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Digital Image Elasto-Tomography: Combinatorial
and Hybrid Optimization Algorithms for
Shape-Based Elastic Property Reconstruction

Ashton Peters, J. Geoffrey Chase, and Elijah E. W. Van Houten*

Abstract—Results from the application of three nonlinear stiff-
ness reconstruction algorithms to two simple cylindrical geometries
are presented in this paper. Finite-element simulated harmonic
motion data with added noise were initially used to represent a
measured surface displacement dataset for each geometry. This
motion was used as input to gradient-descent, combinatorial op-
timization, and hybrid reconstruction algorithms that aimed to
reconstruct two shape-based parameters describing the internal
stiffness of the geometry. Both the combinatorial optimization and
hybrid algorithms showed significant advantages in reconstructed
parameter accuracy when compared with the traditional gradient-
descent approach, with success metrics improving by 13%-28%.
Results from the hybrid algorithm applied to silicone phantom dis-
placements demonstrated for the first time the ability of this type
of algorithm to reconstruct internal stiffness using only experimen-
tally measured surface motion data. Improvements in the sophisti-
cation of the hybrid approach should lead to improved accuracy in
reconstructed solutions, as well as enabling reconstructions where
the geometry is less straightforward.

Index Terms—Biomedical imaging, combinatorial mathematics,
finite-element methods, inverse problems.

1. INTRODUCTION

ANCEROUS breast tissue appears significantly stiffer in
C compression than the healthy breast tissue. This difference
is due in part to the density and nature of its cellular structure,
with studies showing a contrast of up to an order of magnitude
difference in Young’s modulus [1]-[3]. The ability of manual
palpation to detect abnormal growths within the breast is a direct
result of this stiffness contrast.

Elastographic techniques aim to image and quantify the elas-
tic properties of human tissue. The mechanical stiffness contrast
measured with elastographic methods is far greater than the
X-ray attenuation contrast measured with a screen-film mam-
mogram, which is regarded as the gold standard for breast cancer
screening [4]-[6]. Several groups have had success in recon-
structing the elastic properties of the breast volume using dif-
ferent elastographic methods, particularly MR elastography and
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ultrasound elastography [7]-[10]. Both techniques have yielded
comparable results to direct mechanical measurement of tissue.
Sensitivity and specificity figures for elastography are only now
being calculated through robust clinical trials. As such, data for
direct comparison with mammography are not yet available.

Digital-image-based elasto-tomography (DIET) is a novel
soft tissue elastography method that uses surface motion as
input to an inverse reconstruction algorithm that calculates the
internal stiffness distribution of a harmonically exited object.
This reconstruction problem has less input data, and therefore,
possesses a greater degree of ill-posedness than other modali-
ties, such as MR elastography, where full-volume datasets are
available. However, the ability to obtain data via inexpensive
digital imaging technology makes the approach practically and
clinically attractive. In addition, it may offer other advantages in
portability, speed of testing, and elimination of X-ray dose. An
outline of the major steps in the DIET process are as follows.

1) A steady-state sinusoidal motion is induced throughout an
object volume by an actuator placed against its surface.

2) Spatially calibrated digital imaging sensors arrayed
around the object capture sequential 2-D images of ref-
erence points on the surface of the object as they cycle
through the full range of steady-state motion.

3) Image processing algorithms convert consecutive sets of
2-D images of reference points on the surface into a har-
monic 3-D vector description of the point motion contain-
ing amplitude and phase information.

4) The vector description of each reference point’s motion
is used in an inverse reconstruction algorithm that gener-
ates an elastic modulus distribution within the 3-D object
volume.

Combinatorial optimization (CO) is a stochastic technique
that involves efficiently exploring problem search domains
to solve large and complex nonlinear optimization problems
faster than an exhaustive search [11]. Applications of CO in
the field of elastic property reconstruction are limited, though
increasing in popularity as more powerful computer systems
become mainstream. Matsuoka et al. used a genetic algorithm
(GA) in combination with finite element (FE) methods to
solve for the mechanical properties and internal structure of
composite materials. Here, the inverse algorithm optimized the
internal structure of a composite to obtain a desired Young’s
modulus value [12]. Olmi et al. performed a preliminary
investigation into the use of a GA for image reconstruction in
electrical impedance tomography (EIT). A numerical model
was used to simulate the electrical properties of a simple
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geometry containing a high-resistivity inclusion. While the GA
used in this study to perform image reconstruction was found
to have significantly higher computational cost than more
traditional Newton—Raphson methods, advances in computer
speed were seen as a pathway to the possible implementation
of such optimization techniques in real-time EIT systems [13].

The use of stochastic techniques in soft tissue elastography
is a new and emerging field. Zhang et al. developed a theoret-
ical framework for the application of a GA to problems in soft
tissue elastography. To ensure numerical stability, this method
constrained solutions using an assumed a priori property dis-
tribution. Simulating displacements with a synthetic numerical
model, stochastic methods were found to give consistently ac-
curate results for the elastographic reconstruction problem [14].
Khalil ez al. developed a combined GA and FE approach to solve
for elasticity values in vascular soft tissue. This study lumped
material parameters into discrete regions in order to simplify
the genetic encoding process and used a numerical model to
simulate displacements in a 2-D model. Successful elastic prop-
erty reconstructions were performed on both homogeneous and
heterogeneous models with multiple inclusions in the presence
of noise [15].

Though novel reconstruction techniques based on a stochas-
tic approach, such as GAs, have been applied to inverse prob-
lems where the FE method is used for system simulation, the
application of such methods to the tomographic elastography
problem has not been considered, particularly when using only
exterior surface motion measurements from experimental phan-
toms. Proof of concept studies for the DIET system, including
a first experimental proof of concept evaluation using exper-
imental data, have been previously published [16], [17]. The
research presented here describes a shape-based reconstruction
approach applied to both FE-simulated and phantom displace-
ments, where both deterministic and stochastic reconstruction
approaches are applied to simple heterogeneous geometries.

II. METHODS

Three inverse reconstruction algorithms were used to solve
for the internal Young’s modulus distribution of two different
phantom geometries. The first stage of the experiment involved
collecting surface motion data. This was obtained first using
the FE simulation described in Section II-A, and then, exper-
imentally from silicone phantoms described in Section II-B.
Section II-C-F describes the three inverse reconstruction
algorithms that are evaluated using both simulated and exper-
imentally measured surface motion data. Reconstruction of an
internal stiffness distribution was performed via two shape-
based parameters describing an interface position and a stiffness
contrast between the hard and soft material. The shape-based
parameterization approach was chosen as it allows a large vari-
ation in internal stiffness distribution to be modeled using only
two parameters. While this two-parameter approach would not
be appropriate in a clinical scenario for breast lesion detection,
it is sufficient to allow testing of reconstruction algorithms at
this early stage. A clinical implementation of this approach
would require an increased number of parameters to effectively
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Fig. 1. Geometry of the two phantoms in this experiment. (a) Stacked geom-
etry where the cylinder is divided vertically into two regions with hard material
below the soft material. (b) Concentric geometry where a hard vertical cylinder
is contained within a larger soft cylinder.

describe the more complicated internal geometry expected in
such cases. The overall reconstruction approach would remain
similar to that presented here; however, increasing recon-
structed parameters would lead to an increased computational
demand.

An undamped material model was used to reduce the number
of parameters required for reconstruction [18]. This model
was found to be adequate for testing reconstruction algorithms
using both simulated data and experimental data from silicone
phantoms. For consistency within this experiment, the same
undamped model was used to perform reconstructions on
the experimental data. While such a model may not provide
an exact match to in vivo tissue behavior, it was considered
sufficient for this preliminary study. Clinical applications
in vivo will require damping characterization that is readily
included through the use of a complex shear modulus in this
time-harmonic displacement case.

A. Finite-Element Simulation

Surface motion datasets required for the simulation study
were generated using FE software written in Fortran 90. Two
cylindrical phantoms composed of distinct hard and soft regions
were considered, with the specific geometries shown in Fig. 1.
The overall phantom dimensions were chosen to roughly ap-
proximate the size order of a female breast, the intended target
of the final DIET system.

The distribution of Young’s modulus F throughout each ge-
ometry was described by two independent model parameters.
The interface position P between hard and soft material was
defined for the stacked geometry of Fig. 1(a) as h/H and d/D
for the concentric geometry of Fig. 1(b). In both cases, H =
D =75 mm.

The stiffness contrast C' was defined for both simulated mod-
elsas E), / E;. The value for E was fixed at 20 kPa, a value cho-
sen to be of the same order as Young’s modulus measurements
of fat and glandular tissues in the human breast [18]. Poisson’s
ratio v and density p were fixed at 0.45 and 1000 kg/m?, respec-
tively, approximating the nearly incompressible nature and high
water content of human tissue.



PETERS et al.: DIGITAL IMAGE ELASTO-TOMOGRAPHY COMBINATORIAL AND HYBRID OPTIMIZATION

TABLE I
PARAMETER VALUES REPRESENTING REAL DATA FOR
SIMULATION STUDIES

Geometry Interface Position  Stiffness Contrast
Py Co
Stacked 40% 400%
Concentric 50% 300%

The corresponding motion datasets where generated by adding noise to FE
simulated motion at these parameter values.

An FE mesh containing approximately 169 000 linear tetra-
hedral elements and 31 000 nodes was created using the prepro-
cessing software Gambit. The average element edge length was
3 mm, which represented a displacement converged mesh with
relative displacement error of less than 4%. The bottom face of
the cylinder was constrained in the horizontal plane and actuated
vertically with an amplitude of 1 mm at a frequency of 50 Hz.
Both phantom geometries were simulated using the same mesh,
with Young’s modulus values assigned nodally based on the ge-
ometric location within the cylinder and the specified values of
P and C for a given case.

The target parameters Py and C that represented the real
dataset for each geometry are shown in Table I. All 3215 nodes
on the vertical exterior of the cylinder were chosen as refer-
ence points where the motion was measured. This sampling
method provided a simple approximation to the final DIET sys-
tem, where motion data from the full surface will be available.
Noise added to the simulated real datasets was normally dis-
tributed with a mean of zero and a variance of 10% of the
average reference point displacement amplitude.

FE simulation was also used to generate a motion database for
both geometries across a range of values for P and C'. Simula-
tions were performed at interface positions P ranging from 10%
to 90% with increments of 1%, and stiffness contrasts C' from
100% to 500% with increments of 5%. These parameter limits
defined the problem domain for all reconstruction algorithms.
While a small systematic error is introduced when discretizing
the parameter domain in this manner, the error was considered
insignificant, given the limited accuracy required at this early
stage of research. Contrast values were chosen to give a con-
servative range based on independent measurements of ex vivo
tissue stiffness [1], [2]. A total of 6561 simulations for each
geometry were performed on a workstation with dual Advanced
Micro Devices (AMD) Opteron processors using the Multi-
frontal Massively Parallel Sparse (MUMPS) matrix solver [19].
Each FE simulation required approximately 100 seconds. This
database of simulations allowed the evaluation of error over the
problem domain prior to attempting reconstructions, reducing
the time taken to perform parameter reconstruction to less than
1 s per iteration.

B. Experimental Phantom Data

Experimental motion data were generated from two silicone
phantoms created with the same geometry as the simulated mod-
els. Fig. 2 shows the experimental setup of the actuator, dual
cameras, and strobe for lighting, as well as the two silicone
phantoms used for motion capture. Camera calibration was per-
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Fig. 2. Experimental setup and silicone phantoms used for experimental pa-
rameter reconstruction, where the surface reference points used for motion com-
parison are visible. (a) Experimental setup. (b) Stacked phantom. (c) Concentric
phantom.

formed using standard techniques outlined in more detail in [16].
Harmonic motion data were collected and processed from these
phantoms using an experimental setup previously described for
homogeneous gelatine phantoms [17], [20], where actuation was
at 100 Hz, 0.5 mm amplitude.

A column of 15 small dots on the vertical exterior of the
phantoms formed the reference points used for motion tracking
and comparison in the experimental cases. The use of tightly
controlled actuator position and strobe lighting allowed a se-
quence of 20 images of the phantom surface to be taken with
each camera. Calibration and measurement error arising from
image capture and processing has been characterized at a level
of +1-2 pixels, corresponding to a position error of 0.1-0.2 mm.
Any adverse affects of this error are minimized when consider-
ing that this error is approximately constant for small regions
of space. Using the known calibration information from each
camera, the 2-D position of each reference point was converted
into a 3-D position in a fixed laboratory reference frame, from
which comparison with FE simulation could take place. Previ-
ous static mechanical property tests and analysis of homogenous
phantoms have indicated that the soft and hard silicone materials
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Fig. 3. Displacement error metric defined in (1), evaluated across the domain
of interest for both geometries. In both cases, the black cross indicates the target
parameter combination. The mean surface displacement in each case was 1.9
and 1.5 mm, respectively. The average motion error metric has an upper limit
of 5 mm in these plots. Noise was added to the target data before the metric was
calculated. (a) Stacked geometry. (b) Concentric geometry.

have Young’s modulus values of 25-30 kPa and 100-130 kPa,
respectively [21].

C. Parameter Reconstruction

All three nonlinear parameter reconstruction algorithms pre-
sented minimize the squared error between a set of “measured”
displacements at the target parameters y and displacements cal-
culated based on current estimates of parameters P and C, f(6),
where 6 represents the combination of both P and C'. The error
metric ) represents the mean squared motion error across all
reference points, and is defined as

_ SN Ny — £(0)i)1?
Q_\/ : 3N D

where IV is the number of reference points. This error metric
formed the cost function that all reconstructions were performed
against.

Fig. 3 shows the error metric from (1) calculated across the
problem domain, where the “measured” displacements were
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Fig. 4. Schematics of the GD and CO algorithms used for parameter recon-
struction. (a) GD. (b) CO.

those simulated at the target parameters shown in Table I,
with the addition of noise. The minimum error value for the
stacked geometry is 0.39 mm, and for the concentric geometry is
0.24 mm. The cross-hair in the figures shows the target parame-
ter combination, which corresponds to the minimum error met-
ric in both cases. This error information provided both data and
context to the reconstruction algorithms tested subsequently.
Parameter updates for P and C within all algorithms were
rounded to the nearest 1% and 5%, respectively. Additionally,
the value of P was constrained between 10% and 90%, and C
between 100% and 500%, restricting all reconstructions to the
problem domain bounding the target parameter combination.

D. Gradient-Descent Algorithm

The gradient-descent (GD) algorithm used for parameter re-
construction was based on the Gauss—Newton method, and is
described in Fig. 4(a). For the isotropic case, where v and p
were assumed to be known and constant throughout, only P
and C required reconstruction. The full Gauss—Newton iterative
formulation is developed in more detail in [16], and results in
the equation

1
_ or\'(of AW
=045 (55) (55) (55)w-s0n] @

where r represents the current iteration and ¢ is chosen to influ-
ence the step size of the algorithm. In this case, the approximate
Hessian matrix (9f/80)" (0 f /80) was not regularized for sta-
bility due to the small number of unknown parameters compared
with the number of known surface motions.

For the case where reconstructed parameters are not nodally
distributed and are independent of the FE mesh used for simu-
lation, the Jacobian matrix (0f/00) requires rederivation each
time the reconstructed parameters are changed to describe dif-
ferent geometry. As this process is time-consuming and the
resulting Jacobian terms are geometry-specific, the Jacobian
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was generated using a finite-difference approximation in which
matrix columns were approximated as

(0 +A) = f(0))

J (i) = A 3)

where A represents a small change in either P or C'. This ap-
proach allows a straightforward derivative calculation regardless
of the parameters and geometry used.

Reconstructions were performed with a range of initial pa-
rameter guesses across the problem domain. Initial parameter
guesses were generated for P every 2% between 10% and 90%,
and for C' every 10% between 110% and 490%, resulting in a
total of 1521 reconstructions with starting locations spanning
the problem domain. A reconstruction was stopped when any of
the following criteria were satisfied.

1) The surface motion error metric €2 was less than a predeter-
mined minimum based on the minimum possible surface
motion error value.

2) The algorithm step size was zero for both parameters for
more than two consecutive iterations.

3) A total of 100 iterations had been performed.

The first criterion represented a definite successful recon-
struction. The second was a case where the gradient was either
so shallow that the algorithm halted or so steep that the re-
construction continually attempted to step outside the problem
domain, and the update was ignored. The third case covers a
failure to converge or to converge quickly enough.

E. Combinatorial Optimization

The CO algorithm implemented in this experiment utilized the
population mating mechanisms provided by simple GAs with
the more sophisticated selection criteria provided by simulated
annealing (SA) [22], [23]. The basic structure of the algorithm
is shown in Fig. 4(b) and is described in the following.

1) The population comprised ten chromosomes and a maxi-

mum of 100 generations were simulated.

2) Random initial guesses for P and C' were assigned to
all chromosomes in the population. All guesses were re-
stricted to lie within the problem domain 10% < P <
90% and 100% < C < 500%.

3) FE simulation was performed to obtain surface motion and
a surface motion error value from (1) for all chromosomes.

4) A new generation was formed by mating all chromosomes
in the population using roulette wheel selection [24]. In
this experiment, mating was performed by swapping bi-
nary bits between the two chromosomes involved. The
probability of bits within each chromosome pair swap-
ping was 90%. Mating was not performed if it resulted
in new chromosomes having parameter values outside the
problem domain.

5) Random mutation was performed on all chromosomes in
the new generation. Mutations were performed at bit level
where the probability of a single bit within a chromo-
some flipping was 2%. As with mating, mutation was re-
stricted to generating parameter values within the problem
domain.
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6) A Metropolis scheme was used to select the chromosomes
that make up the new generation [25]. The probability
that a chromosome from the new generation replaced its
counterpart in the previous generation was defined as

=4/ ) @

T,
where 7 is the current generation and 7" is a system-
wide temperature variable that was decreased each gener-
ation. In this experiment, the temperature was decreased
logarithmically between values of 10 and 0.5 over 100
generations.

7) The error metric €2 and parameters P and C corresponding
to the best fitting chromosome were tracked over all gen-
erations. The algorithm was stopped early if this lowest
Q) value was less than a predefined limit. This indicated a
successful reconstruction.

Haccept = exp <

F. Hybrid Algorithm

The hybrid algorithm developed for this experiment was a
combination of previously described CO and GD algorithms
that aimed to combine the positive aspects of both methods. The
first stage of the algorithm involved running the CO algorithm
shown in Fig. 4(b) for 100 generations. Upon completion of
CO, the parameter set with the lowest error G, = {P, C'}. was
used as the initial guess for a GD reconstruction that progressed
according to Fig. 4(a) for up to ten iterations. The finish point of
the GD reconstruction was considered the solution of the hybrid
reconstruction method. As such, the hybrid algorithm was not
a “ground-up” implementation, but rather a serial combination
of the CO and GD algorithm, where the execution of each stage
was controlled using Linux shell scripting.

III. RESULTS

The overall success of each type of reconstruction algorithm
across all starting values for a particular geometry was repre-
sented by a cumulative, normalized parameter error value:

g1 [(ZEP Pl B G -Gl
50 Co

)/2N ®)

where P and C) are the target parameters from Table I and IV is
the total number of reconstructions performed on the geometry
in question.

The distribution of GD reconstructed solutions is shown in
Fig. 5(a) and (b). The success metric for the GD algorithm
when applied to the stacked and concentric geometries is 71.2%
and 78.2%, respectively. In both cases, the majority of failed
reconstructions were those that attempted to step to parameter
values outside the problem domain. These reconstructions can
be seen at lower left of Fig. 5(a) and upper left of Fig. 5(b).
None of the GD reconstructions were stopped due to a failure
to converge, indicating that a sufficient number of iterations had
been performed.

To allow statistical comparison with the GD algorithm, the
same number of CO reconstructions (1521) were performed
on each geometry. Fig. 5(c) and (d) shows the distribution of
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Fig. 5. Distribution of the reconstructed results of 1521 GD, CO, and hybrid reconstructions performed on both simulated geometries. The intersection of

the dashed lines indicates the target parameter combination in each case. (a) GD algorithm, stacked geometry. (b) GD algorithm, concentric geometry. (c) CO

algorithm, stacked geometry. (d) CO algorithm, concentric geometry. (¢) Hybrid

TABLE II
SUMMARY OF RECONSTRUCTION ALGORITHM SUCCESS METRIC ¥ ACROSS
BOTH STACKED AND CONCENTRIC GEOMETRIES

Algorithm  Stacked Concentric  Simulations
GD 71.2% 78.2% 60
CO 97.8% 91.2% 1000
Hybrid 98.9% 94.2% 1060

The total number of FE simulations required for each reconstruction
algorithm is also given.

reconstructed solutions. The success metric ¥ for the stacked
and concentric geometries is 97.8% and 91.2%, respectively.
Less accurate reconstructed solutions are largely confined to a
smaller area or band adjacent to the target location.

The final simulated data reconstructions involved the same
1521 instances of the hybrid reconstruction, using results from
the previously performed CO as the first phase. The recon-
structed solution plots for both geometries are given in Fig. 5(e)
and (f), where success metrics for the stacked and concentric ge-
ometries are 98.9% and 94.2%, respectively. A clear reduction
in solution spread is apparent when comparing Fig. 5(a) and (b)
with Fig. 5(c) and (d) and 5(e) and (f). The success metric ¥
for the three algorithms applied to simulated data across both
phantom geometries are summarized in Table II.

Fig. 6 is the result of 200 instances of the hybrid recon-
struction algorithm applied to the experimental data from both
stacked and concentric silicone phantoms. Here, due to a higher
motion error sensitivity to the soft modulus value, the stift-
ness contrast parameter C' represents the ratio E / Ej,, with the

algorithm, stacked geometry. (f) Hybrid algorithm, concentric geometry.

hard modulus fixed at 100 kPa. Panels (a) and (b) clearly show
the further reduction in error metric after iteration 20, where
the hybrid algorithm switches from CO to GD, particularly
in the stacked geometry case. Also evident is a reduction in the
spread of the reconstructed results from iteration 20 onwards
as the GD algorithm encourages convergence. The distribution
of reconstructed results for the stacked geometry indicate that
the interface position is well reconstructed with the stiffness
contrast underestimated by 5%—10% (absolute). The concentric
geometry results in Fig. 6(d) show a greater spread for both
parameters, with both stiffness contrast and interface position
slightly underestimated.

IV. DISCUSSION

The error plots in Fig. 3 provide a clear indication of the
error metric trends across the problem domain. The large ar-
eas of resonance observed are a result of the undamped linear
mechanical model used for FE simulations. The stacked geom-
etry has a more complicated resonance pattern as the geometry
places the interface between hard and soft material perpendicu-
lar to the mechanical waves generated by actuation of the model.
While the areas of resonance indicate simulated displacements
becoming unrealistically large, they also provide a challenging
problem domain with clear local minima. A large area of low
error surrounds the target parameter combination for the con-

centric geometry, making this reconstruction problem especially
difficult.
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The large spread of solutions for the GD reconstructions
means a high chance that a randomly selected starting position
will not lead to a successful reconstruction. Analysis of failed
reconstructions showed that when started on the opposite side
of a resonance band, the GD solver was not able to reconstruct
the correct solution. However, the solver performed very well
when started in the vicinity of the solution, supporting its use in
the hybrid algorithm, given the small number of FE simulations
required to obtain the solution when it succeeded.

The concentric geometry demonstrates that while CO is suc-
cessful at avoiding local minima, its ability to differentiate be-
tween the correct solution and the one close to it is limited. This
limitation constrains the algorithm’s effectiveness when dealing
with problems where the correct solution lies surrounded by a
continuity of very similar solutions. However, a qualitative com-
parison of Fig. 5(b) and (d) clearly shows an obvious clustering
about the correct solution for the CO reconstruction. Depending
on the contrast required, this may be clinically acceptable, given
the higher success metrics observed.

The hybrid algorithm clearly had the greatest success across
both geometries in the experiment, with success metrics above
94% for both geometries. This result demonstrates the potential
for a reconstruction algorithm combining the advantageous as-
pects of GD and CO to have markedly greater success than either
algorithm in isolation. Both the hybrid and CO algorithms were
superior to the GD algorithm in their ability to identify a single
unique solution. Although both CO and hybrid algorithms had
a spread of reconstructed results, these were clustered about the
minimum error solution.

The number of forward simulations required for each re-
construction algorithm gives an estimate of the computational
cost of each approach. While the CO and hybrid methods have
significantly higher numbers of simulations required, it is im-
portant to note that a large number of these simulations are
independent and could be performed in parallel across multiple
processors. For the CO algorithm, which also formed the first
100 iterations of the hybrid method, this would reduce the time
taken to complete all simulations by a factor of 10 as each gen-
eration contained ten independent chromosomes. Future work
will investigate the performance of the CO method, given less
generations in an effort to reduce its computational cost.

Reconstructions on both geometries clearly benefitted from
the use of a hybrid algorithm, with the additional reduction in
mean error and error spread visible in Fig. 6(a) and (b). The less
significant reduction of error metric in the concentric case after
iteration 20 appears to be due to the better performance of the
CO phase of the reconstruction on this geometry. Though there
is less room for improvement in this case, the addition of the
GD algorithm can still be seen to reduce the mean error metric
and error spread, both of which are important when considering
the desired repeatability of DIET stiffness reconstructions.

The reconstructed parameter values from the experimental
phantom data in Fig. 6(c) and (d) indicate a reasonable agree-
ment with measured values for both geometries, with the stacked
case showing a closer match. The measured stiffness contrast
was based on static measurements from silicone samples pro-
duced at a different time to the phantoms, meaning the measured
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value was not expected to provide an exact target for recon-
struction, given the number of experimental uncertainties. The
reduced spread in the positional parameter for the stacked ge-
ometry reconstructions in Fig. 6(c) is likely due to the reference
motion measurement being located directly on the hard and soft
silicone regions, allowing the interface position to be accurately
identified due to the step change in shear wavelength across
the two materials. The concentric geometry had a significantly
lower error sensitivity to interface position, and consequently,
less accurate interface position estimates. The physical separa-
tion of the measurement locations from the stiffness interface
provides evidence as to why this loss of accuracy occurs.

Improvements in the sophistication of both the GD and CO
should lead to increased reconstruction success rates. Both al-
gorithms are very simple implementations of these techniques,
and could benefit from added features, such as regularization
and more sophisticated evolution strategies. The hybrid algo-
rithm could be improved by a closer investigation of the best
combination of constituent algorithms, possibly applying both
techniques simultaneously rather than in sequence.

Reducing noise is a constant priority when working with
accurate experimental systems such as DIET. Increasing the
image resolution beyond the two megapixel images currently
used may allow for more accurate calibration and a reduction
in position error. However, the increased computation required
when dealing with larger images outweighed the gain possible
with this approach, particularly considering other sources of
experimental error that are not as easily controlled.

Adding further reference markers for motion tracking will
allow more accurate characterization of the phantom surface
motion during actuation. Additionally, using a regular grid
or random array of markers on the phantom surface will al-
low any effects of asymmetry in the phantom to be observed.
This approach will be taken when more realistic phantom tri-
als are undertaken with the DIET system. In addition, using
circular instead of rectangular surface markers will allow for
more accurate reference point tracking, given the projective in-
variance of a circle’s centroid when moving on the phantom
surface.

The isotropic material model used for this study is likely
to be in close agreement with the silicone material used for
the experimental phantoms. When considering in vivo breast
tissue, however, this assumption may not prove accurate, given
the considerably more complicated internal structures present.
However, recent elastography studies have obtained successful
in vivo results using the simplified isotropic assumption [9],
[18].

The match between simulated and experimental boundary
conditions was observed to be very close during phantom ac-
tuation, minimizing any possible error due to a mismatch in
constraint modeling. When applied in a clinical scenario, the
boundary conditions used for FE simulation will need to take
into account the more complicated actuator/breast interface as
well as the conditions at the chest wall. The development of
these conditions and their influence on both measured motion
and reconstructed results will be the target of subsequent study
in this field.
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Future work will concentrate on repeating these results with
more complicated geometries that are a better approximation to
the final DIET system. In addition, a potential exists to apply
statistical methods to further improve the reconstruction results
and computational efficiency. Such statistical methods might
allow the combination of several reconstruction runs into a pool
of global reconstructions, from which metrics such as the mean
and variance can give an indication not only of the reconstructed
result, but the confidence in such a result. These techniques
would, however, increase the computational cost over a single
reconstruction when performed on a serial system due to the
large number of independent reconstructions required. However,
parallel systems provide a potential method for reducing the total
time needed.

V. CONCLUSION

The investigation performed shows that the shape-based re-
construction is able to identify both a positional and a stiff-
ness contrast parameter for varying physical geometries in both
simulation and phantom studies. Of the three reconstruction al-
gorithms tested, a hybrid algorithm combining aspects of GD
and CO is clearly the most successful at avoiding local min-
ima and reaching the global optimal solution, particularly in
cases where a GD algorithm alone failed to identify the target
parameter combination. There exists significant potential to re-
fine and improve this form of algorithm when it is applied to
more clinically realistic geometries beyond the proof of concept
implementation considered here.
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