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Abstract

Phylogenetic diversity (PD) is a measure of species biodiversity quantified by how

much of an evolutionary tree is spanned by a subset of species. In this thesis, we study

optimization problems that aim to find species sets with maximum PD in different sce-

narios, and examine random extinction models under various assumptions to predict the

PD of species that will still be present in the future.

Optimizing PD with Dependencies is a combinatorial optimization problem in

which species form an ecological network. Here, we are interested in selecting species

sets of a given size that are ecologically viable and that maximize PD. The NP-hardness

of this problem is proved and it is established which special cases of the problem are

computationally easy and which are computationally hard. It is also shown that it is

NP-complete to decide whether the feasible solution obtained by the greedy algorithm is

optimal. We formulate the optimization problem as an integer linear program and find

exact solutions to the largest food web currently in the empirical literature. In addition,

we give a generalization of PD that can be used for example when we do not know the

true evolutionary history. Based on this measure, an optimization problem is formulated.

We discuss the complexity and the approximability properties of this problem.

In the generalized field of bullets model (g-FOB), species are assumed to become

extinct with possibly different probabilities, and extinction events are independent. We

show that under this model the distribution of future phylogenetic diversity converges to

a normal distribution as the number of species grows. When extinction probabilities are

influenced by some binary character on the tree, the state-based field of bullets model

(s-FOB) represents a more realistic picture. We compare the expected loss of PD under

this model to that under the associated g-FOB model and find that the former is always

greater than or equal to the latter. It is natural to further generalize the s-FOB model to

allow more than one binary character to affect the extinction probabilities. The expected

future PD obtained for the resulting trait-dependent field of bullets model (t-FOB) is

compared to that for the associated g-FOB model and our previous result is generalized.
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Chapter 1

Introduction

The current rapid rate of extinction of many diverse species has focused attention on

predicting and maximizing future biodiversity. There are numerous ways to measure the

biodiversity of a group of species, and one which recognizes the evolutionary linkages

between species is phylogenetic diversity (PD). It was introduced by Dan Faith in 1992

with the aim of measuring and protecting biodiversity [20]. Namely, the high rates of

recent species extinctions and the limited resources available for conservation urge the need

for placing conservation priorities on different species. Faith proposed to use phylogenetic

diversity as a selection criteria for preserving biodiversity (for example, feature diversity)

based on phylogenetic information. Briefly, given a subset of taxa, the phylogenetic

diversity of that subset is the sum of the evolutionary distances of the edges of the

phylogenetic tree that connects this subset. Here, the distance assigned to an edge may

refer to the amount of genetic change on that edge, its temporal duration, or perhaps

other features such as morphological diversity.

Under various possible interpretations of the edge lengths, PD has been widely used

for quantifying and maximizing present and expected future biodiversity [9, 16, 21, 47,

48, 49, 54, 63, 70, 80]. For example, the Noah’s Ark problem [34, 55, 78] attempts to

maximize expected future phylogenetic diversity by allocating resources that increase the

survival probabilities in a constrained way.

This thesis develops new combinatorial and computational insights, algorithms, and

stochastic models that can be applied to predict and maximize the PD score of future

species. The problems studied can be grouped into two classes: combinatorial optimiza-

tion problems and probabilistic models. Accordingly, the thesis has been divided into two

parts.

The organization of the thesis is as follows. We first give some preliminaries in Chap-

ter 2, where we define fundamental notions that are used in both parts of the thesis.

Definitions that are used only in one of the two parts are introduced either in the intro-

ductory chapter of the appropriate part or where they are needed.

After describing the most fundamental concepts of the thesis in the Preliminaries, we

study PD maximization problems in Part I. This part starts with Chapter 3, which intro-

duces the terminology used only in Part I. In Chapter 4, the computational complexity
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CHAPTER 1. INTRODUCTION

of the problem Optimizing PD with Dependencies and its special cases is analyzed.

We show that the problem is computationally hard in general and that polynomial-time

instances of it have a very special structure. It is also established in this chapter that it

is NP-complete to decide whether the feasible solution obtained by the greedy algorithm

can be improved. This is followed by Chapter 5, which uses the approach of integer linear

programming to find exact solutions to real instances of this problem. The last chapter of

Part I deals with a maximization problem that is based on the more general biodiversity

measure called phylogenetic diversity for cluster systems. We show that for this problem

a polynomial-time greedy algorithm always produces a solution whose value is at least

1 − e−1 times the value of an optimal solution. It is also proved that no polynomial-

time algorithm can achieve an approximation ratio higher than this value unless P=NP.

Our proofs are based on the fact that the new biodiversity measure is a submodular set

function and on the notion of an approximation preserving reduction called L-reduction.

In Part II, probabilistic methods are used to develop new mathematical results con-

cerning three species extinction models. We start this part with a chapter in which we

introduce the discussed models and define the terminology used only in Part II. This is

followed by Chapters 8, 9, and 10, which present our main results on the three models.

In Chapter 8 we prove that, under the generalized field of bullets model (g-FOB), the

distribution of future PD is asymptotically normal. We also describe an algorithm to

derive the exact distribution. Chapter 9 introduces the more realistic state-based field

of bullets model (s-FOB) and compares the expected biodiversity loss under this model

to that under the simpler g-FOB model. In the proof of this result, we first use the

classical four functions theorem to establish a generic inequality that applies to two-state

Markov processes on trees. This new inequality, combined with the FKG inequality, is

used to prove the above relationship. Interestingly, our new Markov inequality also al-

lows us to derive a purely combinatorial result concerning the parsimony score of binary

characters on trees. In the last chapter, our most realistic extinction model is described

and the expected value and variance of the resulting future PD are compared with the

corresponding values of the g-FOB model. In order to show a relationship between the

first moments similar to the one above, we generalize our two-state inequality using a

form of the four functions theorem for finite distributive lattices. We then apply the

new Markov inequality, alongside a general version of the FKG inequality, to prove the

required relationship.

From this thesis, three publications have been published or accepted [25, 26, 71], an-

other publication has been submitted [27], and one further paper is in preparation [24].
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Moreover, there is a chapter in the thesis presenting unpublished research. This is Chap-

ter 6, in which we prove three main results. The first two describe the approximability

properties of the problem Optimizing PD for Cluster Systems. As there is a strong

relationship between this problem and the problem called Max k-Cover, results on the

approximability of one of these problems immediately carry over to the other, and vice

versa. Therefore, the result stated in Theorem 6.1(i) was first established in [15], while

Theorem 6.1(ii) follows immediately from a result of Feige [28]. In Chapter 6 of this

thesis, we describe our proof for part (i) and also show how [28] can be used to derive the

statement in part (ii).

Finally, it should be noted that most of the results in [71] were established by Mike

Steel and have been reproduced for completeness.
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Chapter 2

Preliminaries

In biology, phylogenetic trees and their rooted counterparts are used to describe the evo-

lutionary relationships between taxa (for example, species). Briefly, a phylogenetic tree

is a tree whose leaves are labelled by the elements of a finite set, which represents a set of

present-day taxa. If such a tree is rooted, then it is regarded as describing the evolution of

the species that label the leaves of the tree from a common hypothetical ancestral species

at the root. The other interior vertices of the tree correspond to further hypothetical

ancestral species or, alternatively, to past speciation events. In biology, rooted phyloge-

netic trees are also called evolutionary trees or cladograms. We now formally define these

concepts.

2.1 Phylogenetic trees

Unless otherwise stated, X denotes a non-empty finite set in this thesis. Most of the

notation and terminology of the thesis follows [65].

Definition 2.1. A phylogenetic X-tree T is an ordered pair (T, φ), where T = (VT , ET )

is a tree with no degree-two vertices, and φ is a bijection from X into the leaf set of T .

Definition 2.2. A rooted phylogenetic X-tree T is an ordered pair (T, φ), where T =

(VT , ET ) is a rooted tree in which the root has degree at least two and all the other interior

vertices have degree at least three, and φ is a bijection from X into the set of leaves of T .

Figure 2.1 (a) illustrates a phylogenetic X-tree, while Figure 2.1 (b) shows an example

of a rooted phylogenetic X-tree.

A (rooted) phylogenetic X-tree is also called a (rooted) phylogenetic tree on X or, if

there is no ambiguity, a (rooted) phylogenetic tree.

Two phylogenetic X-trees T1 = (T1, φ1) and T2 = (T2, φ2), with T1 = (V1, E1) and

T2 = (V2, E2), are isomorphic if there exists a bijection ψ : V1 → V2 that induces a

bijection from E1 to E2 and satisfies φ2 = ψ◦φ1. The isomorphism of rooted phylogenetic

X-trees is defined analogously, with the additional requirement that ψ takes the root of

T1 to the root of T2. We regard isomorphic phylogenetic trees as being equivalent.
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2.2. PHYLOGENETIC DIVERSITY
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Figure 2.1: (a) A phylogeneticX-tree withX = {1, 2, 3, 4, 5, 6}. (b) A rooted phylogenetic

X-tree with root ρ and with X = {1, 2, 3, 4, 5}.

Let T be a (rooted) phylogenetic X-tree (T, φ). The tree T is called the underlying

tree of T and φ is called the labelling map of T . The set X is called the label set of T .

For convenience, we often refer to the vertices and edges of T as the vertices and edges of

T respectively. Accordingly, we often write VT for VT and ET for ET . If e ∈ ET and e is

incident with a leaf, e is called a pendant edge of T . A non-pendant edge in ET is called

an interior edge of T . Similarly, a non-leaf vertex v ∈ VT is called an interior vertex of

T . Furthermore, we can view X as the set of leaves of the underlying tree T , and so we

denote the leaves of T by the elements of X since φ is implicitly determined.

In some of the chapters, we regard a rooted phylogenetic tree as a directed tree by

viewing each edge as an arc directed away from the root. In this case, the orientation of

the edges corresponds to a temporal ordering.

For a detailed description of the properties of phylogenetic trees, we refer the reader

to [65].

2.2 Phylogenetic diversity

In phylogenetics, the edges of a phylogenetic tree are frequently regarded just as pairs of

vertices, without any lengths assigned to them. However, in several problems, we do assign

a length or weight to each edge. This length refers to the amount of the genetic change

on that edge, its temporal duration, or other features such as morphological diversity.

Edge lengths play an important role when we aim to measure biological diversity based

on phylogenetic information. Phylogenetic diversity (PD) is based on these evolutionary

distances: the PD of a subset of the leaf set of a phylogenetic tree measures how much

total genetic or evolutionary diversity in the tree is spanned by only the species in the

subset [16, 20, 21, 47, 80].

Definition 2.3. Let T be a phylogenetic X-tree and suppose that λ is a map that assigns

5



CHAPTER 2. PRELIMINARIES

a non-negative real-valued length λ(e) to each edge e of T . The phylogenetic diversity of

a subset Y of X, denoted PD(T ,λ)(Y ), is defined by

PD(T ,λ)(Y ) =
∑

e∈ET (Y )

λ(e),

where ET (Y ) is the edge set of the minimal subtree of T connecting the leaves in Y .

An example to represent this concept is shown in Figure 2.2 (a).
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Figure 2.2: (a) The phylogenetic diversity of the subset {1, 4, 5} of the leaf set of the tree

on the left is the sum of the lengths of the solid edges. (b) The phylogenetic diversity of

the set {3, 5} in the rooted tree on the right is the sum of the lengths of the solid edges.

For subsets of the leaf set of a rooted phylogenetic tree, PD is defined as the sum of

the edge lengths of the minimal subtree connecting the species in the subset and the root

vertex [20]. We define this formally next and illustrate it in Figure 2.2 (b).

Definition 2.4. Let T be a rooted phylogenetic X-tree with root vertex ρ and suppose

that λ is a map that assigns a non-negative real-valued length λ(e) to each edge e of T .

The phylogenetic diversity of a subset Y of X is

PD(T ,λ)(Y ) =
∑

e∈ET (Y,ρ)

λ(e),

where ET (Y,ρ) is the edge set of the minimal subtree of T connecting the leaves in Y and

the root vertex ρ.

Since it is clear in each section whether the trees under consideration are rooted or not,

it is also clear which definition of phylogenetic diversity is meant by PD(T ,λ). Furthermore,

we often denote λ(e) by λe and, if there is no ambiguity, PD(T ,λ)(Y ) by PDT (Y ) or, more

briefly, by PD(Y ).

Both notions of phylogenetic diversity have a number of nice combinatorial properties.

A summary of these can be found in [33] and [35].
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Part I

Optimization problems
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Chapter 3

Introduction to PD maximization problems

A basic question in conservation biology is how to maximize future biodiversity as species

face extinction. When conservation decisions require prioritizing some species over others,

one solution is to select a set of species with maximum phylogenetic diversity. The basic

PD optimization problem aims to find a k-element subset of a given species set that has

maximum PD among all such subsets. In Chapters 4 and 5, we consider the extension

of this problem where we are only interested in selecting subsets of the taxa that are

ecologically viable. Chapter 4 presents complexity theoretic results, while Chapter 5

deals with applications of the problem. In some situations, evolution is not tree-like;

even if it is, we do not always know the true tree. The approximability properties of an

optimization problem that can be used in these cases are discussed in Chapter 6.

Intractability is a central mathematical notion of the following chapters. We continue

the present chapter by introducing some informal concepts from this area. For formal

definitions see, for example, [32] and [41].

3.1 Introductory thoughts on intractability

We are often interested in finding efficient algorithms for solving a problem. In gen-

eral, efficiency covers all the various computing resources needed to execute an algorithm.

However, by efficient algorithms one frequently means fast algorithms, where time re-

quirements are expressed in terms of the instance size.

The time complexity function of an algorithm expresses its time requirements by giving,

for each possible input length, the largest amount of time needed by the algorithm to solve

a problem instance of that size. A simple distinction that gives considerable insight into

time complexity is between polynomial time algorithms and exponential time algorithms.

We say that a function f(n) is O(g(n)) whenever there exists a constant c such that

|f(n)| ≤ c|g(n)| for all values of n ≥ 0. A polynomial-time algorithm is one whose time

complexity function is O(p(n)) for some polynomial function p, where n denotes the input

length. Any algorithm that is not a polynomial-time algorithm is called an exponential

time algorithm, even if the time complexity function is not an exponential function. The

distinction between the two types of algorithms was first discussed in [13] and [18]. This

8



3.1. INTRODUCTORY THOUGHTS ON INTRACTABILITY

distinction is central to our notion of intractability and to the theory of NP-completeness:

we refer to a problem as intractable if there is no polynomial-time algorithm for solving

it.

The earliest intractability results are the undecidability results of Alan Turing [74, 75],

presented in 1936. In these papers, Turing demonstrated that there are problems that

are so hard that no algorithm at all can be given for solving them. Such problems are

called undecidable. A variety of other problems are today known to be undecidable. These

problems are intractable in a particularly strong sense.

The first decidable intractable problems were found in the 1960s. These problems, and

all the decidable intractable problems found since then, cannot be solved in polynomial

time using even a non-deterministic computer. A non-deterministic computer model is

able to pursue an unbounded number of independent computation sequences in parallel.

All the provably intractable problems known to date fall into these two categories.

However, most of the apparently intractable problems are decidable and also solvable in

polynomial time by non-deterministic computers. To prove intractability results for these

problems, a new technique needs to be introduced.

Besides proving intractability, finding relationships between the difficulties of different

problems is also one of the major goals of theoretical computer science. Giving a trans-

formation that maps any instance of a problem into an equivalent instance of a second

problem is used to reduce one problem to another. Such a reduction allows us to convert

any algorithm that solves the second problem into an algorithm that solves the original

one. Many examples of reductions were found in the 1960s, foreshadowing the results

that were established later in the theory of NP-completeness.

The foundations of NP-completeness were laid in a paper by Stephen Cook, in 1971

[14]. In his paper, Cook emphasized the significance of polynomial-time reducibility, and

focused attention on decision problems that can be solved in polynomial time by a non-

deterministic computer model. These problems form the set NP. He proved that one

problem in NP, the satisfiability problem, has the property that every other problem in

NP can be reduced to it in polynomial time. Therefore, if the satisfiability problem can

be solved in polynomial time, then so can every problem in NP, and if any problem in NP

is intractable, then the satisfiability problem must be intractable too. This means that

the satisfiability problem is one of the hardest problems in the class NP.

Following these findings, Richard Karp [39] presented a number of results proving that

the decision problem version of many well-known combinatorial problems are as hard as

the satisfiability problem. Since then, a large collection of other problems have been

9



CHAPTER 3. INTRODUCTION TO PD MAXIMIZATION PROBLEMS

proved equivalent in difficulty to these problems. This equivalence class, consisting of the

hardest problems in NP, is called the class of NP-complete problems. (We do not define

the notion of this class formally here. However, as we use it throughout the thesis, we

assume that the reader is familiar with the definition and with the techniques used to

prove that a problem belongs to the class.)

With Cook’s powerful ideas, the question of whether or not the NP-complete problems

are intractable arose and is today considered to be one of the most important open

questions of mathematics and computer science. The knowledge that a problem is NP-

complete does not imply that it is intractable, but it definitely suggests that a major

breakthrough will be needed to solve it in polynomial time.

The theory of NP-completeness is designed to be applied to decision problems only.

However, it is possible to extend the notion of polynomial transformation to prove that

other types of problems are at least as hard as NP-complete problems. The class of hard

problems in this more general sense is called the class of NP-hard problems.

Finally, we note that today, numerous complexity classes are known, and a wide

range of techniques has been established to prove hardness results and to cope with hard

problems. However, there is still a large number of open questions waiting for resolution.

3.2 Computational problems

As mentioned above, decision problems are central in the theory of NP-completeness.

Such problems have two possible solutions, either the answer ‘yes’ or the answer ‘no’.

The format we use for specifying decision problems consists of two parts: the first part

specifies a generic instance of the problem in terms of sets, graphs, functions, numbers,

and so on, and the second part states a yes-no question asked in terms of the generic

instance.

A more general class of computational problems, called search problems, can be viewed

as a collection of instances with a set of solutions for every instance. In the following chap-

ters, we deal with optimization problems, which are special search problems. Informally,

an optimization problem consists of a set of instances, a set of feasible solutions for each

instance, a measure for each instance/feasible solution pair (also called the value of the

feasible solution), and a goal function, which is either the function min or the function

max. The set of optimal solutions for an instance is the set of feasible solutions whose

value is optimal (minimum or maximum depending on whether the goal function is min

or max).

10



3.2. COMPUTATIONAL PROBLEMS

For any optimization problem, there is a corresponding decision problem, each instance

of which includes an additional numerical bound B. If the optimization problem aims to

minimize the measure of the feasible solutions, then the question of the decision problem

asks whether there is a feasible solution whose measure is no more than B. If the goal is

to maximize the measure of the feasible solutions, then the question is whether there is a

feasible solution whose value is at least B. It is important to note that an optimization

problem is at least as hard as the corresponding decision problem. This fact is used several

times in the first part of the thesis.

11



Chapter 4

Hardness of Optimizing PD with Dependencies

In the context of conservation biology, maximizing phylogenetic diversity is a prominent

selection criteria for deciding which species to conserve (see, for example, [9, 20, 23, 48, 54,

63, 62, 70]). In its most direct application to conservation, one selects a k-element subset

of species that maximizes PD over all k-element subsets. While PD makes a comparison

between species to capture the notion of diversity, the conservation of individual species

are considered in isolation. In real ecosystems this can be problematic as species frequently

depend on other species for their survival—there is no point conserving a species if all

the species it depends on go extinct [76, 81]. In this chapter, we consider an extension of

the PD selection criteria, where only subsets that are ecologically viable are considered

for conservation.

4.1 Problem definition

Given a phylogenetic X-tree T with non-negative real-valued weights on its edges and a

fixed integer k, the PD optimization problem is to find

max{PD(S) : S is a k-element subset of X}.

Pardi and Goldmann [54] and Steel [70] independently showed that a solution to this

problem can be found in polynomial time using a greedy algorithm. An edge-weighted

phylogenetic X-tree T with X = {a, b, c, d, e, f, g} is shown in Figure 4.1(a). For this tree

and for k = 3, the PD optimization problem has three optimal solutions: PD({b, d, g}) =
PD({b, d, e}) = PD({g, d, e}) = 15.

To allow for ecological dependencies in the conserving of species, we extend the PD

optimization problem to additionally include an acyclic directed graph D = (X,A). Here,

D could be an ecological network, for example a food web, where (u, v) ∈ A, for u, v ∈ X,

precisely if taxon u feeds or preys on taxon v. We say that a subset S of X is viable if,

for each s ∈ S, there is a directed path in D from s to a vertex with out-degree zero

in which every vertex in the path is in S. The optimal solutions {b, d, g}, {b, d, e}, and
{g, d, e}, obtained for the tree in Figure 4.1(a) and for k = 3, are not viable in the digraph

D represented in Figure 4.1(b). Three-element viable subsets of the vertex set of D are,
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Figure 4.1: (a) A phylogenetic X-tree T and (b) a food web D on X.

for example, {a, b, f} and {a, e, d}. Under the food-web interpretation, a set S is viable

if, for each taxon in S that is not at the bottom of the food chain, there is a taxon in S

that it feeds or preys on. Formally, the problem we are interested in is the following:

Decision problem: Optimizing PD with Dependencies

Instance: A phylogenetic X-tree T , a non-negative real-valued weighting λ on the edges

of T , an acyclic digraph D = (X,A), a positive integer k, and a non-negative real number

d.

Question: Is there a viable subset S of X of size at most k with PD(S) ≥ d?

As stated, this problem has been considered by Moulton et al. [48] and Spillner et

al. [68]. The first paper was interested in the problem in the context of greedoids and

greedy algorithms, while the second paper noted without proof that the problem was

NP-complete. The purpose of the present study is to establish which variations of Op-

timizing PD with Dependencies are computationally easy and which variations of

it are computationally hard. In addition to the immediate significance of knowing the

complexity of the restricted problems, these results increase our knowledge of the essential

elements which made the original problem NP-complete.

The next section contains some preliminaries that are used throughout the present

chapter. A star tree is a (phylogenetic) tree with exactly one interior vertex. In Section 4.3,

we show that Optimizing PD with Dependencies is NP-complete even if T is a

star tree. Section 4.4 considers polynomial-time instances of Optimizing PD with

Dependencies when T is a star tree. Such instances rely on the underlying graph of D

containing no (undirected) cycles. An opposite extreme to consider is when T is arbitrary,

but the underlying graph of D is a rooted tree. However, as we show in Section 4.5, this

particular possibility is also NP-complete. For both intrinsic and practical reasons, greedy

13



CHAPTER 4. HARDNESS OF OPTIMIZING PD WITH DEPENDENCIES

algorithms have been frequently considered in the context of phylogenetic diversity. A

curious feature of the problem Optimizing PD with Dependencies which gives some

additional indication of its hardness is highlighted in Section 4.6, where we show that it

is NP-complete to decide if the feasible solution obtained by the greedy algorithm can be

bettered. Throughout most of this chapter, we restrict ourselves to unrooted phylogenetic

trees. However, in the last section, we consider the extension of our earlier results to rooted

phylogenetic trees, including such trees satisfying the ‘molecular clock hypothesis’.

4.2 Vertex Cover and the star tree problem

Vertex Cover is a classical NP-complete problem and is frequently used for complete-

ness reductions. As we use Vertex Cover several times in this chapter, we give a formal

definition of it here. Furthermore, we also describe a problem equivalent to Optimizing

PD with Dependencies in case T is a star tree.

For a graph G = (V,E), a vertex cover of G is a subset V ′ of V such that, for each

edge {u, v} ∈ E, at least one of u and v belongs to V ′. The NP-complete decision problem

Vertex Cover [39] is the following:

Decision problem: Vertex Cover

Instance: A graph G = (V,E) and a positive integer m ≤ |V |.
Question: Is there a vertex cover of G of size at most m?

A special instance of Optimizing PD with Dependencies is when T is a star

tree. Because a star tree contains no non-pendant edges, this special instance can be

reformulated as a problem on acyclic digraphs. In particular, let w be the weighting on

the vertices of D defined by setting w(v) = λ({u, v}) for each v ∈ X, where u denotes

the interior vertex of T . In this setting, for any subset S of X, set PD(S) =
∑

v∈S w(v).

It is now easily checked that the following decision problem is equivalent to Optimizing

PD with Dependencies when T is a star tree and k ≥ 2.

Decision problem: Optimizing PD in Vertex-Weighted Food Webs

Instance: An acyclic digraph D = (X,A), a non-negative real-valued weighting w on

the vertices of D, a positive integer k, and a non-negative real number d.

Question: Is there a viable subset S of X of size at most k with PD(S) ≥ d?

The above equivalence will be freely used several times in this chapter. Although the

typical model of evolution is a bifurcating tree, there are instances for which it appears

14
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that the underlying model is more star-like than bifurcating (for example, see [79] and the

references therein). Thus, restricting Optimizing PD with Dependencies to when T
is a star tree is also of practical importance.

4.3 NP-completeness of Optimizing PD with Depen-

dencies

In this section, we show that the decision problem Optimizing PD with Dependen-

cies is NP-complete even if T is a star tree. In particular, recalling the equivalence in

Section 4.2, we prove the following theorem.

Theorem 4.1. Optimizing PD in Vertex-Weighted Food Webs is NP-complete.

Proof. Evidently, Optimizing PD in Vertex-Weighted Food Webs is in NP since,

given a subset S of X of size at most k, one can easily check in polynomial time if S

is viable and PD(S) ≥ d. To complete the proof of the theorem, we show that there

is a polynomial-time reduction from Vertex Cover to Optimizing PD in Vertex-

Weighted Food Webs.

Given a graph G = (V,E) and a positive integer m, we construct an instance of

Optimizing PD in Vertex-Weighted Food Webs as follows. Let D be the acyclic

digraph whose vertex set X is the (disjoint) union of V and E, and whose arc set A is

defined to be

A = {(e, v) : e ∈ E, v ∈ V , v is an end-vertex of e in G}.

Let w be the weight function w : X → R
≥0 specified by assigning weight 1 to each

vertex in X ∩ E and weight 0 to each vertex in X ∩ V . Clearly, this construction can be

accomplished in polynomial time.

We now show that there is a vertex cover of G of size at most m if and only if there

is a viable subset S of X of size at most |E| + m with PD(S) ≥ |E|. First, suppose

that V ′ ⊆ V is a vertex cover for G with |V ′| ≤ m. Then, the construction of D implies

that V ′ ∪ E forms a viable subset of X. Since |V ′ ∪ E| = |V ′| + |E| ≤ m + |E| and
w(V ′ ∪ E) = |E|, it follows that V ′ ∪ E is a viable subset of X of size at most |E| +m

and with weight at least |E|. Conversely, suppose that there is a viable subset S of X

of size at most |E| +m and with weight at least |E|. Since the vertices in X ∩ V have

weight 0, the subset S must contain all |E| vertices with weight 1; that is, it must contain
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X ∩ E. Therefore, S = V ′ ∪ E for some V ′ ⊆ V . Since S is viable, there is an arc from

each e ∈ E to some vertex v ∈ V ′. In terms of G, this implies that V ′ is a vertex cover of

G. As |S| ≤ |E|+m, it follows that |V ′| ≤ m, completing the proof of the theorem.

Remark. Theorem 4.1 tells us that Optimizing PD with Dependencies is NP-

complete even if T is a star tree. However, the proof of this theorem says the problem

remains NP-complete if D is a bipartite digraph with vertex partition V1∪V2, where each
vertex in V1 has in-degree zero and out-degree two and each vertex in V2 has out-degree

zero. Moreover, it is also interesting to note that we could have used any restricted version

of Vertex Cover for the reduction provided the version is NP-complete. For example,

it has been shown that Vertex Cover remains NP-complete if G is cubic and planar

[46]. A graph is cubic if each vertex has degree three. Thus, Optimizing PD with

Dependencies remains NP-complete if T is a star tree and D is a bipartite graph as

described above with the additional properties that each vertex in V2 has in-degree three

and D is planar. To see planarity, observe that D can be obtained by taking a planar

drawing of the planar graph G, subdivide each edge of G, and, for each resulting vertex

u, direct the incident edges away from u.

4.4 Star tree and food tree

In contrast to the NP-completeness results of this chapter, we have the following theorem.

Theorem 4.2. Optimizing PD in Vertex-Weighted Food Webs can be solved in

polynomial time if D is either

(i) a rooted tree with all arcs directed away from the root or

(ii) a rooted tree with all arcs directed towards the root.

Theorem 4.2 is an immediate consequence of what appears to be a well-known dynamic

programming algorithm for solving the following problem (see, for example, [43]). Let T

be a rooted tree with root r and let k be a positive integer. Suppose that the vertices of

T are assigned real-valued weights. The problem is to find a maximum-weighted subtree

of T with root r and at most k vertices.

We briefly outline the dynamic programming algorithm here in the language of our

problem. For convenience, we view Optimizing PD in Vertex-Weighted Food

Webs as an optimization problem. First consider (ii). Let D be a digraph satisfying (ii)

in the statement of Theorem 4.2 and let r be the root of D. Thus, D contains exactly
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one vertex of out-degree zero, namely r. Let v be a vertex of D. We denote the subset

of vertices u of D for which (u, v) is an arc in D by I(v). Furthermore, we denote the

rooted subtree of D with root v whose vertex set is precisely the subset of vertices x of

D for which there is a directed path from x to v by D(v).

For a vertex v of T and a non-negative integer q ≤ k, let S(v, q) denote the value of

an optimal solution of Optimizing PD in Vertex-Weighted Food Webs when D

is chosen to be D(v) and the size of the viable subset is at most q. Note that S(r, k)

denotes the value of an optimal solution for the original problem. Clearly, for any vertex

v of T , we have S(v, 0) = 0 and, for each vertex u of in-degree zero, S(u, q) = w(u) for

1 ≤ q ≤ k. The dynamic programming algorithm starts at vertices of in-degree zero and

works itself towards r using the recursion

S(v, q) = w(v) + max
{qu:

∑
u∈I(v) qu≤q−1}

∑

u∈I(v)
S(u, qu)

for 1 ≤ q ≤ k. It is shown in [43] that this approach leads to a quadratic-time algorithm

for finding S(r, k).

If D is a digraph satisfying (i) in the statement of Theorem 4.2, then we simply modify

the above algorithm in the obvious way to find a minimum-weight subtree of D rooted

at r with at least n − k vertices. The complement of the value of the resulting solution;

that is,
∑

u∈V (D)w(u) minus this value, gives the desired optimal value.

Despite the above positive results, we end this section with the following conjecture,

where no constraints are placed on the direction of the arcs.

Conjecture 4.3. Optimizing PD in Vertex-Weighted Food Webs when the un-

derlying graph of D is a tree is NP-complete.

4.5 Arbitrary phylogenetic tree and food tree

In this section, we show that Optimizing PD with Dependencies is still NP-complete

if T is an arbitrary phylogenetic tree while D is a rooted tree. In particular, we establish

the following theorem.

Theorem 4.4. Optimizing PD with Dependencies when T is an arbitrary phyloge-

netic tree and D is either

(i) a rooted tree with all arcs directed away from the root or

(ii) a rooted tree with all arcs directed towards the root
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is NP-complete.

Proof. We prove (i). The proof of (ii) is similar and omitted. Since Optimizing PD

with Dependencies is in NP, this particular instance of the problem is also in NP.

Like the NP-completeness proof for Theorem 4.1, the reduction is from Vertex Cover.

However, for this proof, we use the restricted version of Vertex Cover in which the

graph is cubic and planar. It is shown in [46] that Vertex Cover remains NP-complete

under these restrictions.

Let G = (V,E) be a cubic, planar graph. We construct an instance of the restricted

version of Optimizing PD with Dependencies described by (i) as follows. Colour

the edges of G with three colours {1, 2, 3} such that no two edges incident with the same

vertex receive the same colour. Due to a classic construction of Tait [73], this is equivalent

to four-colouring the faces of a planar drawing of G, which can be done in quadratic time

[61]. For each colour c ∈ {1, 2, 3}, let

Vc = {uc : u ∈ V },

and let Tc be the tree with leaf set Vc that consists of a (central) vertex zc of degree |V |/2,
where the |V |/2 neighbours of zc each have degree three, and the |V | leaves are arranged

so that, for each edge {u, v} of G coloured c, the vertices uc and vc are adjacent to the

same degree-three vertex. As G is a cubic graph, Tc is well-defined for each c ∈ {1, 2, 3}.
Let T be the phylogenetic X-tree that is constructed by starting with components T1, T2,

and T3 and two new (isolated) vertices x and y, and then connecting these components

with new edges {x, y}, {y, z1}, {y, z2}, and {y, z3}. Observe that the leaf set of T is

V1 ∪ V2 ∪ V3 ∪ {x}. We specify the weighting function λ by setting

λ(e) =































0 if e is a pendant edge incident with a vertex in V1 or V2;

N if e is a pendant edge incident with a vertex in V3;

0 if e = {x, y} or e = {y, zc} for some c ∈ {1, 2, 3};
1 otherwise,

where N is sufficiently large, say N > |E|. With this construction and weighting, our phy-

logenetic tree and corresponding edge weighting is complete. Now let D be the associated

rooted tree with vertex set V1 ∪ V2 ∪ V3 ∪ {x} and arc set

⋃

u∈V
{(x, u3), (u3, u2), (u2, u1)}.
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Note that x is the root of D. Clearly, both T and D can be constructed in polynomial

time.

We complete the proof by showing that G has a vertex cover of size at most m if and

only if there is a viable subset S of X of size at most 3m such that PD(S) ≥ |E|+mN .

Suppose first that there is a vertex cover V ′ ⊆ V for G with |V ′| = m. By selecting S to be

the set {uc : c ∈ {1, 2, 3} and u ∈ V ′}, we have a viable subset of X of size 3m. Moreover,

observing that there are exactly |E| edges in T with weight 1 (each corresponding to a

distinct edge of G), PD(S) = |E|+mN .

Conversely, suppose that there is a viable subset S of X of size at most 3m that has

PD score at least |E| + mN . Since N > |E| and PD(S) ≥ |E| + mN , it follows that

S must contain at least m leaves of T3 so that the minimal subtree of T connecting the

elements of S includes m edges with weight N . But then, as S is viable, for each such

leave u3 in S, the set S also includes u1 and u2. Therefore, |S| = 3m and S consists of

exactly these vertices. As PD(S) ≥ |E| +mN , it now follows that the minimal subtree

of T connecting the elements in S must contain all |E| edges with weight 1. In turn,

this implies that V ′ = {u ∈ V : u3 ∈ S} is a vertex cover of G. As |V ′| = m, we have

completed the proof of the theorem.

4.6 Improving greedy solutions is hard

Greedy algorithms have been regularly considered as approaches for solving problems that

optimize some measure of diversity (see, for example, [8, 9, 54, 37, 48, 70]). There are a

variety of reasons for this consideration. First, they are fast, simple to use and implement,

and, more importantly, solve the original PD problem exactly [54, 70] and provide sharp

approximation algorithms for other PD-related problems [8, 9]. Indeed, the fact that the

original PD problem can be solved in this way motivated Moulton et al. [48] to consider

PD and the greedy algorithm in detail. Second, in the context of conservation biology,

they underlie the desirable property of stability [8]. In particular, one would like the set of

species to be targeted for conservation to be stable as budgets vary. For example, if, given

some initial budget, one selects a set of species to conserve resulting from a diversity-based

method, one would like most of that set to remain if the budget was to be adjusted up or

down at a later date and the chosen set of species to conserve was reselected under the

new budget.

In this section, we consider the following greedy approach to solving Optimizing PD

in Vertex-Weighted Food Webs.
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Algorithm: Greedy(D,w, k)

Input: An acyclic digraph D = (X,A), a non-negative real-valued weighting w on the

vertices of D, and a positive integer k.

Output: A viable subset of X of size k.

Step 1 Let S be the empty set and set counter c = 0.

Step 2 If c = k, STOP; otherwise, select an element z of X − S so that S ∪ {z} is viable

and maximizes PD(S ∪ {z})− PD(S).

Step 3 Set S = S ∪ {z} and c = c+ 1, and return to Step 2.

It is not difficult to construct a counterexample to show that Greedy does not neces-

sarily find an optimal solution toOptimizing PD in Vertex-Weighted Food Webs.

Of course, since Greedy is trying to solve an NP-hard problem, this is not surprising.

However, what is perhaps unexpected is that deciding if there is a feasible solution better

than that returned by Greedy is NP-complete as we show next. It would be interest-

ing to know of other situations where improving greedy solutions was a provably hard

problem.

Decision problem: Greedy Optimality

Instance: An acyclic digraph D = (X,A), a non-negative real-valued weighting w on the

nodes of D, a positive integer k, and the PD score g of the solution returned by Greedy

applied to (D,w, k).

Question: Is there a viable subset S of X of size at most k such that PD(S) > g?

Theorem 4.5. Greedy Optimality is NP-complete.

Proof. Greedy Optimality is clearly in NP since, given a subset S of X, one can easily

verify in polynomial time whether S is viable and PD(S) > g. To complete the proof of

the theorem, we show that there is a polynomial-time reduction from Vertex Cover to

Greedy Optimality.

Let G = (V,E) and m be a given instance of Vertex Cover. Let D be the acyclic

digraph whose vertex set is the union of V ∪E and U = {u1, u2, . . . , u|E|+m−1}, and whose

arc set is the union of

{(e, v) : e ∈ E, v ∈ V , v is an end-vertex of e in G}

and

{(ui, ui−1) : i ∈ {2, 3, . . . , |E|+m− 1}}.
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Now let w be any function from the vertex set X of D to R
≥0 that is defined, for all

x ∈ X, by setting

w(x) =































0 if x ∈ V ;

1 if x ∈ E;

δ if x ∈ {u1, u2, . . . , u|E|+m−2};
α if x = u|E|+m−1,

where (|E|+m− 2)δ + α = |E| − ǫ for some ǫ > 0 and 0 < δ < 1−ǫ
|E|+m−2

. Clearly, such a

function exists.

Let k = m+ |E| and let gk be the solution of Greedy applied to (D,w, k). Observe

that gk = |E| − ǫ and that any set corresponding to this solution must contain all of the

elements in U and exactly one element in V . We next show that there is a vertex cover for

G of size at most m if and only if there is a viable subset S of X of size at most m+ |E|
such that PD(S) > gk.

Suppose first that there is a vertex cover V ′ of G of size at most m. Then, by taking

the subset V ′ ∪E of the vertex set of D, we have a viable subset of size at most m+ |E|
whose weight is |E|. In particular, PD(V ′ ∪ E) > gk.

For the converse, suppose that there is a viable subset S of X of size at most m+ |E|
such that PD(S) > gk. If E ⊂ S, then we have a vertex cover for G of size at most

m by choosing the set V ∩ S. Therefore, we may assume that E is not a subset of S.

Furthermore, if u|E|+m−1 ∈ S, then, as S is viable, U ⊆ S. In this case, as |S| ≤ m+ |E|,
we have S = U or S = U ∪ {v} for some v ∈ V . But then PD(S) = |E| − ǫ = gk, which

is a contradiction. Thus, we may also assume that u|E|+m−1 6∈ S. Since E is not a subset

of S, it follows that

PD(S) ≤ (|E|+m− 2)δ + |E| − 1. (4.1)

But δ was chosen so that δ < 1−ǫ
|E|+m−2

; that is,

(|E|+m− 2)δ < 1− ǫ.

Combining this with (4.1), we get

PD(S) ≤ (|E|+m− 2)δ + |E| − 1 < 1− ǫ+ |E| − 1 = |E| − ǫ,

contradicting the fact that PD(S) > gk = |E| − ǫ. It follows that E must be a subset of

S and so there is a vertex cover of G of size at most m. Since the reduction can be done

in polynomial time, this completes the proof of the theorem.
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As noted earlier, Moulton et al. considered Optimizing PD with Dependencies in

the context of greedy algorithms. They observed that in the trivial case T is a star tree in

which all edge weights are equal the problem is solvable via a greedy algorithm. One can

extend this observation further by showing thatOptimizing PD in Vertex-Weighted

Food Webs is solvable via Greedy if D has the property that, whenever P is a directed

path in D, then w(u) ≤ w(v) for each (u, v) ∈ P . An interesting problem would be

to determine precisely when Optimizing PD in Vertex-Weighted Food Webs is

solvable via Greedy. However, Theorem 4.5 shows that any such characterization will

not be validated in polynomial time unless P=NP.

4.7 Rooted and clock-like phylogenetic trees

In practice, one frequently works with rooted phylogenetic trees and, therefore, the rooted

analogue of PD. Recall the definitions of these in Section 2.2. In the present short section,

we review the implications of our earlier results in this setting.

The rooted analogue of Optimizing PD with Dependencies, called Optimizing

Rooted PD with Dependencies, is the same as that in the unrooted setting but with

the rooted phylogenetic tree replacing the (unrooted) phylogenetic tree and using the

appropriate definition of PD (see Definition 2.4). A rooted star tree is a rooted phylogenetic

tree in which the only interior vertex is the root. As in the unrooted setting, when T
is a rooted star tree, Optimizing Rooted PD with Dependencies is equivalent

to Optimizing PD in Vertex-Weighted Food Webs. A minor point to note is

that, unlike the unrooted setting where k ≥ 2 for this equivalence to work, there is no

restriction on k in the rooted equivalence. It is now easily seen that Theorems 4.1, 4.2,

and 4.5 apply to Optimizing Rooted PD with Dependencies too. Furthermore, the

rooted analogue of Theorem 4.4 also holds. This can be easily checked by making minor

changes to the proof of Theorem 4.4. In particular, distinguishing the interior vertex y as

the root in the constructed tree and using PD as defined in Definition 2.4 in the course

of the reduction.

In biology, it is sometimes reasonable to assume that mutations in evolution occur at a

constant rate. This assumption is called the molecular clock assumption. Mathematically

speaking, this assumption implies that, in a rooted phylogenetic tree, the sum of the

lengths of the edges from the root to each leaf is the same. The notion of the existence

of a molecular clock first appeared in [82] followed by [64]. Now consider Optimizing

Rooted PD with Dependencies under the assumption that the edge-weights of T
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satisfy the molecular clock; T is also called clock-like in this case. If T is a star tree, then

Optimizing Rooted PD with Dependencies is trivially solvable in polynomial time

[48]. However, if T is arbitrary and D is a food tree, then Optimizing Rooted PD

with Dependencies is NP-complete.

Theorem 4.6. Optimizing Rooted PD with Dependencies when T is a rooted

phylogenetic tree with the molecular clock assumption and D is either

(i) a rooted tree with all arcs directed away from the root or

(ii) a rooted tree with all arcs directed towards the root

is NP-complete.

Proof. We just outline the proof of (i). The proof of (ii) is similar. We use a reduction

from the restricted version of Vertex Cover in which G is cubic and planar. The proof

is essentially the same as the proof of Theorem 4.4, and so we just highlight the necessary

changes.

Distinguish the interior vertex y of the phylogenetic tree constructed in the proof of

Theorem 4.4 to obtain a rooted phylogenetic tree Ty with root y. Using the original

weighting function λ , we make Ty clock-like with the following weighting function λy:

λy(e) =



















N + 1 if e = {x, y};
N if e ∈ {{y, z1}, {y, z2}};
λ(e) otherwise.

Setting k = 3m+ 1 and d = |E|+ (m+ 3)N + 1 completes the necessary changes.

The paper entitled ‘Optimizing phylogenetic diversity with ecological constraints’ [26]

is a result of the work presented in this chapter. I would like to thank my co-authors

Charles Semple and Dominic Welsh for their collaboration, and Magnus Bordewich, Peter

Lockhart, Michael Snook, Mike Steel, and Alexander Zelikovsky for useful discussions

relating to this work.

23



Chapter 5

Using linear programming to find solutions to a real

instance

We have seen that Optimizing (Rooted) PD with Dependencies is an NP-hard

optimization problem, except in the simple case when the phylogenetic tree is a star

tree and the food web is either a rooted directed tree with all arcs directed away from

the root or a rooted directed tree with all arcs directed towards the root. However,

real phylogenetic trees are typically not star-like, and real food webs contain undirected

and even directed cycles. To find exact solutions to real and possibly large instances,

we generalize our optimization problem to allow directed cycles and formulate this more

general and more realistic problem as an integer linear programming problem. We then

solve this for an empirical food web with 249 vertices with a MATLAB solver and are

able to find solutions for all possible values of k in seconds. In this chapter, we consider

only rooted phylogenetic trees.

5.1 The real problem

As real ecological networks may contain directed cycles, we let D = (X,A) be any directed

graph. Just as in the previous chapter, there is an arc from a vertex u ∈ X to a vertex

v ∈ X in A precisely if taxon u feeds or preys on taxon v. In this chapter, we often refer

to vertices in D with out-degree zero as source vertices. Recall that viability was defined

only for acyclic digraphs in Section 4.1. The same definition is suitable for arbitrary

digraphs: a subset S of X is viable if, for each s ∈ S, there is a directed path in D from

s to a source vertex such that every vertex in this path is in S. The biological meaning

of a viable species set in an arbitrary digraph is that each non-source species has at least

one prey and is connected to a source (a set of species in a directed cycle cannot persist if

disconnected from the sources). Note that if the food web has no source species, that is,

D = (X,A) has no vertices of out-degree zero, then X has no viable subsets. However,

the real instances of the problem that we are interested in contain food webs with at least

one source species. Moreover, in real food webs D = (X,A) under consideration, X is

typically viable. We are now in the position to formally define the optimization problem
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we are interested in:

Optimization problem: Optimizing PD in Real Ecological Networks

Instance: A rooted phylogenetic X-tree T , a non-negative real-valued weighting λ on

the edges of T , an arbitrary digraph D = (X,A), and a positive integer k.

Goal: Find a viable subset S of X of size k that maximizes PD among all such subsets.

While it is obvious that the existence of a vertex of out-degree zero in D is a necessary

(and sufficient) condition for X to have viable subsets, it is not straightforward to see

under what conditions does X have a viable subset of size k? To answer this question,

let us recall the definition of a greedoid. Let X be a finite set and let F be a collection

of subsets of X. The pair (X,F ) is a greedoid if it satisfies the following two conditions:

(G1) If F ∈ F and F 6= ∅, then there is an element x in F such that F − {x} ∈ F .

(G2) If F1, F2 ∈ F and |F2| = |F1| + 1, then there is an element x in F2 − F1 such that

F1 ∪ {x} ∈ F .

Moulton et al. [48] showed that if D = (X,A) is a digraph and F is the collection

of viable subsets F of X, then (X,F ) is a greedoid. An immediate consequence of this

result is that X has a viable subset of size k precisely if a maximal viable subset of X has

cardinality at least k. This follows from property (G1). As real food webs for which we

aim to solve Optimizing PD in Real Ecological Networks have a viable vertex

set X, they also have a viable subset of any size between 1 and |X|.

5.2 ILP formulation

To formulate Optimizing PD in Real Ecological Networks as an integer linear

programming problem, we require further definitions and notations. Let λe denote the

value that λ assigns to an edge e of T . Let ET denote the set of edges of T , and let Ei

and Ep denote the set of interior and the set of pendant edges of T respectively. For an

interior edge e ∈ Ei, let Xe denote the set of leaves that are separated from the root of

T by e. A digraph D is strongly connected if there is a directed path from each vertex in

D to every other vertex in D. We denote the collection of strongly-connected subgraphs

of D = (X,A) none of whose vertices are source vertices by SD. If C = (VC , AC) is a

subgraph in SD, then δ
−(C) denotes the set of vertices v such that there is an arc (u, v)

in D with u ∈ VC and v /∈ VC . Now we formulate our problem as a 0-1 integer linear

programming problem.
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maximize
∑

e={u,v}∈Ep

v∈X

λexv +
∑

e∈Ei

λexe

subject to xv, xe ∈ {0, 1} for all v ∈ X, e ∈ Ei
∑

v∈X
xv = k

∑

v∈Xe

xv ≥ xe for all e ∈ Ei

∑

u∈VC

xu −
∑

v∈δ−(C)

xv ≤ |VC | − 1 for all C ∈ SD

Here, the variables xv correspond to the species in X and the variables xe correspond

to the interior edges of T . They take value 1 if the species (or interior edge) is in the

solution and 0 if not. Exactly k species must be chosen, and an interior edge may be

chosen only if at least one species below that edge is selected. We do not require an

interior edge to be selected if there are selected species below that edge. However, in an

optimal solution, such an edge is selected if its λ-value is positive. Finally, whenever we

select each vertex from a strongly connected subgraph C in SD, there has to be an arc in

D from a vertex of C to a selected vertex outside of C. This condition is efficient to check

for real food webs, and, as the next proposition shows, it is equivalent to the viability of

the selected set of vertices.

Proposition 5.1. A subset Y of the vertex set X of a digraph D = (X,A) is viable if

and only if it satisfies the following condition:

(C) For any subset Z of Y that induces a strongly connected subgraph in SD, there is a

vertex q in δ−(Z) ∩ Y .

Proof. Assume first that Y is viable. Consider an arbitrary subset Z of Y that induces a

strongly connected subgraph in SD. Since Y is viable, there is, for each s ∈ Z, a directed

path in D from s to a vertex with out-degree zero in which every vertex is in Y . Let s0

be any vertex in Z and let p be a directed path from s0 to a source that is completely

contained in Y . Since Z does not contain source vertices, p has to leave Z at some point,

and so the first vertex of p that is outside of Z has to be in δ−(Z) ∩ Y , as required.

Assume now that Y satisfies condition (C). We prove that Y is viable. Consider an

arbitrary vertex, say s0, in Y . We give a directed path from s0 to a source vertex in

which every vertex is in Y . If s0 is a source vertex, then it forms a suitable path by itself.
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Therefore, we assume that s0 is not a source, and consider the vertex setM0 of the strongly

connected subgraph of D that satisfies s0 ∈ M0 ⊆ Y and is maximal in Y . By (C), at

least one of the elements of δ−(M0) is in Y . Let s1 be an element in δ−(M0)∩Y . Let p1 be

a directed path from s0 to s1 whose vertices are all inM0∪{s1}. If s1 is a source, we have

found a directed path from s0 to a source and the proof is complete. Otherwise, consider

the vertex set M1 of the strongly connected subgraph of D that satisfies s1 ∈ M1 ⊆ Y

and is maximal in Y . By (C), at least one of the elements of δ−(M1) is in Y . Let s2

be in δ−(M1) ∩ Y . If s2 is in M0, then M0 ∪M1 induces a strongly connected subgraph

in D, contradicting the maximality of M0. Thus, s2 ∈ Y − (M0 ∪ M1). Consider a

directed path from s1 to s2 whose vertices are all in M1 ∪ {s2}. This path, together with
p1, forms a directed path p2 from s0 to s2. If s2 is a source, we have found a suitable

directed path and the proof is complete. Otherwise, we continue the above process. As

there are finitely many vertices in Y , the process will terminate after visiting a finite

number of vertices. If it terminates when finding a directed path from s0 to a source, the

proof is complete. So assume that the process terminates when arriving to a non-source

vertex, say st, of Y along the directed path pt whose vertices are all in (∪t−1
i=0Mi) ∪ {st}.

Since st is in Y − (∪t−1
i=0Mi) (otherwise, Mt−1 would not be maximal), there has to be a

strongly connected subgraph of D whose vertex set Mt satisfies st ∈ Mt ⊆ Y − (∪t−1
i=0Mi)

and is maximal in Y . Since st is not a source, by (C), there has to be a vertex, say

st+1, in δ−(Mt) ∩ Y , and there has to be a directed path from st to st+1 using vertices

only in Mt ∪ {st+1}. This path, together with pt, forms a directed path from s0 to st+1.

This contradicts the fact that the process terminates at the non-source vertex st. Thus,

termination occurs only when arriving to a source, giving a directed path from s0 to a

source in which every vertex is in Y . This completes the proof.

Note that we assume that the set of instances for the problem Optimizing PD in

Real Ecological Networks equals the set of instances for the above integer linear

programming problem. The next theorem states that the two sets of optimal solutions

corresponding to the two formulations are also equivalent.

Theorem 5.2. Let I be an arbitrary instance of the integer linear programming problem,

and consider the set OI = {x : x is an optimal solution for I}. For each x ∈ OI , let Yx be

the subset of X that contains a vertex v ∈ X precisely if xv = 1 in x. Then, {Yx : x ∈ OI}
is the set of optimal solutions of Optimizing PD in Real Ecological Networks

for the instance I.

The proof of Theorem 5.2 is straightforward and is omitted.
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5.3 Test Case

The constraints described above can be written in the form Ax ≤ b and input to any

integer linear program solver. We use MATLAB to build A and b from a matrix that

describes a rooted phylogenetic tree with lengths on its edges and from a matrix that

describes a food web.

To evaluate whether realistically complex problems can be solved in practice, we used

the largest food web currently in the empirical literature: a 249-node network with 3315

arcs based on feeding interactions in a large area of Caribbean shelf (details can be found

in [51] and [6]). The only prior phylogenetic appraisal of this dataset [60] covered only

116 nodes, so we used a variety of sources to hand-construct a plausible clock-like rooted

phylogenetic tree that includes all the species and trophospecies from the food web. This

phylogeny was constructed by our biologist collaborator Travis Ingram. The food web

features extensive cycling, with 553 strongly connected subgraphs. The large size and

complexity of this food web means that it probably represents the most difficult real

instance of the problem likely to be encountered. We ran the solver called bintprog,

which is part of the Optimization Toolbox of MATLAB 7 and later, for all values of k

between 1 and 249 on a server with an Intel Xeon processor (8 core, 3.2 GHz) and 32GB

RAM. We found that in all cases an optimal solution was returned within 5 seconds.

5.4 Conclusions

By applying integer linear programming, we are able to effectively select maximum PD

subsets of a given size of a species set while meeting the viability constraints imposed by a

food web. Currently, we are working on the construction of a more realistic phylogenetic

tree, for which Optimizing PD in Real Ecological Networks will be solved and

optimal solutions will be interpreted. We also plan to study the structure of the set of

all optimal solutions for a given instance. As there are other solvers that perform better

than MATLAB’s bintprog, we may use an alternative solver as well.

Related approaches have recently been proposed for other conservation and ecological

problems, such as selecting a set of habitats to maximize PD [63], optimizing split diversity

[45], or detecting community structures in networks [12]. Our application of integer linear

programming to food web matrices might also be extended to investigate other problems

involving ecological networks. For example, we might wish to select a set of species in a

food web that maximizes total biomass or energy flow.

28



5.4. CONCLUSIONS

The work that has been presented in this chapter [24] is a result of joint work with

Travis Ingram and Charles Semple. I would like to thank Travis and Charles for their

collaboration, Karen Magnusson-Ford, Arne Mooers, and Mike Steel for useful discussions,

and Carlos J. Melián for sharing food web data.
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Chapter 6

On approximation of Optimizing PD for Cluster

Systems

Given the phylogenetic X-tree of a species set X with lengths on its edges, in the basic

PD optimization problem, one selects a k-element subset of X that maximizes PD over all

k-element subsets [54, 70]. Since this optimization problem assumes that the evolutionary

history of the species in X is known, it cannot be used in situations where we do not know

the true tree or where evolution is not tree-like. In these cases, a more general biodiversity

measure needs to be defined and, based on it, a more general optimization problem has

to be formulated. Spillner et al. [68] introduced the measure ‘phylogenetic diversity for

split systems’ (PDS ) and the problem Optimizing PD for Split Systems, which can

be used when considering species whose evolution is better represented by an unrooted

network rather than an unrooted tree. In this chapter, we give a different generalization

of PD, which we call ‘phylogenetic diversity for cluster systems’ (PDC ). This measure is

useful when the evolutionary history is best described by a rooted network [5], or when

we do not know the true history, but we have a set of rooted phylogenetic trees (perhaps

with different probabilities) and we want to maximize the expected PD. We consider

the problem of finding a k-element subset of a given species set that maximizes PDC

over all such subsets. We find that a greedy algorithm gives a (1 − e−1)-approximation

to this problem, and that there is no polynomial-time algorithm that achieves a better

approximation ratio unless P=NP. We prove that, as a consequence, the problem Opti-

mizing PD for Split Systems has a polynomial-time approximation algorithm with

ratio 1− e−1.

In the next section, we formally define the measure PDC . We then introduce the prob-

lem Optimizing PD for Cluster Systems and give an example of its applications.

The results on the approximability properties of this optimization problem are stated in

Section 6.2. I would like to note that these two results have already essentially appeared

in the literature: as there is a strong relationship between our problem and the problem

called Max k-Cover, the known approximability properties of this problem, described

in [15] and [28], carry over to our problem. In Section 6.2, we describe our proofs to these

results, the second of which also relies on the strong relationship between our problem
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and Max k-Cover. The consequence of these results for the approximability properties

of Optimizing PD for Cluster Systems is stated and proved in the last section of

this chapter.

6.1 Optimizing PD for Cluster Systems

Recall the definition of phylogenetic diversity for rooted phylogenetic trees (see Defini-

tion 2.4 in Section 2.2). The following definition generalizes this notion of PD.

Let X be a finite set, and let C be a collection of subsets of X. Furthermore, let w be

a weighting function on C that assigns a non-negative real-valued weight to each member

of C . For a subset Y of X, we define the phylogenetic diversity of Y relative to C , denoted

by PDC (Y ), as the sum of the weights of the members of C whose intersection with Y is

non-empty. That is, we set

PDC (Y ) =
∑

C∈C ,C∩Y 6=∅
w(C). (6.1)

To see that PDC generalizes the notion of PD for rooted phylogenetic trees, consider

the special case when X is the leaf set of a rooted phylogenetic X-tree T . A subset C of

X is a cluster of T if there is an edge that has precisely C as its set of descendant leaves.

Suppose that the edges of T have non-negative real-valued weights and let C be the set

of all clusters of T . For a cluster C ∈ C , let w(C) be the weight of the unique edge of

T whose associated cluster is C. It is easy to see that in this setting, the phylogenetic

diversity of a subset Y of X equals the phylogenetic diversity of Y relative to C . That

is, for any Y ⊆ X, we have PDT (Y ) = PDC (Y ).

In this chapter, we consider the general case when C is an arbitrary collection of

subsets of a finite set. In the following, we define and feature an optimization problem

that is based on PDC .

Optimization problem: Optimizing PD for Cluster Systems

Instance: A finite set X, a collection C of subsets of X, a non-negative real-valued

weighting w on C , and a positive integer k.

Goal: Find a subset Y of X of size k that maximizes PDC among all such subsets.

In the case when C is the collection of clusters of a rooted phylogenetic X-tree, Op-

timizing PD for Cluster Systems is just the basic PD optimization problem and is

solvable in polynomial time using a greedy algorithm [54, 70]. However, as discussed later
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in this section, Optimizing PD for Cluster Systems is NP-hard in general. (This

also follows immediately from the NP-hardness of Max k-Cover.)

One of the reasons why we are interested in solving the above problem is highlighted

in the following example.
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Figure 6.1: Two edge-weighted rooted phylogenetic X-trees T1 and T2, both rooted at ρ.

Example. Let X = {a, b, c, d} and consider the edge-weighted rooted phylogenetic X-

trees shown in Figure 6.1. Assume that we do not know the evolutionary history of the

species in X, but we know that either T1 or T2 represents it each with probability 1
2
, say.

Consider the basic PD optimization problem with k = 2; that is, the problem of finding a

two-element subset of X that has maximum PD among all two-element subsets. If T1 was

the true tree, {a, c} would be the optimal solution. However, if T2 was the true tree, the

best two-element subset would be {b, d}. In such a situation, it may be safer to choose

a subset of size two that maximizes the expected PD with respect to the probability

distribution on the two trees. Let W ⊆ X be of cardinality two and let E[PDT1,T2(W )]

denote the expected PD of W with respect to the probability distribution on the two

trees. Then, we have

E[PDT1,T2(W )] =
1

2
PDT1(W ) +

1

2
PDT2(W ).

Consider now the cluster sets of T1 and T2. These are

C1 = {{a}, {b}, {c}, {d}, {b, c}, {a, b, c}}

and

C2 = {{a}, {b}, {c}, {d}, {a, d}, {b, c}},
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respectively. For i ∈ {1, 2}, let wi assign to a cluster in Ci the weight of the edge

corresponding to that cluster in Ti. For example, w1({d}) = 1, w2({d}) = 4, and

w2({a, d}) = 2. It is easy to see that E[PDT1,T2(W )] can be written as

E[PDT1,T2(W )] =
∑

C∈C ,C∩W 6=∅
w(C), (6.2)

where C = C1 ∪ C2, w(C) =
1
2
w1(C)IC∈C1 +

1
2
w2(C)IC∈C2 , and IC∈Ci

takes the value 1 if

C ∈ Ci and 0 otherwise. Since the right hand side of (6.2) is the PDC score ofW under the

above specified X, C , and w, the problem of maximizing the expected PD is equivalent

to solving Optimizing PD for Cluster Systems for our particular instance. A quick

check of all two-element subsets ofX shows that the unique optimal solution is {b, c}. This
subset has the highest expected PD among all two-element subsets of X or, equivalently,

it maximizes PDC over all such subsets.

The process described in the example also works in general when we are given a finite

set of rooted phylogenetic trees with an arbitrary probability distribution on them; maxi-

mizing expected PD always leads to an instance of Optimizing PD for Cluster Sys-

tems. Furthermore, maximizing expected PD is equivalent to the problem Weighted

Average PD on t (Rooted) Trees. For t = 2, this problem is solvable in polynomial

time [10]. For t ≥ 3, it is NP-hard [68], and so Optimizing PD for Cluster Sys-

tems is also NP-hard. However, Theorem 6.1 shows that there is a sharp approximation

algorithm for it.

6.2 Approximability properties

Theorem 6.1. Optimizing PD for Cluster Systems is an NP-hard optimization

problem. However,

(i) there is a polynomial-time greedy algorithm with approximation ratio 1−e−1 for this

problem; and

(ii) there is no polynomial-time approximation algorithm for it with a ratio higher than

1− e−1 unless P=NP.

Theorem 6.1 does not present new results. As there is a strong relationship between

Optimizing PD for Cluster Systems and the problem calledMax k-Cover, results

on the approximability of one of these problems immediately carry over to the other, and

vice versa. Therefore, the result stated in Theorem 6.1(i) was established first in [15],
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while Theorem 6.1(ii) follows immediately from a result of Feige [28]. We state our proof

for part (i) and show how [28] can be used to derive the statement in part (ii) in the next

section.

Our proof of (i) uses the fact that PDC is a submodular set function. The greedy

algorithm that actually gives the above-named approximation ratio is described in [50]

in a more general setting. We briefly outline the algorithm here in the language of this

chapter.

Algorithm: Greedy(X,C , w, k)

Input: A finite setX, a collection C of subsets ofX, a non-negative real-valued weighting

w on C , and a positive integer k.

Output: A subset of X of size k.

Step 1 Let S be the empty set and set counter c = 0.

Step 2 If c = k, STOP and return S; otherwise, select an element z of X −S that maxi-

mizes PDC (S∪{z})−PDC (S) among all elements of X−S (with ties settled arbitrarily).

Step 3 Set S = S ∪ {z} and c = c+ 1, and return to Step 2.

Greedy always produces a solution whose value is at least 1 − (1 − k−1)k times the

value of an optimal solution. This bound can be achieved for each k and has a limiting

value of 1− e−1 [50].

Remark. It would be interesting for future work to explore extensions to Theorem 6.1 (i)

that allow costs to be assigned to the taxa. More precisely, suppose that each taxon has

an associated positive real-valued cost associated with its conservation, and there is total

budget B available to allocate. Then an extension to Optimizing PD for Cluster

Systems is to select a subset of taxa to conserve that maximizes the PD score subject

to the constraint that the sum of the costs of the taxa conserved does not exceed the

budget B (Optimizing PD for Cluster Systems corresponds to the special case

where all costs take the value 1). Recently, variations on the PD optimization problem on

trees that allow taxon costs have allowed pseudo-polynomial-time exact algorithms and

polynomial-time approximation algorithms [9, 55].

Proof of Theorem 6.1

We noted prior to the statement of Theorem 6.1 that Optimizing PD for Cluster

Systems is NP-hard. Thus, the rest of this subsection establishes parts (i) and (ii). To

prove Theorem 6.1 (i), we first verify the following lemma.
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Lemma 6.2. Let C be a collection of subsets of a finite set X and let w be a non-negative

real-valued weighting on the elements of C . Then, PDC is a submodular set function. That

is, for any two subsets A and B of X, we have

PDC (A ∪B) + PDC (A ∩ B) ≤ PDC (A) + PDC (B). (6.3)

Proof. Let A and B be arbitrary subsets of X. Apply Equation (6.1) to A,B,A∪B and

A∩B, and partition C into three sets as follows. For i ∈ {0, 1, 2}, let Ci consist of subsets

in C whose intersection is non-empty with exactly i sets in {A,B}. Consider now the

following cases. For a subset C ∈ C0, the weight w(C) affects neither side of (6.3). For

C ∈ C1, w(C) appears exactly once on both sides of (6.3). Finally, for C ∈ C2, w(C)

appears exactly twice on the right hand side and at most twice on the left hand side.

Noting that w is non-negative completes the proof.

Proof of Theorem 6.1 (i). It is shown in [50] that a greedy heuristic can be used to ap-

proximate the following problem with approximation ratio 1− e−1. Let S be a finite set

and z be a real-valued function defined on the power set of S. Assume that z is submod-

ular and non-decreasing and that z(∅) = 0. The problem is to find a subset of S of size

at most k that maximizes z among all such subsets. We complete the proof by showing

that Optimizing PD for Cluster Systems is a special case of this problem. Take

X as the finite set and PDC as the real-valued function on the power set of X. That is,

set S = X and z = PDC . By Lemma 6.2, PDC is submodular. It is easy to see that PDC

is also non-decreasing: for any subset A of X and for any element a in X − A, we have

PDC (A ∪ {a})− PDC (A) ≥ 0. Finally, PDC (∅) = 0. Theorem 6.1 (i) now follows.

Before proving Theorem 6.1 (ii), we formally state the problem Max k-Cover and

the definition of a type of approximability preserving reduction, called L-reduction.

Optimization problem: Max k-Cover

Instance: A finite set S = {s1, . . . , sn}, a collection F of subsets of S, and a positive

integer k.

Goal: Find a subset F ′ = {F1, . . . , Fk} of F of size k that maximizes the size of the set

∪k
i=1Fi.

Feige [28] showed that no polynomial-time approximation algorithm for Max k-Cover

can have an approximation ratio better than 1− e−1 unless P=NP.

Let Π1 and Π2 be two arbitrary optimization problems. An L-reduction [4, 53] from

Π1 to Π2 is a pair of polynomial-time computable functions f and g, and a pair of positive

constants α and β that satisfy the following properties:
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(I) If I is an instance of Π1, then f(I) is an instance of Π2 with

opt(f(I)) ≤ α opt(I),

where opt(I) and opt(f(I)) denote the size of an optimal solution to I and f(I),

respectively.

(II) If S is a feasible solution to f(I), then g(S) is a feasible solution to I with

|opt(I)− c(g(S))| ≤ β |opt(f(I))− c(S)|,

where c(g(S)) and c(S) is the size of g(S) and S, respectively.

It follows from the definition that if Π1 L-reduces to Π2, and there is a polynomial-time

approximation algorithm for Π2 with approximation ratio ǫ, then there is a polynomial-

time approximation algorithm for Π1 with approximation ratio αβǫ [53].

Proof of Theorem 6.1 (ii). We prove (ii) by giving an L-reduction with α = β = 1 from

Max k-Cover to Optimizing PD for Cluster Systems. By the previous remarks

on Max k-Cover and L-reduction, this will imply that Optimizing PD for Cluster

Systems cannot be approximated in polynomial time with an approximation ratio better

than 1− e−1 unless P=NP, as required.

Let I be an instance of Max k-Cover, and let R be an equivalence relation on S

defined as follows. Two elements si and sj of S are equivalent if and only if they are

elements of precisely the same subsets in F ; that is, they satisfy si ∈ F ⇔ sj ∈ F , for all

F in F . Let [si] denote the equivalence class of si ∈ S under R. We now give a function

f that constructs from I an instance f(I) of Optimizing PD for Cluster Systems;

that is, it specifies a set, a collection of subsets of this set, a non-negative real-valued

weight assigned to each subset in the collection, and a positive integer. Let F be the set

and let C be the collection of subsets of F be defined as follows. For each equivalence

class [si] under R, there is a unique member C[si] = {F ∈ F : si ∈ F} of C . Let the

weight of C[si] ∈ C be the cardinality of the equivalence class [si]. Furthermore, let the

positive integer in instance f(I) equal k. Clearly, this construction can be accomplished

in polynomial time.

To prove (I), we show that opt(I) = opt(f(I)), and so α = 1. Suppose that F ′ =

{F1, . . . , Fk} is an optimal solution to I. Then opt(I) = |∪k
j=1Fj|. Trivially, F ′ is a feasible

solution to f(I). Moreover, F ′∩C[si] is non-empty precisely if ∪k
j=1Fj contains si, in which

case [si] ⊆ ∪k
j=1Fj. By the choice of weighting, it now follows that PDC (F

′) = | ∪k
j=1 Fj|,
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and so opt(I) ≤ opt(f(I)). By choosing an optimal solution to f(I) and reversing this

argument, it is also straightforward to show that opt(I) ≥ opt(f(I)), as required.

For (II), let F ′′ = {F 1, . . . , F k} be a feasible solution to f(I). Setting g(F ′′) = F ′′

gives a feasible solution to I with c(g(F ′′)) = c(F ′′) = | ∪k
j=1 F

j|. This can be seen by

arguments similar to those used in the proof of (I). Trivially, g is computable in polynomial

time. Thus, (II) is satisfied with β = 1. This completes the proof of Theorem 6.1 (ii).

6.3 Optimizing PD for Split Systems

In this section, we first recall the definition of ‘phylogenetic diversity for split systems’

(PDS ) and the problem Optimizing PD for Split Systems from [68]. We then

demonstrate how Theorem 6.1 (i) can be used to prove a result concerning the approx-

imability properties of this problem.

Let X be a finite set. A bipartition {A,B} of X is called a split of X, and a collection

of splits of X is called a split system S on X. Consider such a split system S on X

together with a weighting function w that assigns a non-negative real-valued weight to

each split in S . For a subset Y of X, the phylogenetic diversity of Y relative to S ,

denoted by PDS (Y ), is the sum of the weights of the splits {A,B} in S for which both

A and B have some common elements with Y [68]. That is, PDS (Y ) is defined by

PDS (Y ) =
∑

{A,B}∈S

A∩Y 6=∅,B∩Y 6=∅

w({A,B}). (6.4)

Spillner et al. [68] noted that if the split system S corresponds to a unique unrooted

phylogenetic X-tree T , then PDS corresponds to PDT . Furthermore, they introduced

and studied the following problem, which we consider in this section.

Optimization problem: Optimizing PD for Split Systems

Instance: A finite set X, a collection S of splits of X, a non-negative real-valued

weighting w on S , and a positive integer k.

Goal: Find a subset Y of X of size k that maximizes PDS among all such subsets.

It was shown in [68] that Optimizing PD for Split Systems is NP-hard, and it

was noted without proof that for this problem, there is a polynomial-time greedy-type

approximation algorithm with ratio 1 − e−1. We state this result and prove it using

Theorem 6.1 (i). It should be noted that the algorithm suggested in [68] is more efficient

than the algorithm used in our proof.
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Theorem 6.3. There is a polynomial-time approximation algorithm with approximation

ratio 1− e−1 for Optimizing PD for Split Systems.

Proof. Given an arbitrary instance I of Optimizing PD for Split Systems, we de-

scribe how to produce a solution to I whose value is at least 1−e−1 times the value opt(I)

of an optimal solution.

Let I consist of the finite set X = {x1, . . . , xn}, the collection S of splits of X, the

weighting function w on S , and the positive integer k. For i = 1, . . . , n, let Ii be the

instance of Optimizing PD for Cluster Systems that is defined as follows. Let the

base set be X. Let the collection Ci of subsets of X be the set that contains, for each

bipartition {A,B} ∈ S , precisely one of A and B, namely, A ∈ Ci if xi ∈ B and B ∈ Ci

otherwise. If, for {A,B} ∈ S , we have A ∈ Ci, then let the weighting function on Ci

assign weight w({A,B}) to A; that is, for A ∈ Ci we set w(A) = w({A,B}). Finally, let
the positive integer pertaining to instance Ii be k − 1.

For i = 1, . . . , n, let the set Oi be an optimal solution to Ii, and let opt(Ii) denote the

value of Oi. That is, opt(Ii) = PDCi
(Oi). Assume that Oi does not contain xi. (If an

optimal solution to Ii does contain xi, taking out xi from this solution and adding any

element originally not in it, gives another optimal solution to Ii. This follows easily from

the construction of Ci.) Consider the k-element subsets O1 ∪ {x1}, . . . , On ∪ {xn} of X

and their PDS scores.

We first show that the set that has maximum PDS score among these sets, denoted by

M = Om ∪ {xm}, is an optimal solution to I. That is, we prove that PDS (M) = opt(I).

Assume the contrary that there exists a k-element subset Z of X the PDS score of which

is greater than the PDS score of Oi ∪ {xi}, for i = 1, . . . , n. That is, we have:

PDS (Z) > PDS (Oi ∪ {xi}), for i = 1, . . . , n. (6.5)

Let xj be an arbitrary element of Z. Denoting Z − {xj} by Zj, we get Z = Zj ∪ {xj}.
Applying our assumption (6.5) to i = j gives PDS (Zj ∪ {xj}) > PDS (Oj ∪ {xj}). Using
the definition of PDS , this can be rewritten as follows:

∑

{A,B}∈S

A∩(Zj∪{xj}) 6=∅,B∩(Zj∪{xj}) 6=∅

w({A,B}) >
∑

{A,B}∈S

A∩(Oj∪{xj}) 6=∅,B∩(Oj∪{xj}) 6=∅

w({A,B}). (6.6)

If {A,B} is a bipartition in S , precisely one of A and B contains xj. The other set (A

or B), by definition, is a set in Cj. If, for a bipartition {A,B} ∈ S , xj is, say, in B, then

B ∩ (Zj ∪ {xj}) 6= ∅ on the left-hand side and B ∩ (Oj ∪ {xj}) 6= ∅ on the right-hand

side are satisfied, while A ∩ (Zj ∪ {xj}) 6= ∅ and A ∩ (Oj ∪ {xj}) 6= ∅ are equivalent to
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A ∩ Zj 6= ∅ and A ∩ Oj 6= ∅, respectively, where A ∈ Cj. Since this is true for each

bipartition in S , (6.6) simplifies to:

∑

A∈Cj ,A∩Zj 6=∅
w(A) >

∑

A∈Cj ,A∩Oj 6=∅
w(A).

But this is equivalent to PDCj
(Zj) > PDCj

(Oj), which contradicts the fact that Oj is

optimal to Ij. Thus, M is an optimal solution to I.

Now we continue on finding an approximate solution to I. For i = 1, . . . , n, apply

the approximation algorithm that we described in Section 6.2 to Ii. If xi appears in the

obtained approximate solution Ôi to Ii, then take out xi from Ôi and add any (but only

one) element originally not voted in. Denote the resulting set by Õi. Note that, by the

definition of Ci, we get PDCi
(Õi) ≥ PDCi

(Ôi). Furthermore, since Ôi is the output set

of the approximation algorithm applied to Ii, we have PDCi
(Ôi) ≥ [1 − (k−2

k−1
)k−1]opt(Ii).

Thus, Õi is an approximate solution to Ii, that does not contain xi and that satisfies:

PDCi
(Õi) ≥

[

1−
(

k − 2

k − 1

)k−1
]

opt(Ii). (6.7)

Applying the above procedure to Ii for i = 1, . . . , n yields such an approximate solution

to each instance: Õ1, . . . , Õn. Consider now the sets Õ1 ∪ {x1}, . . . , Õn ∪ {xn} together

with their PDS scores. We prove that the set that has maximum PDS score among these

sets, denoted M̃ = Õm ∪ {xm}, is an approximate solution to I satisfying:

PDS (M̃) ≥
[

1−
(

k − 2

k − 1

)k−1
]

opt(I). (6.8)

Since 1− (k−2
k−1

)k−1 ≥ 1− e−1, once (6.8) has been established, the proof is complete.

By the definition of M̃ , we have:

PDS (M̃) ≥ PDS (Õi ∪ {xi}), for i = 1, . . . , n. (6.9)

Using the definitions of PDS and PDCi
and reasonings similar to those used to simplify

(6.6), it can be seen that PDS (Õi ∪ {xi}) = PDCi
(Õi). This, combined with (6.9) and

(6.7), gives:

PDS (M̃) ≥
[

1−
(

k − 2

k − 1

)k−1
]

opt(Ii), for i = 1, . . . , n. (6.10)

Now recall the definition of the setM = Om∪{xm}, for which we proved that PDS (M) =

opt(I). Note that PDS (M) = PDS (Om ∪ {xm}) = PDCm
(Om) = opt(Im) and therefore,

opt(I) = opt(Im). Applying (6.10) to i = m gives (6.8), as required.
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It was noted in [68] that there exists a constant α > 0 such that the problem of

computing a k-element subset Y of X such that PDS (Y ) is at least 1 − α times the

maximum possible PDS -value of a k-element subset is NP-hard. Theorem 6.3 implies

that every α that satisfies this statement is less than e−1. We end this chapter with

a conjecture that states that the hardness of approximation is actually true for every

α < e−1. That is, we conjecture that the approximation ratio 1− e−1 is best possible for

Optimizing PD for Split Systems.

Conjecture 6.4. There is no polynomial-time approximation algorithm for Optimizing

PD for Split Systems with a ratio higher than 1− e−1 unless P=NP.

The work that has been presented in this chapter is a result of joint work with Charles

Semple and Mike Steel. I would like to thank Charles and Mike for their collaboration.
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Probabilistic models
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Chapter 7

Introduction to species extinction models

If one considers the phylogenetic diversity of the unknown subset of current species that

will still be present at some future time, then this future phylogenetic diversity provides a

measure of the impact of various extinction scenarios in biodiversity conservation. Under

the simplest models of speciation, each taxon has the same probability of being extinct

at some future time, and the extinction of taxa are treated as independent events; this is

a simple type of ‘field of bullets model’. A more realistic extension allows each species to

have its own survival probability—this is the ‘generalized field of bullets model’ (g-FOB),

which we study in Chapter 8. The g-FOB model also assumes that extinction events are

independent. However, in some situations, extinction risks may be influenced by species

characters, which may evolve according to a Markov process on the underlying tree.

The ‘state-based field of bullets model’ and the ‘trait-dependent field of bullets model’

are based on this assumption, introducing dependencies between extinction events. In

order to be able to study these models in Chapters 9 and 10, we first need to give some

definitions.

7.1 Characters

In biology, characters describe different attributes of species, including morphological,

behavioural, and genetic attributes. Mathematically, characters are functions.

Definition 7.1. A character on X is a function χ from a non-empty subset Y of X into

a set C of character states. C is also referred to as the state set of χ. If Y = X, we

say that χ is a full character, and if |{χ(y) : y ∈ Y }| = r, we say that χ is an r-state

character. A character χ on X is a binary character if χ is a two-state full character.

In this thesis, we only consider the way in which characters may evolve on some

underlying phylogenetic tree. This is introduced in Sections 7.2 and 7.3. For other

aspects of the theory and applications of characters, see [65].
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7.2 Markov processes on trees

The concept of a Markov process on a tree has been extensively studied in physics, infor-

mation theory, and evolutionary biology. In particular, finite-state Markov processes on

trees are used to model the way in which characters of present-day species have evolved

from the state present in some common ancestor [11, 29, 65, 69]. This concept of a Markov

process on a tree generalizes the familiar notion of a Markov chain.

Definition 7.2. Let T be a rooted tree with vertex set V . Viewing the edges of T as arcs

directed away from the root, let ≤ be any total order on V such that, whenever (u, v) is an

arc of T , we have u < v. A Markov process on T with state set C is a family {ξv : v ∈ V }
of random variables such that, whenever (u, v) is an arc of T ,

P

(

ξv = αv|
⋂

w<v

{ξw = αw}
)

= P (ξv = αv|ξu = αu) , (7.1)

where αv, αu, and the αw-values are elements of C.

The Markov property (7.1) states that, for each arc (u, v) of T , the value of ξv, condi-

tional on ξu, is independent of the ξ-values at all other earlier vertices.

For each arc e = (u, v) of T , a Markov process on T with state set C induces an

associated transition matrix, denoted P (e) = [P (e)αβ], with rows and columns indexed

over C, and defined by

P (e)αβ = P(ξv = β|ξu = α),

for all α, β ∈ C. The matrix P (e) is called the transition matrix for edge e. Let ρ denote

the root of T and let πα = P(ξρ = α), for each α ∈ C. Specifying πα for every α ∈ C

together with the transition matrices P (e) for every arc e of T uniquely defines the Markov

process on T .

As mentioned above, an example of a Markov process on a rooted tree is a finite

Markov chain. This is a sequence ξ0, ξ1, ξ2, . . . , ξn, . . . , of random variables taking values

in some finite set C and that satisfies

P

(

ξn = αn|
⋂

j<n

{ξj = αj}
)

= P (ξn = αn|ξn−1 = αn−1) ,

for all n > 0 and all α-values in C. A Markov chain can be regarded as a Markov process

on the rooted tree that has vertex set 0, 1, 2, . . . , n, . . . , with vertex 0 as the root and with

an arc from i to i + 1 for each i ≥ 0. It is also worth mentioning that Markov processes

on trees form a special class of the more general Markov random fields on graphs [40, 65].
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7.3 Character evolution on phylogenetic trees

Here, we link Markov processes on trees with phylogenetic trees and characters. We focus

only on the basics that are essential to understand the following chapters.

Suppose that T = (T, φ) is a rooted phylogenetic X-tree. A Markov process on T is

a Markov process on the rooted tree T.

For a Markov process on a rooted phylogenetic X-tree T = (T, φ) and a full character

χ : X → C, let

p(χ) = P

(

⋂

x∈X
{ξφ(x) = χ(x)}

)

.

This is the probability that, for all x ∈ X, the leaf of T labelled φ(x) takes the state

specified by the character χ. Let T = (V,E) and let ρ denote the root of T . Then, p(χ)

can be expressed as

p(χ) =
∑

χ̄ : V→C,χ̄◦φ=χ

πχ̄(ρ)
∏

e=(u,v)∈E
P (e)χ̄(u)χ̄(v), (7.2)

where the sum is taken over all extensions χ̄ of χ to V [65]. Equation (7.2) expresses the

fact that p(χ) is a marginal distribution, obtained by summing the probability of all the

possible extensions χ̄ of χ to all the vertices of T .

For further definitions and results on general and specific Markov models on phyloge-

netic trees, we refer the reader to [65].
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Chapter 8

Distribution of future PD under the g-FOB model

Under the field of bullets model, each taxon has the same constant probability of being

extinct at some time in the future, and extinction events are independent (see, for example,

[49, 58, 77]). This model is quite restrictive [57]; the more realistic generalized field of

bullets model (g-FOB) allows each species to have its own survival probability. In the

present chapter, we consider the g-FOB model and make predictions of the PD score of

the set of taxa that survive. This future PD is a random variable with a well-defined

distribution, but to date, most attention has focused on its mean, that is, the expected

PD score of the species that survive. For example, the Noah’s Ark problem [34, 78,

55] attempts to maximize expected future PD by allocating resources that increase the

survival probabilities in a constrained way.

Clearly, one could consider other properties of the distribution of future PD—for ex-

ample, the probability, let us call it the PL0 value, that future PD is less than some

critical lower limit L0. Given different conservation strategies, we may wish to maximize

expected PD or minimize the PL0 value. A natural question is how are these two quanti-

ties related? Minimizing PL0 is in line with a min-max approach to PD-based biodiversity

conservation [22]. This is a familiar strategy in other fields, such as economics, where one

wishes to minimize the risk of worst-case scenarios.

To address these sorts of questions, we need to know the full distribution of future

PD. In this chapter, we show that future PD is asymptotically normally distributed.

Our work was also motivated by the increasing trend in biology of constructing and

analyzing phylogenetic trees that contain large numbers of species (102 − 103), and the

suggestive form of distributions obtained by simulating future PD by sampling 12-leaf

subtrees randomly from 64-leaf trees [49] (see also [77]).

To formally prove the normal limit law requires some care as future PD is not a sum

of independent random variables, even though the survival events for the taxa at the

leaves are treated independently. Consequently, the usual central limit theory does not

immediately apply. The style of our proof has some similarities to the approach in [72], in

which the authors established an asymptotic normal distribution for the parsimony score

of a random assignment of character states to the leaves of a phylogenetic tree. However,

the properties of parsimony score are quite different to phylogenetic diversity, requiring a
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somewhat different type of tree decomposition in the proof and other modifications. We

also note that an asymptotic normal distribution of a quantity related to phylogenetic

diversity was described in [52], however, in that paper, the tree is random rather than

fixed.

This limit law has some useful consequences for applications. For example, it means

that for a large tree, the PL0 value can be estimated by the area under a normal curve to

the left of L0−E[PD]√
Var[PD]

, where E[PD] denotes the expected value of future PD. In particular,

we see that the relation between the PL0 value and expected future PD involves scaling by

the standard deviation of future PD, so strategies that aim to maximize expected future

PD may not necessarily minimize the PL0 value.

Our normal distribution result is asymptotic; that is, it holds for large trees. However,

it is also useful to have techniques for calculating the exact PD distribution on any given

tree. In the following, we also show how this may be achieved by a pseudo-polynomial-

time algorithm under the mild assumption that each edge length is (approximated by) an

integer multiple of some fixed length.

This chapter is organized as follows. First, we consider rooted phylogenetic trees and

phylogenetic diversity as defined in Definition 2.4 for rooted phylogenetic trees. Section 8.1

gives all the definitions and preliminary results used in Section 8.2. In particular, it shows

how to determine the main parameters—mean and variance—of the distribution we set out

to study. Section 8.2 contains the main result of this chapter—the asymptotic normality

of this distribution—together with its formal proof and the conditions under which this

result holds. Section 8.3 describes the algorithm to derive the exact distribution of future

PD. In Section 8.4, we show how our results can be easily modified to handle PD for

unrooted phylogenetic trees. Finally, Section 8.6 summarizes and discusses the main

results of this chapter.

8.1 Mean and variance of future PD

Suppose we have a rooted phylogenetic X-tree T and a map λ that assigns a non-negative

real-valued length λe to each edge e of T . In the generalized field of bullets model (g-FOB),

we have a triple (T , λ, p), where T is a rooted phylogenetic X-tree, λ is an edge length

assignment map, and p is a map that assigns to each leaf x ∈ X a probability px. Construct

a random setX ′ by assigning each element x ofX toX ′ independently with probability px.

In biodiversity conservation, we regardX ′ as the set of taxa that will still exist (that is, not

be extinct) at some time t in the future. Accordingly, we call px the survival probability
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∗

∗

∗

∗

Figure 8.1: If only the taxa marked * in the rooted tree on the left survive, then the

future phylogenetic diversity is the sum of the lengths of the solid edges in the tree on

the right.

of x. The value px depends on t, and in a monotone decreasing fashion [35]. In this

thesis, we consider t to be some fixed candidate time in the future—for example, 5 years

or 100 years from now—rather than a continuous variable. The assignment of survival

probabilities should ideally be based on population viability analysis [7], as discussed in

[59]. This latter paper also describes an alternative assignment procedure based on IUCN

Red List guidelines.

Considering the random variable ϕ = ϕT = PD(T ,λ)(X
′), which is the phylogenetic

diversity of the random subset X ′ of X consisting of those taxa that survive according

to the process just described, we call ϕ future phylogenetic diversity. An example of this

process is shown in Figure 8.1. Note that we are considering extinction here in the short-

term (for example, tens or hundreds of years) rather than on evolutionary timescales, so

the negligible increase in branch lengths of surviving species is ignored in calculating ϕ.

Note that in the g-FOB model, we can write

ϕ =
∑

e

λeYe, (8.1)

where Ye is the binary random variable that takes the value 1 if e lies on a path between

an element of X ′ and the root of T and that is 0 otherwise. Moreover,

P[Ye = 1] = 1−
∏

x∈Ce

(1− px), (8.2)

where Ce is the set of elements of X that are separated from the root of T by e. Conse-

quently, if we let Pe := P[Ye = 1], then

E[ϕ] =
∑

e

λePe. (8.3)
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Equation (8.1) suggests that for large trees, ϕ might be normally distributed, as it is

a sum of many random variables. A normal distribution is also suggested by simulations

described in [49, 77], though in that setting random samples of fixed size were drawn

rather than selecting each taxon independently with a given probability, which leads to

variable size samples. Nevertheless, one can relate these two approaches by setting the

taxon selection probability in the g-FOB model equal to the proportion of taxa sampled in

a fixed-sample-size setting. The proportion of taxa sampled in this setting of the g-FOB

model has a mean that matches the fixed-sample-size setting, and a variance that tends

to zero as the sample size grows.

Although ϕ is a sum of the random variables (λeYe), these are not identically dis-

tributed and, more importantly, they are not independent. Therefore, a straightforward

application of the usual central limit theorem seems problematic. We show that under

two mild restrictions, a normal law can be established for large trees. Moreover, neither

of these two mild restrictions can be lifted. We exhibit a counter-example to a normal

law in both cases.

Since a normal distribution is determined once we know both its mean and variance, it

is useful to have equations for calculating both these quantities. Equation (8.3) provides

a simple expression for the mean, and we now present an expression for the variance that

is also easy to compute. Given two distinct edges e, f of T , we write e <T f if the path

from the root of T to f includes edge e (or, equivalently, if Cf ⊂ Ce).

Lemma 8.1.

Var[ϕ] =
∑

e

λ2ePe(1− Pe) + 2
∑

(e,f):e<T f

λeλfPf (1− Pe).

Proof. From Equation (8.1), we have:

Var[ϕ] = Cov[ϕ, ϕ] =
∑

e,f

λeλf Cov[Ye, Yf ].

The covariance of Ye and Yf is:

Cov[Ye, Yf ] = E[YeYf ]− E[Ye]E[Yf ] = P[Ye = 1, Yf = 1]− P[Ye = 1]P[Yf = 1].

Now, we have the following cases:

(i) e 6= f and neither e <T f nor f <T e. In this case, the subtree of T with root

edge e and the subtree of T with root edge f do not have any leaves in common,

and so Ye and Yf are independent. Thus, Cov[Ye, Yf ] = 0.
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(ii) e <T f . In this case, Cf ⊂ Ce and so the survival of any taxon in Cf im-

plies the survival of a taxon in Ce; that is, Yf = 1 implies Ye = 1 and we have

Cov[Ye, Yf ] = P[Yf = 1]− P[Ye = 1]P[Yf = 1] = Pf (1− Pe).

(iii) f <T e. This is analogous to case (ii) (and, together with case (i), explains the

factor of 2 in the expression on the right-hand side of our formula for Var[ϕ]).

(iv) e = f . This case gives Cov[Ye, Yf ] = P[Ye = 1](1 − P[Ye = 1]) = Pe(1 − Pe) (and

corresponds to the first term on the right-hand side of our formula for Var[ϕ]).

By considering these cases for Cov[Ye, Yf ], we obtain the result claimed.

A consequence of this lemma is the following lower bound on the variance of future

PD, which will be useful later.

Corollary 8.2. Consider the g-FOB model on (T , λ, p). If Ep(T ) denotes the set of

pendant edges of T , then

Var[ϕ] ≥
∑

e∈Ep(T )

λ2ePe(1− Pe).

Proof. Notice that all the terms in the summation expression for Var[ϕ] in Lemma 8.1 are

non-negative, and so a lower bound on Var[ϕ] is obtained by summing over those pairs

(e, f) for which e = f is a pendant edge of T . This gives the claimed bound.

8.2 Asymptotic normality of future PD

Consider a sequence of rooted phylogenetic trees:

T1, T2, . . . , Tn, . . . ,

where for each n ≥ 1, Tn has a leaf label set X = {1, . . . , n}. Furthermore, suppose

that for each tree, we have an associated edge length function λ = λ(n) and a survival

probability function p = p(n). Let E(Tn) and Ep(Tn) denote the set of edges and the set

of pendant edges of Tn respectively. For the sequence of g-FOB models (Tn, λ
(n), p(n)), we

impose the following conditions:
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(C1) For some ǫ > 0 and for each n, we have:

ǫ ≤ p(n)x ≤ 1− ǫ,

for all x ∈ {1, . . . , n} except for at most Anα values of x, where A,α ≥ 0 are

constants, with α < 1
2
.

(C2) Let L(n) = max{λ(n)e : e ∈ E(Tn)}. Then, for each n, we have:

∑

e∈Ep(Tn)

(

λ(n)e

)2 ≥ BnβL(n)2,

for some constants B > 0, β > 2α.

Remarks concerning conditions (C1) and (C2). Condition (C1) simply says that

the survival of most taxa is neither arbitrarily close to certain nor impossible. The term

Anα provides the flexibility to allow for some of the taxa to have a survival probability

that is very close to, or even equal to, 0 or 1.

Condition (C2) says, roughly speaking, that the pendant edges are, on average, not

too short in relation to the longest edge in the tree. This is relevant for evolutionary

biology, as it follows that for trees generated by a constant speciation rate pure birth

model (see, for example, [19]) condition (C2) holds in expectation (for any α ∈ (0, 1
2
)). A

more formal statement of this claim, and its proof, is given in [25].

Note that if condition (C2) holds for a value β > 0, then β is at most 1, since each

term in the summation expression in (C2) is at most L(n)2 and there are O(n) of them.

2

Next, we state our main theorem, which describes the asymptotic normality of future

phylogenetic diversity ϕn = ϕTn . Since phylogenetic trees often contain a large number of

taxa, the result allows one to approximate the distribution of future phylogenetic diversity

with a normal distribution.

Theorem 8.3. Under conditions (C1) and (C2), (ϕn − E[ϕn])/
√

Var[ϕn] converges in

distribution to N(0, 1) as n→ ∞, where N(0, 1) denotes a standard normally distributed

random variable.

We pause to note that one cannot drop either condition (C1) or (C2) in Theorem 8.3.

It is clear that dropping (C1) is problematic. For example, set p
(n)
x ∈ {0, 1} for all x

which leads to a degenerate distribution. As for (C2) the following example shows that

we require β to be strictly positive.
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Example: Condition (C2) cannot be removed. Consider a rooted tree Tn with n

leaves. Leaves 1, . . . , n− 1 have incident edges that each have length 1√
n−1

and all these

edges are incident with a vertex that is adjacent to the root by an edge of length 1. Leaf n

has edge length 1 (see Figure 8.2). Consider a sequence of g-FOB models with p
(n)
x = s for

all x, n, where s is any number strictly between 0 and 1. Then, ϕn = 1√
n−1

An +Bn +Cn,

where 1√
n−1

An is the contribution to ϕn of the n − 1 edges that are incident with leaves

1, . . . , n − 1, term Bn is the contribution to ϕn of the edge that connects these n − 1

edges to the root of Tn, and Cn is the contribution to ϕn of the edge incident with leaf

n. Notice that An is a sum of n − 1 independent and identically-distributed binary

(0, 1) random variables, each of which takes the value 1 with probability s, and Cn is

a binary random variable which takes the value 1 with probability s. Consequently,

the variance of 1√
n−1

An equals s(1 − s), the same as the variance of Cn. Moreover,

Bn converges in probability to 1, and Cn is independent of An and Bn. Consequently,

Var[ϕn] → 2s(1 − s) as n → ∞. Furthermore, by the standard central limit theorem,
1√
n−1

An−E[ 1√
n−1

An]√
2s(1−s)

converges in distribution to N(0, 1
2
) (a normal random variable with

mean 0 and variance 1
2
). Thus, (ϕn −E[ϕn])/

√

Var[ϕn] converges to the random variable

N(0, 1
2
) +W , where W = (Cn − E[Cn])/

√

2s(1− s) is independent of N(0, 1
2
) and takes

the value 1−s√
2s(1−s)

with probability s and takes the value −s√
2s(1−s)

with probability 1− s.

In particular, (ϕn−E[ϕn])/
√

Var[ϕn] does not converge in distribution to N(0, 1). Notice

that in this example, (C1) is satisfied, but (C2) fails since
∑

e∈Ep(Tn)(λ
(n)
e )2 = 2L(n)2.

...
1√
n−1

{
n

1 1

1 2 n − 1

Figure 8.2: A rooted tree for which future phylogenetic diversity does not become normally

distributed as n grows.

2

We now provide a brief, informal outline of the approach we use to prove Theo-

rem 8.3. The main idea is to decompose Tn into a central core and a large number of

moderately small pendant subtrees. Each edge in the central core separates the root from

enough leaves so that we can be almost certain that at least one of these leaves survives—

consequently the combined PD-contribution of this central core converges in probability
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to a fixed (non-random) function of n. Regarding the pendant subtrees, their contribu-

tions to the PD score are independent and although they are not identically distributed

random variables, their combined variance grows sufficiently quickly that we can establish

a normal law for their sum by a standard central limit theorem.

Proof of Theorem 8.3. We first note that it is sufficient to establish Theorem 8.3 under

(C1) and (C2∗), which can be viewed as a normalization of (C2):

(C2∗) L(n) = 1, and
∑

e∈Ep(Tn)(λ
(n)
e )2 ≥ Bnβ for constants B > 0, β > 2α.

To see why this condition suffices, suppose we have established Theorem 8.3 under (C1)

and (C2∗). For a sequence Tn (with associated maps λ(n), p(n)) satisfying (C1) and (C2),

let µ
(n)
e = L(n)−1λ

(n)
e for each edge e of Tn and each n. Note that, by Equation (8.1),

the normalized ϕ score (namely (ϕn − E[ϕn])/
√

Var[ϕn])) for (Tn, µ
(n), p(n)) equals the

normalized ϕ score for (Tn, λ
(n), p(n)) and that (Tn, µ

(n), p(n)) satisfies (C2∗). Thus, we will

henceforth assume conditions (C1) and (C2∗).

Next, we make a notational simplification: for the remainder of the proof, we will write

λ
(n)
e as λe and p

(n)
x as px, but we will respect in the proof that these quantities depend

on n. Also, for a sequence of random variables (Yn), we write Yn
P−→ a to denote that

Yn converges in probability to a constant a, and Yn
D−→ Y to denote that Yn converges in

distribution to a random variable Y .

Since β > 2α, we may select a value γ with α < γ < β/2, and set f(n) := nγ . We

partition the edges of Tn into two classes En
1 and En

2 and we define a third class En
12 ⊆ En

1

as follows: Let ne denote the number of leaves of Tn that are separated from the root by

e. Then set:

• En
1 : edges e of Tn with ne ≤ f(n);

• En
2 : edges e of Tn with ne > f(n);

• En
12: edges e ∈ En

1 such that e is adjacent to an edge f ∈ En
2 .

For an edge e ∈ En
12 of Tn, we make the following definitions:

• te denotes the subtree of Tn consisting of edge e and all other edges of Tn that are

separated from the root by e.

• ϕn
e denotes the future phylogenetic diversity of te, under the probabilistic model

described above.
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......

En
12

En
1

≤ f(n)≤ f(n)≤ f(n)

e

En
2 ( 7→ λn − Rn)

te( 7→ ϕn
e )

Figure 8.3: A representation of the decomposition of Tn in the proof of Theorem 8.3.

See Figure 8.3 for a schematic summary of these concepts.

For ϕn, Equation (8.1) gives:

ϕn =
∑

e∈En
1

λeYe +
∑

e∈En
2

λeYe =
∑

e∈En
12

ϕn
e +

∑

e∈En
2

λeYe. (8.4)

Let

λn =
∑

e∈En
2

λe, Zn =
∑

e∈En
12

ϕn
e , and Rn =

∑

e∈En
2

λe(1− Ye).

With this notation, we can rewrite (8.4) as

ϕn = λn + Zn −Rn. (8.5)

The next lemma states that the last term in this equation makes a vanishing contribution

to ϕn.

Lemma 8.4. Rn
P−→ 0.

Proof. Since Var[Rn] = E[R2
n] − E[Rn]

2 and E[R2
n] ≥ E[Rn]

2, it is sufficient to show that

E[R2
n] → 0 (the claim that Rn

P−→ 0 then follows by Chebyshev’s inequality). We have

Rn =
∑

e∈En
2
λe(1− Ye), and so:

R2
n =

∑

e,f∈En
2

λeλf (1− Ye)(1− Yf ) ≤ |En
2 |
∑

e∈En
2

(1− Ye),

since λe, λf ≤ 1 by (C2∗), and (1− Yf ) ≤ 1 for all f ∈ En
2 . Thus,
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E[R2
n] ≤ |En

2 |2 ·max{P[Ye = 0] : e ∈ En
2 }. (8.6)

Now, for any edge e ∈ En
2 there are at least nγ − Anα elements x of Ce for which px ≥ ǫ

(by (C1)), and thus:

P[Ye = 0] ≤ (1− ǫ)n
γ−Anα

.

Since |En
2 | < 2n, Equation (8.6) and the inequality α < γ gives

E[R2
n] ≤ 4n2 · (1− ǫ)n

γ−Anα → 0 as n→ ∞,

as required.

The next result is used in the proof of Lemma 8.6.

Lemma 8.5. Under conditions (C1) and (C2∗), we have

∑

e∈Ep(Tn)
λ2ePe(1− Pe) ≥ Bǫ2(1 + o(1))nβ,

where o(1) denotes a term that tends to 0 as n→ ∞.

Proof. Let Un be the set of those pendant edges e of Tn for which the leaf incident with

e has its survival probability in the interval [ǫ, 1 − ǫ], and let Vn denote the set of the

remaining pendant edges of Tn. Clearly,

∑

e∈Ep(Tn)
λ2ePe(1− Pe) ≥ ǫ2

∑

e∈Un

λ2e, (8.7)

and by (C2∗) we have

Bnβ ≤
∑

e∈Ep(Tn)
λ2e ≤

∑

e∈Un

λ2e + |Vn| (8.8)

where the last term (|Vn|) is an upper bound on
∑

e∈Vn
λ2e by virtue of the bound |λe| ≤ 1

(by (C2∗)). Since |Vn| ≤ Anα, Equations (8.7) and (8.8) give

∑

e∈Ep(Tn)
λ2ePe(1− Pe) ≥ ǫ2(Bnβ − Anα) = Bǫ2(1 + o(1))nβ.

Let ψn = (Zn − E[Zn])/
√

Var[Zn]. A key step in establishing Theorem 8.3 is the

following lemma, which states that ψn is asymptotically normal.

Lemma 8.6. ψn
D−→ N(0, 1).
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Proof. We can apply a version of the central limit theorem for double arrays of random

variables. The required theorem can be found in [66] (Corollary in Section 1.9.3, pp.

31-32) and states the following. For each n, let Xn1, . . . , Xnr be r = r(n) independent

random variables with finite pth moments for some p > 2. Let

An =
∑

j

E[Xnj]; Bn =
∑

j

Var[Xnj ].

If

B−p/2
n

∑

j

E[|Xnj − E[Xnj]|p] → 0 as n→ ∞, (8.9)

then Wn = (
∑

j Xnj − An)/
√
Bn

D−→ N(0, 1). We apply this by taking {Xn1, . . . , Xnr}
= {ϕn

e : e ∈ En
12}, since the random variables {ϕn

e : e ∈ En
12} are clearly independent.

With our notation Zn =
∑

e∈En
12
ϕn
e , we have An = E[Zn], Bn = Var[Zn] and Wn = ψn.

Thus, we only need to verify condition (8.9) in order to establish Lemma 8.6.

By Corollary 8.2, we have:

Var[ϕn
e ] ≥

∑

f∈Ep(te)

λ2fPf (1− Pf ).

This lower bound and the independence of {ϕn
e : e ∈ En

12}, implies:

Bn = Var[Zn] =
∑

e∈En
12

Var[ϕn
e ] ≥

∑

e∈En
12

∑

f∈Ep(te)

λ2fPf (1− Pf )

Consequently, by Lemma 8.5, and the fact that every pendant edge occurs in Ep(te) for

some e ∈ En
12 we obtain,

Bn ≥ Bǫ2(1 + o(1))nβ. (8.10)

Consider now the absolute central moments in (8.9). We have

E[|Xnj − E[Xnj]|p] = E[|ϕn
e − E[ϕn

e ]|p] ≤ Lp
e,

where Le is the sum of the lengths of the edges of te. Since te has less than 2ne edges,

and the edge lengths are bounded from above by 1 (under (C2∗)) and e ∈ En
12 implies

ne ≤ f(n), we obtain Le ≤ 2ne ≤ 2f(n). Now we have

E[|ϕn
e − E[ϕn

e ]|p] ≤ 2pf(n)p. (8.11)

Combining the bounds (8.10) and (8.11), and noting that |En
12| ≤ 2n and f(n) = nγ

we obtain:
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B−p/2
n

∑

e∈En
12

E[|ϕn
e − E[ϕn

e ]|p] ≤
|En

12|2pf(n)p
(Bǫ2(1 + o(1)))p/2nβp/2

≤ C(p)n1+p(γ−β/2),

for some constant C(p) > 0 independent of n. Now, since γ < β/2, the exponent of n

in the obtained upper bound is negative for any p > (β/2 − γ)−1. Since there are some

p > 2 satisfying this inequality and consequently satisfying condition (8.9), the proof of

the lemma is complete.

We return to the proof of Theorem 8.3. Using Equation (8.5) and the definition of ψn,

we get

ϕn − E[ϕn]
√

Var[ϕn]
=
λn + Zn −Rn − (λn + E[Zn]− E[Rn])

√

Var[ϕn]

= Cnψn +Dn

where

Cn =

√

Var[Zn]
√

Var[ϕn]
and Dn = −Rn − E[Rn]

√

Var[ϕn]
.

By Lemma 8.4 and the fact that Var[ϕn] does not converge to 0 (by Corollary 8.2,

Lemma 8.5, and condition (C2∗)), we have:

Dn
P−→ 0. (8.12)

Moreover, by (8.5), Var[ϕn] = Var[Zn] + Var[Rn]− 2Cov[Zn, Rn], so that

C−2
n − 1 =

Var[Rn]

Var[Zn]
− 2ρ

√

Var[Rn]
√

Var[Zn]
,

where ρ is the correlation coefficient of Rn and Zn. Now, by Lemma 8.4 we have

limn→∞ Var[Rn] = 0. Thus, since Var[Zn] is bounded away from 0 (by (8.10)), and

ρ ∈ [−1, 1], we have:

lim
n→∞

Cn = 1. (8.13)

To complete the proof of Theorem 8.3 we apply Slutsky’s Theorem [17], which states

that if Xn, Yn,Wn are sequences of random variables, and Xn
P−→ a, Yn

P−→ b, (where a, b

are constants) and Wn
D−→ W (for some random variable W ) then XnWn +Yn

D−→ aW + b.

In our setting, we will take Xn = Cn, Yn = Dn,Wn = ψn, and W = N(0, 1) (the standard
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normal random variable). The condition that ψn
D−→ N(0, 1) was established in Lemma 8.6,

and the conditions Cn
P−→ 1, Dn

P−→ 0 were established in (8.13) and (8.12) (note that the

convergence of a sequence of real numbers in (8.13) is just a special case of convergence

in probability). Thus,

(ϕn − E[ϕn])/
√

Var[ϕn] = Cnψn +Dn
D−→ N(0, 1),

which completes the proof of Theorem 8.3.

8.3 Computing the PD distribution

In this section, we describe an algorithm to calculate the distribution of ϕT efficiently

under the g-FOB model. The approach we present here allows us to derive the exact

distribution of ϕT . Note that we do not require conditions (C1) or (C2) in this section.

We make the simplifying assumption that the edge lengths are non-negative integer-

valued, which implies that ϕT can only have values in the set {0, 1, . . . , L}, where L =

PD(X) =
∑

e λe. This assumption is not problematic in practice, as we can rescale all

the edge lengths so that they are arbitrarily close to integer multiples of some small value

(in doing so we can approximate the correct distribution within any desired precision, as

detailed at the end of this section).

We also assume that the input tree is such that the root has one incident edge, and

all other non-leaf vertices have exactly three incident edges. This assumption does not

affect the generality of our method as any tree can be modified to satisfy it, without

changing the distribution for ϕT . One can resolve multifurcations (interior vertices of

degree greater than three) arbitrarily and possibly insert an edge below the root, always

assigning length zero to the newly introduced edges.

Consistent with the notation used before, ϕe denotes the contribution to ϕT that

comes from e and the edges separated from the root by e. Then, for any edge e and

integer m, define

fe(m) := P[ϕe = m, Ye = 1].

Also recall that Pe = P[Ye = 1].

Clearly, if e is the only edge attached to the root of T , then fe and Pe are all that is

needed to derive the distribution of ϕT : simply observe that

P[ϕT = m] = P[ϕe = m, Ye = 1] + P[ϕe = m, Ye = 0] = fe(m) + (1− Pe) · Im=0,
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where Ip equals 0 or 1 depending on proposition p being false or true, respectively.

The algorithm then consists in doing a depth-first (bottom-up) traversal of all the

edges, so that each time an edge e is visited, the values of Pe and fe(m), for all m ∈
{λe, λe + 1, . . . , L}, are calculated using the following recursions. We may then use the

Pe and fe(m) values of the root edge to calculate the distribution of ϕT .

Recursion for fe(m)

• If e leads into leaf x, then

fe(m) = P[ϕe = λe, Ye = 1] · Im=λe
= px · Im=λe

.

• If e leads into the tail of edges c and d, then

fe(m) =

m−λe−λd
∑

i=λc

fc(i)·fd(−λe−i)+(1−Pd)·fc(m−λe)+(1−Pc)·fd(m−λe). (8.14)

Note that whenever the term fc(m − λe) with m − λe < λc or the term fd(m − λe)

with m−λe < λd is used in Equation (8.14), the algorithm will assume that its value is 0

and that therefore, there is no need to calculate and store fe(m) for m outside the range

{λe, λe + 1, . . . , L}.
Equation (8.14) is easily proved. We have

fe(m) = P[ϕe = m, Yc = 1, Yd = 1] + P[ϕe = m, Yc = 1, Yd = 0]

+P[ϕe = m, Yc = 0, Yd = 1]

= P[ϕc + ϕd = m− λe, Yc = 1, Yd = 1] + P[ϕc = m− λe, Yc = 1, Yd = 0]

+P[ϕd = m− λe, Yc = 0, Yd = 1]

where the second equality is obtained by restating event ϕe = m in terms of ϕc and ϕd,

which is possible once we make assumptions on Yc and Yd. Thus,

fe(m) =
m−λe
∑

i=0

P [ϕc = i, Yc = 1] · P [ϕd = m− λe − i, Yd = 1] +

P[ϕc = m− λe, Yc = 1] · P[Yd = 0] + P[ϕd = m− λe, Yd = 1] · P[Yc = 0]

=

m−λe−λd
∑

i=λc

fc(i) · fd(m− λe − i) + (1− Pd) · fc(m− λe) + (1− Pc) · fd(m− λe).

where the first equality is obtained by using the independence between the survival events

in Cc and Cd. Note that in the first expression in the second equality, the range of the

sum has been reduced, as fc(i) = 0 for i < λc and fd(m− λe − i) = 0 for m− λe − i < λd.
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Recursion for Pe

• If e leads into leaf x, then Pe = px.

• If e leads into the tail of edges c and d, then Pe = Pc + Pd − PcPd.

Efficiency considerations

For any given e, the calculation of Pe is done in O(1) time, whereas that of each of the

fe(m) values requires O(m) = O(L) time (see recursion (8.14)), giving a total of O(L2).

Calling n the number of leaves in T , there are 2n− 1 edges in T and the entire procedure

takes O(nL2) time. Note that this means that the algorithm runs in pseudo-polynomial

time. The reason for this is that each integer λe is described in the input by a string of

length only O(log λe). Therefore, the length of the entire input is only O(n logL), and

O(nL2) is not bounded by any polynomial function of this quantity.

A more efficient (but still pseudo-polynomial-time) version of the algorithm can be

obtained by restricting the calculation of fe(m) to the values of m ∈ {λe, λe + 1, . . . , Le},
where Le is the maximum value that ϕe can attain (namely the sum of the lengths of all

the edges separated from the root by e, including e itself). Note that the sum in (8.14)

can then be further restricted to the values of i such that i ≤ Lc and m − λe − i ≤ Ld.

Using this more efficient algorithm, it is easy to see that the calculation of all the fe(m)

values for a given internal edge e takes O(LcLd + Le) time, where c and d are the edges

that e leads into. Noting that the sum of all the LcLd terms, for all sister edges c and

d, is bounded above by L2, this shows that the running time of the entire procedure is

O(L2 + nL). Since typically every pair of taxa in the tree is separated by at least one

edge of positive length, we have that n = O(L) and therefore, the running time above is

equivalent to O(L2).

Regarding memory requirements, note that each time we calculate the information

relative to e (namely Pe and fe(m)), the information relative to the edges it leads to

(if any) can be deleted, as it will never be used again. So, at any given moment the

information of at most n active edges needs to be stored. (In practice the maximum

number of active edges can be brought down to O(log n) by organising the depth-first

traversal so that for each edge its larger subtree is always traversed first.) If we use the

range restriction just described, the sizes of the fe(m) vectors for all the active edges sum

to a number bounded above by n + L, and therefore, the algorithm requires O(n + L)

space, equivalent to O(L) if n = O(L).

Regarding the assumption that the edge lengths be expressed as integer multiples
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of some fixed unit, note that in some cases this unit may need to be very small, thus

potentially causing L to be very large and our algorithm quite inefficient. In these cases

it is possible to produce instead an arbitrarily precise approximation of the distribution

of the future PD: if we round each edge length to the nearest integral multiple of ǫ/n,

then

|ϕ̃− ϕ| =
∑

e

|λ′e − λe|Ye ≤
∑

e

ǫ

2n
Ye < ǫ,

where λ′e is the rounded length of edge e and ϕ̃ is the rounded future PD. In other words,

we can achieve any desired precision ǫ by re-expressing each edge length as a multiple

of ǫ/n. However, precision is usually measured by number of decimal or binary places

of accuracy. To get d decimal places of accuracy we need to take ǫ = 10−d. If L grows

linearly with n/ǫ, the running time of our algorithm is exponential in the precision d.

This can be problematic if we aim for a large number of decimal places of accuracy.

8.4 Asymptotic normality for unrooted trees

Let T be an unrooted phylogenetic X-tree and recall the definition of PD for unrooted

phylogenetic trees in Definition 2.3. As the g-FOB model is also defined naturally on

unrooted trees, it makes sense to consider the distribution of future unrooted PD under

the g-FOB model in this setting. A natural question is whether Theorem 8.3 is still valid,

(that is, is the future unrooted PD of unrooted trees also asymptotically normal under

conditions (C1) and (C2)?). We now answer this question affirmatively and also show

how to extend the computation of the exact future PD distribution to unrooted trees.

Let the random variable ϕ′ = ϕ′
T denote the PD score of the random subset X ′ of X

(consisting of those taxa that will still exist at some time t in the future). We call ϕ′ the

future unrooted phylogenetic diversity. In this model, we have

ϕ′ =
∑

e

λeY
′
e , (8.15)

where Y ′
e is the binary random variable which takes the value 1 if e lies on a path between

some pair of taxa in X ′, and which is 0 otherwise. Moreover,

P[Y ′
e = 1] = (1−

∏

x∈X1(e)

(1− px))(1−
∏

x∈X2(e)

(1− px)), (8.16)

where X1(e) and X2(e) are the two parts of the bipartition of X consisting of the two

subsets of X that are separated by edge e. Thus, if we let Pi(e) denote the probability
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that at least one taxon in Xi(e) survives (for i ∈ {1, 2}), then the expected value of ϕ′

(analogous to (8.3)) is

E[ϕ′] =
∑

e

λeP1(e)P2(e). (8.17)

Regarding Var[ϕ′], there is an analogous formula to that given in Lemma 8.1.

Consider now a sequence T1, T2, . . . , Tn, . . . of unrooted phylogenetic trees where Tn

has n leaves, and assume that this sequence satisfies conditions (C1) and (C2) when each

Tn has associated edge length and leaf survival probability functions. As we shall see,

Theorem 8.3 is still valid for unrooted PD; that is, under the same conditions, (ϕ′
n −

E[ϕ′
n])/

√

Var[ϕ′
n] converges in distribution to N(0, 1) as n→ ∞.

To establish this asymptotic normality of ϕ′
n under conditions (C1) and (C2∗) (and

thereby (C1) and (C2)) requires slight modifications to the proof of Theorem 8.3, and

we now provide an outline of the argument. The main difference is that now each edge

e induces a bipartition X = X1(e) ∪ X2(e) of the taxon set and so we decompose Tn in

a slightly different way. For simplicity, assume that |X1(e)| ≤ |X2(e)| and consider the

following edge sets (the definition of the function f(n) is as in the rooted case):

• En
1 : edges e of Tn with |X1(e)| ≤ f(n);

• En
2 : edges e of Tn with |X1(e)| > f(n);

• En
12: edges e ∈ En

1 such that e is adjacent to an edge f ∈ En
2 .

For ϕ′
n, we obtain the following equation:

ϕ′
n =

∑

e∈En
1

λeY
′
e +

∑

e∈En
2

λeY
′
e =

∑

e∈En
1

λeY
′
e + λn −R′

n, (8.18)

where λn =
∑

e∈En
2
λe and R

′
n =

∑

e∈En
2
λe(1− Y ′

e ). For an edge e ∈ En
12, let te denote the

subtree with root edge e and with leaf set X1(e). Let (ϕ
n
e )

′ denote the contribution to ϕ′
n

by the edges in te. Furthermore, let ϕn
e be the rooted future phylogenetic diversity of te,

Zn =
∑

e∈En
12
ϕn
e as in the rooted case, We = ϕn

e − (ϕn
e )

′, and Vn =
∑

e∈En
12
We. With this

notation, we get

ϕ′
n =

∑

e∈En
12

(ϕn
e )

′ + λn −R′
n =

∑

e∈En
12

ϕn
e −

∑

e∈En
12

We + λn −R′
n = Zn − Vn + λn −R′

n. (8.19)

Now we can apply Lemma 8.6 and Slutsky’s Theorem to complete the proof.
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8.5 Computing the unrooted PD distribution

Finally, we show how the algorithm described in Section 8.3 for computing the PD dis-

tribution can be modified to calculate the distribution of unrooted PD. As before, we

assume the edge lengths are non-negative integers and we preprocess T (possibly rooting

it in an arbitrary vertex) so that the number of outgoing edges is 1 for the root and 2 for

all the other non-leaf vertices. Since T is now rooted, Ce and the random variables Ye are

well defined. We also define ϕ′
e as the unrooted PD of the surviving taxa in Ce. Then,

for any integer m, define

f ′
e(m) := P[ϕ′

e = m, Ye = 1].

As before, if e is the root edge of T , then f ′
e and Pe are sufficient to derive the

distribution of ϕ′
T :

P[ϕ′
T = m] = f ′

e(m) + (1− Pe) · Im=0.

An algorithm to calculate the distribution of ϕ′
T can be obtained with a simple modi-

fication of the algorithm for ϕT : for each edge e, in addition to calculating Pe and fe(m),

also calculate f ′
e(m), for all m ∈ {0, 1, . . . , L}. For this purpose, the following recursion

is used (note that the f ′
e values may depend on fc and fd as well as on f

′
c and f

′
d, which is

why we retain the calculation of the fe values even though they are not directly implicated

in determining P[ϕ′
T = m]).

Recursion for f ′
e
(m)

• If e leads into leaf x, then

f ′
e(m) = px · Im=0.

• If e leads into the tail of edges c and d, then

f ′
e(m) =

m−λd
∑

i=λc

fc(i) · fd(m− i) + (1− Pd) · f ′
c(m) + (1− Pc) · f ′

d(m), (8.20)

which is proved in a way similar to (8.14):

f ′
e(m) = P[ϕ′

e = m, Yc = 1, Yd = 1] + P[ϕ′
e = m, Yc = 1, Yd = 0]

+P[ϕ′
e = m, Yc = 0, Yd = 1]

= P[ϕc + ϕd = m, Yc = 1, Yd = 1] + P[ϕ′
c = m, Yc = 1, Yd = 0]

+P[ϕ′
d = m, Yc = 0, Yd = 1]

=

m−λd
∑

i=λc

fc(i) · fd(m− i) + (1− Pd) · f ′
c(m) + (1− Pc) · f ′

d(m).

62



8.6. CONCLUDING REMARKS

8.6 Concluding remarks

The main result of this chapter (Theorem 8.3) has been to establish a limiting normal

distribution for future PD on large phylogenetic trees. This theorem assumes an under-

lying generalized field of bullets model, and imposes two further mild conditions (con-

ditions (C1) and (C2)). In this setting Theorem 8.3 reduces the problem of computing

the distribution of future PD to that of determining just two parameters—its mean and

variance—and these can be readily computed by Equation (8.3) and Lemma 8.1. Using

the resulting normal distribution one can easily compute the probability that future PD

will fall below any given critical value. This may also be helpful in designing strategies to

minimize this probability, analogous to the Noah’s Ark problem, which tries to maximize

expected future PD.

In practice, the use of a normal distribution based on Theorem 8.3 requires that the

number of taxa is moderate (> 50), that the survival probabilities are not too extreme

(condition (C1)), and that the length of the pendant edges on average are not too small

in relation to the largest edge length in the tree (condition (C2)). If these conditions are

violated, it would be prudent to use the exact algorithm we have described, as this requires

neither a large number of taxa nor condition (C1) or (C2). To apply this algorithm may

involve some small adjustment to the edge lengths to make them integral multiples of

some common value.

We also showed that neither (C1) nor (C2) can be dropped completely from the state-

ment of Theorem 8.3. However, it is likely that both conditions could be weakened

somewhat, though at the risk of complicating their description and the proof of the the-

orem.

The paper entitled ‘Distribution of phylogenetic diversity under random extinction’

[25] is a result of the work presented in this chapter. I would like to thank my co-authors

Fabio Pardi and Mike Steel for their educative collaboration on my first paper.
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Chapter 9

Comparing expected PD loss under g-FOB and

s-FOB

In this chapter, we investigate a generic inequality that applies to two-state Markov

processes on trees, and provide two applications. In the first application, we consider the

expected loss of phylogenetic diversity under a model in which extinction risk is associated

with an underlying state that evolves on the tree. We are interested in comparing this

expected loss to the expected loss under the g-FOB model, in which extinction events are

treated independently. We find that when extinction events reflect phylogenetic history,

then the expected loss of phylogenetic diversity is always greater than or equal to that

predicted by an independent extinction scenario. In a second application, we derive a

new, purely combinatorial result concerning the parsimony score of a binary character on

a tree.

9.1 Two-state Markov processes on trees

Consider a Markov random field on a tree T with state space {0, 1}, and for each vertex

v of T , let ξ(v) be the random state (0 or 1) that v is assigned. This process is usually

described as follows. We have a root vertex ρ for which we specify a probability, say πi,

that ξ(ρ) = i, for i ∈ {0, 1}. Direct all the edges of T away from ρ and for any arc (r, s) of

the resulting directed tree T = (VT , AT ), let P
(r,s) denote the 2× 2 transition matrix for

which the ij-entry (for i, j ∈ {0, 1}) is the conditional probability that ξ(s) = j given that

ξ(r) = i. Specifying π = [π0, π1] together with the transition matrices P (r,s) for all the arcs

(r, s) of T uniquely defines the Markov random field on T (see Section 7.2 or [11, 65, 69]);

an explicit formula appears below (Equation (9.1)). We will assume throughout that π

is strictly positive and that detP (r,s) ≥ 0 holds for each transition matrix. Notice that

this determinant condition automatically holds if one views the transition matrix for an

arc as describing the net effect of a continuous-time Markov process operating for some

duration for that arc. Note however that we are not assuming that any such process is

the same between the arcs of T .

For U ⊆ VT , let P (U) denote the probability that U is precisely the set of vertices of
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9.1. TWO-STATE MARKOV PROCESSES ON TREES

T in state 0; that is: P (U) = P({v ∈ VT : ξ(v) = 0} = U). To express P (U) in terms of

the transition matrices and π, let δ(U, v) = 0 if v ∈ U and let δ(U, v) = 1 if v ∈ VT − U .

Then, the Markov property gives:

P (U) = πδ(U,ρ) ·
∏

(r,s)∈AT

P
(r,s)
δ(U,r)δ(U,s). (9.1)

For any subset W of the leaf set X of T , let pW denote the probability that W is precisely

the set of leaves of T that are in state 0. This marginal probability is:

pW =
∑

U∈AW

P (U), where AW := {U ⊆ VT : U ∩X = W}. (9.2)

A number of authors have noticed that certain inequalities hold for quadratic functions

of the pW values. For example, for any x, y ∈ X with x 6= y, it is well known that

p{x} ·p{y} ≤ p{x,y} ·p∅. Moreover, in [56] the following inequality was described: for subsets

{x, y} and {x, z} of X where x, y, z are distinct, we have p{x,y}p{x,z} ≤ p{x,y,z}p{x}. We

now provide a much more general inequality.

Proposition 9.1. For any two-state Markov process on a tree with leaf set X, and any

two subsets Y, Z of X, we have pY · pZ ≤ pY ∪Z · pY ∩Z .

Proof. Let A,B be arbitrary subsets of VT . We first establish the following:

P (A) · P (B) ≤ P (A ∪ B) · P (A ∩ B). (9.3)

Applying Equation (9.1) to U ∈ {A,B,A ∪B,A ∩B}, the product P (A) · P (B) and the

product P (A∪B)·P (A∩B) can each be written as a product of two entries of π multiplied

by a product over the arcs (r, s) of T of two entries of P (r,s). Moreover, regardless of where

r and s lie in relation to the sets A,B, the product of the two π terms agree in P (A)·P (B)

and P (A∪B)·P (A∩B) (i.e., we have πδ(A,ρ)πδ(B,ρ) = πδ(A∪B,ρ)πδ(A∩B,ρ)), while the product

of the two P (r,s) terms agree in P (A) ·P (B) and P (A∪B) ·P (A∩B), except for the cases

in which either (i) r ∈ A−B and s ∈ B −A or (ii) r ∈ B −A and s ∈ A−B. However,

in both case (i) and (ii), the product P
(r,s)
01 P

(r,s)
10 appears in the term for P (A) · P (B)

while P
(r,s)
00 P

(r,s)
11 appears in the term for P (A ∪ B) · P (A ∩ B), and the former term is

less or equal to the second since P
(r,s)
00 P

(r,s)
11 − P

(r,s)
01 P

(r,s)
10 = detP (r,s) and detP (r,s) ≥ 0

by assumption. Consequently, all the terms in P (A) · P (B) are either less than or equal

to (in cases (i) and (ii)) or equal to (in all remaining cases) the corresponding terms in

P (A ∪ B) · P (A ∩B). This establishes (9.3).

We now invoke a classical result of Ahlswede and Daykin [2] from 1978, sometimes

called the ‘four functions theorem’. A particular form of this theorem that suffices for our
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purposes is the following (we follow [3]). Suppose we have a finite set S and a function α

that assigns a non-negative real number to each subset of S. Suppose that α satisfies the

property that for all subsets A,B of S:

α(A)α(B) ≤ α(A ∪ B)α(A ∩B).

For a collection C of subsets of S, let α(C ) :=
∑

C∈C
α(C). Then for any two collection

of subsets of S, A and B, say, we have:

α(A )α(B) ≤ α(A ∨ B)α(A ∧ B), (9.4)

where A ∨ B := {E ⊆ S : E = A ∪ B : A ∈ A , B ∈ B}, and where A ∧ B :=

{E ⊆ S : E = A ∩ B : A ∈ A , B ∈ B}. We will apply this to our problem by taking

S = VT , α(U) = P (U) and noting that α satisfies the required hypothesis by (9.3). By the

definition of AW in (9.2), AY ∨AZ = AY ∪Z and AY ∧AZ = AY ∩Z . Thus, taking A = AY

and B = AZ in (9.4) we have α(AY )α(AZ) ≤ α(AY ∪Z)α(AY ∩Z). The proposition now

follows by observing that pW = α(AW ) for all subsets W of X, in particular the subsets

Y, Z, Y ∪ Z and Y ∩ Z.

9.2 Expected PD loss under g-FOB and s-FOB

We first show how Proposition 9.1, together with another inequality, provides a general

inequality concerning the loss of expected future biodiversity under species extinction

models.

Suppose that T is a rooted phylogenetic X-tree, and with each arc e = (u, v) of T
there is an associated length λe. Recall the measure phylogenetic diversity as defined in

Definition 2.4.

For each species x ∈ X, let Ex denote the event that species x is extinct at some

future time t. Then, the expected phylogenetic diversity of the species that are extant at

time t, referred to as expected future PD and denoted E[ϕ], is given by:

E[ϕ] =
∑

e=(u,v)∈AT

λe · (1− P(
⋂

x∈Cv

Ex)) = ϕX −
∑

e=(u,v)∈AT

λe · P(
⋂

x∈Cv

Ex), (9.5)

where Cv denotes the subset of X which is separated from the root by v and which

equals {v} if v is a leaf vertex. Recall that the generalized field of bullets model (g-FOB)

(generalizing an earlier model from [49]) assumes that the events Ex are independent.
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9.2. EXPECTED PD LOSS UNDER G-FOB AND S-FOB

Then, if we let px = P(Ex), the value of P(
⋂

x∈Cv
Ex) in (9.5) (the probability of the

extinction of all the species descended from v) is given by:

P(
⋂

x∈Cv

Ex) =
∏

x∈Cv

px. (9.6)

The assumption that the events Ex are independent is likely to be unrealistic in most

settings (see, for example, [36, 67]). For example, species close together in T are more

likely to share attributes that may put them at risk in a hostile future environment. As

one topical scenario, consider extinction risk due to climate change. Suppose that the

extinction risk of each species in X is partially influenced by some associated binary state

(0 or 1) where state 0 confers an elevated risk of extinction under climate change. We

suppose that these states are not known in advance for the species in X, and that this

state has evolved under some Markovian model on T . Once the states are determined

at the leaves, then extinction proceeds according to the g-FOB model, where species x is

extinct at time t with probability pix if it is in state i ∈ {0, 1}. We call this a state-based

field of bullets model (s-FOB). Note that this includes the g-FOB model as a special case

where p0x = p1x for all x. Moreover, once we condition on the state for each leaf, an s-FOB

model is just a g-FOB model with modified extinction probabilities, but we are assuming

that these states are unknown (in line with the uncertainty over what features may be

helpful for an organism in a future climate).

With any s-FOB model we also have an associated g-FOB model in which the extinc-

tion probability of each species x is the same as in the s-FOB model. That is, in the

g-FOB model we set:

px = p0xP(ξ(x) = 0) + p1xP(ξ(x) = 1), (9.7)

where ξ describes the Markov process for the binary character. A natural question arises:

how does the future expected PD of an s-FOB model compare with that of its associated

g-FOB model? The following result provides a general inequality.

Theorem 9.2. Consider a fixed rooted phylogenetic X-tree with branch lengths. Consider

an s-FOB model, in which state 1 is advantageous for each species; that is, p1x ≤ p0x for

all x ∈ X. Then, the expected future PD of this model is less than or equal to the expected

future PD of the associated g-FOB model.

Proof. In view of (9.5) and (9.6), it suffices to show that:

∏

x∈Cv

px ≤ P(
⋂

x∈Cv

Ex), (9.8)
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where px is defined by Equation (9.7). For each subset W of Cv, let pW denote the

probability that the set of elements of Cv in state 0 is precisely W . Then, P(
⋂

x∈Cv
Ex) =

∑

W⊆Cv
pW
∏

x∈W p0x
∏

x∈Cv−W p1x. Thus, if we let fx(W ) = p0x if x ∈ W , and fx(W ) = p1x

if x ∈ Cv−W , then P(
⋂

x∈Cv
Ex) =

∑

W⊆Cv
pW
∏

x∈Cv
fx(W ). Moreover, px = p0xP(ξ(x) =

0) + p1xP(ξ(x) = 1) =
∑

W⊆Cv
pWfx(W ), where the second equality arises by considering

in the summation those W containing x and those not containing x. Consequently, (9.8)

is equivalent to the requirement that:

∏

x∈Cv

(

∑

W⊆Cv

pWfx(W )

)

≤
∑

W⊆Cv

pW
∏

x∈Cv

fx(W ). (9.9)

The proof of (9.9) involves combining Proposition 9.1 with the FKG inequality of Fortuin,

Kasteleyn and Ginibre (1971) [31], a particular (and multivariate) form of which we now

recall. Given a finite set S, suppose that f1, f2, . . . , fn are functions from the power set

of S into the non-negative real numbers, and that these satisfy the condition:

A ⊆ B ⇒ fi(A) ≤ fi(B). (9.10)

Furthermore, suppose that µ is a probability measure on the subsets of S which satisfies

the log-supermodularity condition:

µ(A)µ(B) ≤ µ(A ∪ B)µ(A ∩ B). (9.11)

Then:
n
∏

i=1

(

∑

A

µ(A)fi(A)

)

≤
∑

A

µ(A)
n
∏

i=1

fi(A), (9.12)

where the summations are over all subsets of S.

We apply this form of the FKG inequality by taking S = {1, . . . , n} = Cv, µ(W ) = pW ,

and fx as defined above. Then, fx satisfies (9.10) by the hypothesis that p1x ≤ p0x for all x,

while µ satisfies (9.11) by Proposition 2.1. Thus, inequality (9.12) provides the required

inequality (9.9). This completes the proof.

9.3 Combinatorics of parsimony

We now provide a second application of Proposition 9.1 to phylogenetics. Given a function

f : X → {0, 1}, the parsimony score of f on a tree T with leaf set X, denoted l(f, T ),

is the minimum number of edges that have different states assigned to their endpoints,

across all extensions F : VT → {0, 1} of f (for further details see [65]). For W ⊆ X, let
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function fW assign state 0 to the elements of W , and state 1 to the elements of X −W .

We show that the parsimony score function for a given tree is submodular.

Theorem 9.3. For any tree T with leaf set X and subsets Y, Z of X, we have:

l(fY , T ) + l(fZ , T ) ≥ l(fY ∪Z , T ) + l(fY ∩Z , T ).

Proof. Consider the two-state Markov random field on T with π0 = π1 = 0.5, and set each

transition matrix P (r,s) to be the symmetric 2 × 2 matrix with off-diagonal entry ǫ > 0.

Then, for any W ⊆ X, a straightforward calculation shows that:

pW = CW ǫ
l(fW ,T )(1 + o(ǫ)), (9.13)

for a constant CW that depends only onW and T and not ǫ (specifically, CW is the number

of minimal extensions of fW to the vertices of T multiplied by 1
2
). Now Proposition 9.1,

expressed using logarithms, states that:

− log(pY )− log(pZ) ≥ − log(pY ∪Z)− log(pY ∩Z). (9.14)

Applying (9.13) (and noting that log(1 + o(ǫ)) = o(ǫ)), the left-hand side of (9.14) is:

(l(fY , T ) + l(fZ , T )) log

(

1

ǫ

)

− log(CYCZ) + o(ǫ),

while the right-hand side of (9.14) is:

(l(fY ∪Z , T ) + l(fY ∩Z , T )) log

(

1

ǫ

)

− log(CY ∪ZCY ∩Z) + o(ǫ).

Theorem 9.3 now follows by letting ǫ tend to zero.

Concluding remark. As a further phylogenetic application, we note that Propo-

sition 9.1 provides a collection of polynomial inequalities on the pW values, which have

recently been studied for a particular class of Markov two-state models in [44]. These

polynomial inequalities complement the much-studied phylogenetic invariants (polyno-

mial identities in the pW values), which hold under various restrictions on the Markov

model.

Most of the results that have been presented in this chapter were proved by Mike

Steel. These results led to the publication ‘Markovian log-supermodularity, and its appli-

cations in phylogenetics’ [71]. I would like to thank Mike for his educative and motivating

collaboration.
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Chapter 10

Mean and variance of future PD under g-FOB and

t-FOB

In this chapter, we establish a generic Markov inequality for multivariate Markov processes

that consist of k independent but not necessarily identical two-state Markov processes on

a tree. The inequality has been specifically designed for the purpose of comparing a new

species extinction model with existing ones in conservation biology. This new model is the

generalized version of the s-FOB model from the previous chapter, in which the extinction

risk of a species is associated with an underlying state that evolves on an evolutionary

tree. In the more general setting, extinction is influenced by k independently evolved

traits rather than only one, giving a more realistic model.

We compare the expected loss and the variance of phylogenetic diversity under this

model to the corresponding values of the g-FOB model. We show that when extinction

events reflect the evolutionary history of many characteristics, the expected loss of phylo-

genetic diversity is greater than or equal to that predicted under a model with independent

extinction events. This generalizes the result presented in Section 9.2, and suggests that

simple models that treat species extinctions independently may systematically underesti-

mate the loss of phylogenetic diversity.

Given this inequality between the expected future phylogenetic diversity under these

two models, we might expect a similar inequality to apply for the variance. However, we

show that there is no similar relationship between the variances corresponding to the two

models. There are examples for which the variance of future phylogenetic diversity under

an independent extinction scenario (g-FOB) can be either smaller or greater than the

variance under the model in which extinction events are influenced by k characteristics,

even for k = 1.

In the next section, we define the multivariate Markov processes under scrutiny and

then state and prove the Markov inequality. To demonstrate the phylogenetic application,

Section 10.2 presents the inequality between the expected loss of phylogenetic diversity

and Section 10.3 summarizes our findings concerning the variance of future phylogenetic

diversity.
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10.1 An inequality for Markov processes on trees

Let T be a rooted tree with root vertex ρ and with leaf set X. Consider k independent,

non-identical two-state Markov processes on T , each of which with the state space {0, 1}
(for a formal definition, see Section 7.2 or [11, 29, 65, 69]). For each vertex v of T and

for j = 1, . . . , k, let ξj(v) denote the random state that v is assigned in the jth Markov

process. Furthermore, for j = 1, . . . , k and for i ∈ {0, 1}, let π(j)
i be the probability that

ξj(ρ) = i. Viewing the edges of T as arcs directed away from the root, let P (j)(r, s) be

the transition matrix assigned to arc (r, s) in the jth process. The il-entry P (j)(r, s)il of

this 2 × 2 matrix is, by definition, the conditional probability that ξj(s) = l given that

ξj(r) = i. For each j, having specified the probabilities π
(j)
i and the transition matrices

P (j)(r, s), i ∈ {0, 1}, (r, s) ∈ AT (the arc set of T ), the jth Markov process on T is uniquely

defined.

We now combine these k Markov processes into a vector (having jth coordinate ξj)

to provide a multivariate Markov process on T with state space {0, 1}k. In this process,

each vertex v of T is assigned state ξ(v) = (ξ1(v), . . . , ξk(v)). Let i = (i1, . . . , ik) ∈ {0, 1}k
and let πi be the probability that ξ(ρ) = i. Then, by the independence of the k processes,

we get πi =
∏k

j=1 π
(j)
ij
. Similarly, for the transition matrix P (r, s) corresponding to arc

(r, s) in the multivariate process, the entry P (r, s)il in ‘row i’ and ‘column l’ (for i =

(i1, . . . , ik), l = (l1, . . . , lk) ∈ {0, 1}k) becomes
∏k

j=1 P
(j)(r, s)ij lj . This is the conditional

probability that ξ(s) = l given that ξ(r) = i. With these, the multivariate Markov process

is uniquely defined.

We will assume throughout that all the π values are strictly positive and that the

determinant of P (j)(r, s) is non-negative for each arc (r, s) and for each j. Note that this

implies that detP (r, s) ≥ 0. Namely, it can be seen that P (r, s) is the Kronecker product

of the k matrices P (j)(r, s), and so detP (r, s) = (detP (1)(r, s) × . . . × detP (k)(r, s))2
k−1

(see [38] for the definition and properties of the Kronecker product). However, we are

neither assuming that any of the k processes are identical nor that within any of them,

the arcs are assigned the same transition matrix.

Consider now a realization U = (U1, . . . , Uk) of ξ = (ξ1, . . . , ξk). Note that U is a

function from V = VT (the vertex set of T ) into the set {0, 1}k of character states. Let

P (U) denote the probability that ξ = U; that is, the probability that for each v ∈ V , v

is assigned U(v). For j = 1, . . . , k, let δj(U, v) = 0 if the jth coordinate Uj(v) of U(v) is

0 and let δj(U, v) = 1 if Uj(v) = 1. Also, let δ(U, v) denote the state that v is assigned in

U. Now we are able to express P (U) in terms of the transition matrices and the π values
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of the multivariate process, using the Markov property (we follow [65]). We have:

P (U) = πδ(U,ρ) ·
∏

(r,s)∈AT

P (r, s)δ(U,r)δ(U,s),

which, by the independence of the k two-state processes, gives:

P (U) =
k
∏

j=1

π
(j)
δj(U,ρ) ·

∏

(r,s)∈AT

k
∏

j=1

P (j)(r, s)δj(U,r)δj(U,s) (10.1)

=
k
∏

j=1



π
(j)
δj(U,ρ)

∏

(r,s)∈AT

P (j) (r, s)δj(U,r)δj(U,s)



 .

Recall that a lattice L is a partially ordered set in which any two elements a, b ∈ L

have a unique least upper bound a∨b, called their join, and a unique greatest lower bound

a ∧ b, which is their meet. A lattice is distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all
a, b, c ∈ L or equivalently a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L .

Let LV be the set of all possible realizations of ξ. Let Y,Z ∈ LV , and let ≤ be the

partial order over LV in which Y ≤ Z whenever Yj(v) ≤ Zj(v) for each vertex v ∈ V and

for each j = 1, . . . , k, and in which Y and Z are incomparable otherwise. Clearly, any

two elements Y and Z of the partially ordered set (LV ,≤) have a join Y ∨Z and a meet

Y ∧ Z. The join Y ∨ Z is the realization of ξ that assigns to each vertex v ∈ V state

(max{Y1(v), Z1(v)}, . . . ,max{Yk(v), Zk(v)}), while the meet Y ∧ Z is the realization of

ξ that assigns to each vertex v ∈ V state (min{Y1(v), Z1(v)}, . . . ,min{Yk(v), Zk(v)}). It

follows that (LV ,∨,∧) is a lattice on LV . It is easy to see that this lattice is distributive.

Recall that X denotes the leaf set of T and fix a non-empty subset W of X. For

each function U in LV , define u = (u1, . . . , uk) to be the restriction of U to W ; that is,

u = U|W . With this we have u(v) = U(v) for each leaf v in W . Since u is a function

from the non-empty subset W of X into a set of character states, it is a character on X

(see Definition 7.1). Let LW be the set that contains, for each U ∈ LV , the restricted

function u = U|W . Let y, z ∈ LW , and let ≤ be the partial order over LW such that

if yj(v) ≤ zj(v) for each v ∈ W and for each j = 1, . . . , k, we have y ≤ z; otherwise y

and z are incomparable. The join y ∨ z and the meet y ∧ z can be obtained for any two

elements y, z of LW analogously to the case of LV , defining the finite distributive lattice

(LW ,∨,∧). Now let p(u) be the probability that for each leaf v in W , v is assigned u(v).

This marginal probability is given by:

p(u) =
∑

U∈Au

P (U), where Au := {U ∈ LV : U|W = u}. (10.2)
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An example to illustrate this concept is provided in Figure 10.1. Let k = 1 and let u be

denoted by u. In this example, if W = {a, b, c, d}, u(a) = u(c) = 0, and u(b) = u(d) = 1,

then:

p(u) = π0P (ρ, a)00P (ρ, b)01P (ρ, s)00P (s, c)00P (s, d)01

+ π0P (ρ, a)00P (ρ, b)01P (ρ, s)01P (s, c)10P (s, d)11

+ π1P (ρ, a)10P (ρ, b)11P (ρ, s)10P (s, c)00P (s, d)01

+ π1P (ρ, a)10P (ρ, b)11P (ρ, s)11P (s, c)10P (s, d)11.

b

b

b

b

b

b

ρ

s

a

b
c

d

Figure 10.1: A rooted tree with leaf set {a, b, c, d}.

The following proposition extends Proposition 9.1, which dealt with the special case

k = 1.

Proposition 10.1. Consider k independent two-state Markov processes on a tree with leaf

set X. Assume that for each of them, all the determinants of the transition matrices are

non-negative. Then, for the corresponding multivariate process and for any two characters

y, z : W → {0, 1}k on X from a fixed non-empty subset W of X, we have:

p(y) · p(z) ≤ p(y ∨ z) · p(y ∧ z).

Proof. Consider any two elements Y and Z of LV . We first prove the following:

P (Y) · P (Z) ≤ P (Y ∨ Z) · P (Y ∧ Z). (10.3)

Denote the term in the brackets of Equation (10.1) by Pj(U) to get P (U) =
∏k

j=1 Pj(U).

Applying this to U ∈ {Y,Z,Y ∨ Z,Y ∧ Z}, inequality (10.3) can be written in the

form
∏k

j=1 Pj(Y)
∏k

j=1 Pj(Z) ≤
∏k

j=1 Pj(Y ∨ Z)
∏k

j=1 Pj(Y ∧ Z). It is clear that proving

Pj(Y)Pj(Z) ≤ Pj(Y ∨ Z)Pj(Y ∧ Z) for each j establishes (10.3).

So let j be an arbitrary index in {1, . . . , k} and consider the products Pj(Y)Pj(Z)

and Pj(Y ∨ Z)Pj(Y ∧ Z). These can each be written as a product of two π(j) val-

ues multiplied by a product over the arcs (r, s) of T of two entries of P (j)(r, s). The
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products of the two π(j) terms agree in Pj(Y)Pj(Z) and Pj(Y ∨ Z)Pj(Y ∧ Z); that is,

π
(j)
δj(Y,ρ)π

(j)
δj(Z,ρ)

= π
(j)
δj(Y∨Z,ρ)π

(j)
δj(Y∧Z,ρ). The products of the two P (j)(r, s) entries agree in

Pj(Y)Pj(Z) and Pj(Y∨Z)Pj(Y∧Z), except for the cases in which either (i) δj(Y, r) = 0,

δj(Y, s) = 1, δj(Z, r) = 1, and δj(Z, s) = 0 or (ii) δj(Y, r) = 1, δj(Y, s) = 0, δj(Z, r) = 0,

and δj(Z, s) = 1. However, in both cases (i) and (ii), the product P (j)(r, s)01P
(j)(r, s)10

appears in the term for Pj(Y)Pj(Z) while P (j)(r, s)00P
(j)(r, s)11 appears in the term

for Pj(Y ∨ Z)Pj(Y ∧ Z). The former term is less than or equal to the second since

P (j)(r, s)00P
(j)(r, s)11 − P (j)(r, s)01P

(j)(r, s)10 = detP (j)(r, s), which is non-negative by

our assumption. Consequently, all the terms in Pj(Y)Pj(Z) are less than or equal to the

corresponding terms in Pj(Y ∨ Z)Pj(Y ∧ Z). This establishes (10.3).

We now recall a form of the four functions theorem, a classical result of Ahlswede

and Daykin [1]. Let (L ,∨,∧) be a finite distributive lattice and let α be a function that

assigns a non-negative real number to each element of L . For a subset A ⊆ L , set

α(A ) =
∑

A∈A
α(A). If α satisfies the property that for any two elements A,B of L ,

α(A)α(B) ≤ α(A ∨ B)α(A ∧ B), then

α(A )α(B) ≤ α(A ∨ B)α(A ∧ B), (10.4)

where A ∨ B = {A ∨ B : A ∈ A , B ∈ B} and A ∧ B = {A ∧ B : A ∈ A , B ∈ B}.
We apply this theorem by taking L = LV , α = P and noting that α satisfies the

required hypothesis by (10.3). Consider any fixed non-empty subset W of X and recall

the definition (for u ∈ LW ) of Au in (10.2). Note that:

Ay ∨ Az = Ay∨z, and Ay ∧ Az = Ay∧z.

Thus, taking A = Ay and B = Az in (10.4) we deduce that:

α(Ay)α(Az) ≤ α(Ay∨z)α(Ay∧z),

which is, by α = P and (10.2), equivalent to p(y)p(z) ≤ p(y ∨ z)p(y ∧ z).

10.2 Expected future PD

In this section, we use Proposition 10.1 to obtain an inequality concerning the expected

loss of biodiversity under the two species extinction models g-FOB and t-FOB. Consider

a rooted phylogenetic X-tree T . View the edges of T as arcs directed away from the root,

and denote the vertex set and the arc set of T by VT and AT , respectively. Let each arc
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a in AT be assigned a non-negative length λa. Recall the notion of phylogenetic diversity

for rooted phylogenetic X-trees in Definition 2.4.

Assume that species in X undergo random extinction and let Ex denote the event

that a species x ∈ X is extinct at some fixed future time t. Consider the phylogenetic

diversity ϕ of the group of species that are still extant at time t. Recall that this random

variable is referred to as future PD.

The expected value of ϕ is:

E[ϕ] =
∑

a=(u,v)∈AT

λa · (1− P(
⋂

x∈Cv

Ex)) = ϕX −
∑

a=(u,v)∈AT

λa · P(
⋂

x∈Cv

Ex), (10.5)

where Cv denotes the subset of X which is separated from the root by v and which equals

{v} if v is a leaf vertex. Recall that E[ϕ] is referred to as expected future PD.

In the generalized field of bullets model (g-FOB) [25], the events E
(g)
x := Ex are in-

dependent, and so the probability P(
⋂

x∈Cv
E

(g)
x ) that all the species descended from v

become extinct can be written as:

P(
⋂

x∈Cv

E(g)
x ) =

∏

x∈Cv

px, (10.6)

where px denotes the probability P(E
(g)
x ).

We noted in the previous chapter that the assumption that the events Ex are inde-

pendent is likely to be unrealistic in most settings. In particular, rates at which lineages

become extinct may be influenced by some species traits [42, 30]. The state-based field of

bullets model (s-FOB), studied in the previous chapter, is based on the idea that closely

related species in T are more likely to share attributes that may put them at risk in a hos-

tile future environment. It assumes that the extinction risk of each species is influenced

by some associated binary state with values 0 and 1, where state 0 confers an elevated

risk of extinction for example under climate change.

Here, we generalize this model and suppose that the extinction risk of each species

x is influenced by k binary states, each of which takes values in {0, 1}, where state 1 is

always advantageous over state 0 for x. We suppose that it is not known what features

will help species survive and so the states are not known for the species in X. However,

we assume that the k states have evolved under k independent Markovian models on T
assigning a state in {0, 1}k to each species.

We assume further that if the states were determined at the leaves, then extinction

would proceed according to the g-FOB model in which species x is extinct at time t with

probability pix if it is in state i ∈ {0, 1}k. Finally, we suppose that for each species x ∈ X
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and any two states i = (i1, . . . , ik) and l = (l1, . . . , lk):

pix ≤ plx whenever lj ≤ ij for each j = 1, . . . , k. (10.7)

This condition says that state l confers at least as high an extinction risk on a species

x as state i if all the binary states in i are at least as advantageous for x as the binary

states in l. Note, however, that if condition lj ≤ ij is not satisfied for every j, there

is no prescribed relationship between pix and plx. We have the freedom to specify these

relationships according to the needs of the model being studied, or leave them unspecified.

For example, we may assume that the k binary states are ordered in a decreasing manner

by their importance for survival and that pix ≤ plx, whenever lj ≤ ij for the smallest

coordinate j ∈ {1, . . . , k} for which ij 6= lj . Alternatively, we may assume that all the

states are equally important for survival and that pix ≤ plx, whenever
∑k

j=1 lj ≤
∑k

j=1 ij;

that is, the more coordinates of the state assigned to x are 1 the smaller is the extinction

probability of x. In the following, we only assume the relationships described in (10.7).

We call the model described above the trait-dependent field of bullets model (t-FOB).

In the case when k = 1, this model is the s-FOB model, whereas the case where for each

x, we have pix = plx for any two states i, l ∈ {0, 1}k gives the g-FOB model.

Given a t-FOB model, consider the g-FOB model in which the extinction probability of

each species x is the same as in the t-FOB model. That is, if ξ describes the multivariate

Markov process and the values pix are the conditional extinction probabilities in the t-

FOB model, then, in the associated g-FOB model, each species x ∈ X goes extinct with

probability

px = P[E(g)
x ] = P[E(t)

x ] =
∑

i∈{0,1}k
pixP(ξ(x) = i), (10.8)

where E
(t)
x denotes the event Ex under t-FOB. Theorem 10.2 compares the loss of PD

under a t-FOB model with the PD loss under the associated g-FOB model.

Theorem 10.2. Consider a t-FOB model on a rooted phylogenetic X-tree T with non-

negative arc lengths. The expected future PD of this model is less than or equal to the

expected future PD of the associated g-FOB model.

Proof. Let ξ and pix denote the Markov process and the extinction probabilities of the

t-FOB model, respectively. In view of (10.5) and (10.6), it suffices to show that:

∏

x∈Cv

px ≤ P(
⋂

x∈Cv

E(t)
x ), (10.9)
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where px is given in (10.8). Recall how we defined the lattice (LW ,∨,∧) for a Markov

process on a tree and for a non-empty subset W of the leaf set of the tree in the previous

section, and consider (LCv
,∨,∧). Since, for u ∈ LCv

, p(u) denotes the probability that

for each x ∈ Cv, x is assigned u(x) ∈ {0, 1}k, we get:

P(
⋂

x∈Cv

E(t)
x ) =

∑

u∈LCv

p(u)
∏

x∈Cv

fx(u),

where fx(u) is the probability that x becomes extinct given that it is in state u(x); that

is, fx(u) = p
u(x)
x . Moreover, for each x ∈ Cv, we have:

px =
∑

i∈{0,1}k
pixP(ξ(x) = i) =

∑

i∈{0,1}k
pix





∑

u∈LCv :u(x)=i

p(u)



 =
∑

u∈LCv

p(u)fx(u).

Now we can rewrite (10.9) as

∏

x∈Cv





∑

u∈LCv

p(u)fx(u)



 ≤
∑

u∈LCv

p(u)
∏

x∈Cv

fx(u). (10.10)

The proof of (10.10) makes use of Proposition 10.1 as well as the following multivariate

form of the FKG inequality of Fortuin, Kasteleyn and Ginibre (1971) [31]. Given a finite

distributive lattice (L ,∨,∧), suppose that f1, f2, . . . , fn are functions from L into the

non-negative real numbers that satisfy, for any two elements A,B of L , the condition

that:

A ≤ B ⇒ fi(A) ≥ fi(B). (10.11)

Furthermore, suppose that µ is a probability measure on the elements of L which satisfies

the condition that

µ(A)µ(B) ≤ µ(A ∨ B)µ(A ∧B) for any pair A,B ∈ L . (10.12)

Then:
n
∏

i=1

(

∑

A∈L

µ(A)fi(A)

)

≤
∑

A∈L

µ(A)
n
∏

i=1

fi(A). (10.13)

We apply this inequality by setting L = LCv
, µ = p and fx(u) = p

u(x)
x for u ∈ LCv

,

x ∈ Cv. Note that fx satisfies (10.11). Namely, u ≤ y (for u,y ∈ LCv
) means that

uj(x) ≤ yj(x) for each coordinate j, which, by (10.7), implies p
u(x)
x ≥ p

y(x)
x . Note also

that µ satisfies (10.12) by Proposition 2.1. In view of these, (10.13) provides inequality

(10.10), and the proof is complete.
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10.3 Variance of future PD

Consider now the variance of ϕ:

Var[ϕ] = Cov[ϕ, ϕ] =
∑

a,b∈AT

λaλb Cov[Ya, Yb], (10.14)

where Ya is the random variable that takes value 1 if arc a is part of the subtree connecting

the survival species and the root and takes value 0 otherwise. Our goal is to compare the

variance under a t-FOB model to the variance under the associated g-FOB model. It is

easy to find examples in which the former variance is greater than the latter and so we

will only show that the variance for a t-FOB model can be less than that of the associated

g-FOB model. To this end, let T be the tree with leaf set {x, y} in which the arcs b and

c pointing to x and y, respectively, are incident with the single interior vertex of the tree,

which is adjacent to the root by arc a. Consider Cov[Ya, Ya] = (1 − P[Ex ∩ Ey])P[Ex ∩
Ey], which is written as (1 − P[E

(t)
x ∩ E

(t)
y ])P[E

(t)
x ∩ E

(t)
y ] in t-FOB and which becomes

(1− pxpy)pxpy under g-FOB. Note that Cov[Ya, Ya] is less under a t-FOB than under the

associated g-FOB if and only if P[E
(t)
x ∩E(t)

y ] > pxpy and P[E
(t)
x ∩E(t)

y ] + pxpy > 1 hold. It

is easy to see that these conditions can be satisfied by some t-FOB model (together with

its g-FOB) on T . Additionally, for any such t-FOB model, a value of λa can be chosen

that is large enough in relation to λb and λc so that λ2aCov[Ya, Ya] is the dominant term

in (10.14), resulting in a greater total variance for the corresponding g-FOB.

The following example describes an s-FOB (that is, a t-FOB with k = 1) under which

the variance is less than the variance under the associated g-FOB.

b b

b

b

x y

a

b c

root

Figure 10.2: A rooted phylogenetic tree on {x, y}.

Example. Let T be the tree shown in Figure 10.2 with arc lengths λa = 4 and λb = λc = 1

and consider the following s-FOB model on T . Let ξ be a two-state Markov process on
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T with the state space {0, 1} so that π0 = π1 =
1
2
and each arc is assigned the transition

matrix
( 3

4
1
4

1
4

3
4

)

. Let p0x = p0y =
7
8
and p1x = p1y =

6
8
. A careful check shows that the variance

under this model is less than the variance under the associated g-FOB model (in which

px = py =
13
16
).

This chapter presents the results from the paper ‘Trait-dependent extinction leads to

greater expected biodiversity loss’ [27]. I would like to thank my co-author Mike Steel for

his collaboration.
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