OPTIMUM DESIGN OF SMALL-SIGNAL MICROWAVE AMPLIFIERS WITH SPECIFIED STABILITY SAFETY MARGIN

K. W. ECCLESTON
Dept of Electrical Engineering
National University of Singapore
SINGAPORE 119260
E-mail: elekwe@nus.edu.sg

When employing conditionally stable transistors in microwave amplifier design, it is impossible to have both ports perfectly matched. One can easily design for a perfect match at one of the ports, but the resulting mismatch at the remaining port may be unacceptable. Through trial and error using graphical methods, the designer may trade-off the perfect port match for improved match at the other port. In this paper, we propose a systematic approach whereby the maximisation of an objective function results in maximum gain and port match, for given stability safety margins.

1 Introduction

When designing microwave amplifiers, it is the task to select suitable values for the source (input generator) and load reflection coefficients for the transistor. The source and load reflection coefficients are chosen to achieve minimum gain and port matching, as well as ensure stability. When using conditionally stable transistors, it is impossible to simultaneously achieve perfect match at both ports. However, one can easily design an amplifier with one of the ports perfectly matched, but the resulting mismatch at the other port is often unacceptable. Therefore it is often necessary to trade-off the perfect port match for improved match at the other port.

Amplifier design typically begins with the selection of either the source or load reflection coefficient so that a certain gain can be achieved as well as allowing conjugate matching at the other port [1]. The appropriate gain circles, along with the appropriate stability circle, are plotted on either the source or load reflection coefficient plane to aid selection of the first reflection coefficient [2]. An appropriate safety margin between the chosen value of the first reflection coefficient and stability circle is necessary to ensure conjugate matching can be used at the other port [1], but also allows for manufacturing variations [3]. One can further ensure adequate stability safety margin at the remaining port [3]. Although the resulting amplifier is matched at one of its ports, the mismatch at the other port is typically severe and necessitates the trade-off perfect match at one port for improved match at the other. Circles of constant mismatch or VSWR [2] can be described on the reflection coefficient planes to aid this trade-off.

The attractiveness of these graphical design methods is that the functional behaviour of gain, and mismatch with respect to the source and load reflection coefficients is obtained by simply plotting circles whose centres and radii need only be calculated using well known formulae [2]. A disadvantage of this approach is that the selection of the source and load reflection coefficients is subjective, particularly when the contours of more than two performance parameters are plotted on the same reflection coefficient plane. "Trial and error" is often required to obtain acceptable performance, and inevitably, circuit optimisers are required.

Recent research activities in microwave amplifier design have focussed on stability [1][3][4] or noise performance [5] – [7]; but apart from Albinsson [6], do not addressed mismatch. In previous work by the author [8], the design of a low noise microwave amplifier was considered. To optimise the LNA, two objective functions were considered: one being the noise measure, and the other being the product of the two port mismatches. The former was first minimised with respect to the source stability safety margin and intermediate variable, whilst the later was maximised with respect to the load stability safety margin and another intermediate variable. By adopting this approach, the stability...
safety margin is inherently incorporated into the design since it is a design variable [8]. However, a
problem with this approach is that being an LNA design, it was necessary to consider two objective
functions and hence optimisation in two steps.

In this paper, we propose a design approach for a microwave amplifier gain stage whereby it
is possible to incorporate gain and port mismatch into one objective function meaning that the
amplifier can be optimised in one step. In a similar approach to the previous work [8], this objective
function can be related to the source and load stability safety margins, as well as intermediate
variables, rather than directly to the source and load reflection coefficients. For given stability safety
margins, the objective function is easily maximised with respect to two intermediate variables using a
simple direct search method.

2 Definitions
In the work that follows, the definitions of the various reflection coefficients refer to the single-stage
amplifier depicted in Fig. 1. The transistor is described by its S-parameters, the effective source and
load reflection coefficients presented to the input and output ports of the transistor are Γ_S and Γ_L
respectively. In this work, we will assume that the magnitudes of the transistor S-parameters S_{11} and
S_{22} are both less than unity and that the stability circles do not enclose the origin. These assumptions
are valid for many microwave transistors used in amplifier circuits. Γ_1 is the reflection coefficient
looking into the input port of the transistor and is a function of Γ_L via the well known bilinear
transformation [2]. Similarly Γ_2 is the reflection coefficient looking into the output port of the
transistor and is a function of Γ_S via the well known bilinear transformation [2].

![Microwave amplifier circuit.](image)

In general, Γ_S and Γ_1 are mismatched with mismatch factor M_1:

$$M_1 = \frac{(1 - |\Gamma_S|^2)(1 - |\Gamma_1|^2)}{|1 - \Gamma_S \Gamma_1|^2}$$ \hspace{1cm} ...(1)

similarly, Γ_L and Γ_2 are mismatched with mismatch factor M_2:

$$M_2 = \frac{(1 - |\Gamma_L|^2)(1 - |\Gamma_2|^2)}{|1 - \Gamma_L \Gamma_2|^2}$$ \hspace{1cm} ...(2)

In the presence of statistical variation of both transistor and circuit parameters, it is important when
selecting Γ_S and Γ_L that an adequate safety margin with respect to their respective stability circles be
maintained. Eccleston [3] has previously developed equations for maximum gain design using
conditionally stable transistors and defined a new performance parameter, the stability safety margin.
Let C_S and r_S be the centre and radius of the source stability circle, and C_L and r_L be the centre and
radius of the load stability circle. The **source safety margin** (SSM) is the distance between the
nominal (and allowable) value of Γ_S and the source stability circle. Likewise, the **load safety margin**
(LSM) is the distance between the nominal (and allowable) value of Γ_L and the load stability circle.

3 Objective Function Formulation

In the approach that we propose, the functional behaviour of noise measure and port mismatch are described as functions of the stability safety margins rather than direct functions of Γ_S and Γ_L. Since we assume that the transistor S-parameters S_{11} and S_{22} are both less than unity and that the stability circles do not enclose the origin, we can write Γ_S and Γ_L in terms of stability circle centres and radii, SSM and LSM:

$$\Gamma_S = C_S + (r_S + SSM) \exp(j\theta) \quad ...(3)$$

$$\Gamma_L = C_L + (r_L + LSM) \exp(j\phi) \quad ...(4)$$

where θ and ϕ are intermediate design parameters. With Γ_S and Γ_L described in this manner, both gain and mismatch factor can be described as functions of SSM, LSM, θ, and ϕ. Thus SSM and LSM are design parameters as well as performance parameters.

The objective functions we wish to develop consider both gain and mismatch at both ports. Therefore it is possible to define two such objective functions:

$$F_A(\theta, \phi, SSM, LSM) = M_1 G_A M_2 \quad ...(5)$$

and $$F_P(\theta, \phi, SSM, LSM) = M_1 G_P M_2 \quad ...(6)$$

where G_A and G_P are the available gain and power gain respectively. Because the products $G_A M_2$ and $M_1 G_P$ give the transducer gain, it is not necessary to consider another objective function involving the transducer gain. We see that maximising either objective function with respect to θ and ϕ for given stability safety margins (SSM and LSM) will simultaneously yield high gain and good port match. The choices available is between application of either (5) or (6) and the appropriate values of SSM and LSM. The appropriate choice of SSM and LSM is related to expected manufacturing process variations. The search domain for θ and ϕ may be determined from (3) and (4) by noting that the resulting values of Γ_S and Γ_L must have magnitudes less than unity. With optimum values of θ and ϕ determined, the corresponding optimum values of Γ_S and Γ_L may be obtained using (3) and (4).

4. Numerical Examples

To illustrate the application of the above objective functions (5) and (6), we can consider a transistor whose S-parameters are:

$S_{11} = 0.809 / -148^\circ$ \quad $S_{12} = 0.111 / -4^\circ$

$S_{21} = 1.940 / 57^\circ$ \quad $S_{22} = 0.634 / -48^\circ$

Figure 2 shows the contour plot of F_A and F_P as functions of θ and ϕ (for complete search domain) for SSM and LSM both equal to 0.1. We see from Figure 2 that the local maximum is well defined for both objective functions and can be easily located by direct search of the discretised $\theta\phi$ plane. For example, F_A is maximised at $\theta = -0.3719$, $\phi = 4.81$, and hence application of (3) and (4) yields the corresponding optimum values for reflection coefficients: $\Gamma_S = 0.804 / 171^\circ$ and $\Gamma_L = 0.812 / 62^\circ$. Table I shows the maximum objective function value, and corresponding gain and mismatch, for various values of SSM and LSM. The maximum of F_A or F_P was located by sampling the search domain at the grid points of a 100 by 100 grid discretisation of the $\theta\phi$ plane. We see from Table I that the outcome when either using F_A or F_P are in both cases good but using F_P results in about 0.7 dB improvement over using F_A in this case.

5. Conclusion

In this paper we have shown a method for selecting the values of the source and load reflection coefficients to achieve maximum gain and match at both ports, for given stability safety margins.
This method is based on an objective function that is described in terms of stability safety margins, thereby incorporating stability into the design parameters rather than consider them separately. The objective functions are straightforward to maximise without sophisticated optimisers.

References

Table I Optimum Gain and Mismatch Factors

<table>
<thead>
<tr>
<th>SSM / LSM</th>
<th>Maximising objective function F_A</th>
<th>Maximising objective function F_P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max F_A</td>
<td>G_T (dB)</td>
</tr>
<tr>
<td>0.1</td>
<td>19.9</td>
<td>13.9</td>
</tr>
<tr>
<td>0.2</td>
<td>15.4</td>
<td>12.5</td>
</tr>
<tr>
<td>0.3</td>
<td>12.4</td>
<td>11.6</td>
</tr>
<tr>
<td>0.4</td>
<td>10.0</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Figure 2. Contour plots of objective functions F_A (left) and F_P (right) for SSM and LSM equal to 0.1.