
Semantic Integration of Adaptive Educational Systems

Sergey Sosnovsky1, Peter Brusilovsky1, Michael Yudelson1,
Antonija Mitrovic2, Moffat Mathews2, Amruth Kumar3

1 University of Pittsburgh, School of Information Sciences,
135, North Bellefield ave. Pittsburgh, PA 15260, USA

2 University of Canterbury, Department of Computer Science and Software Engineering
Private Bag 4800, Christchurch 8140, New Zealand

3 Ramapo College of New Jersey
505, Ramapo Valley Road, Mahwah, NJ 07430-1680, USA

sosnovsky@gmail.com, peterb@pitt.edu, myudelson@gmail.com,
Tanja.Mitrovic@canterbury.ac.nz, moffat@cosc.canterbury.ac.nz, amruth@ramapo.edu

Abstract. With the growth of adaptive educational systems available to
students, integration of these systems is changing from an interesting research
problem into an important practical task. One of the challenges that need to be
accepted on the way is the development of mechanisms for student model
integration. The architectural principles and representation technologies
employed by the adaptive educational systems define the applicability of a
particular integration approach. This chapter overviews the existing
mechanisms and detail one of them: the evidence integration.

Keywords: Adaptive Educational System, Semantic Integration, User Model
Interoperability, Ontology

1 Introduction

Over the last 10 years, a number of adaptive systems migrated from research labs to
real life. Web recommender systems [1], mobile tourist guides [2] and adaptive e-
learning systems [3] are now used by thousands of real users. In some application
areas the “density” of practical adaptive systems is reaching the point where several
adaptive systems are available. Yet, in most of the cases, these systems do not
compete, but rather complement each other offering unique functionality or content.
This puts the problem of using several adaptive systems in parallel on the agenda of
user modeling community. This problem has been explored over the last few years
by several research teams, which considered it from several perspectives:
architectures for integrating adaptive systems [4], cross-system personalization [5],
[6], user model ontologies [7], [8], and user modeling servers [9], [10], [11].

The main challenge of using several adaptive systems in parallel (or, as we may
also say, a distributed adaptive system) is making the whole more then the sum of its
parts. In this context, it means that each of the system should have a chance to
increase the quality of user modeling and adaptation using integrated evidence about
user, which was collected by all participating system. So far, it looks like the most

popular approach to solving this user model integration problem is translation [12]
or mediation [13] from one user model to another. This approach is very attractive if
two adaptive systems are used in a sequence, one after another. However, when two
adaptive systems have to be used in parallel (i.e., the user models on both sides are
being constantly updated within the same session), a translation of the whole user
model from one representation to another become a relatively costly approach. To
take the joint information about the user into account, each system will need to
translate the user model from another system before any adaptive decision is made.

Very good examples of such scenario are distributed adaptive E-Learning
frameworks such as Medea [14] or KnowledgeTree [4], where students can work
with educational activities provided by several independent adaptive systems. Each
of the involved systems receives evidences about student knowledge and attempts to
build the student knowledge model. To make this model reliable, each of the
involved systems should take into account evidences that the student produced
during his/her work with the systems. Our previous experience with distributed E-
Learning systems shows that a student can switch from one system to another many
times even within a single session [15]. To avoid multiple translations from one user
model to another within the same session, we explored an alternative approach to
user modeling in distributed adaptive systems called evidence integration. With this
approach, adaptive systems do not exchange entire user models, but instead
exchange elementary evidences produced as results of student’s actions. In this case,
the problem of student model integration becomes the problem of evidence
integration. While evidence integration is a relatively simple task in some domains
(i.e., user’s ratings for a specific movie can be easily taken into account by multiple
recommender system), it is not the case in e-learning. In e-learning, each educational
activity (i.e., problem, quiz, or example) is typically described in terms of a system’s
internal domain model. Using this knowledge and the outcomes of student’s actions
(e.g. correct or incorrect problem solutions), the user modeling component updates
student knowledge model. In a rare case where the component systems share the
same domain model [14], [16] integrating evidences from two or more adaptive
systems is a relatively simple problem. However, in reality two adaptive systems
developed for the same domain (such as Java programming or SQL) can rely on
very different domain representations. In this case evidence integration becomes a
real problem, which requires some kind of translation from one domain model to
another.

This paper details two practical examples of distributed student modeling using
evidence integration. Each example involves two e-learning systems with
considerably different domain models for the same subject (Java and SQL
languages). One of these examples (section 3) demonstrates fairly simple and
straightforward evidence integration, while another (section 4) presents a more
sophisticated case based on the alignment between two large domain models relying
on very different representation formalisms. Taken together, these cases stress the
problems of distributed user modeling in the field of e-learning and demonstrate
how the evidence integration approach can support conceptual and architectural
integration in the context of a real college-level course. To make our example more
useful, we preface it with a discussion of existing integration approaches in the area
of e-learning (section 2) and present the implementation details of our approach

(section 5). We conclude with a summary of our results and a discussion of future
work.

2 Existing Integration Approaches

This analysis focuses on a particular aspect of adaptive system integration. Due to
the wide spectrum of existing adaptive technologies, there are many ways to
integrate user modeling information collected and inferred by adaptive systems. In
the field of recommender systems this task can be transformed into the fusing of
user ratings from several systems into an aggregate model [17], or mediation
between content-based and collaborative user models [18]. In the field of pervasive
adaptation exploiting rich, multifaceted user profiles, integration of adaptive systems
will require matching complex user modeling ontologies [19]. Adaptive educational
systems focus on modeling of student knowledge, which includes a particular
representation of the domain structure in terms of its elementary units and estimation
of knowledge levels for these units. Hence we will limit our discussion to the
integration of e-learning adaptive systems modeling student knowledge. Such
integration will require target systems to achieve a certain level of mutual
understanding of the domain semantics. Once the systems agree on the domain
model, they can exchange student models for the equivalent or related parts of the
domain and include it into the adaptive inference.

The general task of domain model alignment potentially involves resolution of
multiple model discrepancies on the two principle levels. The language–level
mismatches, such as different syntax, expressiveness, or varying semantics of used
primitives, need to be resolved in the first place. However, the more important are
the model-level mismatches that occur due to the difference in structure and/or
semantics of the domain models. Resolution of this kind of discrepancies involves
dealing with such problems as:
 Naming conflicts (the same concept is defined in two models by different terms

or the same term defines different concepts);
 Different graph structure (the models choose to connect relevant sets of concepts

in different ways);
 Different scope (two models cover parts of the domain that only partially

intersect or the scope of one model includes that of another model);
 Different granularity (the size of concepts differ across the models; a single

concept of one model represents a piece of domain knowledge covered by several
concepts of another model);

 Different focus (the models examine different modeling paradigms or adhere to
different modeling conventions).
This list does not include the mismatches specific for the formal models

employing advanced modeling primitives, such as typed relations and axioms (e.g.
same entity can be modeled as a concept and as an attribute).

Next sections outline several approaches to semantic integration of adaptive
educational systems described in the literature.

2.1 Single-Ontology Integration

One of the first steps towards interoperable adaptive systems would be
implementation of domain models with the help of ontologies, which express the
shared view on the domain semantics and come with a full package of technologies
developed within the framework of the Semantic Web initiative. When the user
models of two systems rely on the common domain ontology, they can be
exchanged and consistently interpreted when necessary. OntoAIMS project provides
a good example of such integration [20]. Two components of OntoAims: OWL-
OLM [21] and AIMS [22] – were developed as separate systems, but with a mutual
concern about interoperability. Both AIMS and OWL-OLM represent their domain
models as OWL-ontologies and model user knowledge as ontology overlays. As a
result, merging these two systems into an integrated adaptive environment providing
rich learning experience was a straightforward task. The long-term user model in
OntoAIMS is shared by its both components. During a session with either AIMS or
OWL-OLM a short-term user model is populated, and then used to update the long-
term model.

Several research teams have generalized this approach to the level of integrated
architectures based on central user modeling servers (e.g. Personis [23], ActiveMath
[24], CUMULATE [25]). These servers perform centralized domain and user
modeling and supply this information to the individual adaptive systems. As a result,
the adaptive systems themselves do not need to support domain and user models,
instead they update the central user model and request the modeling information
from the server.

2.2 Central-Ontology Integration

The single-ontology integration can work only if the participating systems fully
agree on a single ontology for modeling the domain of discourse. Unfortunately, the
practice of AES is still far from the use of common ontologies. Although the
designers of AES more and more frequently choose to represent the domain models
as ontologies, they tend to employ different ontologies for the same domain.

In some cases this problem can be remedied without much efforts. If the
ontologies of adaptive systems being integrated have a common reference ontology,
it can facilitate the exchange of modeling information through the “hub” concepts
shared by the domain models of both systems. This becomes important in the
situation when several small adaptive systems model student knowledge in tightly
related domains (or parts of a single domain). A central ontology can act as a meta-
translator for the shared concepts and “bootstrap” the user modeling through such
concepts. Mitrovic and Devedzic describe such scenario in [26] and introduce M-
OBLIGE – an architecture for centralized exchange of user-modeling information
among multiple intelligent tutoring systems acting in related parts of the SQL and
Relational Algebra.

This scenario still requires a certain level of ontological commitment from the
participating systems – their models should rely on the same reference ontology,
which is hard to ensure when the systems are designed by the different research

teams. In a general case, adaptive systems will use completely different ontologies
to model student knowledge. These models still can be integrated, however it
requires more efforts both on the architectural and conceptual sides. One of the first
steps in this direction has been made in Medea [27]. Medea combines the
functionality of an adaptive learning portal that navigates students through the
available learning activities and a user modeling server that keeps tack of student’s
actions and computes her/his knowledge of the course topics. Medea does not serve
learning content itself, instead it provides access to the participating adaptive
services. On the modeling side Medea allows adaptive services to report their local
user modeling information into the central user model. The important feature of
Medea is the possibility to manually map the domain model of participating services
into the central Medea ontology. As a result, the user model updates received from
the adaptive services can be translated into the concepts of Medea’s ontology and
fused into the central user modeling storage.

2.3 Integration Based on Automatic Ontology Mapping

Although, both Medea and M-OBLIGE provide practical solutions for the problem
of semantic integration of multiple adaptive E-Learning systems into the distributed
platform for coherent student modeling and adaptation, they both have limitations.
The applicability of M-OBLIGE is reduced to the situations when the domain
models of participating systems share the references to the central ontology. The
approach implemented in Medea relies on manual ontology mapping, which is a
time-consuming task that requires a high level of expertise both in the knowledge
engineering and the domain of discourse.

Using ontologies for domain modeling enables a more generic solution for
semantic integration of adaptive systems based on automatic ontology mapping [28].
Ontology mapping techniques help to automatically identify matching elements
(concepts, relations, axioms) in different ontologies. They rely on a set of
technologies from natural language processing, graph theory and information
retrieval to discover similar lexical patterns, conceptual sub graphs and statistical
regularities in texts accompanying the ontologies.

Once the mapping between the domain ontologies is found it can be used as a
translation component for user model mediation. We are not aware of any fully-
implemented components based on this approach; however the first step in this
direction has been made. Authors of [29] investigate the applicability of automatic
ontology mapping for translation between two overlay models of student knowledge
based on two different domain ontologies. The practical evaluation shows that
automatic ontology mapping results in user model translation, which is statistically
close to the best possible translation done by human experts.

2.4 Evidence Integration

Several ontology-based techniques for semantic integration have been discussed;
however, many successful adaptive e-learning systems do not employ ontologies for

knowledge representation. They implement adaptation and user modeling
technologies relying on formalisms that are very different from the conceptual
networks, which are the core components of ontologies.

Integration of such models is still possible, although is becomes a subject to the
two major limitations. First, numerous automatic ontology mapping techniques are
not applicable for such models, neither can one expect these models to refer to some
common upper ontology; hence the alignment of underlying domain models of such
systems can be done only manually. Although, the participating model can be of any
kind, as long as they support the general principle of composite domain modeling,
we argue that even in this case ontologies could be useful as a common denominator
and facilitate future integration.

Second, the differences in modeling principles and inference mechanisms harden
the coherent merging of user modeling information. Even when the mapping
between two domain representations has been established, the consequent translation
of user models can result in noisy and inadequate modeling. This becomes critical,
when the integration of user modeling information is organized as a rare holistic
model exchange (e.g. at the end of the learning session). To remedy this problem,
the user model exchange should be triggered as soon as the modeling event is being
observed. In this case, the influence of internal model inference (e.g., a student has
learnt this) on the objective event (e.g., a students answers a problem correctly) is
reduced and is maximally close to the evidence exchange happening in central user
modeling servers. We call such mechanism evidence integration.

The next two sections of this chapter describe two examples of evidence
integration of real adaptive E-Learning systems. The first case implements simple
evidence server-side integration, where the integrated models are fairly close to each
other and the user model exchange is not intensive. The second case is an example
of more complex evidence integration, where a lot of work has been done on the
system side and the size of user model reports to the server is much bigger.

3 Simple Evidence Integration

This section describes an example of simple evidence integration. Two e-learning
systems helping students to study Java: Problets and QuizJET rely on different
domain models. While QuizJET uses Java ontology, Problets models student
knowledge in terms of pedagogically oriented domain elements called learning
objectives. Besides a shift in modeling focus, granularity, and scope there is not
much difference between these two domain models. Each learning event observed
and registered by Problets results in a small knowledge level update of
corresponding learning objectives. The integration has been implemented within the
framework of ADAPT2 architecture on the CUMULATE user modeling server. The
next three subsections detail the implementations of Problets and QuizJET as well as
describe the integration procedure.

3.1 Ramapo College’s Problets

Problets (www.problets.org) are problem-solving tutors on introductory
programming concepts in C/C++/C#/Java. They present programming problems,
grade student’s answer, and provide corrective feedback. Problets sequence
problems adaptively [30], and generate feedback messages that include the step-by-
step explanation of the correct solution [31]. Students can use Problets for
knowledge assessment and self-assessment, as well as for improving their problem-
solving skills. Fig. 1 presents the student interface of a Problet on if/if-else
Statements in Java. The bottom-left panel contains a simple Java program. The
students need to evaluate the program and answer a question specified in the top-left
panel. The system presents student’s answers in the right-bottom panel, and
indicates the correct and incorrect answers by marking them in green, and red
correspondingly. The detailed help on how to use the system, submit the answers
and read system’s feedback messages can be always opened in the right-top panel of
the Problet interface.

Fig. 1. A Problet on if/if-else statements in Java.

Problets rely on the concept map of the domain, enhanced with pedagogical
concepts called learning objectives, as the overlay student model [32]. Each learning
objective is associated with the proficiency level calculated based on the student’s
answers. The student model provides the basis for adaptive decisions made by the
tutor, by associating a proficiency model with each learning objective. The system
propagates the proficiency values to the top levels of the concept hierarchy. At any

Formatted: Font: 10 pt

Deleted: Fig. 1

moment of the tutoring session, a student can observe the current state of her/his
user model. Fig. 2 demonstrates an example of the user model snapshot for the if/if-
else Statements in Java.

Fig. 2. A part of the domain hierarchy on if/if-else statements in Java. Learning objectives are
associated with each concept in the hierarchy.

3.2 University of Pittsburgh’s QuizJET

QuizJET (Java Evaluation Toolkit) is an online quiz system for Java programming
language. It provides authoring and delivery of quiz questions and automatic
evaluation of students’ answers. A typical question in QuizJET is a simple Java
program. The students need to evaluate the program code and answer a follow-up
question, which can take one of two forms: “What will be final value of the marked
variable?” or “What will be printed by the program to the console window?” Upon
evaluation of the student’s answer QuizJET provides short feedback specifying the
correctness of the answer and the right answer in case a student has made a mistake.

Fig. 3 demonstrates the student interface of QuizJET. The Java programs
constituting QuizJET questions can consist of one or several classes. For switching
between classes QuizJET implements tab-based navigation. The driver class
containing the main function (the entry point to the program) is always placed in the
first tab, which also presents the question itself, processes the student’s input and
presents the system’s feedback.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Deleted: Fig. 2

Deleted: Fig. 3

Fig. 3. An example of QuizJET question on Decisions in Java accessed through the
Knowledge Tree Learning Portal.

The important feature of QuizJET is parameterized questions. One or more
numbers in the code of a driver class are dynamically replaced with a random value
every time the question is delivered to a student. As a result, the students can
practice QuizJET questions multiple times, and every time the question will be
different and have a different correct answer.

Every QuizJET question is indexed by a number of concepts from the Java
ontology. A concept in a question can play one of two roles: it acts either as a
prerequisite for a question (if it is introduced earlier in the course), or as a question
outcome (if the concept is first introduced by this question). Fig. 4 presents an
extract from the Java ontology.

3.3 Integration Details

Both Problets and QuizJet questions rely on conceptual content models that provide
detailed representation of underlying domain knowledge. In order to maintain
consistent interpretation of the evidence reported by these two types of learning
content, perform unifying user modeling and implement adaptive mechanisms
taking into account student’s work with both systems we need to integrate the
underlying domain models on the level of concepts constituting them.

Unlike QuizJET questions that are indexed with the concepts from the same
ontology, each Problet relies on a separate model of learning objectives. These
models cover 6 large topics of Java programming language: (1) Arithmetic

Formatted: Font: 10 pt

Deleted: Fig. 4

Expressions, (2) Relational Expressions, (3) Logical Expressions, (4) if/if-else
Statements, (5) while Loops, (6) for Loops.

Fig. 4. An extract from the Java ontology.

The combined scope of these topic models is several times narrower than the one
of the Java ontology. At the same time the granularity of Problets’ models is much
higher. The total number of concepts in the Java ontology is about 500; the
cumulative number of nodes in the Problets’ models is more than 250. The most
important problem we had to deal with is the difference in the modeling approaches
(or different focus of modeling) used in Java ontology and Problets’ domain models.
Every learning objective models application of a concept in a particular learning
situation (e.g. different objectives model the simple if clause in the if-else-statement
and the simple if clause in the if-statement). In other words, a learning objective can
be described as a concept put in a context. To properly map the context of a learning
objective most of the time we had to connect one learning objective to several
concepts from the Java ontology. To prevent too aggressive evidence propagation to
the concepts modeling context of learning objectives, we also provided weights
(from 0 to 1) that define how much knowledge of a particular concept define the
proficiency of the learning objective. An example of mapping a learning objective
into concepts is given by Fig. 5. This terminal-level learning objective from the
Selection topic defines the application of if-else statement, when the condition part

Formatted: Font: 10 pt

Deleted: Fig. 5

of the statement evaluates to true value. To properly match this particular situation,
we need to use three concepts from the Java Ontology. The assigned weights
indicate that the main concept is still IfElseStatement, although the evidence of
mastering this learning objective will slightly contribute to the knowledge of
concepts RelationalOperator and True. Once this mapping is done for all Problets’
learning objectives, any evidence of students’ progress reported by any Problet in
terms of learning objectives can be interpreted in terms of the ontology-based
student model maintained by CUMULATE and used by QuizJET.

Fig. 5. An example of learning objective to concept mapping.

4 Complex Evidence-based Integration

This section describes a more complex case of evidence-based integration. Two
systems implement adaptive support of learning SQL. One of the integrated systems,
SQL-Guide, models user knowledge as an overlay of a domain ontology, while the
other, SQL-Tutor, employs constraint-based student modeling. While both
modeling approaches try to represent elementary knowledge in the domain (with
concepts and constraints), the difference between these two models is significant,
which results in many-to-many mappings of high modality. Another integration
problem occurs due to the fact that learning events in SQL-Tutor trigger knowledge
level updates for many constraints. As a result multiplicative mapping propagations
over a number of constraints lead to large user model updates even from a single
learning event. Next subsections describe the details of participating systems and
overview the implemented integration mechanisms.

4.1 SQL-Tutor and Constrained-based User Modeling

SQL-Tutor is a constraint-based intelligent tutoring system [33] designed to help
students learn SQL. It is part of a family of tools created and maintained by the
Intelligent Computer Tutoring Group (ICTG1) [34]. SQL-Tutor has been evaluated

1 http://www.cosc.canterbury.ac.nz/tanja.mitrovic/ictg.html

Formatted: Indent: Left: 0
cm, Hanging: 0.3 cm

Formatted: Default Paragraph
Font

Deleted: ¶

in twelve studies since 1998 and has been shown to be effective in supporting
students’ learning.

SQL-Tutor contains around 300 problems relating to a number of databases; the
databases provide a context for each problem. The pedagogical module presents
students with problems appropriate to their knowledge state. It does so by
combining its knowledge of the student, the domain (including meta-information
about each problem, such as the complexity level), and the implemented teaching
strategies. Students have the freedom to ignore the system’s suggestion and choose
any other problem.

The SQL-Tutor interface is shown in Fig. 6 and contains the problem definition
area, the solution workspace, the feedback message pane, controls, and the problem
context area. The problem definition area presents the details of the problem
(usually in text form). The student enters their solution in the solution workspace.
The controls enable the student at any time to submit their solution, request more
help, view their student model, execute their query on a real database, and view their
session history.

Fig. 6. The SQL-Tutor interface.

The problem context provides information about the problem; the student can
view the database schema, information about each relation (including detailed
information about all the attributes), and the data in each table. The interface is
designed to reduce the working memory load on the student by providing the

Formatted: Font: 10 pt

Deleted: Fig. 6

appropriate information for each problem, while helping the student visualize the
current goal structure. This enables students to balance their cognitive load by
focussing on learning higher-level query definition problems rather than on checking
low-level syntax.

After evaluating a submitted solution and identifying mistakes if there are any,
SQL-Tutor provides students with adaptive feedback. Students can also request
further help from one of the six feedback levels; this includes the option of viewing
the ideal solution.

The domain module contains domain knowledge represented as constraints.
Constraints are domain principles that must be satisfied in any correct solution. Each
constraint contains two conditions: the relevance condition and the satisfaction
condition. A constraint is relevant if the features within the student’s solution match
the same features described in the relevance condition. The satisfaction condition
describes what must be true in order for the solution to be correct. If the student
solution violates the satisfaction condition of any relevant constraint, the solution is
incorrect. Feedback messages attached to each constraint allow the system to present
detailed and specific feedback on violated constraints. The constraint set in SQL-
Tutor contains about 700 constraints, which check for syntactic and semantic
correctness of the solution. Fig. 7 illustrates two constraints.

Fig. 7. Two example constraints.

The short-term student model in SQL-Tutor consists of the list of relevant, satisfied and
violated constraints. The long-term student model consists of the general information about
the student. In addition, this model contains the history of usage of each constraint found
relevant in submissions made by a particular student. The history is a record of how the
constraint was used on each occasion it was relevant. The long-term model also contains an
estimate of the student’s knowledge of each constraint. This model is used for adaptive
problem selection.

4.2 SQL-Guide and SQL ontology

SQL-Guide is an adaptive hypermedia system helping students to practice SQL
skills. A typical SQL-Guide problem description contains a set of predefined
databases and a desired output, for which a student is asked to write a matching

Formatted: Font: 10 pt, Not
Bold

Formatted: Font: 10 pt, Not
Bold, Check spelling and
grammar

Deleted: Fig. 7

query (see Fig. 8). The system evaluates student’s answer and provides simple
feedback. All problems in SQL-Guide are dynamically generated using a set of
parameterized templates. An average template is capable of generating several
dozens of unique SQL problems with the predefined level of difficulty and the same
set of related concepts.

Fig. 8. The interface of SQL-Guide.

To assist students in choosing the appropriate problem to practice, SQL-Guide
employs an adaptive hypermedia technique called adaptive annotation. Every
problem in SQL-Guide is annotated with an adaptive icon reflecting the progress of
the student with the learning material underlying this problem. The CUMULATE
user modeling server keeps track of all answers the student has given to SQL-
Guide’s problems and computes the long-term model of student knowledge for the
related concepts. SQL-Guide requests the state of the model from CUMULATE and
dynamically annotates links to topics and problems with the appropriate icons. The
student’s progress is double-coded: as the knowledge level grows, the icon fades and
the bar level rises. By means of this abstraction, SQL-Guide delivers to a student
two kinds of information: where the progress has been made (higher bar level) and
where the attention should be focused (brighter target color). The checkmarks over
the problem icons designate problems that at least once have been solved correctly.
To help a student understand the meaning of annotations, QuizGuide dynamically
generates mouse-over hints for all icons. A more detailed description of the system
can be found in [35], [36].

Every problem template (and naturally every problem) in SQL-Guide is indexed
with several concepts from the SQL Ontology, which was developed as a

Formatted: Font: 10 pt

Formatted: Font: 10 pt, Check
spelling and grammar

Deleted: Fig. 8

collaborative effort between the PAWS Lab of the University of Pittsburgh, and the
ICT Group of the University of Canterbury [37]. The main purpose of this ontology
is to support the development of adaptive educational content for SQL and facilitate
the integration of educational systems in this domain, while ensuring the objective
modeling of SQL semantics. The ontology can be accessed at
http://www.sis.pitt.edu/~paws/ont/sql.owl. It is a light-weight OWL-Lite ontology,
with more then 200 classes connected via three relations: standard rfs:subClassOf
(hyponymy relation) and a transitive relation pair sql:isUsedIn – sql:uses, which
models the connection between two concepts, where one concept utilizes another.
Figure 9 gives some examples of relations.

Fig. 9. Example of relations from SQL Ontology.

The level of granularity of the terminal concept in the SQL ontology was chosen
to support the adequate modeling of students’ knowledge with the necessary details.
At the same time, our goal was not the comprehensive representation of the current
SQL standard, therefore certain parts of the domain stay out of the scope of this
ontology (Fig. 10).

Fig. 10. SQL Ontology.

Formatted: Font: 10 pt

Formatted: Font: 10 pt, Check
spelling and grammar

Deleted: Fig. 10

4.3 Integration Details

SQL-Tutor is an independent (stand-alone), web-based, intelligent tutoring system.
To use SQL-Tutor within the context of a complex evidence-based integration
structure, we created a new system, SQL-Tutor Resource Component (STRC)
containing four main modules. We describe the architecture of the new system first,
followed by the details of its components and integration.

The SQL-Tutor Resource Component (STRC). The four modules of STRC are
shown in Figure 11 and include SQL-Tutor, the mapping module, the authentication
module, and the external communications module. The STRC makes it possible for
SQL-Tutor to be used as a teaching resource within the framework of a larger
teaching system.

Fig. 11. High-level view of the SQL-Tutor Resource Component (STRC).

Within the STRC, the core engine and modules of SQL-Tutor are treated as a
“black box”. A simple internal API allows for basic control requests (for example,
requesting a particular problem from SQL-Tutor) while the SQL-Tutor solution
evaluator reports student progress.

The Mapping Module. The fundamental differences in the domain models of SQL-
Tutor and SQL-Guide make reliable automatic alignment of these models rather
impractical. A well-established set of ontology mapping techniques cannot be
applied to this task due to the unique nature of SQL-Tutor’s constraints. A constraint
is not directly related to a single concept or a sub-tree of the ontology; instead it
models the syntactic or semantic relations between various concepts. The
development of the algorithm even for partial resolution of the modeling
discrepancies between ontologies and constraint-based models is not a trivial task.

SQL-Tutor models students’ knowledge in terms of constraints. When a student
submits their solution, SQL-Tutor evaluates it and reports on the correctness of their
submission as sets of satisfied and violated constraints (i.e. their short-term student
model). Feedback on the student’s solution is displayed directly in the student’s
browser while the report is sent to the mapping module (see Figure 11).

The purpose of the mapping module is to take the short-term student model and
convert it to a report based on a pre-agreed common ontology used by a particular
external server. The mapping module therefore consists of the mappings between
constraints and the common ontology, a student knowledge score calculator, and
functions to convert from the SQL-Tutor report to the mapped report.

The Mapping. Each constraint links to one or more concepts from the common
SQL ontology. The degree to which each concept is associated to the constraint is
called the weight, such that a concept with higher weight has higher relevance in
that constraint. Weights are small (1), medium (2), or large (3). Domain experts
manually created the ontology while an expert in both SQL and Constraint-based
Modeling (CBM) manually created the mapping. For more detail on the process
used to derive the mapping please refer to [37], [38].

Figure 12 shows a part of the mapping, which is implemented as a list of lists.
Each list contains a constraint ID followed by one or more concept/weight lists. For
example, constraint 705 maps to two concepts, the CommaCharacter (with weight 1)
and the OrderByClause (with weight 2).

Fig. 12. Part of the mapping found in the mapping module.

Calculating the Student’s Evidence of Knowledge (Knowledge Score). On each
attempt, the mapping module receives a report of the short-term student model
consisting of two sets of constraints: satisfied and violated. Two sets of concepts
(satisfied and violated) are created by parsing the sets of constraints through the
mapping described above. As with constraints, the same concept can appear multiple
times in both sets depending on the context in which they were satisfied or violated.

A student knowledge score is then calculated for each concept using equation 1
below. The score for each concept ranges from -1 to 1. A score of -1 means that the
student violated all the instances of all constraints relating to that particular concept
and vice versa for a score of 1.

(1)

The mapped student model (the report of mapped concepts with associated
calculated knowledge scores) is then sent to the external communications module,
which is converted into the right format before sending it to CUMULATE user
modeling server. Figure 13 shows a part of an SQL-Tutor student model report,
containing the two lists of satisfied and violated constraint ID numbers. To keep the
example uncluttered, only a small portion of each list is shown.

Fig. 13. Part of the student model showing the satisfied and violated constraints.

Using the mapping (Fig. 12) and equation 1, a knowledge score is calculated for
each concept. In our example, the OrderByClause has a knowledge score of 6/6, i.e.
1, as all constraints relating to it were satisfied. On the other hand, the SelectClause
has a knowledge score of (6-4)/10 i.e. 0.2. The list of concepts and related
knowledge scores form the mapped short-term student model. This information is
then sent to CUMULATE, which integrates it with the global student model, as
described in Section 5.3.

The Authentication Module. The authentication module contains the session
generator and the authenticator and provides basic authentication at the server level
into the STRC. Server-level authentication operates on the belief that user
authentication occurs at the external server. This means that anyone using STRC via
an authenticated external server is already authorized and does not require further
validation. This is different to the stand-alone SQL-Tutor version, which provides
authentication at the user-level.

Before communications with the STRC, an external server (e.g CUMULATE)
identifies itself and requests a new session code from the session generator. Using

Deleted: Fig. 12

this code and a secret key, the external server begins communications with the
external communications module, which, after successful authentication, processes
its request.

The purpose of this module is:
 to correctly identify and recognize the external server. This allows the STRC to

adapt to the needs of each external server. This includes the particular
communication protocols agreed upon between STRC and the external server,
inclusion of specific information about each student (relevant to the external
server), and potentially even the type of mapping (e.g. mapping to a different
common ontology).

 to correctly identify and recognize each student. A username is unique within the
domain of each external server. Recognizing each individual student is an
essential part of providing customized content.

 to provide basic security. Unauthorized tampering of an educational system could
significantly reduce its tutoring performance.

The External Communications Module. The external communications module is
responsible for all communications (apart from the session code request) between
the STRC and external servers. Communications adhere to the agreed protocols
defined within this module. This module also converts generated reports (such as the
mapped student model reports) to the appropriate format for each external server.
This allows STRC to be connected to multiple external servers.

5 ADAPT2 and Knowledge Integration in CUMULATE

In this section we describe ADAPT2 architecture that hosts all of the applications
discussed above and provides means for their integration. Special attention is given
to CUMULATE – a centralized user modeling server. We explain how user
knowledge is computed and integrated inside of it.

5.1. ADAPT2 – Architecture for Semantic Integration of Adaptive Educational
Systems

ADAPT2 (read adapt-square; stays for Advanced Distributed Architecture for
Personalized Teaching & Training [39]) is an extension of the earlier
KnowledgeTree architecture [4]. ADAPT2 provides a general framework for
organizing multiple adaptive and non-adaptive educational tools into a distributed
learning environment. The four main component types of this framework are:
 Learning Portal, which organizes the learning material and provides students and

teachers with the facilities necessary for participating in learning process;
 User Modeling Server, which stores students' activity and infers information

about their characteristics;
 Activity Server, which implements one or more kinds of learning activities in

either adaptive or non-adaptive manner;

 Value-added Service, which adds some additional capabilities to the raw content
provided by Activities Servers, e.g. it can provide adaptive navigation support or
add annotation mash-up, etc.
All applications described above acted as components of ADAPT2. Several of

them were developed for ADAPT2 specifically (SQL-Guide, QuizJET) and were
able to submit learning evidences to CUMULATE and request user model reports
from it, others were made compatible with ADAPT2 (Problets, SQL Tutor) by
implementing ADAPT2 authentication and event-reporting components. From the
student perspective, all applications were accessible through the single entry point –
the Knowledge Tree portal. Knowledge Tree employs a folder-document paradigm
and is a link level aggregator for a variety of educational resources. Knowledge Tree
provides authentication, authorization, access control, and a playground for peer
collaboration. The conceptual integration of the components was provided by the
CUMULATE server as described in he next section.

5.2. Student Modeling with CUMULATE

CUMULATE [9] is a second-generation user modeling server developed for
ADAPT2. CUMULATE accepts reports of user activity from ADAPT2 systems and
infers overlay user knowledge model for a related domain. CUMULATE maintains
awareness about users and educational content by storing and/or caching several
types of information: user identities and credentials, user memberships in groups
(classes), identities of the resources that ADAPT2 users interact with, domain
ontologies with concept hierarchies, resource-concept metadata indices.

CUMULATE accepts and processes two kinds of activity reports. For the
learning activities with the fixed set of domain concepts, CUMULATE can accept
brief event reports, which mention only user, group, and resource IDs. For
processing brief reports, the ontological metadata for the application’s resources
needs to be known in advance. CUMULATE caches the resource metadata and uses
it to determine the activated domain concepts as soon as the evidence of user activity
with a particular resource arrives. For the dynamic learning resources with mutable
sets of concepts (can be different at different attempts), CUMULATE requires
extended reports, which include full set of activated domain concepts. In addition
CUMULATE keeps per-resource progress measures, tracking user advancement in
working with a particular problem or exercise.

Following each positive activity report, which provides evidence of student
knowledge, CUMULATE updates the state of all confirmed concepts related to the
activity. For the brief reports, CUMULATE performs cash lookup to determine
activated concepts and then updates knowledge of the determined concepts. For the
extended reports the respective knowledge is updated directly.

To update user knowledge based on evidences received through activity reports,
CUMULATE applies a specific inference mechanism that builds upon the paradigm
of power-law learning. The idea of this approach is that with every successful trial to
apply certain concept, the increment of actual user knowledge is diminishing,
asymptotically approaching 100%. The specific version of this approach
implemented in CUMULATE was designed to meet the following guidelines:

 Knowledge of a concept is updated with every successful solution to the problem
involving this concept. There is no knowledge decay or punishment applied for
incorrect answers.

 Knowledge level updates for an activated concept are directly related to the
weight between the concept and the problem solved by the student. This update is
inversely related to the sum of weights of all activated concepts.

 Knowledge level updates for an activated concept are inversely related to the
number of successful attempts for a particular problem. It was designed to
encourage users accessing different problems instead of trying to raise their
knowledge by solving just one.
The current state of user knowledge represented by CUMULATE can be

requested by any ADAPT2 component. These requests can be general, for example a
snapshot of a full domain model can be acquired. Or they can be specific, requesting
only a limited subset of the user model. The format of the reports can be plain text,
XML, or Java Objects.

5.3 Knowledge Integration in CUMULATE

Evidence information can be processed by CUMULATE in three different ways.
The student action reports received from QuizJET or SQL-Guide problems (which
are ADAPT2 native applications) go through a straightforward knowledge modeling
cycle: they are combined with the ontology-based metadata to identify the activated
concepts and then the knowledge levels of these concepts are recalculated based on
the modeling formula taking into account the status of the report (success/failure),
the concept weights (from metadata entries) and the historical information (previous
knowledge for a concept, number of successful attempts for a problem). The
propagation path of user modeling information for this case is shown in Figure 14.

In the case of Problets, the learning objectives are mapped to ADAPT2’s Java
ontology, i.e., each Problet’s objectives are related to some ontology concept.
Instead of reporting problem solving events, Problets report the evidence in terms of
learning objectives. Each time a learning objective is evaluated, Problets report it to
CUMULATE using brief reports and indicating the unique ID of a learning
objective. To process this evidence CUMULATE registers every learning objective
“virtual problem”. Hence, the mapping is captured in relations between the virtual
exercises and the mapped ontology concepts. The strength of the relation between a
learning objective and an ontology concept is denoted by a weight. When a new
report of user work with Problets arrives, CUMULATE identifies activated concepts
and performs knowledge update in the same way as for ADAPT2 native
applications.

Fig. 14. Propagating reports of user activity (evidence) in CUMULATE.

SQL-Tutor also has its own domain model. However, unlike Problets, each
problem solving attempt in SQL-Tutor results in dozens of new evidences about
learned or violated constraints. Hence, the simple conversion on CUMULATE side,
as implemented for Problets, is not feasible. Instead a dedicated conversion
component is developed on the SQL-Tutor side (refer to Section 4.3 for details).
SQL-Tutor uses the extended report protocol augmenting the simple evidence
information (problem has been solved correctly or not) with a list of activated SQL
concepts from the ADAPT2 SQL ontology. Along with concepts it also report
numeric values between -1 and 1; these values signify the updates in knowledge
levels computed based on the certain constraints activated inside SQL-Tutor and the
strength of relations between these constraints and ontology concepts. The negative
values and corresponding concepts designate student’s mistakes and are being
ignored by CUMULATE, since it does not allow negative evidence propagation.
The knowledge levels for the filtered list of concepts are updated using the same
modeling formula.

6. Discussion

In this paper we discussed several ways of integrating adaptive learning systems,
focusing on evidence integration, a lightweight solution for integration of user
modeling information collected by different educational systems. The resulting
infrastructure allows two applications developed by different research teams and
relying on considerably different domain models to be used by the students of the
same course. The applications separately collect the evidence about student
knowledge and communicate it to the user modeling server, which allows the
support of more holistic user models.

Our approach is based on manual mapping of domain model and timely reports of
user modeling evidences. It was implemented in the context of ADAPT2

architecture, which maintains distributed adaptive e-learning systems. While
ADAPT2 was originally developed for distributed student modeling based on the

same domain model, the flexibility of our user modeling server CUMULATE
allowed us to organize a more general scenario involving essentially different
student models. We presented two case studies, involving Problets and SQL-Tutor.
At the moment, evidence integration is uni-directional: e.g. information about the
student’s submission within SQL-Tutor is mapped first (converted from constraint to
the ontological concepts) and propagated to CUMULATE, which integrates it with
other evidence within the global student model. In future work, we will develop a
mechanism for integrating evidence from other components of ADAPT2 with the
local student models SQL-Tutor maintains.

While the necessity of manual domain model mapping could be considered as a
shortcoming of this approach, we believe that it is necessary for the case of
conceptually different model. At the same time, if both domain models are
implemented as Semantic Web ontologies, a good quality mapping can be obtained
using automatic mapping techniques. In our recent study this approach was applied
to translate between the student knowledge models of the relevant parts of C and
Java programming languages. The C and Java ontologies were developed by
different research teams and differed significantly in concept naming conventions
and granularity. Student knowledge of a small subset of Java and C concepts were
evaluated using several quizzes. The resulting models were compared based on the
manual mapping provided by a human expert and the mapping produced
automatically by an ontology mapping algorithm. The result of the experiment
shows that the automatic mapping can generate user model translation, which is
statistically equivalent to the translation done by a human expert.

One question, which still requires further investigation, is the quality of user
models obtained in the process of this multi-system modeling. We argue that our
solution based on domain model mapping, while introducing some noise, can result
in better student models than simply ignoring a stream of evidence coming with a
system with a different user model. At the moment, we are running a multi-semester
user study to evaluate the quality of multi-system user modeling using predictive
validity and other approaches to user model evaluation.

We are also planning to explore the evidence-based integration approach with
other adaptive systems, such as University of Malaga’s SIETTE [40] and Trinity
College’s APeLS [41].

References

1. Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering
recommender systems. In P. Brusilovsky, A. Kobsa & W. Neidl (Eds.), The Adaptive
Web: Methods and Strategies of Web Personalization (Vol. 4321, pp. 291-324). Berlin
Heidelberg New York: Springer-Verlag.

2. Krüger, A., Baus, J., Heckmann, D., Kruppa, M., & Wasinger, R. (2007). Adaptive mobile
guides. In P. Brusilovsky, A. Kobsa & W. Neidl (Eds.), The Adaptive Web: Methods and
Strategies of Web Personalization (Vol. 4321, pp. 521-549). Berlin Heidelberg New York:
Springer-Verlag.

3. Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent Web-based educational
systems. International Journal of Artificial Intelligence in Education 13(2-4), 159-172.

4. Brusilovsky, P. (2004). KnowledgeTree: A distributed architecture for adaptive e-
learning. In Proceedings of 13th International World Wide Web Conference, WWW 2004
(Alternate track papers and posters), New York, NY, 17-22 May, 2004 (pp. 104-113).

5. Niederée, C., Stewart, A., Mehta, B., & Hemmje, M. (2004). A Multi-Dimensional,
Unified User Model for Cross-System Personalization. In Proceedings of Workshop on
Environments for Personalized Information Access at AVI'2004, Gallipoli, Italy (pp. 34-
54) (Available at: http://www.di.uniba.it/avi2004/e4pia/EPIA2004_proceedings.pdf).

6. Carmagnola, F., & Dimitrova, V. (2008). An Evidence-Based Approach to Handle
Semantic Heterogeneity in Interoperable Distributed User Models. In W. Nejdl, J. Kay, P.
Pu & E. Herder (eds.), Proceedings of 5th International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH'2008), Hannover, Germany, July 29-
August 1, 2008 (pp. 73-83).

7. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., & von Wilamowitz-
Moellendorff, M. (2005). Gumo - The General User Model Ontology. In L. Ardissono, P.
Brna & A. Mitrovic (eds.), Proceedings of 10th International User Modeling Conference,
Edinburgh, UK, July 24-29, 2005 (pp. 428-432).

8. Dolog, P., & Nejdl, W. (2007). Semantic Web Technologies for the Adaptive Web. In P.
Brusilovsky, A. Kobsa & W. Neidl (Eds.), The Adaptive Web: Methods and Strategies of
Web Personalization (Vol. 4321, pp. 697-719). Berlin Heidelberg New York: Springer-
Verlag.

9. Yudelson, M., Brusilovsky, P., & Zadorozhny, V. (2007). A User Modeling Server for
Contemporary Adaptive Hypermedia: An Evaluation of Push Approach to Evidence
Propagation. In C. Conati, K. McCoy & G. Paliouras (eds.), Proceedings of 11th
International Conference on User Modeling, UM 2007, Corfu, Greece, 25-29 June, 2007
(pp. 27-36).

10. Kobsa, A., & Fink, J. (2006). An LDAP-based User Modeling Server and its Evaluation.
User Modeling and User-Adapted Interaction 16(2), 129-169.

11. Kay, J., Kummerfeld, B., & Lauder, P. (2002). Personis: A server for user modeling. In P.
De Bra, P. Brusilovsky & R. Conejo (eds.), Proceedings of Second International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2002),
Málaga, Spain, May 29-31, 2002 (pp. 203-212).

12. Sosnovsky, S., Dolog, P., Henze, N., Brusilovsky, P., & Nejdl, W. (2007). Translation of
overlay models of student knowledge for relative domains based on domain ontology
mapping. In R. Luckin, K. R. Koedinger & J. Greer (eds.), Proceedings of 13th
International Conference on Artificial Intelligent in Education, AI-ED 2007, Marina Del
Rey, CA, July 9-13, 2007 (pp. 289-296).

13. Berkovsky, S., Kuflik, T., & Ricci, F. (2006). Cross-technique mediation of user models.
In V. Wade, H. Ashman & B. Smyth (eds.), Proceedings of 4th International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2006), Dublin, Ireland,
June 21-23, 2006 (pp. 21-30).

14. Trella, M., Carmona, C., & Conejo, R. (2005). MEDEA: an Open Service-Based Learning
Platform for Developing Intelligent Educational Systems for the Web. In Proceedings of
Workshop on Adaptive Systems for Web-based Education at 12th International
Conference on Artificial Intelligence in Education, AIED'2005, Amsterdam, July 18, 2005
(pp. 27-34).

15. Brusilovsky, P., Sosnovsky, S., Lee, D. H., Yudelson, M. V., Zadorozhny, V., & Zhou, X.
(2008). An open integrated exploratorium for database courses. In Proceedings of 13th
Annual Conference on Innovation and Technology in Computer Science Education,
ITiCSE'2008, Madrid, Spain, June 30-July 2, 2008 (pp. 22-26).

16. Denaux, R., Dimitrova, V., & Aroyo, L. (2005). Integrating Open User Modeling and
Learning Content Management for the Semantic Web. In L. Ardissono, P. Brna & A.

Mitrovic (eds.), Proceedings of 10th International User Modeling Conference, Edinburgh,
Scotland, UK, July 24-29, 2005 (pp. 9-18).

17. Berkovsky, S. (2006). Decentralized Mediation of User Models for a Better
Personalization. In V. Wade, H. Ashman & B. Smyth (eds.), Proceedings of 4th
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems
(AH'2006), Dublin, Ireland, June 21-23 (pp. 404-408).

18. Berkovsky, S., Kuflik, T., & Ricci, F. (2006). Cross-Technique Mediation of User
Models. In V. Wade, H. Ashman & B. Smyth (eds.), Proceedings of 4th International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2006),
Dublin, Ireland, June 21-23 (pp. 21-31).

19. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., & von Wilamowitz-
Moellendorff, M. (2005). Gumo – The General User Model Ontology. In L. Ardissono, P.
Brna & A. Mitrovic (eds.), Proceedings of 10th International Conference on User
Modeling (UM'2005), Edinburgh, UK, July 24-29 (pp. 428-432).

20. Denaux, R., Dimitrova, V., & Aroyo, L. (2005). Integrating Open User Modeling and
Learning Content Management for the Semantic Web. In L. Ardissono, P. Brna & A.
Mitrovic (eds.), Proceedings of 10th International Conference on User Modeling
(UM'2005), Edinburgh, Scotland, UK, 23-29 July (pp. 9-18).

21. Denaux, R., Aroyo, L., & Dimitrova, V. (2005). OWL-OLM: Interactive Ontology-based
Elicitation of User Models. In Proceedings of Workshop on Personalisation for the
Semantic Web (PerSWeb'05) at UM'2005, Edinburgh, UK, 23-29 July (Available at:
http://www.win.tue.nl/persweb/full-proceedings.pdf).

22. Aroyo, L., & Dicheva, D. AIMS: Learning and Teaching Support for WWW-based
Education. International Journal for Continuing Engineering Education and Life-long
Learning (IJCEELL) 11(1/2), 152-164.

23. Kay, J., Kummerfeld, R. J., & Lauder, P. (2002). Personis: a Server for User Models. In P.
De Bra, P. Brusilovsky & R. Conejo (eds.), Proceedings of 2nd International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2002), Malaga, Spain,
May, 2002 (pp. 203-212).

24. Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ullrich, C., & S., W. (2006).
Semantic-Aware Components and Services of ActiveMath. British Journal of Educational
Technology 37(3), 405-423.

25. Brusilovsky, P., Sosnovsky, S., & Shcherbinina, O. (2005). User Modeling in a
Distributed E-Learning Architecture. In L. Ardissono, P. Brna & M. A. (eds.),
Proceedings of 10th International Conference on User Modeling (UM'2001), Edinburgh,
UK (pp. 387-391).

26. Mitrovic, A., & Devedzic, V. (2004). A Model of Multitutor Ontology-based Learning
Environments. Continuing Engineering Education and Life-Long Learning 14(3), 229-
245.

27. Trella, M., Carmona, C., & Conejo, R. (2005). MEDEA: an Open Service-Based Learning
Platform for Developing Intelligent Educaional Systems for the Web. In Proceedings of
Workshop on Adaptive Systems for Web-Based Education: Tools and Reusability at
AIED'05, Amsterdam, The Netherlands (pp. 27-34).

28. Kalfoglou, Y., & Schorelmmer, M. (2003). Ontology Mapping: the State of the Art. The
Knowledge Engineering Review 18(1), 1-31.

29. Sosnovsky, S., Dolog, P., Henze, N., Brusilovsky, P., & Nejdl, W. (2007). Translation of
Overlay Models of Student Knowledge for Relative Domains Based on Domain Ontology
Mapping. In R. Luckin, K. R. Koedinger & J. Greer (eds.), Proceedings of 13th
International Conference on Artificial Intelligence in Education (AIED'2007), Marina Del
Ray, CA, USA, July 9-13 (pp. 289-296).

30. Kumar, A. N. (2006). A Scalable Solution for Adaptive Problem Sequencing and its
Evaluation. In V. Wade, H. Ashman & B. Smyth (eds.), Proceedings of 4th International

Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2006),
Dublin, Ireland, June 21-23, 2006 (pp. 161-171).

31. Kumar, A. (2006). Explanation of step-by-step execution as feedback for problems on
program analysis, and its generation in model-based problem-solving tutors. Technology,
Instruction, Cognition and Learning 3, in press.

32. Kumar, A. N. (2006). Using Enhanced Concept Map for Student Modeling in a Model-
Based Programming Tutor. In Proceedings of International FLAIRS conference on
Artificial Intelligence, Melbourne Beach, FL, May 11-13, 2006.

33. Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a Constraint-based Tutor for a Database
Language. Int. J. on Artificial Intelligence in Education 10(3-4), 238-256.

34. Mitrovic, A., Martin, B., & Suraweera, P. (2007). Intelligent tutors for all: Constraint-
based modeling methodology, systems and authoring. IEEE Intelligent Systems, special
issue on Intelligent Educational Systems 22(4), 38-45.

35. Brusilovsky, P., Sosnovsky, S., Lee, D. H., Yudelson, M., Zadorozhny, V., & Zhou, X.
(2008). An Open Integrated Exploratorium for Database Courses. In Proceedings of 13th
Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2008), Madrid, Spain, June 30 - July 2 (pp. 22-26).

36. Sosnovsky, S., Brusilovsky, P., Lee, D. H., Zadorozhny, V., & Zhou, X. (2008). Re-
assessing the Value of Adaptive Navigation Support in E-Learning Context. In W. Nejdl,
J. Kay, P. Pu & E. Herder (eds.), Proceedings of 5th International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH'2008), Hannover, Germany, July 29 -
August 1 (pp. 193-203).

37. Sosnovsky, S., Mitrovic, A., Lee, D. H., Brusilovsky, P., & Yudelson, M. (2008).
Ontology-based integration of adaptive educational systems. In Proceedings of 16th
International Conference on Computers in Education (ICCE’2008), Taipei, Taiwan,
October, 27-31 (pp. 11-18).

38. Sosnovsky, S., Mitrovic, A., Lee, D. H., Brusilovsky, P., Yudelson, M., Brusilovsky, V.,
et al. (2008). Towards Integration of Adaptive Educational Systems: Mapping Domain
Models to Ontologies. In D. Dicheva, A. Harrer & R. Mizoguchi (eds.), Proceedings of
6th International Workshop on Ontologies and Semantic Web for E-Learning
(SWEL'2008) at ITS’2008, Montreal, Canada, June 23 (Available at:
http://compsci.wssu.edu/iis/swel/SWEL08/Papers/Sosnovsky.pdf).

39. Brusilovsky, P., Sosnovsky, S., & Yudelson, M. (2005). Ontology-based framework for
user model interoperability in distributed learning environments. In G. Richards (ed.),
Proceedings of World Conference on E-Learning, E-Learn 2005, Vancouver, Canada,
October 24-28, 2005 (pp. 2851-2855).

40. Conejo, R., Guzman, E., & Millán, E. (2004). SIETTE: A Web-based tool for adaptive
teaching. International Journal of Artificial Intelligence in Education 14(1), 29-61.

41. Conlan, O., Wade, V., Bruen, C., & Gargan, M. (2002). Multi-model, metadata-driven
approach to adaptive hypermedia services for personalized eLearning. In P. De Bra, P.
Brusilovsky & R. Conejo (eds.), Proceedings of Second International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2002), Málaga, Spain, May
29-31, 2002 (pp. 100-111).

