Fast Self-Similar Teletraffic Generation Based on FGN and Inverse DWT*

H.-D. J. Jeong†, D. McNickle‡ and K. Pawlikowski†
Department of †Computer Science and ‡Management
University of Canterbury, Christchurch
New Zealand
E-mail: joshua.canterbury.ac.nz
Phone: +(64) 3 364 2987 ex. 7868
Fax: +(64) 3 364 2569

Abstract

It is generally accepted that self-similar (or fractal) processes may provide better models of teletraffic in modern computer networks than Poisson processes. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences.

A new generator of pseudo-random self-similar sequences, based on the fractional Gaussian noise (FGN) and wavelet transform is proposed and analysed in this paper. Specifically, this generator uses Daubechies wavelets. The motivation behind this selection of wavelets is that Daubechies wavelets lead to more accurate results, by matching the self-similar structure of long range dependent processes. The statistical accuracy and time required to produce sequences of a given (long) length are experimentally studied. This generator shows a high level of accuracy of the output data (in the sense of the Hurst parameter) and is fast. Its theoretical algorithmic complexity is $O(n)$.

Keywords: teletraffic generators, complexity, self-similar processes, fractional Gaussian noise, wavelets, Hurst parameter

1 Introduction

The search for accurate mathematical models of data streams in modern computer networks has attracted a considerable amount of interest in the last few years. The reason is that several recent teletraffic studies

of local and wide area networks, including the world wide web, have shown that commonly used teletraffic models, based on Poisson or related processes, are not able to capture the self-similar (or fractal) nature of teletraffic [15], [16], [23], [25], especially when these networks are engaged in such sophisticated services as variable-bit-rate (VBR) video transmission [8], [13], [24]. The properties of teletraffic in such scenarios are very different from both the properties of conventional models of telephone traffic and the traditional models of data traffic generated by computers.

The use of traditional models of teletraffic can result in overly optimistic estimates of performance of computer networks, insufficient allocation of communication and data processing resources, and difficulties in ensuring the quality of service expected by network users [2], [21], [23]. On the other hand, if the strongly correlated character of teletraffic is explicitly taken into account, this can also lead to more efficient traffic control mechanisms.

Several methods for generating pseudo-random self-similar sequences have been proposed. They include methods based on fast fractional Gaussian noise [18], fractional ARIMA processes [10], the $M/G/\infty$ queue model [13], [15], autoregressive processes [4], spatial renewal processes [27], wavelets [1], [12], etc. Some of them generate asymptotically self-similar sequences and require large amounts of CPU time. For example, Hosking’s method [10], based on the F-ARIMA($0,d,0$) process, needs 1.5 hours to produce a self-similar sequence with $131,072 (2^{17})$ numbers on a Pentium II [11], [15]. It requires $O(n^2)$ computations to generate n numbers. Even though exact methods of generation of self-similar sequences exist (for example: [18]), they are only fast enough for short sequences. They are usually inappropriate for generating long sequences because they require multiple passes along generated sequences. To overcome this, approximate methods for generation of self-similar sequences in simulation studies of computer networks have been proposed [14], [22].

Contrary to Haar wavelets used in generators proposed in [1] and [12], our generator uses Daubechies wavelets (DW).

Our evaluation of the method proposed for generating self-similar sequences concentrates on two aspects: (i) how accurately a self-similar process can be generated, and (ii) how fast the method generates long self-similar sequences. Our method, based on the fractional Gaussian noise (FGN) and DW, will be called FGN-DW method.

A summary of the basic properties of self-similar processes is given in Section 2. Section 3 describes the spectral density of FGN processes, and a discrete wavelet transform (DWT) for synthesizing approximate FGN is presented in Section 4. In Section 5 a generator of pseudo-random self-similar sequences based on FGN and DW is described. Numerical results of analysis of sequences generated by this generator are discussed in Section 6.

2 Self-Similar Processes and Their Properties

Basic definitions of self-similar processes are as follows:

A continuous-time stochastic process $\{X_t\}$ is strongly self-similar with a self-similarity parameter $H(0 < H < 1)$, known as the Hurst parameter, if for any positive stretching factor c, the rescaled process with time scale $ct, c^{-H}X_{ct}$, is equal in distribution to the original process $\{X_t\}$ [3]. This means that, for any sequence of time points t_1, t_2, \ldots, t_n, and for all $c > 0$, $\{c^{-H}X_{ct_1}, c^{-H}X_{ct_2}, \ldots, c^{-H}X_{ct_n}\}$ has the same distribution as $\{X_{t_1}, X_{t_2}, \ldots, X_{t_n}\}$.

In the discrete-time case, let $\{X_k\} = \{X_k : k = 0, 1, 2, \cdots\}$ be a (discrete-time) stationary process with mean μ, variance σ^2, and autocorrelation function (ACF) $\{p_k\}$, for $k = 0, 1, 2, \cdots$, and let $\{X_k^{(m)}\}_{k=1}^{\infty} = \{X_1^{(m)}, X_2^{(m)}, \cdots\}$, $m = 1, 2, 3, \cdots$, be a sequence of batch means, that is, $X_k^{(m)} = (X_{km-m+1} + \cdots +$
The process \(\{X_k\} \) with \(\rho_k \to k^{-\beta} \), as \(k \to \infty \), \(0 < \beta < 1 \), is called exactly self-similar with \(H = 1 - (\beta/2) \), if \(\rho_k^{(m)} = \rho_k \), for any \(m = 1, 2, 3, \cdots \). In other words, the process \(\{X_k\} \) and the averaged processes \(\{X_k^{(m)}\}, m \geq 1 \), have identical correlation structure. The process \(\{X_k\} \) is asymptotically self-similar with \(H = 1 - (\beta/2) \), if \(\rho_k^{(m)} \to \rho_k \), as \(m \to \infty \).

The most frequently studied models of self-similar traffic belong either to the class of fractional autoregressive integrated moving-average (F-ARIMA) processes or to the class of fractional Gaussian noise processes; see [10], [15], [22]. F-ARIMA\((p,d,q)\) processes were introduced by Hosking [10] who showed that they are asymptotically self-similar with Hurst parameter \(H = d + \frac{1}{2} \), as long as \(0 < d < \frac{1}{2} \). For the second class, the FGN process is the incremental process \(\{Y_k\} = \{X_k - X_{k-1}\}, k \geq 0 \), where \(\{X_k\} \) designates a fractional Brownian motion (FBM) random process. This process is a (discrete-time) stationary Gaussian process with mean \(\mu \), variance \(\sigma^2 \) and \(\{\rho_k\} = \{\frac{1}{2}(|k+1|^{2H} - 2|k|^{2H} + |k-1|^{2H})\} \), \(k > 0 \). A FBM process, which is the sum of FGN increments, is characterised by three properties [19]: (i) it is a continuous zero-mean Gaussian process \(\{X_t\} = \{X_s : s \geq 0 \text{ and } 0 < H < 1\} \) with ACF given by \(\rho_{s,t} = \frac{1}{2} (s^{2H} + t^{2H} - |s-t|^{2H}) \) where \(s \) is time lag and \(t \) is time; (ii) its increments \(\{X_t - X_{t-1}\} \) form a stationary random process; (iii) it is self-similar with Hurst parameter \(H \), that is, for all \(c > 0 \), \(\{X_{ct}\} = \{c^H X_t\} \), in the sense that, if time is changed by the ratio \(c \), then \(\{X_t\} \) is changed by \(c^H \).

Main properties of self-similar processes include ([3], [5], [15]):

- **Slowly decaying variance.** The variance of the sample mean decreases more slowly than the reciprocal of the sample size, i.e., \(\text{Var}\{X_n^{(m)}\} \to c_1 m^{-\beta_1} \), as \(m \to \infty \), where \(c_1 \) is a constant and \(0 < \beta_1 < 1 \).

- **Long-range dependence.** A process \(\{X_k\} \) is called a stationary process with long-range dependence (LRD) if its ACF \(\rho_k \) is nonsummable, i.e., \(\sum_{k=0}^{\infty} \rho_k = \infty \). The speed of decay of autocorrelations is more like hyperbolic than exponential.

- **Hurst effect.** Self-similarity manifests itself by a straight line of slope \(\beta_2 \) on a log-log plot of the \(R/S \) statistic. For a given set of numbers \(\{X_1, X_2, \cdots, X_n\} \) with sample mean \(\bar{\mu} = E\{X_i\} \) and sample variance \(S^2(n) = E\{(X_i - \bar{\mu})^2\} \), Hurst parameter \(H \) is presented by the rescaled adjusted range \(\frac{R(n)}{S(n)} \) (or \(R/S \) statistic) where \(R(n) = \max\{\sum_{i=1}^{k} (X_i - \bar{\mu}), 1 \leq k \leq n\} - \min\{\sum_{i=1}^{k} (X_i - \bar{\mu}), 1 \leq k \leq n\} \) and \(S(n) = \sqrt{E\{(X_i - \bar{\mu})^2\}} \). Hurst found empirically that for many time series observed in nature the expected value of \(\frac{R(n)}{S(n)} \) asymptotically satisfies the power law relation: \(E\{\frac{R(n)}{S(n)}\} \to c_2 n^H \), as \(n \to \infty \), with \(0.5 < H < 1 \) and \(c_2 \) is a finite positive constant [3].

- **1/f-noise.** The spectral density \(f(\lambda; H) \) obeys a power law near the origin, i.e., \(f(\lambda; H) \to c_3 \lambda^{1-2H} \), as \(\lambda \to 0 \), where \(c_3 \) is a finite positive constant and \(0.5 < H < 1 \).

3 Spectral Density of FGN Processes

In our generator, numbers represented spectral density function of FGN have to be obtained, and this is done by appropriate transformation of uniformly distributed pseudo-random numbers. The spectral density \(f(\lambda; H) \) of an FGN process is given by

\[
f(\lambda; H) = 2c_3 (1 - \cos(\lambda)) \sum_{k=-\infty}^{\infty} |2\pi k + \lambda|^{-2H-1},
\]
for $0 < H < 1$ and $-\pi \leq \lambda \leq \pi$, where $c_f = \sigma^2 (2\pi)^{-1} \sin(\pi H) \Gamma(2H + 1)$ and $\sigma^2 = \text{Var}[X_k]$; see [3].

The main difficulty with using the Equation (1) to compute the spectral density is the vexing infinite summation. The approximation of the above $f(\lambda; H)$ is given in [3] as

$$f(\lambda; H) = c_f |\lambda|^{1 - 2H} + O(|\lambda|^{\min(3 - 2H, 2)})$$

where $O(\cdot)$ represents the residual error.

A generator of self-similar sequences based on FGN was also proposed by Paxson [22], but his method was based on less accurate and more complicated approximation of $f(\lambda; H)$ than this one given by Equation (2).

4 Discrete Wavelet Transform

Our method for generating synthetic self-similar FGN sequences in time domain is based on the discrete wavelet transform (DWT). It has been shown that wavelets can provide compact representations for a class of FGN processes [7], [12]. The reason is that the structure of wavelets naturally matches the self-similar structure of the long range dependent processes [1].

Wavelets are complete orthonormal bases which can be used to represent a random time series in two domains, time and frequency. In Hilbert space $L^2(\mathbb{R})$, scaled and shifted functions $\phi_{j,m}(k)$ of wavelets can be represented as $\phi_{j,m}(k) = 2^{-j/2} \phi(2^{-j} k - m)$ where j and m are positive integers [17]. j represents the dilation, which in turn characterises the function $\phi(k)$ at different time scales. m represents the translation in time. Since such wavelets are obtained by dilating and translating a single function $\phi(k)$, $\phi(k)$ is called the mother wavelet. Moreover, all base functions $\phi_{j,m}(k)$ have the same shape as the mother wavelet and therefore self-similar with each other. The mother wavelet we choose for our generator is the DW [6], [28], which belongs to the class of orthonormal wavelets. They are defined as $\phi(k) = \sum_{i=-2^S+1}^{2^S+1} (-1)^i h(1 - i) \phi(2k - i)$ where $\{h(i)\}$ is the two-scale sequence of $\phi(k)$.

A discrete-time process $\{X_k\}$ can be represented through its inverse DWT $\{X_k\} = \sum_{j=1}^{S} \sum_{m=0}^{2^S-1} d_{j,m} \phi_{j,m}(k) + \phi_0$, where $0 \leq k < 2^S$. S is a positive integer, which characterises the limited resolution in time; ϕ_0 is equal to the average value of $\{X_k\}$ over $0 \leq k < 2^S - 1$; and $d_{j,m}$‘s are wavelet coefficients, which can be obtained through the DWT, since $d_{j,m} = \sum_{i=0}^{2^S-1} X_k \phi_{j,m}(k)$.

Other families of orthonormal wavelets include the Battle-Lemarié, Haar, Meyer, Shannon, and Strömberg wavelets. One of these, Haar wavelets are used in generators of synthetic self-similar sequences proposed in [1], [12]. They are analytically simple, but they lead to inaccurate output sequences.

5 A Fast Algorithm on Generating Self-Similar Teletraffic

We claim that the FGN and a wavelet-based transformation is sufficiently fast for generation of synthetic self-similar sequences, to be used as simulation input data. We present in this paper the FGN-DW method can be characterised by a diagram shown in Figure 1.

General strategy behind our method is the same as in [22]. The algorithm consists of the following steps:

Step.1 Calculate a sequence of values $\{f_1, f_2, \cdots, f_n\}$ using Equation (2), $f_i = \hat{f}(\frac{2i}{n})$, corresponding to the spectral density of an FGN process for frequencies from $\frac{2}{n}$ to π.

A self-similar sequence

Inverse DWT

Form spectral density

Construct normally distributed complex numbers

Inverse DWT

Normalisation

A self-similar sequence

Figure 1: FGN-DW method

Step 2 Adjust \(\{f_i\} \) by multiplying them by realisations of an independent exponential random variable with mean 1.

Step 3 Generate a sequence \(\{x_1, x_2, \ldots, x_n\} \) of complex numbers such that \(|x_i| = \sqrt{f_i} \) and the phase of \(x_i \) is uniformly distributed between 0 and \(2\pi \). The random phase technique, taken from [26], preserves the spectral density corresponding to \(\{f_i\} \), but ensures that different sequences generated using the method will be independent. It also makes the marginal distribution of the final sequence a requirement normal. The phase randomisation makes the different frequency components independent [22].

Step 4 Calculate two synthetic coefficients of orthonormal DW which are used in the inverse DWT [20]. Then, generate the approximately self-similar FGN sequence in time domain by using the inverse DWT from \(\{x_i\} \). We use the DW as a mother wavelet because they produce more accurate coefficients of wavelets than Haar wavelets [28] (Also see our results of comparison between two wavelets in Table 1).

Using the above steps, the proposed FGN-DW method generates a fast and well approximated self-similar FGN process.

6 Analysis of Self-Similar Sequences

The generator of self-similar sequences of self-similar pseudo-random numbers described in the Section 5 has been implemented in Matlab on a Pentium II (233 MHz, 64 MB). The mean times required for generating sequences of a given length were obtained by using the Matlab clock command and averaged

<table>
<thead>
<tr>
<th>Method</th>
<th>Haar</th>
<th>Daub(8)</th>
<th>Daub(16)</th>
<th>Daub(32)</th>
<th>Daub(50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodogram</td>
<td>.8546</td>
<td>.8807</td>
<td>.8835</td>
<td>.8848</td>
<td>.8844</td>
</tr>
<tr>
<td>R/S-statistic</td>
<td>.8563</td>
<td>.8570</td>
<td>.8570</td>
<td>.8583</td>
<td>.8559</td>
</tr>
<tr>
<td>Variance-time</td>
<td>.8444</td>
<td>.8521</td>
<td>.8519</td>
<td>.8516</td>
<td>.8490</td>
</tr>
<tr>
<td>Whittle’s MLE</td>
<td>.8256</td>
<td>.8495</td>
<td>.8520</td>
<td>.8530</td>
<td>.8524</td>
</tr>
<tr>
<td></td>
<td>(.8165, .8347)</td>
<td>(.8404, .8586)</td>
<td>(.8423, .8611)</td>
<td>(.8439, .8621)</td>
<td>(.8433, .8615)</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Haar wavelet with Daubechies wavelet (H = 0.9).
over 30 iterations, having generated sequences of 32,768 \(2^{15}\), 131,072 \(2^{17}\), 262,144 \(2^{18}\), 524,288 \(2^{19}\) and 1,048,576 \(2^{20}\) numbers.

We have also analysed the efficiency of the method in the sense of its accuracy. For each of \(H = 0.5, 0.55, 0.7, 0.9, 0.95\), the method was used to generate over 100 sample sequences of 32,768 \(2^{15}\) numbers starting from different random seeds. Self-similarity and marginal distributions of the generated sequences were assessed by applying the best currently available techniques. These include:

- **Anderson-Darling goodness-of-fit test**: used to show that the marginal distribution of sample sequences generated by the method is, as required, normal (or almost normal). This test is more powerful than Kolmogorov-Smirnov when testing against a specified normal distribution [9].

- **Periodogram plot**: used to show whether a generated sequence is LRD or not. It can be shown that if the autocorrelations are summable, then, near the origin in frequency domain, the periodogram should be scattered randomly around a constant level. If the autocorrelations are non-summable, i.e., LRD, the points of a sequence are scattered around a negative slope. The periodogram plot is obtained by plotting \(\log_{10}(\text{periodogram})\) against \(\log_{10}(\text{frequency})\). An estimate of the Hurst parameter is given by \(\hat{H} = (1 - \beta_1)/2\) where \(\beta_1\) is the slope [3].

- **R/S statistic plot**: used to estimate the Hurst parameter \(H\) from empirical data. An estimate of \(H\) is given by the asymptotic slope \(\beta_2\) of the R/S statistic plot, i.e., \(\hat{H} = \beta_2\) [3].

- **Variance-time plot**: obtained by plotting \(\log_{10}(\text{Var}(X^{(m)}))\) against \(\log_{10}(m)\) and by fitting a simple least square line through the resulting points in the plane. An estimate of the Hurst parameter is given by \(\hat{H} = 1 - \beta_3/2\) where \(\beta_3\) is the slope [3].

- **Whittle’s approximate maximum likelihood estimate (MLE)**: for a more refined data analysis, used to obtain confidence intervals (CIs) for the Hurst parameter \(H\) [3]. On the other hand, it examines the properties in frequency domain, while the R/S statistic plot and variance-time plot focus on the time domain. Suppose \(\{x_1, x_2, \ldots, x_n\}\) is a sequence of a self-similar process \(\{X_k\}\) for which all parameters are known except \(\text{Var}[X_i]\) and \(H\). Let \(f(\lambda; H)\) be the spectral density of \(\{X_k\}\) when normalised to have variance 1, and \(I(\lambda)\) be the periodogram of \(\{X_k\}\). Then to estimate \(H\), find \(\hat{H}\) that minimises the following equation:
 \[g(\hat{H}) = \int_{-\pi}^{\pi} \frac{I(\lambda)}{f(\lambda; \hat{H})} d\lambda. \]

- Index of Dispersion for Counts (IDC) is used measure for capturing the variability of traffic over the different time scales. Self-similar processes are easily shown to produce a monotonically increasing IDC. In other words, this behaviour is entirely contrast to the traditional processes such as Poisson or Poisson-related processes and Markov-modulated Poisson processes. Their IDC curves are either constant or converge to fixed value quite rapidly.

For a given time interval of length \(t\), the index of dispersion for counts is given by the variance of the number of arrivals \(\{X_t\}\) during the interval of length \(t\) divided by the expected value of the same quantity:

\[
\text{IDC}(t) = \text{Var} \left[\sum_{i=1}^{t} X_i \right] / E \left[\sum_{i=1}^{t} X_i \right].
\]

For a finite number of sequence, the variance of \(\{X_t\}\) can be calculated by dividing the whole series into nonoverlapping blocks of length \(t\) and treat them as different instances of \(\{X_t\}\). Self-similar processes produce a monotonically increasing IDC of the form \(c t^{2H-1}\) where \(c\) is a finite positive
Table 2: The numerical results of Anderson-Darling goodness-of-fit test for normality at the 5% significance level are presented by percentages (%). For each of $H = 0.5, 0.55, 0.7, 0.9, 0.95$, the method was used to generate over 100 sample sequences of 32,768 (2^{15}) numbers starting from different random seeds. Each size of sample sequences is 32,768 numbers.

<table>
<thead>
<tr>
<th>Method</th>
<th>Theoretical Hurst parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGN-DW</td>
<td>97</td>
</tr>
</tbody>
</table>

constant that does not depend on t. Plotting $\log IDC(t)$ against $\log t$, this property results in an asymptotic straight line with slope $2H - 1$ [15].

6.1 Analysis of Accuracy

We have summarised the results of our analysis in the following:

- Anderson-Darling goodness-of-fit test was applied to test normality of sample sequences. The results of the tests, executed at the 5% significance level, showed that the generated sequences could be considered as normally distributed for all but a few sequences with the high value of H; see also Table 2.

The estimates of Hurst parameter obtained from the periodogram, the R/S statistic, the variance-time and Whittle’s MLE, have been used to analyse the accuracy of the generator. The relative inaccuracy ΔH is calculated using the formula:

$$\Delta H = \frac{\hat{H} - H}{H} \times 100\%,$$

where H is the required value of the Hurst parameter and \hat{H} is the empirical mean value, over a number of independently generated sequences. The presented numerical results are all averaged over 100 sequences.

- The periodogram plots have slopes decreasing as H increases. The results for $H = 0.55, 0.7, 0.9, 0.95$ are shown in Figure 2. The negative slopes of all our plots for $H = 0.5, 0.55, 0.7, 0.9, 0.95$ were the evidence of self-similarity. The relative inaccuracy ΔH of the estimated Hurst parameters of the method, assessed using periodogram plot, is given in Table 3. We see that in the most cases parameter H of the FGN-DW method was close to the required value, although the relative inaccuracy degrades with increasing H (but never exceeds 2%). The analysis of periodogram shows that the FGN-DW method always produces self-similar sequences with negatively biased \hat{H}.

- The plots of R/S statistic indicate the self-similar nature of the generated sequences. The results for $H = 0.55, 0.7, 0.9, 0.95$ are shown in Figure 3. The relative inaccuracy ΔH of the estimated Hurst parameter, obtained from the R/S statistic plot, is given in Table 3. This method of analysis of H does not show that this generator has persistently negative or positive bias of \hat{H}, as the periodogram plots did.
Table 3: Relative inaccuracy ΔH estimated from periodogram, R/S statistic and variance-time plots.

<table>
<thead>
<tr>
<th>H</th>
<th>Periodogram</th>
<th>R/S Statistic</th>
<th>Variance-Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>+ 0.07%</td>
<td>-7.64%</td>
<td>+0.61%</td>
</tr>
<tr>
<td>0.55</td>
<td>+ 0.49%</td>
<td>-5.34%</td>
<td>+0.99%</td>
</tr>
<tr>
<td>0.7</td>
<td>+ 1.31%</td>
<td>-0.51%</td>
<td>+2.15%</td>
</tr>
<tr>
<td>0.9</td>
<td>+ 1.85%</td>
<td>+5.25%</td>
<td>+5.94%</td>
</tr>
<tr>
<td>0.95</td>
<td>+ 1.93%</td>
<td>+7.10%</td>
<td>+7.54%</td>
</tr>
</tbody>
</table>

Table 4: Estimated mean values of H using Whittle’s MLE. Each CI is for over 100 sample sequences. 95% CIs for the means are given in parentheses.

<table>
<thead>
<tr>
<th>H</th>
<th>Estimated Mean Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.500 (.490, .509)</td>
</tr>
<tr>
<td>0.55</td>
<td>0.542 (.532, .551)</td>
</tr>
<tr>
<td>0.7</td>
<td>0.672 (.662, .681)</td>
</tr>
<tr>
<td>0.9</td>
<td>0.851 (.842, .861)</td>
</tr>
<tr>
<td>0.95</td>
<td>0.897 (.888, .906)</td>
</tr>
</tbody>
</table>

Table 5: Complexity and mean running times of generators. Running times were obtained by using the Matlab `clock` command on a Pentium II (233 MHz, 64 MB); each mean is averaged over 30 iterations.

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Sequence of Numbers</th>
<th>Mean running time (minute:second)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32,768</td>
<td>131,072</td>
</tr>
<tr>
<td>O(n)</td>
<td>0:2</td>
<td>0:7</td>
</tr>
</tbody>
</table>

- The variance-time plots also support the claim that generated sequences are self-similar; see results for $H = 0.55, 0.7, 0.9, 0.95$ in Figure 4. Table 3 gives the relative inaccuracy ΔH of the estimated Hurst parameters obtained by the variance-time plot. Again, the method shows high quality in the sense of accuracy of H in generated sequences, with the relative inaccuracy increasing with the increase in H, but remaining below 8%. This time, the results suggest that the output sequences are negatively biased \hat{H}.

- The results for Whittle estimator of H with the corresponding 95% CIs $\hat{H} \pm 1.96\hat{\sigma}_H$, see Table 4, show that for all input H values, the FGN-DW method produce sequences with negatively biased H values (except $H = 0.5$).

- Figure 5 shows the IDC curves averaged over 30 sample sequences from FGN-DW self-similar traffic and Poisson traffic for the different H values. While the IDC curves for FGN-DW self-similar traffic increase monotonic slope as H increases, the IDC curves for Poisson traffic are constant.

Our results show that the generator produces approximately self-similar FGN sequences, with the relative inaccuracy ΔH increasing with the increase of H, but always staying below 8%. Apparently there is a problem with more detailed studies of such a generator, since different methods of analysis of the Hurst
parameter can give different results regarding the bias of \hat{H} in the same output sequences. More reliable methods for assessment of self-similarity in pseudo-random sequences are needed.

6.2 Computational Complexity

The results of our experimental analysis of mean times needed by the generator for generating pseudo-random self-similar sequences of a given length are shown in Table 5.

The main conclusion is that the FGN-DW method is fast. Table 5 shows that 2 seconds were needed to generate a sequence of 32,768 (2^{15}) numbers, while generation of a sequence with 1,048,576 (2^{20}) numbers took 51 seconds.

The theoretical algorithmic complexity of forming spectral density, and constructing normally distributed complex numbers, is $O(1)$, while the inverse DWT is $O(n)$; see Figure 1 [22], [28]. Thus, the time complexity of FGN-DW is also $O(n)$.

In summary, our results show that a generator of pseudo-random self-similar sequences based on FGN and DW is sufficiently fast to make it applicable in practical computer simulation studies, when long self-similar sequences of numbers are needed.

7 Conclusions

In this paper we have proposed a generator of (long) pseudo-random self-similar sequences, based on the FGN and DW transform. It appears that this generator produces approximately self-similar sequences, with the relative inaccuracy of the resulted H below 8%, if $0.5 \leq H \leq 0.95$. On the other hand, the analysis of mean times needed for generating sequences of given length shows that this generator should be recommended for practical simulation studies of telecommunication networks, since it is very fast and accurate.

References

Figure 2: Periodogram plots for FGN-DW method (H = 0.55, 0.7, 0.9, 0.95).
Figure 3: R/S-statistic plots for FGN-DW method (H = 0.55, 0.7, 0.9, 0.95).
Figure 4: Variance-time plots for FGN-DW method (H = 0.55, 0.7, 0.9, 0.95).
Figure 5: IDC curves averaged over 30 sample sequences from $FGN-DW$ self-similar and Poisson traffic ($H = 0.55, 0.7, 0.9, 0.95$).