Model-based Insulin Sensitivity and Pharmacodynamic (PD) Surfaces

J. Geoffrey Chase (University of Canterbury, New Zealand), Steen Andreassen (Aalborg University, Denmark), Ulrike Pielmeier (Aalborg University, Denmark)

Background and Aims

The main methods for determining insulin sensitivity with high resolution are either clinical (hyperinsulinemic eu- or hyper-glycemic clamp) or model-based (e.g. FSIWGGT). Typically, the model-based methods use some form of the Minimal Model (MM), which has been shown to underestimate insulin sensitivity in some cases.

This research presents a method of analysing a model's PD surface to determine:
- If its fundamental dynamics capture clinical behaviours
- What, if any, dynamics are missing from a model
- What, if any, dynamics are not necessary

There is currently no fixed method for doing such an analysis and most models are validated on the ability to fit time trajectories of patient-specific clinical data. This approach tests the ability of a model to capture data and trends (in steady state) across an entire PD surface.

Methodology

Four clinically validated models are analysed:
- Minimal Model (MM)
- Two non-linear dynamic models (ND1 and ND2)

Two sets of euglycemic and hyperglycemic clamp data are used:
- Data Set #1: Eu- and hyper- glycemic clamps are used to find a set of population parameters for each model (N=77)
- Data Set #2: Euglycemic clamp data from a lower insulin sensitivity cohort (N = 146) are used to see if the fitted models from step #1 can fit by just shifting the insulin sensitivity parameter (A model validation test)

Results and Conclusions

Performance Metrics:
- RMS Error (RMS)
- Absolute Mode of Error (AME)
- Frequency of Error Near Zero (FNZ)

Data Set #1 Results:

<table>
<thead>
<tr>
<th>Model</th>
<th>Values</th>
<th>RMS</th>
<th>FNZ (μL)</th>
<th>Scaled S<sub>2</sub></th>
<th>Prior S<sub>2</sub></th>
<th>a<sub>0</sub></th>
<th>a<sub>1</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>ND1</td>
<td>a<sub>0</sub> = 1.47 L/mL, a<sub>1</sub> = 0.1 L/mmol</td>
<td>0.56</td>
<td>54</td>
<td>1.2e-4</td>
<td>1.0e-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N2</td>
<td>a<sub>0</sub> = 1.47 L/mL, a<sub>1</sub> = 0.1 L/mmol</td>
<td>0.85</td>
<td>61</td>
<td>0.40</td>
<td>1.0</td>
<td>1.0e-4</td>
<td>1/6</td>
</tr>
<tr>
<td>MM</td>
<td>a<sub>0</sub> = 0.001 L/mL, a<sub>1</sub> = 0.001 L/mmol</td>
<td>0.95</td>
<td>61</td>
<td>0.40</td>
<td>1.0</td>
<td>1.25e-4</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Data Set #2 Results: Scaling Insulin Sensitivity

- MM under predicts insulin sensitivity. MM at low insulin sensitivity provides the wrong trend result. These match reported results.
- Saturation dynamics play an important role in providing good fits across PD surface.
- Trend prediction is also reliant on the use of (at least) effective insulin saturation, which the MM does not have.
- Approach can complement typical fitting and prediction validation methods and provide information on which dynamics are necessary or sufficient in any similar model.