MODEL-BASED CARDIOVASCULAR THERAPEUTICS: CAPTURING THE PATIENT-SPECIFIC IMPACT OF INOTROPE THERAPY

Thomas Desaive1, Christina Starfinger2, J. Geoffrey Chase2, Christopher E. Hann2, Geoffrey M. Shaw3

1 Cardiovascular Research Center, University of Liège, Belgium
2 Centre of Bioengineering, University of Canterbury, Christchurch, New Zealand
3 Department of Intensive Care Medicine, Christchurch Hospital, Christchurch, New Zealand
General problem

- Cardiovascular disturbances are difficult to diagnose and treat
 - Large range of possible dysfunctions
 - Reflex actions can mask the symptoms
 - Conflicting clinical data
 - Medical professionals often rely on experience and intuition to optimize the hemodynamics in the critically ill
Solution

- Physiological, identifiable and validated computer model
 - Minimal Model + Patient-Specific Parameter ID process
 - Identification must use common clinical measurements

- Application: study the effect of inotrope therapy prior to first human trials
Cardiovascular system model

- **Minimal CVS model:**
 - Physiologically validated
 - Capable of capturing patients dynamics commonly seen in the Intensive Care Unit (ICU)
 - Using a relatively small number of physiological variables
 - Minimal, typically available ICU measurements are all that is required to ID model

Suitable for rapid diagnostic feedback
Mathematical model

P-V diagram

One chamber model

\[\dot{V} = Q_1 - Q_2 \]

\[\dot{Q}_1 = \frac{P_1 - P_2 - Q_1 R_1}{L_1} \]

\[\dot{Q}_2 = \frac{P_2 - P_3 - Q_2 R_2}{L_2} \]

\[P_2 = e(t)E_{es}(V-V_d) + (1-e(t))P_0(e^{\lambda(V-V_0)}-1), \]

\[e(t)=e^{-80 \left(\frac{t-period}{2}\right)^2} \]

B. W Smith et al., *Medical Engineering & Physics*, 26(2), 131-139, 2004
Clinical data

- Three clinical studies already published
 - Effects of age on cardiovascular responses to adrenaline in man\(^1\): 24 data sets
 - Effects of adrenaline in patients with myocardial dysfunction after CABG\(^2\): 8 data sets
 - Effects of epinephrine in septic shock\(^3\): 5 data sets

Total = 37 data sets

Integral based parameter identification

- Previously validated
- Accurately identify almost the entire parameter set in the presence of noise
- Limited data and minimal computation
 - Very suitable for clinical applications
Adrenaline-specific parameters

- Left and right ventricular end-systolic elastances (contractility ↑)
- Arterial elastances (pulse pressure ↑)
- Systemic resistance (vasoconstriction ↑)

Changes in these parameters are used for predicting the response towards a change in dose of adrenaline or over time.
Method: Linear Prediction Rules

- Use reported patient specific response to capture drug affect in model
- Then ID model parameters
- Run model
- Compare model outputs of resulting MAP, SAP, DAP etc to clinical measurements to see if model captures the effect

Linear prediction rules for $Eeslvf$ (upper panel) and $Eesrvf$ (lower panel) for studies 2 (Heringlake et al., solid line) and 3 (Levy et al., dashed line).
Results: simulations

Study 1: **Clinical** mean systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure (solid lines) vs **simulated** pressures (circles).

Study 3: **Clinical** mean arterial (MAP), mean pulmonary artery (MPAP) pressure and cardiac index (CI) (solid lines) vs **simulated** pressures and CI (circles).

- All median identification percentage errors are less than 9%.
- This value is within or near expected measurement errors.
Conclusions

- Clinically accurate prediction of the impact of adrenaline (adrenaline specific parameters)

- This work represents a further clinical validation of the underlying fundamental CVS model and methods, and their use for cardiovascular diagnosis and therapy selection in critical care.

- These results are presented as (further) justification for (beginning) human trials of this model-based diagnostic and therapeutic approach.
A Note on Prior Validation Studies

- **Minimal cardiac model → simulate time varying disease states**
 - Accurately captures physiological trends and magnitudes
 - Accurately captures a wide range of dynamics
 - Very Fast simulation methods available

- **Integral-based parameter ID → patient specific models**
 - Error on max/min pressures/volumes < 5%
 - Identification needs a minimal number of common measurements
 - Rapid ID = Rapid diagnostic feedback

- **Pulmonary Embolism (PE) and the affect of PEEP:**
 - Hemodynamics successfully captured over time
 - Physiological responses to pulmonary embolism also captured

- **Septic shock (w/ and w/o fluid resuscitation):**
 - Hemodynamics and trends captured (including measurements not used in the ID process)
 - Further reduced data sets successful minimising patient-invasiveness and extra catheters
Acknowledgements: Cardiovascular Systems

Engineers, Math and Docs

Prof Geoff Chase
Dr. Chris Hann
Dr Geoff Shaw
Dr Thomas Desaive
Dr Bernard Lambermont
Dr Philippe Kolh

The Belgians

Dr. Bernard Lambermont
Dr Philippe Kolh

The Danes

Prof Steen Andreassen
Dr Bram Smith

Honorary Danes

Dr. Christina Starfinger

The Kiwi’s French and Germans

Prof Steen Andreassen
Dr. Chris Hann
Dr Geoff Shaw
Dr Thomas Desaive
Dr Bernard Lambermont
Dr Philippe Kolh

Dr. Bernard Lambermont
Dr Philippe Kolh

Dr. Christina Starfinger

David Stevenson
Claire Froissart

James Revie
Stefan Heldmann