability to various types of reinforced concrete structures was investigated. 
 

As expected, it was discovered that the existing material models without 
considering spalling and buckling phenomena could fairly predict the pre-peak 
response of reinforced concrete structures. However, the post peak-response and in 
some special cases peak load, too, were found to be influenced by these material and 
geometrical nonlinearities. The proposed models were used to analyze normal and 
high strength reinforced concrete columns under cyclic and seismic loading. In all 
cases, significant improvement in the prediction of overall response could be 
achieved by using proposed models. However, the effect of these mechanisms in the 
torsion resistance of RC piers needs further attention in future. Furthermore, the 
applicability of 3D nonlinear analysis tool was verified for non-proportional biaxial 
shear loading of short RC columns and the irregular rotation and propagation of the 
cracks were also studied.  
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