Metallosupramolecular chemistry involves the use of bridging organic ligands and metal ions for the construction of discrete and polymeric assemblies with diverse molecular architectures. By far the most commonly employed bridging ligands are those that contain nitrogen heterocycles, such as pyridine rings, as the sites for metal binding. Of the various metals used, silver(I) salts have proved particularly popular in recent years, as this d10 metal ion offers particularly versatile coordination requirements and readily binds to nitrogen heterocycles, as well as to ligands having oxygen, phosphorus, sulfur and other common donors.

Silver(I) has long been known to interact with carbon-carbon double bonds, a fact which has routinely been exploited in the chromatographic separations of alkene mixtures, in NMR shift reagents for alkenes and for the preparation of solid derivatives of olefinic hydrocarbons for structural characterization. However, the silver-alkene interaction has not been systematically investigated as a synthon for supramolecular chemistry. We now describe the self-assembly of both discrete and polymeric species formed from reactions of silver(I) salts with the three isomers of divinylbenzene, in which these dienes act as bridging ligands with η2-coordination of the vinyl groups.

Each of the isomeric divinylbenzenes was reacted with various silver(I) salts under a range of experimental reaction conditions, the results of which are schematically presented in Scheme 1. Reaction of silver perchlorate with \textit{para}-divinylbenzene (1a) furnished two products, (2) and (3), each of which had 1:1 metal:ligand stoichiometry. X-Ray crystal structure determination revealed that complex 2 is an \textit{M}_2\textit{L}_2 metallomacrocycle, in which two silver atoms are bridged by two \textit{para}-divinylbenzene ligands, with η2-coordination by the vinyl groups and additional weaker interactions with monodentate perchlorate anions (Figure 1). Such a discrete \textit{M}_2\textit{L}_2 species is exactly that expected to be thermodynamically most stable for a 1:1 ratio of (non-chelating) bridging ligands and silver atoms, on the basis of enthalpic and entropic considerations. On one occasion a second complex, 3, was obtained, the crystals of which were highly unstable. Although a full structure determination proved elusive, we were able to ascertain10 that this compound was a 2D metallopolymere, in which 1:1 \textit{para}-divinylbenzene:silver zigzag chains were cross-linked by coordinated acetone molecules.

Reactions of \textit{meta}-divinylbenzene (1b) also provided both discrete and polymeric assemblies. The product (4) from reaction with silver tetrafluoroborate in dichloromethane solution was found9,11 to have a discrete \textit{M}_2\textit{L}_3 cage-like structure (Figure 2), within which three \textit{meta}-divinylbenzene ligands bridge two trigonal coordinated silver atoms. All three \textit{meta}-divinylbenzene ligands are planar and display a (non-helical) propeller-like arrangement when viewed from above. The tetrafluoroborate anions are non-coordinated. The product (5) from reaction with silver perchlorate in methanol solution proved to be isomorphous but not quite isostructural. In this case one of the two silver atoms within the trigonal prismatic cage was found to experience some pyramidalization as a result of a stronger interaction with the adjacent perchlorate counterion.

![Figure 1](image1.png)
Figure 1. X-Ray structure of the discrete \textit{M}_2\textit{L}_2 complex 2.

![Figure 2](image2.png)
Figure 2. Side and top views of the X-ray structure of the discrete \textit{M}_2\textit{L}_3 complex 4.
A similar reaction of meta-divinylbenzene with silver perchlorate in toluene solution furnished a completely different product, (6), that was found to be polymeric. This compound consists of 1D chains of silver atoms bridged by both η2-coordinated meta-divinylbenzene ligands and bidentate perchlorate anions (Figure 3, top). A related assembly (7) was also formed from reaction of this ligand with silver triflate in THF solution. However, in this case the structural characterization was somewhat more intriguing, in that the complex crystallized with three independent silver atoms in the asymmetric unit with only half the triflate anions bridging the silver centers (Figure 3, bottom).

The product (8) from reaction of ortho-divinylbenzene (1e) with silver perchlorate proved to be even more interesting. In this case the ligand was found to bond to three silver atoms, via the two vinyl groups, as observed above, but also through the benzene ring, as has commonly been reported for various benzenoid aromatic hydrocarbons. The three silvers all coordinate to the same face of the ligand (Figure 4). The full structure of the resulting assembly proved to be rather complex. Figure 4 also shows how bridging water molecules serve to interconnect the units into a 2D array. Not shown is the fact that the perchlorate counterions also act as bridges to result in a 3D network.

In conclusion, we have shown that the silver-alkene interaction represents a useful synthon for the construction of both discrete and polymeric metallosupramolecular architectures. The vinyl groups employed in this study experience η2-coordination, with Ag-C distances in the range 2.345-2.704 Å. In all cases the Ag-C bond distance to the terminal carbon of the vinyl group is shorter than that to the other carbon. Studies extending this design concept to more complex cases, including chiral examples, are currently underway.

Acknowledgment. We thank the Royal Society of New Zealand Marsden Fund for financial support.

Supporting Information Available: Crystallographic data for compounds 2-8.