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Abstract

A three dimensional meshfree method for modeling arbitrary crack initiation and

crack growth in reinforced concrete structure is presented. This meshfree method

is based on a partition of unity concept and formulated for geometrically nonlinear

problems. The crack kinematics are obtained by enriching the solution space in

order to capture the correct crack kinematics. A cohesive zone model is used after

crack initiation. The reinforcement modeled by truss or beam elements is connected

by a bond model to the concrete. We applied the method to model the fracture

of several reinforced concrete structures and compared the results to experimental

data.
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Nomenclature

E Young’s modulus of concrete

Gf fracture energy of concrete

H+, H− and ψ+, ψ− values of enrichment function on the plus and minus sides

of a discontinuity

J Jacobian

∆f increment of force

∆tc increment of the traction on crack surface

∆T temperature change

αt thermal expansion coefficient of prestressing tendon

I unit matrix

R rotation matrix

[[Φ]] matrix of the jump of the shape function

S second Piola-Kirchhoff stress

B0 derivative of a shape function with respect to the initial reference co-

ordinates

td interface traction on the deformable interface between concrete and

reinforcement

ν Poisson’s ratio of concrete

fc compressive strength of concrete

k number of iteration

B B matrix

Cref,S, Ccon,S modulus matrices of the second Piola-Kirchhoff stresses of rein-

forcement and concrete

K stiffness matrix

Tc modulus matrix of cohesive traction

Td modulus matrix of interface traction

Φ shape function matrix

q generalized nodal parameters

X coordinates in the initial configuration
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ū prescribed displacements in the initial configuration

t̄0 prescribed tractions in the initial configuration

g gap between reinforcement and concrete

n normal vector

w crack opening displacement

x position of a particle placed at X in the initial configuration

f (n) signed distance function with respect to crack (n)

hI support size of shape function φI

nc number of cracks that completely cross the domain of influence of a

particle

nt number of cracks that partially cross the domain of influence of a par-

ticle

r(m)(X) minimum distance of point X to the mth crack crack front

b̄ body force

f discretized force

g discretized gap between the reinforcement and the concrete

r residual of the discretized equilibrium equation

aI ,bI additional degrees of freedom for the enrichment functions for particle

I

tc0 cohesive traction across a crack in the initial configuration

u displacement vector or the trial function

H,ψ enrichment functions

HI ,ψI enrichment functions shifted with respect to particle I

W (X −XI , hI) weight function of particle I

R set of all the nodes for reinforcement

S set of all particles

Sc subset of the particles whose domains of influence are completely cut

by crack

St subset of the particles whose domains of influence are partially cut by

crack

V space of the displacement or the trial function

V0 space of the test function
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F deformation gradient tensor

P nominal stress tensor

X
(m)
tip mth crack crack front

δW virtual work

δẆ rate of the virtual work

δu test function

λ Lagrange multiplier

ξ local coordinates

φ shape function

θ(m)(X) angle between the tangent to crack surface and segment X −X(m)
tip

Γ boundary of domain Ω

Ω domain of body

ΛI Lagrange multiplier parameter for particle I

∇ gradient operator

a subscript representing the degrees of freedom for the H enrichment

b subscript representing the degrees of freedom for the branch enrichment

c superscript representing crack

coh subscript representing an cohesive mechanism

con superscript representing concrete

d superscript representing the deformable interface between concrete and

reinforcement

e subscript representing the enrichment or the discontinuity

ext subscript representing an external mechanism

g subscript representing the gap between concrete and reinforcement

geo subscript representing geometric effect

h superscript representing an approximation

int subscript representing an internal mechanism

mat subscript representing the contribution of material

ref superscript representing reinforcement

st subscript representing the standard element free Galerkin method

u subscript representing the degrees of freedom for the continuous dis-

placement
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0 subscript representing the initial reference configuration

λ subscript representing Lagrange multiplier

Λ subscript representing the degrees of freedom for a Lagrange multiplier

(m) index indicating a crack front (or tip)

(n) index indicating a crack

+,− signs for the crack surfaces

∗ subscript representing the virtual surface introduced between the de-

formed crack surfaces
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1 Introduction

Reinforced concrete structures often undergo extensive cracking before failure.

Tracking dense failure patterns by finite element methods is quite difficult.

Therefore, particle methods are very attractive for this class of problems.

In early approaches, cracks in the concrete were modeled by strain soften-

ing in the stress-strain curve, see e.g. [1]. Such continuum models are mesh-

dependent if no modifications are made to reflect mesh spacing since a finer

discretization leads to a decrease in fracture energy. Other approaches are fic-

titious crack and smeared crack models, see e.g. [2–5]. In those models, a crack

is assumed to be within an integration cell. Usually the strains are related to

a fictitious crack width in the integration cell. In smeared crack models, we

have to distinguish whether a single or several cracks should be modeled within

a single integration cell. If larger structures such as shells are of interest, more

than one crack can be initiated in an element. The advantage of fictitious or

smeared crack models is that the cracks are initiated through the constitutive

model in contrast to discrete crack models; the crack is not considered as a

distinct discontinuity. Hence, these models are called the weak discontinuity

approaches.

Discrete crack models are an alternative to fictitious crack models. These mod-

els are called strong discontinuity models because the formation of a crack is

modeled by using a discontinuity introduced in the solution space. A possibil-

ity for introducing discrete cracks was studied by Xu and Needleman [14, 15]

who separated elements at their boundaries. This approach has the disadvan-

tage that the crack propagation depends on the geometry and the topology of

the mesh. Remeshing and refinement could overcome this drawback but these

approaches are computationally expensive. The Cornell group of Ingraffea has

developed remeshing to a high degree of robustness (see e.g. [16, 17]), but

three dimensional problems with multiple cracks appear to be very challeng-

ing by using these methods. Recently, a new kind of discrete crack method

called the extended finite element method (XFEM) was developed based on
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the local partition of unity by Belytschko and his collaborators [18–21] where

the crack can propagate arbitrarily in an element without remeshing. Either

the elements or the nodes are enriched with additional degrees of freedom.

Meshfree methods are a good alternative to finite elements for crack prob-

lems. In addition to the advantage of being more flexible because of the lack

of a mesh, they have the nonlocal interpolation character 1 which provides

higher smoothness and continuity. Modeling cracks with meshfree methods

was first proposed by Belytschko et al. [22–25]. The crack was modeled by

using a visibility criterion where the domain of influence was cut by a crack.

The concept of local partition of unity and level sets were incorporated in

a meshfree context for linear elastic cracks by Ventura [26] and for cohesive

cracks by Rabczuk and Zi [27].

In this paper, we present a three-dimensional cohesive crack method for re-

inforced concrete structures. We model cracking in the concrete with an ex-

tended element-free Galerkin method (XEFG) that is coupled to finite ele-

ments for the reinforcement following the general formulation of geometrically

nonlinear problems. The ill-posed IBVP is treated by means of cohesive sur-

faces in the post localization domain.

Another important issue when modeling reinforced concrete structures is the

interaction between the concrete and the reinforcement. If a rigid connec-

tion between the concrete and the reinforcement is assumed, the experimental

crack pattern usually cannot be well reproduced. In reality, the stresses in the

reinforcement increase around the cracked concrete and unloading occurs in

the vicinity of the crack which causes cracks at a certain distance from each

other. Without a bond model, this effect cannot be captured and cracks occur

over the entire length of the reinforcement in certain applications.

According to Cox and Herrmann [28, 29], bond models can be developed at

three different scales, the ribscale, where the geometry of the surface structure

of the bar is modeled explicitly; and the barscale and the memberscale, where

1 the method is not non-local in the constitutive sense as described above
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the reinforcement is discretized via a discrete, embedded or smeared model.

In the member scale model, the reinforcement is treated as a one-dimensional

element. Bond laws have been limited to single-stress models and are not well

suited to reproduce the complicated bond behavior in certain cases. For our

applications, we selected a model at the barscale. We used a bond model

described in detail in [30] which can also capture both modes I and II bond

failure mechanisms.

The paper is arranged as follows: First, we give the governing equations. The

particle-finite element method and the cracking approach are briefly reviewed.

Then, we describe the coupling scheme for deformable interfaces. Finally, we

describe our testing of the approach for various problems.

2 Governing equations

The governing equation is the equation of equilibrium given by

∇0 · P − b̄ = 0 ∀ X ∈ Ω0 \ Γc0 (1)

where P is the nominal stress tensor (see [31] for details), b̄ is the body force,

X are the material coordinates, ∇0 is the gradient operator with respect to

the initial reference coordinates, Γc0 is the crack surface and Ω0 is the domain

of the body. The boundary conditions are

u(X, t) = ū(X, t) on Γu0 (2)

n0 · P (X, t) = t̄0(X, t) on Γt0 (3)

nc0 · P−=nc0 · P+ = tc0 on Γc0 (4)

where ū and t̄0 are the prescribed displacements and tractions, respectively,

tc0 are the cohesive traction across the crack, nc0 is the crack normal in the

initial configuration and Γu0
⋃

Γt0 = Γ0 , Γu0
⋂

Γt0 = ∅.

The weak form of the equilibrium equation is given by

δW = δWext + δWcoh − δWint = 0 (5)
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with

δWint =
∫

Ω0\Γc0
δF T : P dΩ0

=
∫

Ω0\Γc0
δF T :

(
S · F T

)
dΩ0 (6)

δWext =
∫

Ω0

δu · b̄ dΩ0 −
∫

Γt0

δu · t̄0 dΓ0 (7)

δWcoh =
∫

Γc+0

δu+ · tc+0 dΓ0 +
∫

Γc−0

δu− · tc−0 dΓ0

=−
∫

Γc0

δ[[u]] · tc0 dΓ0 (8)

F = x ⊗ ∇0 is the deformation gradient tensor and u and δu are the trial

and test functions which should lie in the following spaces

V =
{
u|u ∈ H1, u discontinuous on Γc0, u = ū on Γu0

}
V0 =

{
δu|δu ∈ H1, δu discontinuous on Γc0, δu = 0 on Γu0

}
(9)

In Eq. (8), the relation of tc0 = tc−0 = −tc+0 is used.

The rates of the virtual works in Eqs. (6) to (8) are given by

δẆint =
∫

Ω0\Γc0
δF T :

(
Ṡ · F T + S · Ḟ T

)
dΩ0

=
∫

Ω0\Γc0
δF T :

(
Ṡ · F T

)
dΩ0 +

∫
Ω0\Γc0

δF T :
(
S · Ḟ T

)
dΩ0 (10)

δẆext =
∫

Ω0

δu · ˙̄b dΩ0 −
∫

Γt0

δu · ˙̄t0 dΓ0 (11)

δẆcoh =−
∫

Γc0

δ[[u]] ·
[
n0 ·

(
Ṡ · F T + S · Ḟ T

)]
dΓ0 (12)

Note that because of the discontinuity Γc0, the crack normal n in the deformed

configuration corresponding to the normal n0 in the initial configuration is not

unique.
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3 The element free galerkin method (EFG)

The standard EFG-approximation 2 is used to model the concrete. The dis-

placement approximation in EFG is given by

uhst(X, t) =
∑
I∈S

φI(X) uI(t) (13)

where the subscript st denotes the standard EFG approximation, φI(X) are

the shape functions, S is the set of all particles, uI is the displacement pa-

rameter of a particle positioned at XI , W (X−XI , hI) is the weight function

and hI is the support size of shape function φI . Using the moving least square

method, we obtain the shape functions

φI = pT (X) · A(X)−1 ·D(X) (14)

with the moment matrix

A(X) =
∑
I∈S

pI(X) pTI (X)W (X −XI , h0) (15)

D(X) =
∑
I∈S

pI(X)W (X −XI , hI) (16)

4 A coupled particle-finite element approach for reinforced con-
crete

4.1 A Method for the rigid bond using Lagrange multipliers

The displacements of the two domains, i.e. the reinforcement and the concrete,

are denoted by uref and ucon, respectively. Since it is assumed that there is

no fracture of the reinforcement, the displacement of the reinforcement can be

approximated by the standard finite element method.

uref,h(X) =
∑
J∈R

φref
J (X) uref

J (17)

2 see [22, 23, 32, 33] for details
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in which R is the set of all the nodes for the reinforcement. Because of the

cracks in the concrete, the displacement space of the standard EFG is en-

riched by the discontinuous displacement ue [27, 34, 35]. The displacement

approximation for the concrete is given by

ucon,h(X) =
∑
I∈S

φcon
I (X, t) ucon

I +
nc∑
n=1

∑
I∈Sc

φcon
I (X) H

(n)
I (X) a

(n)
I

+
mt∑
m=1

∑
I∈St

φcon
I (X)ψ

(m)
I (X) b

(m)
I (18)

where Sc is the subset of the particles whose domains of influence are com-

pletely cut by the crack, St is the subset of the particles whose domains of

influence are partially cut by the crack, nc and mt are the number of cracks

that completely or partially cross the domain of influence of a corresponding

particle, H and ψ are the enrichment functions, a and b are additional un-

knowns introduced to represent the discontinuity across the crack faces and

the asymptotic stress state near the crack tip, respectively. The last two terms

of Eq. (18) are the enrichment.

The enrichment function HI is given by

H
(n)
I (X) = sign

[
f (n)(X)

]
− sign

[
f (n)(XI)

]
(19)

in which f (n) is the signed distance function with respect to crack (n) defined

as

f (n)(X) = sign
[
n0 · (X −X(n))

]
min

X (n)
∈Γ

c,(n)
0

∥∥∥X −X(n)
∥∥∥ (20)

where Γ
c,(n)
0 is the nth crack. If the signed distance function should be calcu-

lated for a point X beyond the crack tip of Γ
c,(n)
0 , X(n) is chosen from the

tangent at the closest tip. The enrichment function ψI is the branch enrich-

ment given by

ψ
(m)
I = r(m)k(X) sin

θ(m)(X)

2
− r(m)k(XI) sin

θ(m)(XI)

2
for k ≥ 1 (21)

where r(m)(X) is the minimum distance of X to the mth crack crack front

X
(m)
tip and θ(m)(X) = sin−1

[
f (m)(X)/r(m)(X)

]
is the angle between the tan-

gent to the crack surface and the segment X −X(m)
tip .
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FE shape functions

Lagrange multipliers
particles
FE nodes

Fig. 1. Coupling using the Lagrange multipliers

The crack opening displacement w is measured as

w =
nc∑
n=1

∑
I∈Sc

[[
φIH

(n)
I

]]
a

(n)
I +

mt∑
m=1

∑
I∈St

[[
φIψ

(m)
I

]]
b

(m)
I (22)

Let us assume a rigid bond between the reinforcement and the concrete, i.e.

between the finite element and particle domain. In order to ensure the displace-

ment continuity between the reinforcement and the concrete, the variational

principle in Eq. (5) is to be modified by introducing a Lagrange multiplier,

i.e.

δW = δWext + δWcoh + δWλ − δWint with δWλ = δ (g · λ) (23)

where δWλ is the virtual work by the Lagrange multiplier λ and g is the

gap between the reinforcement and the concrete, respectively. The Lagrange

multiplier can be considered as a traction along the interface. The gap and its

approximation are given by

g=uref − ucon (24)

gh =
∑
I∈R

φref
I (X) uref

I −
∑
I∈S

φcon
I (X, t) ucon

I −
nc∑
n=1

∑
I∈Sc

φcon
I (X) H

(n)
I (X) a

(n)
I

−
mt∑
m=1

∑
I∈St

φcon
I (X)φ

(m)
I (X) b

(m)
I (25)

We use the finite element shape functions to discretize the Lagrange multiplier

λ, i.e.

λh(X) =
∑
I∈R

φλI (X) ΛI (26)

where φλI (X) are the shape functions for the Lagrange multiplier. For the

interpolation in Eq. (26), the position of the Lagrange multipliers in the local
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element coordinate system has to be known. Since the global positions of the

nodes are known, then the local position can simply be obtained from Φλ
I (ξ)XI

with respect to the local coordinates ξ, see Fig. 1.

It is trivial to show the derivation of the test functions from the trial functions

in Eqs. (17,18) and (25,26). Substituting the test and trial functions into the

weak form Eq. (23), we obtain this discretized equilibrium equation

r =

 rf

rg

 =

 fext + fcoh + fλ − fint

g

 = 0 (27)

The discretized forces are given by

fint =
∫

Ωref
0

[
Bref

0u

]T {
Sref

}
dΩ0 +

∫
Ωcon

0 \Γc0
[ Bcon

0 ]T {Scon} dΩ0 (28)

fext =
∫

Ωcon
0 \Γc0

[ Φcon ]T b̄ dΩ0 +
∫

Γt0

[ Φcon ]T t̄0 dΓ0 (29)

fcoh =−
∫

Γc0

[[Φcon]]T tc0 dΓ0 (30)

fλ =
∫

Γλ0

[
Φref
u −Φcon

]T [
Φλ
u

]
dΓ0 Λ (31)

g =
∫

Γλ0

[
Φλ
u

]T [
Φref
u

]
dΓ0 uref −

∫
Γλ0

[
Φλ
u

]T
[ Φcon

u ] dΓ0 ucon

−
∫

Γλ0

[
Φλ
u

]T
[ Φcon

a ] dΓ0 acon −
∫

Γλ0

[
Φλ
u

]T
[ Φcon

b ] dΓ0 bcon (32)

in which Γλ0 is the interface between the reinforcement and the concrete,

S is the second Piola-Kirchhoff stress, Bcon
0 = [ Bcon

0u Bcon
0a Bcon

0b ], Φcon =

[ Φcon
u Φcon

a Φcon
b ], [[Φcon]] =

[[
Φcon
a Φcon

b

]]
, B†0� = (B0�)

†
ikjI = sym

i,k

(
∂ϕ�I
∂Xi

Fjk
)†

,

ϕ�I represents a shape function with enrichment �, e.g. ϕaI = φI HI and

[
Φref
u

]
=
[
Φref

]
=
[
φref
I

]
∀I ∈ R

[ Φcon
u ] = [φcon

I ] ∀I ∈ S

[ Φcon
a ] =

[
φcon
I H

(n)
I

]
∀I ∈ Sc and n = 1, 2, . . . , nc

[ Φcon
b ] =

[
φcon
I B

(m)
I

]
∀I ∈ St and m = 1, 2, . . . ,mt[[

Φcon
a

]]
=
[
φcon
I [[H

(n)
I ]]

]
∀I ∈ Sc and n = 1, 2, . . . , nc[[

Φcon
b

]]
=
[
φcon
I [[B

(m)
I ]]

]
∀I ∈ St and m = 1, 2, . . . ,mt

(33)
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The residual in Eq. (27) can be linearized to

rk(q) +
∂r(q)

∂q

∣∣∣∣∣
k

∆qk+1 = 0 (34)

where k is the number of the iteration and q = [ uref ucon acon bcon Λ ]T

are the generalized nodal parameters. Assuming that the body forces and the

external tractions do not depend on q, we obtain

∂r(q)

∂q
=


∂fcoh(q)
∂q

+ ∂fλ(q)
∂q
− ∂fint(q)

∂q

∂g(q)
∂q

 (35)

The linearized terms for Eq. (35) can be obtained from the rate of the virtual

work given in Eqs. (10-12). The increment of the internal force ∆fint is given

by

∆fint =
∫

Ωref
0

[
Bref

0u

]T
Cref,S

[
Bref

0u

]
dΩ0 ∆uref

+
∫

Ωcon
0 \Γc0

[ Bcon
0 ]T Ccon,S [ Bcon

0 ] dΩ0 ∆qcon

+I
∫

Ωref
0

[
Bref

0u

]T {
Sref

} [
Bref

0u

]
dΩ0 ∆uref

+I
∫

Ωcon
0 \Γc0

[ Bcon
0 ]T {Scon} [ Bcon

0 ] dΩ0 ∆qcon (36)

in which Cref,S and Ccon,S are the modulus matrices of the second Piola-

Kirchhoff stresses of the reinforcement and the concrete, qcon = [ ucon acon bcon ]T

are the nodal parameters for the concrete, B0 = BjI = ∂ϕI/∂Xj and I is the

unit matrix. The first two terms in Eq. (36) are because of the material non-

linearity and the second two terms the geometric nonlinearity.

The increment of the Lagrange multiplier ∆fλ is simply given by

∆fλ =
∫

Γλ0

[
Φref
u −Φcon

]T [
Φλ
u

]
dΓ0 ∆Λ (37)

The linearization of the cohesive force is not straightforward because of the

discontinuity. Once a crack forms, the material point splits into two. Therefore

a normal nc0 to the crack surface in the initial configuration becomes two
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Fig. 2. (a) The deformation of a cracked body and (b) a new surface introduced
between the crack surfaces and their deformation gradient tensor.
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different crack normals nc+ and nc− to the crack surface by deformation (Fig.

2). Nanson’s formula for the transformation of a normal in a continuous body

cannot be used because of that reason. To overcome this problem, Wells et

al. [36] introduced a virtual surface Γc∗ between the deformed crack surface

Γc+ and Γc−. The initial crack normal n0 was transformed to n∗ on this new

surface Γc∗ by Nanson’s formula; see Fig. 2. For this, Nanson’s formula was

modified:

n∗ dΓ∗ = Jn0 · F ∗−1 dΓ0 (38)

where J = detF ∗ and F ∗ is the deformation gradient of the newly defined

surface Γc∗ between the deformed crack surfaces Γc+ and Γc−. In our problem,

F ∗ is simply defined as

F ∗ =
1

2

(
F+ + F−

)
(39)

Using the above simplification, we obtain the increment of the cohesive force:

∆f coh =−
(∫

Γc∗

[[Φcon]]T ∆tcdΓ∗ +
∫

Γc∗

[[Φcon]]T tc [ Bcon
∗ ] dΓ∗∆qcon

)
=−

∫
Γc∗

[[Φcon]]T R Tc RT [[Φcon]] dΓ∗ [ ∆acon ∆bcon ]T

−
∫

Γc∗

[[Φcon]]T tc [ Bcon
∗ ] dΓ∗∆qcon (40)

The term ∆tc is the increment of the traction on the crack surface as suggested

by Wells et al. [36], R is the rotation matrix, Tc is the modulus matrix of the

cohesive traction tc with respect to the crack opening displacement, and

Bcon
∗ = (B∗)ikjI =

1

2

∂

∂xk
φcon
I

[
2 (H+

I +H−I ) (ψ+
I + ψ−I )

]
δji (41)

Here H+, H− and ψ+, ψ− are the values of the enrichment function on the

plus and minus sides of the discontinuity Γc0. Because of the shifting operation

of Eqs. (19) and (21), (H+
I +H−I ) and (ψ+

I +ψ−I ) do not vanish although sign

and sin functions are antisymmetric.
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Eq. (35) can be written in a matrix form as

[ Kmat + Kgeo ]k ∆qk+1 =

 rf

rg


k

(42)

in which Kmat is the material stiffness matrix and Kgeo is the geometric stiff-

ness. From Eqs. (36) to (40), the material stiffness matrix Kmat is given by

Kmat =



Kref,ref
uu Kref,con

uu Kref,con
ua Kref,con

ub Kref,λ
uΛ

Kcon,ref
uu Kcon,con

uu Kcon,con
ua Kcon,con

ub Kcon,λ
uΛ

Kcon,ref
au Kcon,con

au Kcon,con
aa Kcon,con

ab Kcon,λ
aΛ

Kcon,ref
bu Kcon,con

bu Kcon,con
ba Kcon,con

bb Kcon,λ
bΛ

Kλ,ref
Λu Kλ,con

Λu Kλ,con
Λa Kλ,con

Λb 0


(43)

where the stiffness matrix Kmat is symmetric and the terms in the matrix are

Kref,ref
uu =

∫
Ωref

0

[
Bref

0u

]T
Cref,S

[
Bref

0u

]
dΩ0

Kref,λ
uΛ = −

∫
Γλ0

[
Φref
u

]T [
Φλ
u

]
dΓ0

Kcon,con
uu =

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T Ccon,S [ Bcon
0u ] dΩ0

Kcon,con
ua =

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T Ccon,S [ Bcon
0a ] dΩ0

Kcon,con
ub =

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T Ccon,S [ Bcon
0b ] dΩ0

Kcon,λ
uΛ =

∫
Γλ0

[ Φcon
u ]T

[
Φλ
u

]
dΓ0

Kcon,con
aa =

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T Ccon,S [ Bcon
0a ] dΩ0 +

∫
Γc∗

[[
Φcon
a

]]T
R Tc RT

[[
Φcon
a

]]
dΓ∗

Kcon,con
ab =

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T Ccon,S [ Bcon
0b ] dΩ0 +

∫
Γc∗

[[
Φcon
a

]]T
R Tc RT

[[
Φcon
b

]]
dΓ∗

Kcon,λ
aΛ =

∫
Γλ0

[ Φcon
a ]T

[
Φλ
u

]
dΓ0

Kcon,con
bb =

∫
Ωcon

0 \Γc0
[ Bcon

0b ]T Ccon,S [ Bcon
0b ] dΩ0 +

∫
Γc∗

[[
Φcon
b

]]T
R Tc RT

[[
Φcon
b

]]
dΓ∗

Kcon,λ
bΛ =

∫
Γλ0

[ Φcon
b ]T

[
Φλ
u

]
dΓ0

Kref,con
uu = Kref,con

ua = Kref,con
ub = 0

(44)

The same notations as the material stiffness Kmat are used to represent the

terms in the geometric stiffness Kgeo to avoid having too heavy notations. The

geometric stiffness Kgeo is not symmetric because of the second term of Eq.

(40). The terms of the matrix Kgeo are given by
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Kref,ref
uu = I

∫
Ωref

0

[
Bref

0u

]T {
Sref

} [
Bref

0u

]
dΩ0

Kcon,con
uu = I

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T {Scon} [ Bcon ] dΩ0

Kcon,con
ua = Kcon,con

au
T = I

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T {Scon} [ Bcon
0a ] dΩ0

Kcon,con
ub = Kcon,con

bu
T = I

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T {Scon} [ Bcon
0b ] dΩ0

Kcon,con
aa = I

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T {Scon} [ Bcon
0a ] dΩ0 +

∫
Γc∗

[[
Φcon
a

]]T
tc
[
Bcon
∗,a

]
dΓ∗

Kcon,con
ab = I

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T {Scon} [ Bcon
0b ] dΩ0 +

∫
Γc∗

[[
Φcon
a

]]T
tc
[
Bcon
∗,b

]
dΓ∗

Kcon,con
ba = I

∫
Ωcon

0 \Γc0
[ Bcon

0b ]T {Scon} [ Bcon
0a ] dΩ0 +

∫
Γc∗

[[
Φcon
b

]]T
tc
[
Bcon
∗,a

]
dΓ∗

Kcon,con
bb = I

∫
Ωcon

0 \Γc0
[ Bcon

0b ]T {Scon} [ Bcon
0b ] dΩ0 +

∫
Γc∗

[[
Φcon
b

]]T
tc
[
Bcon
∗,b

]
dΓ∗

Kref,con
uu = Kref,con

ua = Kref,con
ub = Kcon,ref

uu = Kcon,ref
au = Kcon,ref

bu = 0

Kref,λ
uΛ = Kcon,λ

uΛ = Kcon,λ
aΛ = Kcon,λ

bΛ = Kλ,ref
Λu = Kλ,con

Λu = Kλ,con
Λa = Kλ,con

Λb = 0

(45)

4.2 Deformable interface coupling

In this section, we modify the approach of the last section to allow relative

displacements along Γd0 and call this deformable interface coupling. There-

fore, compatibility between the displacement along Γd0 is no longer required.

Instead, traction boundary conditions are applied depending on the relative

displacement g between the reinforcement and the concrete given in Eq. (25):

tcon,d
0 = td0(g) on Γ0

tref,d
0 = −td0(g) on Γ0

(46)

The spring modulus depends on the relative displacement and some internal

variables. Using (5), we have:

δW = δWext + δWcoh + δWd + δWLM − δWint (47)

where δWd is the virtual work by the forces across the interface Γd0. δWd is

given by
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δWd =−
∫

Γd0

δg · td0 dΓ0

=−
∫

Γd∗

δg · td dΓ∗ (48)

Note that because the traction at the interface depends on the relative dis-

placement, F ∗ in Eq. (39) is used to map the interface. If no relative displace-

ment is allowed before a certain failure criterion is satisfied, then δWLM should

be used.

According to the fundamental lemma of the variational principle, we can ob-

tain the discrete equilibrium equation as before, i.e.

r =

 rf

rg

 =

 fext + fcoh + fd + fLM − fint

g

 = 0 (49)

All other terms are identical to those in Eqs. (28) to (32) but the force for the

interface is given by

fd = −
∫

Γd0

[
Φd

]T
td0 dΓ0 (50)

where Φd =
[
Φref
u −Φcon

u −Φcon
a −Φcon

b

]
. It is convenient to derive the

increment of fd in the current configuration that is similar to fcoh.

∆fd = −
∫

Γd∗

[
Φd
]T

R Td RT
[
Φd
]

dΓ∗∆qd −
∫

Γd∗

[
Φd
]T
td
[
Bd
∗

]
dΓ∗∆qd

(51)

in which Td is the modulus matrix of the interface traction td and qd =

[ uref ucon acon bcon ]T .

Because the interface is deformable, several terms of the stiffness matrices

Kmat and Kgeo should be modified. The terms to be modified for Kmat are

given by
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Kref,ref
uu =

∫
Ωref

0

[
Bref

0u

]T
Cref,S

[
Bref

0u

]
dΩ0 +

∫
Γd∗

[
Φref
u

]T
R Td RT

[
Φref
u

]
dΓ∗

Kref,con
uu = −

∫
Γd∗

[
Φref
u

]T
R Td RT [Φcon

u ] dΓ∗

Kref,con
ua = −

∫
Γd∗

[
Φref
u

]T
R Td RT [Φcon

a ] dΓ∗

Kref,con
ub = −

∫
Γd∗

[
Φref
u

]T
R Td RT [Φcon

b ] dΓ∗

Kcon,con
uu =

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T Ccon,S [ Bcon
0u ] dΩ0 +

∫
Γd∗

[Φcon
u ]T R Td RT [Φcon

u ] dΓ∗

Kcon,con
ua =

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T Ccon,S [ Bcon
0a ] dΩ0 +

∫
Γd∗

[Φcon
u ]T R Td RT [Φcon

a ] dΓ∗

Kcon,con
ub =

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T Ccon,S [ Bcon
0b ] dΩ0 +

∫
Γd∗

[Φcon
u ]T R Td RT [Φcon

b ] dΓ∗

Kcon,con
aa =

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T Ccon,S [ Bcon
0a ] dΩ0

+
∫
Γc∗

[[
Φcon
a

]]T
R Tc RT

[[
Φcon
a

]]
dΓ∗ +

∫
Γd∗

[Φcon
a ]T R Td RT [Φcon

a ] dΓ∗

Kcon,con
ab =

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T Ccon,S [ Bcon
0b ] dΩ0

+
∫
Γc∗

[[
Φcon
a

]]T
R Tc RT

[[
Φcon
b

]]
dΓ∗ +

∫
Γd∗

[Φcon
a ]T R Td RT [Φcon

b ] dΓ∗

Kcon,con
bb =

∫
Ωcon

0 \Γc0
[ Bcon

0b ]T Ccon,S [ Bcon
0b ] dΩ0

+
∫
Γc∗

[[
Φcon
b

]]T
R Tc RT

[[
Φcon
b

]]
dΓ∗ +

∫
Γd∗

[Φcon
b ]T R Td RT [Φcon

b ] dΓ∗

(52)

20



The terms to modified for Kgeo are given by,

Kref,ref
uu = I

∫
Ωref

0

[
Bref

0u

]T {
Sref

} [
Bref

0u

]
dΩ0 +

∫
Γd∗

[
Φref
u

]T
td
[
Bref
∗,u

]
dΓ∗

Kref,con
uu = −

∫
Γd∗

[
Φref
u

]T
td
[
Bcon
∗,u

]
dΓ∗

Kref,con
ua = −

∫
Γd∗

[
Φref
u

]T
td
[
Bcon
∗,a

]
dΓ∗

Kref,con
ub = −

∫
Γd∗

[
Φref
u

]T
td
[
Bcon
∗,b

]
dΓ∗

Kcon,ref
uu = −

∫
Γd∗

[ Φcon
u ]T td

[
Bref
∗,u

]
dΓ∗

Kcon,con
uu = I

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T {Scon} [ Bcon ] dΩ0 +
∫

Γd∗
[ Φcon

u ]T td
[
Bcon
∗,u

]
dΓ∗

Kcon,con
ua = I

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T {Scon} [ Bcon
0a ] dΩ0 +

∫
Γd∗

[ Φcon
u ]T td

[
Bcon
∗,a

]
dΓ∗

Kcon,con
ub = I

∫
Ωcon

0 \Γc0
[ Bcon

0u ]T {Scon} [ Bcon
0b ] dΩ0 +

∫
Γd∗

[ Φcon
u ]T td

[
Bcon
∗,b

]
dΓ∗

Kcon,ref
au = −

∫
Γd∗

[ Φcon
a ]T td

[
Bref
∗,u

]
dΓ∗

Kcon,con
au =

∫
Γd∗

[ Φcon
a ]T td

[
Bcon
∗,u

]
dΓ∗

Kcon,con
aa = I

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T {Scon} [ Bcon
0a ] dΩ0

+
∫

Γc∗

[[
Φcon
a

]]T
tc
[
Bcon
∗,a

]
dΓ∗ +

∫
Γd∗

[ Φcon
u ]T td

[
Bcon
∗,u

]
dΓ∗

Kcon,con
ab = I

∫
Ωcon

0 \Γc0
[ Bcon

0a ]T {Scon} [ Bcon
0b ] dΩ0

+
∫

Γc∗

[[
Φcon
a

]]T
tc
[
Bcon
∗,b

]
dΓ∗ +

∫
Γd∗

[ Φcon
a ]T td

[
Bcon
∗,b

]
dΓ∗

Kcon,ref
bu = −

∫
Γd∗

[ Φcon
b ]T td

[
Bref
∗,u

]
dΓ∗

Kcon,con
bu =

∫
Γd∗

[ Φcon
b ]T td

[
Bcon
∗,u

]
dΓ∗

Kcon,con
ba = I

∫
Ωcon

0 \Γc0
[ Bcon

0b ]T {Scon} [ Bcon
0a ] dΩ0

+
∫

Γc∗

[[
Φcon
b

]]T
tc
[
Bcon
∗,a

]
dΓ∗ +

∫
Γd∗

[ Φcon
b ]T td

[
Bcon
∗,a

]
dΓ∗

Kcon,con
bb = I

∫
Ωcon

0 \Γc0
[ Bcon

0b ]T {Scon} [ Bcon
0b ] dΩ0

+
∫

Γc∗

[[
Φcon
b

]]T
tc
[
Bcon
∗,b

]
dΓ∗ +

∫
Γd∗

[ Φcon
b ]T td

[
Bcon
∗,b

]
dΓ∗

(53)

The discrete equations are evaluated by using the standard Gauss quadrature

for both the finite element and particle domains. For the particle domain, a

background mesh is used where the particles form rectangular background

cells. The 4× 4 Gauss points were used for numerical integration.
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Fig. 3. (a) The rigid cohesive model and (b) the non-rigid cohesive model, where the
traction and the crack opening displacement are nondimensionalized by the tensile
strength and the critical crack opening displacement.

5 Constitutive models

The steel reinforcement is modeled with an elastoplastic constitutive model

with isotropic hardening. Details can be found elsewhere such as [37]. To

model the concrete, we used a linear elasticity for the tension and a continuum

scalar damage model for the compression [38]. If the principal tensile stress

exceeds the tensile of the concrete, a crack is initiated, i.e. we used the Rankine

criterion to initiate the crack.

Once the criterion for the crack initiation is satisfied near a particle, the co-

hesive crack model is introduced at the particle. We used a linear rigid and

in some cases a bilinear non-rigid cohesive model as shown in Fig. 3. In each

case we specified the fracture energy Gf and the tensile strength ft as material

parameters.

The actual bond behavior depends on the surface of the reinforcement bars.

For bars without ribs, adhesion and friction are the principal mechanisms of

bonding. For ribbed bars, the bond behavior is the result of a very complicated

mechanism in a small region called effective concrete cover ceff (Fig. 4). A

bond model developed by Rabczuk and Belytschko was used in this paper.

The detailed information of the bond model can be found in [30] and the
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Fig. 4. (a) The development of radial cracks in the effective concrete cover surround-
ing the reinforcement, (b) the mechanical interaction of the cracked concrete and
the rib and (c) the crushed concrete near the reinforcement when the reinforcement
is pulled out.
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references therein.

6 Application examples

6.1 Prestressed concrete beams

prestressing

steel support
measurement of the displacement

steel support

load cell

beam

elastomer support

Fig. 5. The test set-up of beam I

steel support

press
crossbar

measurement of the displacement

support

prestressing

cell load

elastomer support

beam

Fig. 6. The test set-up of beam II

We considered two prestressed four-point bending concrete beams without the

shear stirrups. Both beams had an I-shaped cross section as illustrated in Figs.

5 and 6. The test setup and the dimensions of the beam are illustrated in Figs.

5 and 6. Two different kinds of reinforcements were used. The beams had two

tension wires in the lower flange that were prestressed. The upper reinforce-

ment was only needed for transportation purposes. The lower reinforcement

had a diameter of 12 mm and the diameter of the upper reinforcement was

10 mm. The two tension wires of beam I were prestressed each with a force
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Fig. 7. (a) Beam II after the experiment and (b) beam I after the experiment

of 68 kN, the wires of the second beam with a force of 80 kN. The wires were

first prestressed, then concreted and after the concrete had reached 80% of its

compressive strength, the prestressing was relieved such that the forces from

the reinforcement were transmitted into the concrete. The experiment was

done displacement-controlled; see [40]. Both beams failed due to a combined

shear/pullout failure as illustrated in Fig. 7.

The concrete tensile strength was ft = 2.8 MPa, Young’s modulus E = 29

GPa, Poisson’s ratio ν = 0.2, compressive strength fc = 45 MPa and fracture

energy Gf = 86 N/m. The yield strength for the usual reinforcements was

from 500 MPa with a Young’s modulus 210 GPa. The yield strength for the

prestressed tendons was 1,420 MPa with a Young’s modulus of 205 GPa. More

details about the experiments can be found in [41].

We used the bond model given in Section ?? to model the complicated bond

mechanism in the small region surrounding the reinforcement. Otherwise, the

correct failure pattern cannot be reproduced since the final failure of the beam

is caused by a pullout-failure. Beam elements were used for the reinforcement

and meshfree EFG nodes for the concrete. We used an unstructured particle
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(a)

(b)

(c)

Fig. 8. The crack pattern for beam I at different load steps for the fine computation
where the displacement was exaggerated 5 times .

arrangement with different numbers of particles and used adaptivity to keep

the computational cost low. The adaptive procedure is explained in [42, 43].

To solve the linearized systems of equations we employed the parallel open

source direct solver package SPOOLES. The computations were carried out

on a parallel cluster that used up to 16 processors. To avoid an unrealistic

symmetric crack pattern, we varied the material strength in the specimen,

meaning we multiplied the stress-strain curve with a small factor of 0.98 ≤
α ≤ 1.02, obtained from a log-normal distribution around a mean value of 1

and a standard deviation of 2%.

The prestressing was modeled via a virtual temperature change in the tension

wires such that the tension wire was shortened by cooling down. The strains

were computed by ε = αt ∆T where αt was the thermal expansion coefficient

which was 1× 10−5◦C for steel and ∆T was the temperature difference, which

was negative in our case. The contraction of the tension wire transmitted the

prestressing forces in the concrete.

Figs. 8 and 9 show the deformed concrete beam I in the current configuration at
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(a)

(b)

(c)

(d)

Fig. 9. The final crack pattern for beam I for the fine computation and for different
view points; (a)-(c) numerical simulation, (d) experiment
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(a) Beam I (b) Beam II

Fig. 10. The tensile stress of a tendon just after prestressing and at failure.

(a) Beam I (b) Beam II

Fig. 11. The load deflection curves for the prestressed concrete beam problem
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different load steps and for different points of view. The deformation plots were

magnified to better illustrate the crack opening. Moreover, particles adjacent

to the crack were plotted in red. The final crack patterns agreed well with the

experimental failure pattern shown in Fig. 9d. Fig. 10a shows the steel stresses

at prestressing and at failure. At prestressing, the stress distribution was, of

course, homogenous. At failure, the stress peaks were observed at locations

where the concrete cracks and hence the reinforcement had to carry the entire

load; we noted that the steel stresses were significantly below the yield strength

of the tendon. When the bar was pulled out, the bond was weakened close to

the support as indicated by the steel stresses that started oscillating. They

did not drop to zero since the bond was not completely destroyed. This was

difficult to model in a numerical analysis. The load deflection curve is shown

in Fig. 11a. The numerical simulation was able to reproduce the experimental

results very well.

The crack pattern (shown in the initial configuration) for beam II is illustrated

in Fig. 12. It agreed well with the experiments. Less cracks occurred compared

to the failure of beam I. Also the load-deflection curves agreed well as seen

in Fig. 11b. The stresses in the tendon at failure and after the prestressing

loading case (after the stresses were transmitted into the concrete taking also

into account the shortening of the concrete that caused a stress reduction)

are shown in Fig. 10 for both beams. As can be seen, the tensile strength

in the steel was never exceeded. The beam clearly failed due to a combined

shear/anchorage failure.

6.2 The failure of the frame corners

Experiments on the failure of reinforced concrete frame corners subjected to

positive and negative moment loading were performed by Akkermann [44].

The experimental set-up is shown in Fig. 13.

The concrete tensile strength was ft = 2.6 MPa, Young’s modulus E = 24

GPa, compressive strength fc = 30 MPa and fracture energy Gf = 100 N/m.
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(a)

(b)

(c)

(d)

Fig. 12. The crack pattern for beam II at different load steps
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Fig. 13. The test setup of the frame corners (a) FC1 and (b) FC2.
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(a) (b)

Fig. 14. Frame corner FC1

Different kind of reinforcements were used as shown in Fig. 13. The yield

strength for the different reinforcements ranged from 510 MPa to 603 MPa

and the Young’s modulus from 180 GPa to 205 GPa. More details about the

experiments can be found in [44].

Frame corner FC1 was loaded with a positive moment, see Fig. 13a, and

failed due to concrete failure, meaning by the pulling of the corner. The bond

behavior was of minor importance in this example. Hence, the reinforcement

was connected rigidly to the concrete. We used a structured discretization.

For frame corner FC2, the bond behavior was important. Frame corner FC2

was loaded with a negative moment and failed due to a splitting failure. Since

the dimensions of FC1 and FC2 were equivalent, the same structured dis-

cretization was used for the concrete.

Fig. 14 shows the final crack pattern of the computation for structure FC1

in a two and three-dimensional view. The diagonal crack caused the failure

of the structure. Several small cracks at the inside of the frame corners were

observed, which matched well with the experimental data. Fig. 15 shows the

crack pattern and the deformed frame corner FC2 at different points of views.

The deformations are shown magnified. Fig. 16 shows the stress distribution

at the end of the computation in a two-dimensional view for one slab of the
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(a) (b)

(c) (d)

Fig. 15. Frame corner FC2, 3D view
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(a) (b)

Fig. 16. Frame corner FC2, 2D view

(a) FC1 (b) FC2

Fig. 17. The load displacement curves of frame corners FC1 and FC2 for different
numbers of particles
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specimen as well as the deformed configuration 3 . The splitting failure was

captured by the simulation. Fig. 17 compares the computational and experi-

mental load displacement curves of the two frame corners. They are in good

agreement.

7 Summary and discussion

We presented a geometrical and material non-linear three-dimensional rein-

forced concrete model. A meshfree discretization was used for the concrete.

Cracking was realized through the extended element free Galerkin method by

explicitly introducing the crack. Nodes whose domain of influence was cut by

the crack were enriched with the step function or a near top function. Once

a crack was initiated, a cohesive model guaranteed the correct energy dissi-

pation once the crack opens. The prestressing tendons, as well as the “usual”

reinforcement were modeled with finite elements using standard J2-plasticity

with isotropic hardening. The reinforcement was coupled to the concrete via

a bond model taking into account the pullout- and splitting-failure. In certain

cases, i.e. cases where it is obvious that the structure would not fail due to a

bond failure, a rigid coupling was used in order to connect the reinforcement

to the concrete.

The method was applied to several problems: prestressed concrete beams with-

out stirrup reinforcement and frame corners subjected to a positive and nega-

tive moment. In the first case, the beams failed due to a combined shear/anchorage

failure. This tendency was captured by a numerical simulation. We note that

we were not able to capture this failure mechanism in earlier studies in a

2D-setting [45]. We also were able to capture load-deflection curves.

The frame corners failed either due to a concrete failure or due to a splitting

failure. Both failure mechanisms were captured in the numerical simulation.

The load deflection curves agreed well with the ones observed in our experi-

3 illustrated magnified
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ments. Rotations played an important role in the frame corner experiments.

Therefore, a geometrical nonlinear formulation is essential. Our results im-

proved significantly in comparison to the ones in [30] that used a geometrical

linear analysis.
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[6] Bažant Z. Why continuum damage is nonlocal: Micromechanics argu-

ments, ASCE J Engng Mech 1991;117(5):1070–1087.
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