Supporting Self-Explanation in a Data Normalization Tutor

Antonija MITROVIC
Intelligent Computer Tutoring Group
Computer Science Department, University of Canterbury
Private Bag 4800, Christchurch, New Zealand
tanja@cosc.canterbury.ac.nz

Abstract: Self-explanation is one of the most effective learning strategies, resulting in deep knowledge. In this paper, we discuss how self-explanation is scaffolded in NORMIT, a data normalization tutor. We present the system first, and then discuss how it supports self-explanation. We hypothesized the self-explanation support in NORMIT will affect students problem solving skills, and also result in better conceptual knowledge. A preliminary evaluation study of the system was performed in October 2002, the results of which show that both problem-solving performance and the understanding of the domain of students who self-explained increased. We also discuss our plans for future research.

1. Introduction

The goal of intelligent educational systems is to support students’ learning, and yet evaluations show that even in the most effective systems, some students acquire shallow knowledge. Examples include situations when the student can guess the correct answer, instead of using the domain theory to derive the solution. Aleven et al. [1] illustrate situations when students guess the sizes of angles based on their appearance. On the other hand, we want students to acquire deep, robust knowledge, which they can use to solve different kinds of problems, and to develop effective meta-cognitive skills.

One of the approaches to acquiring deep knowledge is to self-explain. Psychological studies [5,6] show that self-explanation is one of the most effective learning strategies. In self-explanation, the student solves a problem (or explains a solved problem) by specifying why a particular action is needed, and how it contributes toward the solution of the problem. Self-explanation has been supported in several existing intelligent tutoring systems with extremely good results [1,2,3,7].

This paper presents the support for self-explanation in NORMIT, a data normalization tutor. Section 2 reviews related work. Section 3 overviews the learning task, while the architecture of the system is given in Section 4. Support for self-explanation is discussed in Section 5. The results of a preliminary study of NORMIT are presented in Section 6. Finally, the conclusions and avenues for future research are given in the final section.

2. Related Work

Metacognition includes processes involved with awareness of, reasoning and reflecting about, and controlling one’s cognitive skills and processes. Metacognitive skills can be taught [4], and result in improved problem solving and better learning [1,7]. Of all metacognitive skills, self-explanation has attracted most interest within the ITS community.
By explaining to themselves, students integrate new knowledge with existing knowledge. Furthermore, psychological studies show that self-explanation helps students to correct their misconceptions [6]. Although many students do not spontaneously self-explain, most will do so when prompted [5] and can learn to do it effectively [4].

SE-Coach [7] is a physics tutor that supports students while they study solved examples. The authors claim that self-explanation is better supported this way, than asking for explanation while solving problems, as the latter may put too big a burden on the student. In this system, students are prompted to explain a given solution for a problem. Different parts of the solution are covered with boxes, which disappear when the mouse is positioned over them. This masking mechanism allows the system to track how much time the student spends on each part of the solution. The system controls the process by modelling the self-explanation skills using a Bayesian network. If there is evidence that the student has not self-explained a particular part of the example, the system will require the student to specify why a certain step is correct and why it is useful for solving the current problem. Empirical studies performed show that this structured support is beneficial in early learning stages.

On the other hand, Aleven and Koedinger [1] explore how students explain their own solutions. In the PACT Geometry tutor, as students solve problems, they specify the reason for each action taken, by selecting a relevant theorem or a definition from a glossary. The performed evaluation study shows that such explanations improve students problem-solving and self-explanation skills and also result in transferable knowledge. In Geometry Explanation Tutor [2], students explain in natural language, and the system evaluates their explanations and provides feedback. The system contains a hierarchy of 149 explanation categories [3], which is a library of common explanations, including incorrect/incomplete ones. The system matches the student’s explanation to those in the library, and generates feedback which helps the student to improve his/her explanation.

In a recent project [13], we looked at the effect of self-explanation in KERMIT, a database design tutor [12]. In contrast to the previous two systems, KERMIT teaches an open-ended task. In geometry and physics, domain knowledge is clearly defined, and it is possible to offer a glossary of terms and definitions to the student. Conceptual database design is a very different domain. As in other design tasks, there is no algorithm to use to derive the final solution. In KERMIT, we ask the student to self-explain only in the case their solution is erroneous. The system decides on which errors to initiate a self-explanation dialogue, and asks a series of question until the student gives the correct answer. The student may interrupt the dialogue at any time, and correct the solution. We have performed an experiment recently, the results of which show that students who self-explain acquire more conceptual knowledge than their peers.

3. Learning Data Normalization in NORMIT

Database normalization is the process of refining a relational database schema in order to ensure that all tables are of high quality [8]. Normalization is usually taught in introductory database courses in a series of lectures that define all the necessary concepts, and later practised on paper by looking at specific databases and applying the definitions.

NORMIT is a problem-solving environment, which complements traditional classroom instruction. The emphasis is therefore on problem solving, not on providing information. However, the system does provide help about the basic domain concepts, when there is evidence that the student does not understand them, or has difficulties applying knowledge. After logging in, the student needs to select the problem to work on. NORMIT lists all the pre-defined problems, so that the student may select one that looks interesting. In addition, the student may enter his/her own problem to work on.
Database normalization is a procedural task: the student goes through a number of steps to analyze the quality of a database. We described the tasks NORMIT supports in detail elsewhere [9]. NORMIT requires the student to determine candidate keys (Figure 1), the closure of a set of attributes and prime attributes, simplify functional dependencies, determine normal forms, and, if necessary, decompose the table. The sequence is fixed: the student will only see a Web page corresponding to the current task. The student may submit a solution or request a new problem at any time. He/she may also review the history of the session, or examine the student model.

Fig. 1. A screenshot from NORMIT

When the student submits the solution, the system analyzes it and offers feedback. The first submission receives only a general feedback, specifying whether the solution is correct or not. If there are errors in the solution, the incorrect parts of the solution are shown in red. On the second submission, NORMIT provides a general description of the error, specifying what general domain principles have been violated. On the next submission, the system provides a more detailed message, by providing a hint as to how the student should change the solution. The correct solution is only available on request.

4. The Architecture of NORMIT

NORMIT is a Web-enabled tutor with a centralized architecture (Figure 2). All tutoring functions are performed on the server side, where student models are also kept. NORMIT is developed in AllegroServe Web server, an extensible server provided with Allegro Common Lisp. At the beginning of interaction, a student is required to enter his/her name, which is necessary in order to establish a session. The session manager requires the student
modeller to retrieve the model for the student, if there is one, or to create a new model for a new student. NORMIT identifies students by their login name, which is embedded in a hidden tag of HTML forms. Each action a student performs is sent to the session manager, as it has to link it to the appropriate session and store it in the student’s log. Then, the action is sent to the pedagogical module (PM). If the submitted action is a solution to the current step, PM sends it to the student modeller, which diagnoses the solution, updates the student model, and sends the result of the diagnosis back to PM, which generates feedback.

Domain knowledge consists of a set of constraints. Constraint-Based Modeling (CBM) [11,10] is a student modeling approach that is not interested in the exact sequence of states in the problem space the student has traversed, but in what state he/she is in currently. As long as the student never reaches a state that is known to be wrong, they are free to perform whatever actions they please. The domain model is a collection of state descriptions of the form: If <relevance condition> is true, then <satisfaction condition> had better also be true, otherwise something has gone wrong.

The constraints are written in Lisp, and can contain built-in functions as well as domain-specific functions. An example constraint is given in Figure 3. The first two lists of constraint 11 are its relevance and satisfaction conditions. The relevance condition tests whether the current task is the candidate keys task, and then it checks whether the student has specified any candidate keys. Finally, it binds variable \(k \) to each specified candidate key, thus forming a multiple binding list. The satisfaction part consists of a single test, which is applied to each binding of variable \(k \). If a candidate key is minimal, the constraint is satisfied. In the opposite case, the student will be given feedback. There are two feedback messages in the constraint, which are given to the student if his/her solution is incorrect. The first message is shorter, and tells the student what is wrong with the solution. If the student still cannot correct the solution after this message, NORMIT will present the second message, which explains why the specified set of attributes is not a candidate key. The last element of the constraint specifies the part of the solution that is incorrect (in this case, that is the attribute to which variable \(k \) is bound). This binding is used for highlighting the error.

\[
(11 \ (\text{equalp} \ \text{current-task} \ sol \ \text{candkeys}) \ (\text{not} \ (\text{null} \ \text{candkeys} \ sol)))
\]

\[
(\text{bind-all} \ ?k \ \text{candkeys sol} \ \text{bindings})
\]

\[
(\text{minimal-keyp TS} \ (\text{quote} \ ?k) \ \text{problem sol})
\]

"You have specified candidate key(s) incorrectly!"

"A candidate key you specified is not minimal. You need to remove the extra attributes."

(?k "candkeys")

Fig. 3. An example constraint

NORMIT currently contains 54 problem-independent constraints that describe the basic principles of the domain. Some constraints check the syntax of the solution, while others check the semantics, by comparing the student’s solution to the ideal solution, generated by
the problem solver. In order to identify constraints, we studied material in textbooks, such as [8], and also used our own experience in teaching database normalization.

The short-term student model consists of a list of violated and a list of satisfied constraints for the current attempt. The long-term model records the history of usage for each constraint. This information is used to select problems of appropriate complexity for the student, and generate feedback.

5. Supporting Self-Explanation

NORMIT is a problem-solving environment, and therefore we ask students to self-explain while they solve problems. In contrast to other ITSs that support self-explanation, we do not expect students to self-explain every problem-solving step. Instead, NORMIT will require an explanation for each action that is performed for the first time. For the subsequent actions of the same type, explanation is required only if the action is performed incorrectly. We believe that this strategy will reduce the burden on the more able students (by not asking them to provide the same explanation every time an action is performed correctly), and also that the system would provide enough situations for students to develop and improve their self-explanation skills.

Similar to the PACT Geometry Tutor and SE-Coach, NORMIT supports self-explanation by prompting the student to explain by selecting one of the offered options. In Figure 1, the student has specified the first candidate key (consisting of attributes A and B) for the given problem. The student would be asked to explain why the two specified attributes make a candidate key, if that is the first time he/she is specifying candidate keys. Figure 4 illustrates the next page the student will see in that situation. The student selects an incorrect option, and the system will then ask for another explanation. In contrast to the
first question, which was problem-specific, the second question is general. The student will be asked to define a candidate key, again by selecting one of the options given. In the situation illustrated in Figure 4, the student will be asked to complete the line “A candidate key is” using one of the following options: “a superkey”, “a minimal superkey”, “a minimal set of attributes that determine all other attributes in the table”, “an attribute or a set of attributes that determines the values of all other attributes”, “a key other than the primary key”, “a set of attributes the closure of which contains all attributes of the table” or “an attribute with unique values”. If the student selects the correct option, he/she will resume with problem solving. In the opposite case, NORMIT will provide the correct definition of the concept. The same scenario is repeated when the student submits an incorrect solution.

In addition to the model of the student’s knowledge, NORMIT also stores information about the student’s self-explanation skills. For each constraint, the student model contains information about the student’s explanations related to that constraint. The student model also stores the history of student’s explanation of each domain concept.

6. Experiment

We performed an evaluation study with the students enrolled in an introductory database course at the University of Canterbury in the second half of 2002. Our hypothesis was that self-explanation would have positive effects on both procedural knowledge (i.e. problem solving skills) and conceptual knowledge. Prior to the experiment, all students listened to four lectures on data normalization. The system was demonstrated in a lecture on October 14, 2002 (during the last week of the course), and was open to the students a day later. The accounts for students were generated before the study, and randomly allocated to one of the two versions of the system. The students in the control group used the basic version of the system, while the experimental group used NORMIT-SE, the version of the system that supports self-explanation. The participation in the experiment was voluntary, and 29 out of 151 students enrolled in the course used the system. The students in the control group, while the experimental group used NORMIT-SE, the version of the system that supports self-explanation. The participation in the experiment was voluntary, and 29 out of 151 students enrolled in the course used the system. The students were free to use the system when and for how long they wanted. There were 10 students in the control group, and 19 in the experimental group. The sizes of the groups are different, as not all students who showed interest in participating have actually used the system.

When a student logged on to the system for the first time, he/she was presented with a pre-test. The post-test was also administered on-line, the first time a student logged on to the system on or after November 1, 2002. The date for the post-test was chosen to be just one day before the exam. We developed two tests, which consisted of four multiple choice questions each. The first two questions required students to identify the correct solution for a given problem, while for the other two the students needed to identify the correct definition of a given domain concept. Each student got one of these two tests randomly as the pre-test, and the other one as the post-test.

We collected data about each session, including the type and timing of each action performed by the student, as well as the feedback obtained from NORMIT. There were three students who logged on to the system, but have not attempted any problems. We excluded the logs of these three students from analyses.

The summary of results is given in Table 1. The number of sessions ranged from 1 to 10 (the average being 3.27), while session length varied from just a couple of minutes to almost three hours. Three students attempted some problems, but completed none of them. The remaining 23 students solved at least one problem, while one student solved all 50 problems the system contains correctly. The control group students had more sessions on average, and therefore spent more time, attempted and completed more problems than the
students in the experimental group (all differences except the last one are insignificant). The experimental group needed more time per problem, which may be the consequence of more work (i.e. specifying reasons) they needed to do when they made mistakes.

Table 1. Mean system interaction details

<table>
<thead>
<tr>
<th></th>
<th>NORMIT</th>
<th>NORMIT-SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of students</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>No of sessions</td>
<td>3.62 (2.97)</td>
<td>3.11 (1.78)</td>
</tr>
<tr>
<td>Time spent on problem solving (min.)</td>
<td>164.5 (119.97)</td>
<td>126.33 (99.41)</td>
</tr>
<tr>
<td>No. of attempted problems</td>
<td>19.37 (15.38)</td>
<td>11.33 (9.31)</td>
</tr>
<tr>
<td>No. of completed problems</td>
<td>18.5 (16.11)</td>
<td>7.05 (5.95)</td>
</tr>
</tbody>
</table>

The results on the pre- and post-tests are given in Table 2. The groups are comparable, as there is no significant difference on the pre-test performance. Only three students from the control group sat the post-test, and we have not analysed their results, as the sample was too small. On the other hand, a paired t-test for the students in the experimental group who sat both tests shows that their performance improved significantly (p=0.08). Therefore, the first part of our hypothesis is confirmed by the experiment.

Table 2. Pre- and post-test results

<table>
<thead>
<tr>
<th></th>
<th>No of pre-tests</th>
<th>Pre-test % (sd)</th>
<th>No of post-tests</th>
<th>Post-test % (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMIT</td>
<td>8</td>
<td>65.62 (36.3)</td>
<td>3</td>
<td>79.17 (25)</td>
</tr>
<tr>
<td>NORMIT-SE</td>
<td>18</td>
<td>75 (25.88)</td>
<td>13</td>
<td>89.1 (17.8)</td>
</tr>
</tbody>
</table>

To test the second part of our hypothesis, we analysed their responses to the last two questions in the tests, which were related to students’ conceptual knowledge. Again, we analysed only the results for the experimental group, as the number of post-tests for the control group was too small. The mean for the conceptual questions in the pre-test was 73.68%, and it increased to 84.61% on the post-test (significant at p=0.13). We used linear regression, with pre-test and the interaction time to predict the scores on the conceptual questions in the post-test (significant at p=0.15). Even better results are achieved when students’ performance on the conceptual questions is predicted by the pre-test and the number of solved problems (significant at p=0.11). These results seem to support the hypothesis. However, the sample is not large enough to make solid conclusions, and also there were not enough students who sat the post-test in the control group.

We also analysed student’s explanations. Due to imperfection of the logging mechanism, we do not have all information about self-explanations that were problem-specific (those problems have been fixed meanwhile). From the data we have in the logs, it can be seen that some constraints are much more difficult for students to learn than others. For example, out of the total of 29 situations when students who were asked to explain why a set of attributes is a candidate key, the correct answer was given in only two cases (constraint 11 in Figure 3).

However, we do have data about students’ self-explanations related to domain concepts. Seven out of 11 concepts NORMIT tracks have been covered by all students. The remaining 4 concepts have been covered only by some students, because these concepts do not appear in every problem, and the problems students attempted vary significantly. Figure 5 illustrates the correctness of students’ explanations. Please note that students were asked to explain domain concepts only when their problem-specific explanations were incorrect (the total of 147 cases). The probabilities of correct answers on the first and subsequent occasions were averaged over all concepts and all students. There is

![Fig. 5. Defining domain concepts](image-url)
a very good fit to the power curve, which indicates that students do learn by explaining domain concepts.

7. Conclusions

Self-explanation is known to be an effective learning strategy. Since intelligent tutoring systems aim to support good learning practices, it is not surprising that researches have started providing support for self-explanation. In this paper, we present NORMIT, a data normalization tutor, and describe how it supports self-explanation. NORMIT is a problem-solving environment, and students are asked to explain their actions while solving problems. The student must explain every action that is performed for the first time. However, we do not require the student to explain every action, as that would put too much of a burden on the student and reduce motivation. NORMIT requires explanations in cases of erroneous solutions. The student is asked to specify the reason for the action, and, if the reason is incorrect, to define the domain concept that is related to the current task. If the student is not able to identify the correct definition from a menu, the system provides the definition of the concept. NORMIT was used in a real course for the first time in 2002. The results of the study seem to support our hypothesis: students who self-explained improved significantly in problem-solving and in answering questions about domain knowledge.

At the moment, the student model in NORMIT contains a lot of information about the student’s self-explanation skills that is not used. We plan to use this information to identify parts of the domain in which the student needs more instruction. Furthermore, the self-explanation support itself may be made adaptive, so that different support would be offered to students who are poor self-explainer in contrast to students who are good at it. Finally, we plan to perform a bigger evaluation study, in order to be able to assess the effects of the self-explanation support properly.

Acknowledgements: We thank Li Chen for implementing NORMIT’s interface.

References