PERFORMANCE OF DAMAGE-PROTECTED BEAM-COLUMN JOINTS SUBJECTED TO BI-DIRECTIONAL LATERAL LOADING

Kevin Solberg¹, Luoman Li¹, Brendon Bradley¹, John B. Mander², Rajesh P. Dhakal³

SUMMARY

This work will further investigate the validity of Damage Avoidance Design systems through an experimental and computational study of a 80% scale sub-assembly. A coupler system is implemented whereby high strength unbonded threaded rods running through the beams are coupled to rods within the columns. The threaded rods are post-tensioned and additional energy dissipation devices are installed. Precast and cast in situ solutions are considered. A multi-level seismic performance assessment is conducted considering three performance objectives related to occupancy and collapse prevention. Bi-directional quasi-static cyclic tests and quasi-earthquake displacement tests are performed. Critical earthquakes are selected using a probabilistic computational method. Results indicate the DAD system satisfies all performance objectives. Further design improvements are discussed.

INTRODUCTION

Current seismic design accepts that damage will occur in moderate to large seismic events, although attempts are made via special detailing to limit this damage to specific plastic hinge zones. These zones, designed to sustain severe damage under multiple cyclic rotations, tend to act like a fuse, essentially protecting the structure from forming unfavourable mechanisms. Although this design philosophy ensures good protection to occupants by preventing collapse, there is a strong likelihood a moderate to large earthquake will render a structure irreparable. As a result, economic costs, both direct and indirect, can be significant; this has been confirmed from recent earthquakes in the United States (Northridge, 1994) and Japan (Kobe, 1995). To address this issue, alternative structural systems have been proposed where precast concrete elements are designed to remain essentially elastic, with inelastic behaviour accommodated for by rocking at specially detailed joints.

The theoretical basis of rocking systems have been investigated by many early researchers (e.g. [1],[2]). Although it was not until more recently [3] that so called “hybrid” systems were introduced. These systems utilize full or partially unbonded post-tensioning to provide a restoring force and supplemental yielding devices to provide energy dissipation. By combining the hysteretic behaviour of these two components, it is possible for a joint to exhibit a combination of bi-linear elastic (post-tensioning) and elasto-plastic (yielding devices) hysteresis behaviour. The result is a flag shaped hysteresis loop, displaying good energy dissipation and re-centring characteristics.

As part of a large research project in the United States, the PRESSS program investigated the behaviour of these systems through testing of many sub-assemblages [3] and a five-storey 3D frame and wall system [4]. The system performed well with much less damage than would be expected with monolithic construction. Little residual displacement was observed in both frames and walls. The joints, however, employed a concrete-concrete or high-strength grout interface, resulting in some damage at the joint region.

Mander and Cheng [5] proposed a new seismic design and construction philosophy for bridges called Damage Avoidance Design (DAD). In this approach, joints are armoured with steel to protect them from damage incurred from rocking. This concept was validated by uni-directional tests performed on a scaled bridge pier, with bi-directional tests conducted more recently [6]. Results indicate little damage at the joint and good bi-linear elastic behaviour.

These concepts have been further developed in New Zealand and design guidelines for such ductile jointed precast concrete systems have been introduced into the concrete code as an appendix [7]. As part of an ongoing research program at the University of Canterbury, further experimental investigations have been conducted [8-11] with the goal of refining detailing at the joint and providing cost-effective alternative solutions. As a follow up to this previous work, this paper presents results from a combined experimental and computational study on the bi-directional behaviour of DAD beam-column joints.

¹ Research Assistant, Dept. of Civil Engineering, University of Canterbury, Christchurch
² Professor, Dept. of Civil Engineering, University of Canterbury, Christchurch
³ Senior Lecturer, Dept. of Civil Engineering, University of Canterbury, Christchurch
Two research objectives will be addressed herein. Firstly, previous research adopted quasi-static testing, in which loading was composed of regulated displacement cycles. These cycles however, are not completely representative of the displacement demands due to seismic excitation. Therefore, this study will adopt the Quasi-Earthquake Displacement (QED) test [12], where the specimen will be subjected to displacement profiles found analytically using real ground motions. Using this approach, a multi-level seismic performance assessment (MSPA) [13] will be conducted, characterizing the performance of the specimen at multiple levels of seismic demand.

Secondly, further refinement of the beam-column joint details are needed to ensure a practical, cost-effective solution. Li [10] investigated the behaviour of a beam-column joint using a bent coupler system whereby high strength threaded rods in a beam are coupled to diagonal rods running through the column. The aim of such a system is to allow for rapid on-site erection, thereby reducing initial costs. From physical testing, it was found that its performance was satisfactory, however several design improvements relating to the coupler system and the armoured ends were suggested. This study implements these design improvements and ensures detailing satisfies performance objectives relating to occupancy and collapse prevention.

THEORETICAL BEHAVIOUR

Two methods have been introduced for predicting the behaviour of rocking systems. Pampanin et al. [14] proposed using a monolithic beam analogy approach. An iterative process is used to determine the neutral axis depth and strain in the compression concrete. Although it has been demonstrated this method agrees well with physical results, it was developed for precast members without armouring. If armouring is considered, it is reasonable to assume rigid body behaviour at the joint. As investigated by Mander and Chang [5] and Li [10], the theoretical behaviour of an armoured rocking system can best be determined from coupling elastic deformation with rigid body kinematics. In this method, the post-join opening neutral axis is assumed to be negligible, thus allowing one to presume the specimen rocks on an extreme edge. Using this approach, it is possible to calculate the moment capacity and stiffness at several key locations, namely gap-opening, yielding of the steel energy dissipaters, and yielding of the tendons. This method has been confirmed by Li [10], where a more thorough explanation is given outside the scope of this study.

EXPERIMENTAL INVESTIGATION

Prototype Structure

As shown in Figure 1, the prototype is a ten-storey reinforced concrete frame building with three 10m bays in each direction. This generic structure, commonly known as the “red book” building [15], was designed according to the New Zealand concrete standard [7] for intermediate soil in Christchurch, New Zealand. Keeping all other variables constant, the same structure was designed and detailed according to damage avoidance principles, thereby resulting in precast beams and columns being connected via a post-tensioning system with other devices to provide supplemental energy dissipation. The DAD building was designed with precast flooring units running in the transverse direction and seated on the transverse beams, leaving the longitudinal beams to resist predominately seismic forces.

Figure 1: The prototype structure, showing the location of the subassembly.

To help ensure jointed precast systems are adopted by the construction industry, the system must be relatively simple to erect. A major component of this is the post-tensioning system. This study investigates the use of a coupled high strength threaded rods to provide post-tensioning. In this design, it is possible for complete beam and column sections to be cast off-site with rods already in place within the respective elements. Once on-site, the beam's rods are connected via a coupler system to a short rod in the column and anchored to the column’s opposite face. A detailed explanation of this, and other design elements follows.

Specimen Sub-assemblage

An exterior joint on the second floor of the prototype structure was taken for the 3D beam-column subassembly. Using constant stress and strain similitude principles, the specimen was scaled to 80%, and consisted of two beams in the longitudinal direction and one beam in the transverse direction. Herein, the longitudinal and transverse beams are dominated by seismic load and gravity loads (carrying the one-way precast panels) and respectively are referred to as the east-west seismic and north-south gravity beams.
Reinforcing details of the column are given in Figure 2 and Figure 3. An axial load of 2000kN due to self weight of the above floors was simulated in the 700x700mm column by prestressed Macalloy™ 32mm diameter high strength threaded rods. Three 20mm thick mild steel plates were cast at the column faces where precast beams were joined. The minimum reinforcement ratio, $\rho_t = 0.008$ was provided using 12 HD20 threaded bars (Reidbars™). This low reinforcement ratio eased congestion in the joint region. To transfer shear forces through the joint, five double HR12 hoops spaced at 100mm centres were provided. The design compression strength of the column was taken to be $f'_c = 45\text{MPa}$. PVC ducts were placed at a 20 degree angle in each seismic beam and horizontal through the gravity beam for the post-tensioning rods.

Reinforcing details of the seismic beams and gravity beam are given in Figure 2 and Figure 3, respectively. A cracked elastic design was used to detail longitudinal reinforcement in the precast beam segments. In this design approach, sufficient quantities of mild steel are provided to ensure that yield of longitudinal reinforcing is prevented and concrete compressive stresses are below $0.7f'_c$. This ensures precast elements remain essentially elastic even when the connection reaches over-strength. Shear design of the precast elements followed the New Zealand concrete code [7], with a total initial axial load of 400kN provided by the post-tensioning rods. Within the mid section of the beams, only minimal transverse steel was used, thus a stirrup spacing of $d/2$ was adopted. A tighter, 100mm spacing was provided at the ends. Additional stirrups near the joint were provided to provide confinement for the concrete to withstand large compressive stress expected in the end regions.

The gravity beam was detailed according to Li [10]. Instead of a straight coupler, a bent coupler was used for one of the rods. This was done to accommodate a draped profile in the beam. As in the seismic beams, the shorter bolt bar section was machined to 75% of its effective area. A 100x100x12 steel angle was used, with the flange flush against the column face. This required the beam’s longitudinal steel to be developed by plug welding it to the back edge of the angle’s flange.

A detail of the seismic beam-column joint is given in Figure 4. The seismic beams utilized a straight coupler system where the tendons were pre-bent at the joint end to a radius of approximately 1.8m. This allowed proper alignment with the angled rod running through the column. This shorter rod, termed the ‘bolt bar’, was machined to 75% of its effective area to ensure any yielding in the post-tensioning system would be limited to the replaceable column bolt bar. At the beam end, a 100x100x12 inverted steel angle was used at top
Figure 4: Detail of the seismic beam-column joint.

and bottom of the joint and the face of concrete was recessed 5mm. This ensured that contact with the column was limited to the steel and allowed the angle’s buried flange to mechanically develop the beam’s longitudinal steel using Reidbar™ nuts.

By the nature of precast concrete and rocking connections, it is critical that the face of the beam be aligned flush with the column. Therefore, offsite erection of a full length beam section may lead to on-site misalignment issues which may effect rocking behaviour. To mitigate this and allow for construction tolerances similar to current standards, a 310mm cast in situ closure pour was provided on the west seismic beam. This closure pour is implemented on-site after the armouring angles have been adjusted to ensure a flush face at both ends and the post tensioning rods are coupled together. High strength, fibre-reinforced concrete was used in the in situ end to compare its behaviour to the regular strength concrete of the east beam. The compressive strength of the high strength concrete was tested and found to be $f_c = 70\text{MPa}$. The east beam and the remainder of the west beam concrete was found to be $f_c = 37\text{MPa}$. A photograph of the beam prior to pouring and the cast in situ closure pour is given in Figure 5.

At each joint, four 30mm diameter shear keys were installed, tapered 5° inward to ensure they do not jam when the specimen rocks. These were designed to be screwed into the face of the column via a cast in double nut. The shear keys were designed for gravity and seismic shear forces. One shear key was located in each corner, providing resistance to torsion.

Supplemental Energy Dissipation

Supplemental energy dissipation was provided by mild steel bars designed to yield as the specimen rocks at its joints. To facilitate easy replacement, these devices were mounted externally. For the seismic beams, the dissipaters were located at centreline of the beam and anchored to a 32mm thick steel plate set back 300mm from the face of column. The dissipaters ran through a duct in the column and were bolted at each end of the anchor plate and column face, ensuring the devices worked independently at each joint. For the seismic beam, dissipaters were located at top and bottom of the beam, anchored to the beam by a 32mm plate and screwed into nuts cast in the column.

To guarantee the post-tensioning fuse rods are capable of re-centring the system, the energy dissipation devices were designed not to exceed the critical moment capacity of the rods. Note that the post-tensioning rods do not cross the joint at centreline, but rather at the 1/3 point. This meant the dissipaters had to be designed for the minimum eccentricity of the rods, 1/3 the beam depth. The seismic beam dissipaters were machined to a 15mm diameter over a 150mm length and the gravity beam dissipaters were machined to a 12mm diameter over a 200mm length. The devices were designed to buckle when subject to large inelastic cyclic strain.

Figure 5: Precast concrete beams showing: (a) the beam cage; and (b) the cast in situ closure pour.

TEST SETUP

Figure 6 presents two elevations of the test setup. Loads were applied to the specimen by three hydraulic actuators. Actuators A and B were installed to the reaction frame and top of the west and south face of the column, respectively. Actuator C (shown in Figure 7) was installed in the east-west direction at the end of the gravity beam. This actuator was intended to keep the specimen movement in-plane during uni-directional testing.
and provide a measure of torsion in the specimen. Actuator C’s movement was synchronised to approximately one half the displacement of Actuator A. A constant 120kN load was applied at midsection of the gravity beam through a 300kN hydraulic jack, simulating the weight of the precast flooring panels. The load was spread over a 1.5m timber block and developed into the strong floor through four high strength threaded rods. Load cells were installed in series with each actuator. Additional load cells were attached at the strut of each beam and the jacking point of each post-tensioned rod.

To measure rotation at the joint, 3 linear potentiometers were installed on both faces of each joint, totalling 18 devices. Two additional linear potentiometers were installed against the bottom face of each beam to measure vertical movement. At 8 locations around the specimen (see Figure 6) rotary potentiometers were installed to measure local displacement. Two 5mm strain gauges were installed on each bolt bar to measure any potential yielding that may occur during testing.

Figure 6: Elevations of the testing apparatus.

Figure 7: Photograph of the specimen in the testing apparatus.

TEST METHODS

Lending to the unique nature of a structural system designed to avoid damage, it was possible to conduct a wide range of tests on the specimen. These included uni-directional and bi-directional quasi-static tests, where the structure was deformed to controlled cyclic loading patterns, and QED tests where more realistic loading patterns were adopted. The latter method is similar to a pseudodynamic test in that the structure is displaced through ‘real’ seismic displacements. In QED testing, an inelastic analytical model of the prototype structure is created and subject to an earthquake record of interest. Displacement of the node representing the physical specimen is extracted and used as the displacement profile for physical testing.

Computational Modelling

A 3D analytical model of the prototype structure was developed using Ruamoko3D [16], an inelastic dynamic analysis program. Development of this model was part of a parallel study conducted by the authors; details can be found elsewhere [17]. The hysteresis properties of the joint was calibrated based on uni-directional physical testing of the specimen. Figure 8 gives a comparison between the physical and analytical model up to an interstory drift of 2%.

Figure 8: Experimental-analytical response.

Earthquake Record Selection

In the case of MSPA, it is necessary to select earthquake records that represent the desired level of ground excitation. Following current trends, three performance levels were considered. These levels correspond to an upper bound design basis earthquake (DBE), which has a 10% probability of occurrence in 50 years, and a median and upper bound maximum considered event (MCE), which has a 2% probability of occurrence in 50 years.
Current seismological studies predict peak ground acceleration (PGA) at various return periods. However, it is not correct to simply apply any earthquake record that conforms to this definition, as structural response is dependent on a multitude of factors. Therefore, it is necessary to extract earthquake records from a suite of likely candidates that will result in the most severe structural behaviour. Such a method has been proposed by Dhakal et al. [13] whereby Incremental Dynamic Analysis (IDA) [18] is used to probabilistically determine earthquake records representing multiple performance objectives. This method has been adopted herein and is illustrated in Figure 9. Once an IDA has been conducted earthquake records representing different percentile response at a given intensity measure (IM) can be extracted. In this study, records were chosen to yield responses that have non-exceedance probabilities of 90% at the DBE, 50% at the MCE, and 90% at the MCE, from a suite of 40 records consisting of medium and near-source ground motions. The selected records are given in Table 1.

Results are presented only for a bi-directional quasi-static test to 2% drift and the QED tests using the earthquakes selected for MSPA. In all tests, each post-tensioned rod was stressed to 50% of its yield limit (i.e. 200kN). This provided a total of 400kN of post-tensioning force at each joint. The energy dissipaters were replaced after each test.

Quasi-static Test Results

Figure 10 presents results of bi-directional testing to the design level drift of 2%. The results shown are for a bi-directional “clover leaf” test, where total drift is calculated considering both X and Y components. Note that the individual plots are projected to one another, allowing an easy comparison to be made between the NS and EW direction.

During stressing of the rods, a 1mm crack formed at the bottom edge of each beam, running between the edge of each flange. This crack can be attributed to the vertical component of the diagonal tendons, approximately a 120kN upward force at the joint. This force in effect pulled the beam up the face of the column. The bottom steel flange however, resisted this due to high friction forces, causing tearing just above the angle, as evidenced by this crack.

Opening of the gap was observed at approximately 0.5% drift, at which point the steel dissipaters yielded in tension almost immediately (as evidenced from strain gauges). In the east beam, two hairline cracks formed just before reaching the target drift of 2%, propagating 100mm out from the dissipater anchor plate. The west beam (high-strength concrete) did not suffer additional cracking. Due to the bi-directional rocking, localised crushing was observed behind the top angle of the east beam over a 10mm square area at the top concrete face. At approximately 1% drift, slight buckling of the steel dissipaters occurred as the gap began to close. This was more severe for the gravity beams than the seismic beams, attributed to their longer length. Throughout testing, no damage was observed on the column. A photograph of the east beam after testing is given in Figure 11.
Figure 10: Force-displacement response from bi-directional ‘clover leaf’ test.

As expected, the seismic beam exhibited bi-linear elastic hysteretic behaviour, with some energy dissipation, resulting in a flag-shaped response. Some residual displacement was observed, though this can be partially traced to movement of approximately 2mm in the column base pin, which was repaired for the remaining tests. The unsymmetrical hysteretic response of the gravity beam can be attributed to the inclusion of gravity load, causing an initial positive bending moment at the joint. The gravity beam did not fully re-centre upon removal of the lateral load, resulting in a residual drift of approximately 0.5%. This may be partially attributed to sliding of the base pin.

Figure 11: Photograph of the east beam after the bi-directional test to 2% drift.

Quasi-Earthquake Displacement Test Results

Figure 12 presents results for the seismic beams from the three QED tests. Since the gravity beam had been previously tested as part of a prior study, its response is omitted and can be found elsewhere (Li, 2006). Note that these tests were performed after the initial quasi-static tests (up to 2% drift), and therefore some damage to the specimen had already been observed.

Nevertheless, these tests will give a more accurate assessment of response from ‘real’ loading patterns and any additional damage can be attributed to the given demand.

The 90th percentile DBE test consisted of an initial pulse (attributed to the near source record) to the maximum drift of 2.1%. Gap opening and yielding of the energy dissipaters occurred at around the same drift as in previous testing (~0.5%). No new cracks or additional crushing was observed on the seismic beams. A flag shaped hysteresis loop was observed during the initial pulse, however for the remainder of the test response was mostly elastic. Some post-gap opening stiffness degradation was observed, likely due to yielding and buckling of the energy dissipaters. The maximum gap opening, recorded from the potentiometers was approximately 5mm.

The 50th percentile MCE maximum drift was 2.8%, which, like the previous test, occurred in the first major loading cycle. This resulted in considerable yielding of the dissipaters and buckling upon unloading. Consequently, further cycles exhibited a lower capacity, resulting in strength degradation of approximately 20% on the second cycle. A hairline diagonal crack approximately 300mm long was observed on the east and west beam, appearing to be the result of a compression strut. Small (<100mm) hairline cracks formed along the corners of the steel angles of the east beam, but closed after testing. As observed from the strain gauges, the bolt bars reached a maximum of 6000 μstrain (εyield ~ 5500), resulting in slight yielding and an average loss of post-tensioning force of 5%.

The final test, the 90th percentile MCE was the most severe of all tests performed. The maximum drift was 4.7%. Additional crushing was observed along the top and bottom flange of the east beam’s steel angle. This crushing was limited to an area of approximately 25mm measured from the flange edge. The bottom flange of the west beam suffered similar crushing, at one end, covering an area of approximately 10mm square. Some spalling was observed over a 25mm area along the angles of both beams. The diagonal cracks formed in the previous test approximately doubled in length and opened to about 1.5mm in the east beam, and 0.5mm in the west beam. At the end of testing, these cracks closed. As seen from the figure, a flag-shaped hysteresis loop was observed, with a maximum residual drift of about 0.1%.

The initial (pre-gap opening) stiffness of the specimen remained virtually unchanged, however. Some minor stiffness and strength degradation was observed in the post-gap opening range. The bolt bars reached a maximum strain of 9000
μstrain and maximum force of 360kN, more than the yielding force of the fuse bar. This resulted in a loss of post-tensioning force of approximately 35% and is the major cause of observed strength degradation. Since the yield force of the regular 26.5mm tendon is about 400kN, the bolt bar 'fuse' protected the beam rods from yielding. Two photographs from testing are given in Figure 13.

Test results suggest the specimen satisfied all performance objectives relating to occupancy and collapse prevention. By performing QED tests, whereby the specimen is displaced to patterns similar to those expected from real earthquakes, it is possible to provide some insight as to the damage outcomes of such a structure following seismic events.

Considering the first case of immediate occupancy, it was stated that the structure must be suitably reliable to remain operational following a design level earthquake. This case was represented by a 90th percentile DBE, with a peak drift of 2.1%. Aside from some aesthetic cracks, the structure did not sustain any damage that affected its response. Yielding of the energy dissipation devices occurred and therefore these would have to be replaced, which may be a costly undertaking in a multi-storey building. However, since the dissipaters did not sustain strains beyond an equivalent 2% drift, it is safe to
conclude the structure remains life-safe, and therefore operational.

The second objective, ensuring with moderate confidence the structure can be repaired following an ‘extreme’ seismic event, was verified by the 50th percentile MCE. The maximum drift level for this test was 2.8%, at which point the dissipaters had buckled and slight yielding of the post-tensioning bolt bars had occurred. Since the structure lost some of its stiffness (as provided by tensioning bolt bars had occurred. Since the structure lost some of its stiffness (as provided by the post-tensioning) it would be prudent to close the structure until crews could re-tension the rods and replace the dissipaters. The relative cost of these repairs would be low, since the jack points for the rods and the energy dissipaters are reasonably accessible.

The third and most important objective, ensuring with a high level of confidence that the structure will not collapse from an ‘extreme’ earthquake, was verified by a 90th percentile MCE. In this case, the structure was subject to an earthquake demanding a drift of 4.7%. The post-tensioning system suffered considerable yielding (and loss of pre-stress) and the energy dissipaters were severely damaged. However, the specimen remained stable, and even after this extreme drift level, exhibited reasonable hysteretic behaviour. In this case, the energy dissipaters would need to be replaced and the post-tensioning system would need to be stressed back up to initial conditions. Since the bolt bars underwent considerable strain, it may be prudent to replace them. The integrity of the concrete, particularly for the high-strength cast insitu concrete joint, remained high. Since some minor cracking and crushing occurred, it may need to be patched.

DISCUSSION

Overall, the specimen met the requirements outlined in the MSPA. Compared to traditional monolithic construction, the system performed exceptionally well. The most notable advantage of the DAD system was the significantly lower expected repair costs following the 90th percentile MCE. At 4.7% drift, a monolithic beam-column joint would likely experience severe cracking, spalling, and potentially even buckling of longitudinal steel. This would result in significant repair costs of each joint, or complete replacement of the structure. Conversely, the DAD system would need its prestressing bars re-tensioned and its energy dissipaters replaced. This would result in at a much lower cost and would allow the structure to remain operational while any inspections and minor repairs were made.

Nevertheless, it is considered there is still room for improvement. The energy dissipation devices needed to be replaced following each event. These devices were mounted externally to facilitate quick replacement between tests. However, such an arrangement may be too obtrusive in a real building. Alternative mounting locations should be examined or reusable internal devices should be considered. Furthermore, there remains constructability issues related to this system that have not been addressed by this study, particularly regarding displacement compatibility between the frame and floor slabs. The joint detailing configuration tested has proved that it is possible to reduce material and labour costs without sacrificing performance of the system. The unbonded prestress system was designed to yield at a reduced cross section bolt bar at large displacements. The aim was to provide additional energy dissipation in extreme events. However, as this would require the system to be re-stressed, it may be prudent to design the system to yield at very large (>8%) drifts and instead provide more robust supplemental energy dissipation devices.

Although the angled post-tensioning profile provided redundancy and easy access to jacking points, it significantly increased the complexity of the column joint. This congestion ended up governing the size of the column. By utilizing a straight tendon profile, where bars are coupled at the cast insitu end, this congestion problem may be eliminated.

The cast insitu closure pour that used high strength fibre-reinforced concrete performed better than the normal strength concrete joint. Approximately half as much cracking occurred, and those cracks which did form did not open or propagate as significantly as the other joint. For example, the crack formed by the diagonal compression strut in both beams opened to only 1/3 the width in the west (high strength concrete) beam as in the east beam. Including such detailing strategies, possibly by casting all beam ends insitu with high strength concrete, would lead to a reduction in damage at the joint. It is considered that such an insitu joint located at least at one end is desirable to avoid potentially large on-site construction misalignment issues and allow the beams to be cast to reasonable tolerance.

CONCLUSIONS

Bi-directional quasi-earthquake displacement testing was performed on an 80% scale concrete frame sub-assemblage designed for damage avoidance. Critical earthquake records were selected probabilistically to represent multiple levels of demand and a multi-level seismic performance assessment was conducted. Based
on this dual experimental-computational study, the following conclusions are drawn:

1. Three performance objectives were met: (i) with high confidence it can be stated the structure will remain operational following a design level earthquake; (ii) with moderate confidence the structure will be repairable following a very rare earthquake; and (iii) with high confidence the structure will not collapse following a very rare earthquake.

2. A cast in situ closure pour at one beam end helps alleviate construction tolerance issues and ensures the face of the beam is aligned properly with the column. The performance of this joint was satisfactory.

3. Steel energy dissipaters had to be replaced after each test. High efficiency, reusable energy dissipaters would further eliminate repair costs.

ACKNOWLEDGEMENTS

Support from the sponsors of the Future Building Systems research project is gratefully acknowledged, particularly the Foundation for Research, Science and Technology (FRST).

REFERENCES

