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Abstract
Mechanical ventilation (MV) is a core life-support therapy for patients suffering respi-

ratory failure or acute respiratory distress syndrome (ARDS). Respiratory failure is a

secondary outcome of a range of injuries and diseases, and results in almost half of

all intensive care unit (ICU) patients receiving some form of MV. Funding the increas-

ing demand for ICU is a major issue and MV, in particular, can double the cost per day

due to significant patient variability, over-sedation, and the large amount of clinician

time required for patient management. Reducing the cost in this area requires both a

decrease in the average duration of MV by improving care, and a reduction in clinical

workload.

Model-based methods offer a way of using individual patient physiology and response

to MV to suggest optimal ventilator settings. In particular, models and data can be

used to gain insight into specific lung mechanics, such as pulmonary elastance and re-

sistance. Importantly, these models can be used to quantify aspects of patient lung

physiology over time, capturing a patient’s time-dependent disease state as patient con-

dition evolves. These models have the potential to enable predictive, personalised, and

potentially automated, approaches to MV.

The research in this thesis explores creating a more effective method of clinical trial
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design for mechanical ventilation trials. The high level of patient variability and the

non-normal distribution of the key clinical outcome, length of mechanical ventilation,

means many MV clinical trials struggle to achieve statistical significance. As a result,

very large sample sizes are required to achieve statistical power to prevent inconclusive

findings that cannot be extrapolated to other care units. Equally, non-significant find-

ings do not inform the field or allow it to improve. A Monte-Carlo simulation method

was developed and used to investigate several outcome metrics of ventilation treat-

ment. As these metrics have highly skewed distributions, it also included the impact of

imposing objective clinically relevant exclusion criteria on study power to enable bet-

ter design for significance. This method combined with the use of composite outcome

metrics, such as ventilator free days, enables high powered studies to be developed

with substantially lower sample size requirements, enabling better study design and

outcomes.

This thesis primarily focusses on the development of virtual patients. Virtual patients

are used to personalise and optimise care for each individual patient by predicting re-

sponse to a change in treatment prior to implementing the change. This personalisation

is especially critical for ICU patients, who exhibit a great deal of variation in condition,

and response to treatment. In particular, these virtual patientmodels predict the effects

of a recruitment manoeuvre (RM) on lung elastance to minimise the risk of ventilator

induced lung injury (VILI) while also maximising lung recruitment, and thus oxygena-

tion.

The model was developed using physiologically relevant basis function models describ-

ing the effects of alveolar recruitment, lung distension, and airway resistance on overall

lung elastance and resistance over pressure, volume and flow. The goal was to ensure

the virtual patients model predictions and information provided was clinically rele-

vant. It was validated using clinical data from two diverse sets of data from trials in
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New Zealand (the CURE trial) and Germany (McREM trial). A high level of fitting accu-

racy (RMS error) was seen for predictions of PEEP changes of up to 10 cmH2O, indicat-

ing the selected basis functions accurately describe the behaviour of the dominant lung

mechanics in an RM and could have potential as a diagnostic tool.

The model showed a high level of accuracy with predicted peak inspiratory pressure

error (median [IQR]) of 6.3 [4.5 - 8.3]% in the CURE cohort and 6.2 [5.0 - 9.1] % in the

McREM cohort, even for PEEP changes up to 10 cmH2O. This capability to accurately

predict pressure so far ahead in an RM provides important clinical insight, as it can

enable the clinician to assess early in a RM when increases should either be stopped,

or when much smaller incremental changes should be made. This knowledge could

significantly aid in the efficiency of RMs, reducing clinical workload and improving

patient care and outcomes.

A less studied impact of increasing PEEP is the added pressure results in an increased

end-expiratory (recruited) lung volume, or dynamic function residual capacity. It is

essentially the residual additional lung volume additional lung volume (Vfrc), due to

alveolar recruitment at this higher pressure. Determining Vfrc is invasive, typically re-

quiring imaging that either cannot be carried out at the bedside or is not available in

every care unit. A model-based method to predict additional recruited lung volume

(Vfrc) gained throughout a recruitmentmanoeuvre was developed and validated against

clinical data. Results were promising with high accuracy shown in both approximating

Vfrc and using this information to predict lung behaviour at higher PEEP levels. The

results offer a clinical opportunity to titrate PEEP based on the estimated lung volume

recruited, a direct indication of the success of an RM. Combined with prediction of the

point of minimum elastance and prediction of peak inspiratory pressure this informa-

tion would allow clinicians to optimise the trade-off between the risk of VILI and lung

recruitment, in real-time as patient condition evolves, improving patient care and out-
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comes.

The incorporation of virtual patient methods into mechanical ventilation will aid the

healthcare sector in meeting increasing demand in intensive care units. In particular,

a change from more generic protocols to the use of predictive, patient-specific models

will improve individual patient outcomes while also reducing clinical workload. The ef-

ficacy of the physiologically relevant model in determining lung behaviour throughout

an entire RM in ventilation indicates it could be used as a diagnostic clinical tool. The

future use of virtual patients and cohorts will also allow new treatments and therapies

to be safely and more efficiently tested, allowing for faster advancements in the field.
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(2019). ”Optimisingmechanical ventilation throughmodel-basedmethods and au-

tomation”. Annual Reviews in Controls. http://dx.doi.org/10.1016
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CHAPTER1
Introduction
1.1 Introduction
Mechanical Ventilation (MV) is a core life-support therapy for patients suffering from

respiratory failure or acute respiratory distress syndrome (ARDS) (de Matos et al., 2012;

Girard & Bernard, 2007; Herridge et al., 2003; Lorx et al., 2010; Petrucci & De Feo, 2013;

Slutsky, 1993; Slutsky & Tremblay, 1998; Sundaresan et al., 2009). Respiratory failure is

a secondary outcome of a range of injuries and diseases, resulting in 30%-50% of Inten-

sive Care Unit (ICU) patients receiving some form of MV (Dasta, McLaughlin, Mody, &

Piech, 2005; Metnitz et al., 2009). While improvements in therapy have reduced mortal-

ity rates in ventilated patients since 1995 (Maca et al., 2017), the variability and severity

of patient-specific condition makes care difficult to optimise. Thus, MV still has an over-

all mortality rate of 30.5% (Wunsch et al., 2010), where the sub-group diagnosed with

ARDS have a mortality rate of 45% (Maca et al., 2017). Overall, MV is a common therapy

operating at the forefront of life support and preservation in the ICU.

A primary, if not singular, issue facing healthcare sectors is funding for increasing de-

mand. Intensive care is one of the most expensive hospital departments and MV, in
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particular, is an expensive treatment due to patient variability and the resulting over-

sedation, and the large amount of clinician time required (Cohen & Booth, 1994; Dasta

et al., 2005). In fact, MV doubles the cost of an ICU stay (Dasta et al., 2005). Reducing the

cost of this expensive therapy requires both a decrease in the average duration of MV

by improving and personalising care, and a reduction in clinical workload. Both might

be safely achieved by automating some or all aspects of clinical MV care.

Incorporating model-based methods into MV care could allow clinicians to gain insight

into patient condition and improve safety on a patient level through the forward predic-

tion of outcomes, such as peak inspiratory pressure (PIP) and volume gain with changes

in treatment. On a cohort level, development of virtual patient models and methods

would be essential for design and efficient testing of clinical protocols with a lower pa-

tient burden (Chase, Desaive, & Preiser, 2016; Chase et al., 2018).

1.2 Mechanical Ventilation
The ultimate aim of MV is to maintain adequate gas exchange in the alveoli. Alveolar

collapse is common in ARDS, leading to seriously inhibited gas exchange and hypox-

aemia (Ashbaugh, Bigelow, Petty, & Levine, 1967). To induce alveolar opening, a pres-

sure differential must be applied physically across the lungs (Corrado & Gorini, 2002).

This can be achieved with either negative or positive pressure ventilation.

Historically, this differential was achieved through devices such as the iron lung that

exposed the patient’s torso to negative pressure to facilitate lung expansion and thus

inspiration (Corrado & Gorini, 2002; Maxwell, 1986; Thomson, 1997). This approach was

useful for patients whowere presenting with a condition, such as polio, where paralysis

of the chest muscles and diaphragm meant that they could not carry out the muscle

contractions required for inspiration. It allows for some patient-controlled breathing,

as it is primarily designed to provide extra breathing support. The development of a

polio vaccination along with the development of more efficient methods of positive-
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pressure ventilation meant that iron lungs are no longer commonly used.

Figure 1.1: A diagram of a typical iron lung used throughout the polio epidemic of the

20th century.

Today, positive pressure ventilators are used to treat most patients suffering from acute

respiratory failure. A clinician-set inspiratory pressure is applied directly to the air-

ways of the lungs. This positive pressure ventilation is achieved either invasively via an

Endotracheal Tube (ETT) or tracheotomy, or non-invasively using a continuous positive

airway pressure (CPAP) or bi-level positive airway pressure (BIPAP) mask (Brochard et

al., 1994; Kárason, Antonsen, & Aneman, 2002). This thesis will focus on invasive venti-

lation delivered through an ETT.

Both positive and negative pressure ventilators can cause mechanical lung damage,

known as ventilator-induced lung injury (VILI), if incorrect ventilator settings are used

(Albaiceta & Blanch, 2011; Alviar et al., 2018; M. Amato, Barbas, Medeiros, Magaldi, &

Schettino, 1998; de Matos et al., 2012; DiRocco, Carney, & Nieman, 2007; Herridge et al.,

2011; Jandre, Modesto, Carvalho, & Giannella-Neto, 2008; Major, Shaw, & Chase, 2018;

Marini, 1994; Pinhu, Whitehead, Evans, & Griffiths, 2003; Ranieri et al., 2011; Simonis

et al., 2015; Slutsky & Ranieri, 2014; Slutsky & Tremblay, 1998; Terragni, Rosboch, Lisi,
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Viale, & Ranieri, 2003). This lung damage can result in additional lung injuries, such

as alveolar-capillary lesions, alterations in permeability and oedema (M. Amato et al.,

1998). In particular, VILI occurs as a result of the ventilator applying excessive pres-

sure or tidal volume (Chiumello et al., 2008; Lipes, Bojmehrani, & Lellouche, 2012; Zick

et al., 2013). This exacerbates the existing condition and extends the patient’s stay in

the ICU. This is a particularly significant problem for patients presenting with ARDS

or Acute Lung Injury (ALI), heterogeneous lung diseases causing regional lung collapse

(Carvalho et al., 2007; Chiew, Pretty, Moltchanova, et al., 2015; S. Grasso et al., 2009;

Kheir et al., 2013), with a mortality rate of approximately 40-50% (Brower et al., 2000).

However, equally, not enough pressure can result in lung units not opening enough, po-

tentially causing hypoxaemia and atelectotrauma due to repeated opening and closing

(Blanch & Villagrá, 2004; Crotti et al., 2001; Halter et al., 2003; Jobe, 2009; Pelosi et al.,

2001; Slutsky, 1999; Suarez-Sipmann, 2014). Hence, optimising ventilator settings is a

careful balance between two forms of risk, where too little or too much is problematic

(Major et al., 2018).

The current standard of MV therapy in the ICU relies heavily on either clinician intu-

ition, or on a generalised and protocolised approach (Briel et al., 2010; Brower et al.,

2004; Meade, Cook, Griffith, et al., 2008; Slutsky & Ranieri, 2000). These generalised

approaches target improved outcomes for the cohort. However, they disregard the het-

erogeneity of many lung diseases and patient variability, lacking patient-specificity. In

addition, a generalised approach ignores the wide range of breathing data available for

each individual patient. Thus, a method to guide patient-specific MV therapy is needed

to improve individual patient outcomes beyond care using generalised protocols.

To achieve this goal, a combination of numerical methods along with an understand-

ing of the physiological processes carried out in breathing enables the development of

models to guide clinical decisions.
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1.3 Physiology
While the warm blooded nature of mammals means they can respond to stimuli im-

mediately, this requires a steady supply of energy. The great bulk of this energy is

generated in the mitochondria using an oxygen requiring process of oxidative phos-

phorylation where the body effectively burns reduced fuels such as carbohydrates and

lipids to carbon dioxide and water. Hence, oxygen induced energy generation, and thus

oxygen, are critical to physiological function.

1.3.1 Structure of the Lungs
The airways of the lungs are a series of branching tubes; starting with the trachea,

bifurcating into the left and right bronchi, and continuing to divide until they reach

the terminal bronchioles (West, 2012). These branches are the extent of the conducting

part of the airways which transport oxygen from the outside to the gas exchanging

regions of the lungs. As the conducting airways do not carry out gas exchange, they are

described as the anatomic dead space (West, 2012).

Past this point, the terminal bronchioles continue to split into respiratory bronchioles,

which contain some alveoli and can carry out gas exchange. The process of bifurcation

continues until the airways reach the estimated 480 million alveolar sacs where gas ex-

change occurs (Ochs et al., 2004). The thin walls of the alveoli combined with a total

surface area of over 100m2 allows for sufficient diffusion of oxygen from the alveoli to
the capillaries wrapped around them (West, 2012). The process works in reverse for

carbon dioxide. The rate of this diffusion is dependent on the partial pressure differ-

ence between the alveoli and the capillaries.

1.3.2 Ventilation
The lung does not participate in the actual muscular movement required for inflation.

This action is carried out by the diaphragm and intercostal muscles. There is no me-
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Figure 1.2: Structure of the lung airways (West, 2012)

chanical connection between the lungs and surrounding tissues. Instead, inflation is

based on a transmural pressure gradient between the thoracic cavity and the lung.

This motion is created by the contraction of the respiratory muscles, causing a nega-

tive pressure gradient between the thoracic cavity and the lung. In turn, this gradient

creates a negative pressure between the lung and the environment. Air is drawn into

this lung to equate the pressure gradient, creating the inspiratory pattern of normal

breathing. Negative pressure ventilators, such as the iron lung shown in Figure 1.1,

seek to replicate this behaviour by periodically altering intrathoracic pressure. Positive

pressure ventilation is more commonly used in care units, and involves the ventilator

providing pressure to the airways to open the alveoli for gas exchange (F. Grasso et al.,

2008).
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Gravity also impacts the level of ventilation throughout the lungs (Surrowes, 2005; Swan,

Clark, & Tawhai, 2012). The amount of inhaled air follows a topographic distribution

caused by posture, airway tree shape and tissue deformation (Swan et al., 2012). Un-

derstanding the influence of these factors on respiration is significant because, while

the human lung often operates in the upright position, mechanical ventilation is ad-

ministered while the patient is either in the supine or prone position. A large scale

effect of the effect of gravity is preferential ventilation in parts of the lung (Kim et al.,

2002; Swan et al., 2012).

1.3.3 Perfusion
The lungs deliver oxygen to the bloodstream to deliver to the tissues. Thus, one of the

primary functions of the lungs is perfusion, extracting oxygen from the air we breathe

and releasing this oxygen into the bloodstream. The second is its exchange with CO2.

In mechanical ventilation, oxygen levels need to be carefully monitored to prevent low

blood oxygen, or hypoxaemia (Tehrani, 2012). In addition, excessive levels of oxygen

can cause lung collapse, oxygen toxicity, or blindness in infants (Luecke & Pelosi, 2005;

Wheatley, Dickinson, Mackey, Craig, & Sale, 2002). The saturation of oxygen in the

bloodstream, typically measured as arterial SaO2 or pulse oximetry, is an indication

of how much of the haemoglobin present is oxygenated (Trundle & Rawat, 2011) . It is

most typically monitored using a pulse oximeter (Jubran, 2015).

Alveoli are thin-walled air sacs located on the terminal branches of the bronchial tree.

They are surrounded by pulmonary capillaries, and carry out gas exchange of oxygen

and carbon dioxide to and from the bloodstream. The large number of alveoli combined

with their small diameter and thin walls allows for sufficient surface diffusion across

from the alveoli to the capillaries.

An alveolus has two states, open and closed. Gas exchange is only possible when an

alveolus is open. Alveoli have a pressure at which they will open or ‘recruit’ during
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inspiration, threshold opening pressure (TOP) and one at which they will close again

during expiration threshold closing pressure (TCP) (Crotti et al., 2001). Working out the

threshold pressures for the population of alveoli is generally done with using pressure-

volume curves (PV curve). These PV curve and other data are often presented in real

time on the ventilator (Lucangelo, Bernabè, & Blanch, 2007). The curve changes dra-

matically at the TCP and TOP as larger numbers of alveoli close or recruit (Hickling,

1998).

1.4 Lung Pathologies
Mechanical ventilation is used as a therapy for patients who are suffering from some

form of respiratory failure (Slutsky, 1993). Respiratory failure is often a secondary

symptom from a range of diseases, many causing lung damage that is mixed in effect

and severity (Breen, Churches, Hawker, & Torzillo, 2002). This heterogeneity has made

it difficult for the field to standardise care to optimise outcomes for all patients (Sten-

qvist, 2003).

Respiratory failure is caused by inadequate gas exchange in the lungs. This inadequacy

is defined as it failing at one or both of insufficient oxygenation (hypoxaemia), or carbon

dioxide elimination (hypercapnia). There are subsequently two types of respiratory

failure defined, Type 1 and Type 2.

Type 1 is a low level of oxygen in the blood, without an increased level of carbon diox-

ide. It is often caused by the volume of air entering and exiting the lungs not being

matched by the flow of blood to the lungs. This is defined as a ventilation-perfusion

(V/Q) mismatch, where ventilation is the air that reaches the alveoli and perfusion is

blood reaching the alveoli from the capillaries. Common conditions causing Type 1

respiratory failure in an ICU are:

• Ventilation–perfusion mismatchwhich can be caused by pulmonary embolisms
• Problems with diffusionwhich can be caused by pneumonia or ARDS (The ARDS
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Definition Task Force, 2012)

• Shunt where oxygenated blood has mixed with non-oxygenated blood from the
venous system (Fletcher & Barber, 1966).

Type 2 respiratory failure is caused by inadequate alveolar ventilation, where the ex-

change of both oxygen and carbon dioxide is affected. It often results in a build-up of

carbon dioxide in the lungs (Ahrens, 2004). Common causes of this failure are:

• Increased airway resistance caused by Chronic Obstructive Pulmonary Disease

(COPD) or asthma.

• A decrease in theworking parts of the lungs, caused by diseases such as bronchitis.

In addition to these classifications, respiratory failure may also be defined as acute or

chronic. Acute conditions develop suddenly and are often treated as an emergency.

Meanwhile, chronic conditions develop over a longer period of time and require long

term treatment, and monitoring.

1.4.1 ARDS
ARDS (Ashbaugh et al., 1967) is an extreme form of acute respiratory failure, caused

by either direct or indirect lung injury (Petty & Ashbaugh, 1971). It is a severe in-

flammatory response inside the lung, resulting in mass alveoli collapse and charac-

terised by oedema and severe hypoxaemia (Donahoe, 2011; Laufer et al., 2017). Com-

mon causes include pneumonia, sepsis, trauma, asthma, COPD, pancreatitis, burns, and

near drowning (Chiew, 2013; Laufer et al., 2017).

ARDS encompasses a wide range of pulmonary dysfunctions, making it both complex

and highly heterogeneous (Laufer et al., 2017). The hallmark of the disease is hypox-

aemia and carbon dioxide retention caused by extensive alveolar collapse. The disease

can develop over a timeframe ranging from hours to a few days (Bastarache & Black-

well, 2009). It is clinically defined by an PaO2/FiO2 ratio (PaO2/FiO2 ratio) less than 300

mmHg (Aboab, Louis, Jonson, & Brochard, 2006; The ARDS Definition Task Force, 2012).
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Other indicators include poor intrapulmonary shunt fraction, oxygen index or arterial

to alveolar O2 difference (Aboab et al., 2006). The culmination of the various aspects

of ARDS causes reduced O2 supply and CO2 removal, impacting upon other organs and

tissues, causing significant physiological stress. ARDS is created by a reduction in the

alveolar-capillary barrier, along with a flooding of the airspaces (Bastarache & Black-

well, 2009).

ARDS has been defined multiple times over the years with the most recent consensus

definition by the Acute Respiratory Distress Network in 2012. This definition has sim-

plified it to being solely classified by a PaO2/FiO2 ratio (The ARDS Definition Task Force,

2012):

• Mild ARDS (200 < PaO2/FiO2 ratio ≤ 300 mmHg)

• Moderate ARDS (100 < PaO2/FiO2 ratio ≤ 200 mmHg)

• Severe ARDS (PaO2/FiO2 ratio ≤ 100 mmHg)

The acute time frame is defined to be within one week. Overall, it is clear ARDS defines

respiratory failure. In particular, it is defined by the failure to achieve adequate gas

exchange (Chiew, 2013).

Due to respiratory failure being a secondary outcome and the heterogeneous nature

of the ARDS lung, developing a standard care protocol to treat these patients is chal-

lenging. A range of randomised control trials (RCTs) have studied different treatment

strategies to optimise care (Breen et al., 2002; Brower et al., 2004, 2000; Meade, Cook,

Griffith, et al., 2008; Mercat et al., 2008). To date, none have provided an effective or

generalisable solution (Major et al., 2018).

In addition to hypoxemia, ARDS lungs are more prone to VILI. This increased incidence

of VILI is due to a combination of the heterogeneous nature of the lung, and because

there is a much higher proportion of collapsed alveoli (Ashbaugh et al., 1967; Gatti-

noni & Pesenti, 2005; Petty & Ashbaugh, 1971). As the alveoli in ARDS lungs struggle
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to open with each breathing cycle, it is critical to ensure as many of them stay open

as possible. Increasing the number of open alveoli during mechanical ventilation is a

process known as recruitment (Bates & Irvin, 2002; Blanch & Villagrá, 2004; Das et al.,

2015; Dellamonica et al., 2011; Jobe, 2009; Kheir et al., 2013; Meade, Cook, Griffith, et

al., 2008; Rocco, Pelosi, & de Abreu, 2010; Tusman et al., 2014). However, lungs can be

damaged by repeated recruitment and decruitment over time (Blanch & Villagrá, 2004;

Jobe, 2009; Slutsky, 1999; Suarez-Sipmann, 2014). Consequently, reducing the amount of

times a diseased alveolus must recruit or open and close is advisable for ARDS patients

(Blanch & Villagrá, 2004). This outcome is typically achieved by applying positive end-

expiratory pressure (PEEP), a non-zero pressure at the end of each breath to maintain

recruited alveoli in an open state (Das et al., 2015; Dellamonica et al., 2011; Jobe, 2009).

Improved outcomes in ARDS patients have been connected to the use of lower tidal

volumes, higher PEEP settings, and ventilation in the prone position (M. Amato et al.,

1998; Malhotra, 2008; Sundaresan & Chase, 2012; Terragni et al., 2007; Villar, Kacmarek,

Perez-Mendez, & Aguirre-Jaime, 2006; Villar & Slutsky, 1996). Lower tidal volumes

avoid over distension (Brower et al., 2000). PEEP ensures damaged lung units remain

recruited, minimising damage. They are two of the most contentiously debated MV

settings (Major et al., 2018).

1.5 Ventilator Induced Lung Injury
Ventilation strategies such as ARDSnet among others (Briel et al., 2010; Brower et al.,

2004, 2000; Deans et al., 2005; Major et al., 2018; Meade, Cook, Griffith, et al., 2008;

Mercat et al., 2008; Nieman et al., 2017; Slutsky & Ranieri, 2000) tend to follow a set

generalised protocol and are not patient-specific. However, as acute respiratory fail-

ure is a secondary outcome of a range of diseases, applied MV will have very differ-

ent pressure-flow outcomes in different patients for the same ventilator settings. Sub-

optimal settings can lead to several types of VILI (M. Amato et al., 1998; Brower et al.,
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2000; Hodgson et al., 2011; Meade, Cook, Griffith, et al., 2008; Slutsky & Tremblay, 1998;

Valentini, Aquino-Esperanza, Bonelli, & Maskin, 2014), including alveolar-capillary le-

sions, alterations in permeability, oedema, and others, all of which hinder recovery and

thus increase the length and cost of MV (M. Amato et al., 1998). Hence, intra- and inter-

patient heterogeneity and variability over time makes it difficult to select ventilator set-

tings to optimise oxygenation and gas exchange, while minimising VILI (Garcia et al.,

2006).

The mechanics of, and strategies for, preventing VILI are contentious (Major et al.,

2018). Historically, it has been assumed VILI is caused by either excessive global pres-

sure (barotrauma) or excessive volume (volutrauma) in a ventilation mode dependent

manner. For example, in Pressure Controlled Ventilation (PCV), pressure is the con-

trolled variable and volume delivered is dependent on lung elastance, thus volutrauma

is the risk. The converse is true for Volume Controlled Ventilation (VCV), where vol-

ume delivery is the controlled variable, and dependent pressure makes barotrauma a

possible outcome. However, such an approach is potentially over-simplified, and the

mechanics of VILI are likely much more complex and patient- and/or breath-specific.

Studies have recommended both inspiratory plateau pressure and tidal volume should

be limited as both barotrauma and volutrauma can occur within a given ventilation

mode (Hager, Krishnan, Hayden, & Brower, 2005).

More recent research has cast light on mechanisms of injury and strategies for miti-

gation of VILI. Dreyfuss and Saumon (Dreyfuss & Saumon, 1998) postulated alveolar

strain due to the transpulmonary pressure gradient could cause injury (Nieman et al.,

2018), which was later confirmed (Mols, Priebe, & Guttmann, 2006). In addition, closed

alveoli can be subjected to very high levels of shear stress when exposed to the same

pressures as adjacent open healthy alveoli (Mols et al., 2006). Excessive shear stress

can be mitigated using lung protective strategies (M. Amato et al., 1998; Brower et al.,

2000; Donahoe, 2011; Laufer et al., 2017; Meade, Cook, Griffith, et al., 2008; Petrucci &
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De Feo, 2013; Pintado et al., 2013; Sundaresan & Chase, 2012), such as the use of lower

tidal volumes, personalised PEEP, and moderating driving pressure (M. B. Amato et al.,

2015; Brower et al., 2004, 2000; Futier et al., 2013; Girard & Bernard, 2007; Iglesias et al.,

2008; Jobe, 2009; Meade, Cook, Griffith, et al., 2008; Mercat et al., 2008; Nieman et al.,

2018; Petrucci & De Feo, 2013; Zick et al., 2013).

1.6 Lung protective strategies and recruitment
manoeuvres

Lung protective strategies have improved patient outcomes by reducing VILI and im-

proving oxygenation (M. Amato et al., 1998). This improvement has, in turn, resulted

in reduced time on MV and thus a reduced ICU cost (Dasta et al., 2005). Recruitment

manoeuvres (RM) when performed safely can also be an effective way of increasing

and maintaining alveolar recruitment (Bates & Irvin, 2002; Dyhr, Laursen, & Larsson,

2002; Gattinoni, Carlesso, Brazzi, & Caironi, 2010; Hess, 2015; Spieth & Gama de Abreu,

2012). However, if performed poorly, RMs can expose patients to an increased risk of

lung injury due to heterogeneity in lung and patient condition, and their response to

care.

To avoid injury and enhance recovery, recruitment of closed lung alveoli is desirable.

Alveoli may collapse due to disease or injury (Mols et al., 2006), and recruitment is often

achieved by applying tidal volume (Crotti et al., 2001) and PEEP to prevent derecruit-

ment during expiration (Kacmarek et al., 2016). Alveoli have threshold opening pres-

sures, which are typically higher than their threshold closing pressures (Sundaresan et

al., 2009; Yuta, 2007). Titration of PEEP through a staircase RMs can open closed alveoli,

improving arterial oxygenation (Brower et al., 2004) and help clinicians determine the

lowest PEEP needed to ensure sustained ventilation of recruited lung (Kacmarek et al.,

2016).
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Optimal PEEP is used to prevent the repetitive opening and closing of injured alveoli,

which causes atelectrauma (M. Amato et al., 1998; Briel et al., 2010; Cavalcanti et al.,

2017; Crotti et al., 2001; Gong, Krueger-Ziolek, Moeller, Schullcke, & Zhao, 2015; Jandre

et al., 2008; Jobe, 2009; Kacmarek et al., 2016; Meade, Cook, Griffith, et al., 2008; Mercat

et al., 2008; Mols et al., 2006; Nieman et al., 2017; Pintado et al., 2013). Evidence sug-

gests titrating PEEP to the point ofminimum elastance (maximum compliance), which is

found using a staircase recruitment manoeuvre (RM), could improve patient outcomes

(M. B. Amato et al., 2015; Carvalho et al., 2007; Chiew, Pretty, Shaw, et al., 2015; Lamber-

mont et al., 2008; Pintado et al., 2013). In this manner, the minimum elastance strategy

maximises recruitment, while minimising the risk of volutrauma or barotrauma.

In a staircase RM carried out at the beginning of ventilation, PEEP is typically increased

in steps of 2 cmH2O or 4 cmH2O until a set limit of plateau pressure (pressure con-

trolled ventilation) or tidal volume (volume controlled ventilation) is reached. It is then

stepped down to the initial PEEP level. A first RM can be used to recruit collapsed alve-

oli, while maintaining recruitment of those already open. The process can be immedi-

ately repeated to titrate PEEP and determine the PEEP level where minimum elastance

is achieved (Pintado et al., 2013). After this second RM is completed, a new PEEP setting

can be selected (Chiew, Pretty, Shaw, et al., 2015).

The optimal RM pressure range is contentious (Cavalcanti et al., 2017; Hodgson et al.,

2011; Mercat et al., 2008), as the higher pressures in a RM carry risk of barotrauma or

volutrauma, where short exposures to damaging MVmay reverse any improvements in

patient state (Carvalho et al., 2007; Cavalcanti et al., 2017; Hodgson et al., 2011; Suarez-

Sipmann et al., 2007). Thus, forward prediction of lung mechanics throughout a stair-

case RMwould allow clinicians to manage the trade-off between the risk of barotrauma

and volutrauma caused by the increased pressures and/or volumes in the RM, while

maximising the benefit of additional lung volume being recruited. Such an approach

would enable safer RM application with greater insight into desired outcomes and po-
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tential risks.

Increases in PEEP throughout an RM also results in additional lung volume (Vfrc) due

to alveolar recruitment (Dellamonica et al., 2011; Morton, Knopp, Docherty, Shaw, &

Chase, 2018; van Drunen, Chase, Chiew, Shaw, & Desaive, 2013; Wallet et al., 2013). De-

termining Vfrc, is often invasive, or requires imaging (Computed Tomography (CT) or

Electrical Impedance Tomography (EIT)) that either cannot be carried out at the bed-

side (Chase et al., 2014; van Drunen, Chase, et al., 2013) or is not available in every

care unit. Model-based predictions of Vfrc across each RM step could aid PEEP optimi-

sation, and minimise the risk of unintended volutrauma. Potentially, PEEP could even

be titrated based on Vfrc, as this recruited additional lung volume is the direct goal of

applying PEEP.

Due to the nature of respiratory disease (Albert et al., 2009; Bates & Irvin, 2002; Ma

& Bates, 2010; Marini, 1994), alveoli opened by an RM can collapse despite optimal

PEEP settings. Therefore, multiple RMs can be required during a full course of MV

(Morton, Dickson, Chase, Docherty, Howe, et al., 2018b; Stahl et al., 2006) to re-open

collapsed alveoli and sustain oxygenation, along with providing a means of monitor-

ing Vfrc (Chiew, Pretty, Shaw, et al., 2015; van Drunen, Chase, et al., 2013). These RMs

can often involve a clinician carrying out single or a few steps up and down in PEEP.

Development of a predictive model of lung mechanics would allow this process to be

optimised and automated, including monitoring of patient-specific condition and regu-

larly optimising PEEP as patient condition evolves, which would in turn reduce clinical

load and potentially improve outcomes via personalised care (Morton, Dickson, Chase,

Docherty, Howe, et al., 2018b).

Overall, MV is an important and widely used ICU therapy. Currently, most MV protocols

are generalised and fail to address the heterogeneity of MV patients. Tailoring MV to

patient condition is thus currently reactive, ad hoc, and variable in application. To

avoid VILI, ventilator settings need to be optimised to individual patient-specific lung
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mechanics, and the evolving condition. Thus, there is a need for greater personalisation

of MV. Model-based methods are ideally suited to meet these needs. Current model

based methods are covered in Chapter 3.

1.7 Necessity of virtual patients
Virtual patients can be developed to model the responses one may expect from an indi-

vidual, or a cohort-wide scale (Chase et al., 2016, 2018). Virtual patients are used to per-

sonalise and optimise care for an individual patient by predicting response to a change

in treatment prior to implementing the change. This personalisation is especially criti-

cal for ICU patients, who exhibit a great deal of variation in condition, and response to

treatment (J. L. Dickson, Gunn, & Chase, 2014). As noted, for intubated patients, person-

alisation would be used to predict the effects of an RM on lung elastance to minimise

the risk of VILI while also maximising lung recruitment, and thus, oxygenation.

Virtual cohorts offer a method of safely and efficiently validating the effect that testing

new treatments can have on a population of patients (Chase et al., 2016). A validated

in-silico virtual trial platform could reduce the number of Phase II and III human trials

(Chase et al., 2018). It would thus be a substantial development in mechanical ven-

tilation, as two of the main metrics for judging an improvement in treatment across a

cohort (length ofmechanical ventilation (LoMV) and Ventilator Free Days (VFD) Schoen-

feld and Bernard (2002)) are both highly skewed (Morton, Chiew, et al., 2017). This skew

requires a large number of patients in a given clinical trial to reach statistical power

((Morton, Chiew, et al., 2017). Capitalising on the recent FDA change to recognising

virtual trials (Smalley, 2018) as a method of testing medical treatments, having virtual

cohorts to test new mechanical ventilation protocols would allow the field to move for-

ward much faster.



CHAPTER2
Non-Parametric Sample Size
Estimation for Mechanical
Ventilation Trials
2.1 Introduction
While it is a relatively straightforward treatment, optimising mechanical ventilation

without causing damage to the lung is complex in practice (Major et al., 2018; Sundare-

san & Chase, 2012). A range of randomised control trials (RCT) have been carried out

to assess methods of improving MV care (Major et al., 2018). However, many have had

non-significant findings, and the field remains uninformed about consistent action that

might improve outcomes (Brower et al., 2004, 2000; Meade, Cook, Griffith, et al., 2008;

Mercat et al., 2008). Aside from the efficacy of the proposed treatment intervention,

the outcome metrics and sample sizes of the trial can significantly affect the resulting

outcome statistical significance. All these factors thus impact trial design (Bhardwaj,

Camacho, Derrow, Fleischer, & Feldman, 2004; Schoenfeld & Bernard, 2002).
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Because respiratory failure is often a secondary symptom from a range of diseases,

many causing lung damage that is mixed in effect and severity (Breen et al., 2002),

the generalised ”one size fits all” treatment proposed in some RCTs may not provide

the best possible treatment for all patient types (Chase et al., 2018). In addition, non-

significant RCT results may also be partly due to difficulty in determining the efficacy

of mechanical ventilation therapy. Aside from patient mortality, other metrics used to

assess the quality of mechanical ventilation treatment include cardiopulmonary and

haemodynamic responses, patient physiological or acuity scores, and patient ventilator

dependency, such as length of mechanical ventilation (LoMV) and Ventilator Free Days

(VFD) (Schoenfeld & Bernard, 2002). However, all these metrics have limitations.

To ensure a study has a sufficiently high sample size for statistically significant results,

it must have enough power, along with a significance greater than a pre-determined

threshold (Motulsky, 1995). Statistical significance is a measure of the chance that the

observed results could be caused by random chance. However, the power of a study is

the probability that a test of significance will pick up on an effect that is present. Alter-

natively, this is defined as the probability of avoiding a Type II statistical error: when

the null hypothesis is false, but erroneously fails to be rejected. Low power is often

caused by a sample size that is too small to accurately detect a difference in outcomes

between two groups. A study carried out byMoher et al (Moher, Dulberg, &Wells, 1994)

reviewed 383 RCTs. They found that of 102 null trials in this study, only 36% had 80%

power to detect a difference of 50% in outcome between each group. Only 16% had

80% power to detect a more probable difference of 25% Moher et al (Moher et al., 1994;

Whitley & Ball, 2002). Only 32% of the null trials investigated stated the sample size of

the study in the results (Whitley & Ball, 2002).

However, having a study with a sample size that is too large can not only require an

excessive amount of resources, but may also be unethical due to requiring a larger

than necessary number of participants to receive placebo, control, or otherwise inferior
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treatment (Whitley & Ball, 2002). Determining the optimal sample size heavily depends

on the estimation of the difference in treatment outcome between each group, often

dependent on clinical judgment. Hence, the sample sizes determined from statistical

methods are intended as approximate guides as opposed to exact numbers (Whitley &

Ball, 2002).

LoMV or VFD are the two most common metrics used to assess MV efficacy in many

trials, describing patient ventilator dependency and weaning, along with the mortality

rate for the cohort (Schoenfeld & Bernard, 2002). They also assess the economic impact,

as ventilator dependency is associated with a higher cost (Dasta et al., 2005). For a

clinical trial to be successful, it must have both useful results and statistical significance

(Bhardwaj et al., 2004). Table 2.1 shows a range of mechanical ventilation RCTs that

use LoMV or VFD as one of their outcome metrics (M. B. Amato et al., 2015; Brower et

al., 2004, 2000; Hodgson et al., 2011; Meade, Cook, Griffith, et al., 2008; Mercat et al.,

2008; Pintado et al., 2013). These studies ranged in size from 70–2300 patients, with

only 3 able to reach statistical significance of p <0.05. When clinical significance was

not found, it was often due to ineffective treatment or inability to effectively treat all

patients. However, high levels of patient variability, as well as insufficient sample sizes,

can significantly impact the ability of a clinical study to achieve significance (Altman &

Bland, 1995; Van Der Lee, Tanck, Wesseling, & Offringa, 2009).

In an earlier study by Chiew et al. (Chiew, Pretty, Moltchanova, et al., 2015), it was noted

the commonly used sample size estimation methods for a powered study (Petrie, Bul-

man, & Osborn, 2002), such as the Altman Nomogram, were not feasible for LoMV clin-

ical data that were heavily skewed with a very long upper tail (Bland & Altman, 1986).

Thus, it is not possible to truly assess whether trial design or sample size, or trial in-

efficacy are the cause of failure to achieve statistical significance. Hence, a simulation-

basedmethod using retrospective clinical cohort data may provide a better, muchmore

precise, estimation of a well-powered sample size for a desired outcome metric and pa-



20 2.2. METHODS

tient cohort (Richardson, 2003).

Table 2.1: Summary of several randomised control trials assessing LoMV and VFD.

Where [1]: (Brower et al., 2000), [2]: (Brower et al., 2004), [3]: (Mercat et al., 2008),[4]: (Meade, Cook, Arabi, et al., 2008), [5]: (Blum et al., 2015), [6]: (Pintado et al., 2013)

Study Name Metric Used Total Numberof Patientsin Study
GroupsLoMV or VFD(mean ± SDor median [IQR])

p-valueachieved

ARDSNet [1] VFD 861

Low Tidal

Volume

12±11

High Tidal

Volume

10±11

0.0070

ALVEOLI [2] VFD 549
Lower PEEP

14.5±10.4

Higher PEEP

13.8±10.6
0.5000

EXPRESS [3] VFD 767

Minimal

distension

3 [0-17]

Increased

recruitment

7 [0-19]

0.0400

LOVS [4] LoMV 982
Control

10 [6-16]

Lung open

10 [6-17]
0.9200

Meta-Analysis [5] VFD 2299
Lower PEEP

11 [0-21]

Higher PEEP

13 [0-22]
0.1000

IndividualisedPEEP [6] VFD 70
Control

0 [0-15.75]

Intervention

1 [0-18]
0.1600

This chapter presents a Monte-Carlo simulation-based method to estimate sample sizes

for a powered and significant RCT for a range of outcome metrics relating to ventilator

dependency. The outcome metrics investigated in this study were LoMV, VFD, and a

modified LoMV. A case study for determining the sample sizes of a planned RCT is also

presented, where patient selection criteria are simulated to replicate the planned RCT as

closely as possible (Gastañaga, McLaren, & Delfino, 2006). Overall, this non-parametric

simulation based method is readily generalisable for trial design.

2.2 Methods
Monte-Carlo simulations are used to assess the sample size required for 80% power

and a p-value less than a specified significance value in the case of interventions caus-

ing specified outcome differences in the underlying population. Two populations from

which trial participants may be drawn are examined:

• Cohort A is all MV patients and covers the case where no additional exclusion

criteria are applied.



CHAPTER 2. NON-PARAMETRIC SAMPLE SIZE ESTIMATION FOR MECHANICAL

VENTILATION TRIALS 21

• Cohort B is drawn from Cohort A with exclusion criteria applied.

This analysis thus examines the effect of inclusion criteria , statistical test, and sample

size on statistical power for an interventional trial, while directly using the true under-

lying distribution of patient clinical data.

2.2.1 Sample size analysis metric
Three outcome metrics for sample size estimation were investigated:

• Length of mechanical ventilation (LoMV)

• Ventilator Free Days (VFD) (Schoenfeld & Bernard, 2002)

• Length of mechanical ventilation within 28 days (length of mechanical ventilation

within 28 days (LoMV28)).

VFD and LoMV28 are modified LoMV distributions that also include mortality informa-

tion where deceased patients have 0 VFD or 28 days of LoMV. Table 2.2 shows a more

detailed description of each outcome metric used in this study.

Table 2.2: Outcomes metrics used in analysis

Outcome Metric Description
LoMV The total duration of mechanical ventilation.

LoMV28 Length of MV within 28 days, where:

• LoMV28 = 28: if the patient dies before 28 days

• LoMV28 = LoMV: if the patient is successfully weaned fromMV

within 28 days

• LoMV28 = 28: if the patients required MV for 28 days or more.

VFD The number of days free of MV within a 28 day period. VFD is de-

fined by Schoenfeld and Bernard (2002) as

• VFD = 0 if the patient dies before 28 days

• VFD = (28 – LoMV) if the patient is successfully weaned from

MV within 28 days.

• VFD = 0 if the patients requires MV for 28 days or more
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2.2.2 Retrospective patient cohort data (Cohort A)
Retrospective data from 5176 patients admitted to the Christchurch Hospital Intensive

Care Unit (ICU) from 2011 to 2014 was considered in this study. All APACHE III diagnos-

tic codes, ICU mortality and length of mechanical ventilation (LoMV) were recorded. Of

this number, 3896 (75%) patients required MV therapy and 3383 (63%) received inva-

sive ventilation either through tracheotomy or intubation. The breakdown of the LoMV

of these patients is shown in Figure 2.1. A breakdown of patient numbers for each year

studied is shown in Table 2.3.

Full LoMV Distribution First 20 Days of LoMV
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Figure 2.1: LoMV distribution of cohorts studied. The histograms on the left show the

entirety of the distribution including outliers of 110 days LoMV, while those on the right

truncate the data at a maximum LoMV of 20 days for clarity.

Table 2.3: Patient number and distribution

Cohort Number of Patients
2011 2012 2013 2014 Total

All ICU Patients 1279 1284 1344 1269 5176All Ventilated Patients 1004 953 963 977 3897Invasively Ventilated Patients 878 825 830 850 3383
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In this study, only patients who were invasively ventilated are considered, which thus

comprises the largest possible cohort for anMV trial focussing on ETT ventilation, and is

delineated Cohort A in this study. The median[IQR] LoMV was 0.73 [0.24 - 2.48] (mean

= 2.95 ± 6.50 days) . The detailed patient distribution for this cohort and their corre-

sponding LoMV and mortality distribution can be found in Tables 2.4, 2.5 and 2.6.

Table 2.4: Patient LoMV Distribution (Mean ± SD)

Cohort LoMV (Days) (Mean ± SD)
2011 2012 2013 2014 Total

All Ventilated Patients 2.54±6.12 2.90±6.61 2.98±6.49 2.88±6.16 2.82±6.34Invasively Ventilated Patients 2.66±6.38 3.06±6.92 3.24±6.86 2.88±5.79 2.95±6.50

Table 2.5: Patient LoMV Distribution (Median [IQR])

Cohort LoMV (Days) (Median [IQR])
2011 2012 2013 2014 Total

All Ventilated Patients 0.62

[0.24-1.91]

0.73

[0.25-2.20]

0.79

[0.24-2.48]

0.83

[0.31-2.76]

0.74

[0.25-2.29]

Invasively Ventilated Patients 0.62

[0.24-1.94]

0.72

[0.24-2.32

0.81

[0.24-2.75]

0.80

[0.26-2.70]

0.73

[0.24-2.48]

Table 2.6: ICU Mortality Distribution

Cohort ICU Mortality Rate (%)
2011 2012 2013 2014 Total

All ICU Patients 8.68% 11.99% 8.93% 10.48% 10.01%All Ventilated Patients 10.66% 15.22% 11.84% 12.59% 12.55%Invasively Ventilated Patients 11.85% 16.12% 12.65% 13.53% 13.51%

2.2.3 Simulating realistic clinical trial cohorts (Cohort B)
Not all invasively ventilated patients may benefit from optimised MV. For example,

some patient groups receive MV only for brief post-surgical periods, and thus usually

would not be part of such a trial. One major difficulty is exclusion criteria in many tri-

als are subjective and thus can add unintended variability, bias and/or dimensionality

to the study, affecting the potential outcome in ways not included in the study design.

UsingMonte-Carlo simulation, an objective patient cohort can be created and simulated

from Cohort A. This objective cohort (Cohort B) aims to capture the realistic character-
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istics of a patient cohort expected to be used in a planned clinical trial. In particular,

using quantifiable exclusion criteria.

Objective patient selection is enabled using the APACHE III diagnostic code to simulate

the actual clinical trial inclusion and exclusion criteria. Many of these criteria have

been used in prior studies (Brower et al., 2004, 2000; Hodgson et al., 2011; Meade, Cook,

Arabi, et al., 2008; Mercat et al., 2008; Pintado et al., 2013). Objective, explicit criteria

for all exclusions would ensure a more robust design and implementation.

The exclusion criteria typically used are listed below and the studies they are used in

are referenced. These criteria include:

1. Patients who are likely to be discontinued fromMVwithin 24 hours (Pintado et al.,

2013; Strøm, Martinussen, & Toft, 2010)

2. Patients with raised intracranial pressure (Brower et al., 2004, 2000; Hodgson et

al., 2011; Meade, Cook, Arabi, et al., 2008; Mercat et al., 2008; Pintado et al., 2013;

Strøm et al., 2010)

3. Patients who have significant weakness from any neurological disease (Brower et

al., 2004, 2000; Meade, Cook, Arabi, et al., 2008; Mercat et al., 2008; Pintado et al.,

2013)

4. Patients who have asthma as the primary presenting condition, or a history of sig-

nificant chronic obstructive pulmonary disease (Brower et al., 2004, 2000; Meade,

Cook, Arabi, et al., 2008; Mercat et al., 2008)

In this study, a sample of clinical inclusion and exclusion criteria for a randomised

controlled trial is used (ANZCTR number: ACTRN12614001069640). Inclusion criteria

are set to target every patient that is eligible for the study (Cohort A). The exclusion

criteria are chosen based on the clinical implication these patients may not benefit from

a MV intervention, or could be harmed in some cases – as listed above.

In this study, the objective cohort (Cohort B) was established by excluding all patients

under APACHE III diagnostic codes as shown in Appendix Table A.12, which are rele-
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vant to the 4 main criteria typically used and listed above. The use of diagnostic codes

also avoids subjective choices in both simulation and implementation, where such sub-

jectivity is difficult to model and induces unintended variability from what might ac-

tually occur. It could also be easily and objectively implemented in a real trial, which

would better ensure that the trial design and the actual study matched. Thus, the fol-

lowing specific APACHE III diagnostic codes were also excluded in implementing the

typical exclusion criteria listed previously:

• 206 – Chronic obstructive pulmonary disease

• 209 –Asthma

• 400 – Neurological non-operative

• 601 –Head trauma with or without multi trauma

• 604 –Multi trauma with spinal injury

• 605 – Isolated cervical spine injury

• 1500 – Neurological post-operative

• 1601 –Post operation patients: head trauma with or without multi-trauma.

• 1604 –Post operation patients: Multi trauma with spinal injury.

• 1605 –Post operation patients: isolated cervical spine injury.

This approach makes the criteria objective and easy to implement both in simulation

and in a clinical trial. After imposing the exclusion criteria, the number of patients

eligible for the study is reduced from 5176 to 974 (18.8% of total patients admitted to ICU

or 28.8% of patients requiring invasiveMV), and is denoted as Cohort B. Amore detailed

comparison of the actual trial exclusion criteria and simulation method is shown in

Table 2.7.

2.2.4 Sample size determination using Monte-Carlo simulation
AMonte-Carlo simulationwas performed to determine the power of the study at a range

of sample sizes. This simulation allows a range of intervention effect sizes to be simu-

lated, and the corresponding sample sizes required to detect the significance at a power,

to be calculated. The patients were separated into two cohorts of increasing sample
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Table 2.7: Exclusion criteria used in clinical trial, and in simulation

Inclusion Criteria
Actual clinical protocol Simulation method

Patients requiring invasive MV Patients requiring invasive MV

Patients with PaO2/FiO2 ratio <300 mmHg
Arterial line in situ.

Exclusion Criteria
Patients who are likely to be discontinued

from MV within 24 hours.

Exclude patient with LoMV <1 days.

Patients with age <16 years. Exclude patient with age <16 years.

Any medical condition associated with

a clinical suspicion of raised intracranial

pressure and/or a measured intracranial

pressure <20 cmH2O.

Exclude patient with head trauma

using APACHE III diagnostic Code:

• 601 - Head trauma with or
without multi-trauma

• 1601 - Post operation patients:
head trauma with or without

multi-trauma

Patients who have a high spinal cord

injury with loss of motor function and/or

have significant weakness from any

neurological disease.

Exclude patient using

APACHE III

diagnostic Code:

• 400 - Neurological non-operative
• 604 - Multi trauma with spinal injury
• 605 - Isolated cervical spine injury
• 1500 - Post-operative:
Neurological patients

• 1604 - Post-operation patients:
Multi-trauma

with spinal injury

• 1605 - Post operation patients:
isolated cervical

spine injury

Patients who have a barotrauma (pneu-

mothorax, pneumomediastinum, subcu-

taneous emphysema or any intercostal

catheter for the treatment of air leak).

No action performed

Patients who have asthma as the primary

presenting condition or a history of

significant COPD disease.

Exclude APACHE III diagnostic code:

• 206 - COPD
• 209 - Asthma

Patients who are moribund and/or not ex-

pected to survive for >72 hours.
No action performed

Patients who have already received MV for

>48 hours (including time spent ventilated
in a referring unit).

No action performed

Lack of clinical equipoise by intensive care

unit (ICU) medical staff managing the pa-

tient.

No action performed

sizes from 100:10:2000. This was done using the datasample function in MATLAB. Ran-

domly selected patients were selected (from a uniform distribution), with replacement
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from the dataset. Replacement was used to allow the 2000/arm sample sizes to be anal-

ysed.

The intervention effects of a 10%, 15%, 20%, and 25% reduction in LoMV were imple-

mented in the randomly selected intervention arm. The LoMV of the entire group was

reduced by the specified percentage reduction. A 10,000 iteration Monte-Carlo simu-

lation was run over the data to determine the required sample size for each trial arm

to achieve 80% power. In this study, the sample sizes for Cohort A and Cohort B were

examined. All simulations were performed using MATLAB.

The hierarchical steps followed to carry out the Monte-Carlo design analysis are out-

lined in Table 2.8. Both double-sided and single-sided (lognormal) T-Test, Wilcoxon-

Ranksum Test (WR-Test) and a Kolmogorov-Smirnov Test (KS-Test) were used for signif-

icance testing of the difference in mean and other distribution characteristics (median

and variability). The change into VFD and LoMV28metrics is carried out after the LoMV

difference has been imposed on the intervention group (Step 3) and before the statisti-

cal testing (Step 4).
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2.2.5 Baseline characteristics of each outcome metric
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Figure 2.2: Outcome metric distributions for sample size of 100 patients.

Figure 2.2 shows a distribution of the LOMV, VFD and LoMV28 distribution for 10,000

cohorts of 100 patients selected from Cohort A and Cohort B prior to implementing an

intervention effect. Patient selection was iterated 10,000 times using random selection

with replacement (Table 2.8, Step 2) to create the boxplots. As can be seen, both the

LoMV and LoMV28 cohorts have significantly skewed log-normal distributions, whereas

VFD shows a reverse log-normal distribution that is highly skewed towards 28 days.

The distribution spikes at the start of the VFD, and end of the LoMV28 plots are due
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to the impact of mortality data on these metrics. This feature clearly shows how any

change in mortality due to an intervention can have a further significant effect on the

distribution shape. Finally, the LoMV28 and VFD metrics are also not lognormal given

these spikes, which could cause further issues when using a trial design method based

on a normal distribution assumption, even if the data was logged first (Bland & Altman,

1986). Consequently, use of sample size estimationmethods that require a Gaussian dis-

tribution, which is the common approach, would not have been appropriate for these

outcome metrics (Chiew, Pretty, Moltchanova, et al., 2015; Petrie et al., 2002). Conse-

quently, non-parametric statistics and Monte-Carlo analysis, as proposed, should pro-

vide a more accurate solution. These analyses will thus also show the impact of these

choices.

2.2.6 Statistical Comparisons
The (lognormal) T-Test, KS-Test and WR-Test are common test for establishing differ-

ences between populations. The (lognormal) T-Test is gaussian, but is often used with

logged data to establish greater normality. The KS-Test and WR-Test are both non-

parametric. Each cohort size for N = 100-2000 with a 10 patient step size is analysed

as follows:

Analysis 1. Sample size estimation for each cohort.
• Cohorts Studied: Cohort A, Cohort B
• Outcome Metrics: LoMV, VFD, LoMV28.

Intervention arms for a defined outcome difference (10-25% difference in LoMV in steps

of 5%). Analysis 1 uses a two-tailed test to assess what impact the trial exclusion criteria

has on the sample size required to reach 80% power.
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Analysis 2. Single vs double-tailed tests
• Cohorts Studied: Cohort B
• Outcome Metrics: LoMV, VFD, LoMV28.

Two-tailed tests can separate whether the intervention yields a better or worse out-

come. A one-tailed test assumes the intervention is better or not better, but cannot

show it is worse. A one-tailed test at p < 0.025 is considered equivalent to a two-tailed

test at p < 0.05 (Motulsky, 1995). However, clinically, an intervention that is not bet-

ter is potentially enough of an answer, as clinicians seek better treatment. Therefore,

Analysis 2 also considers the impact of single-tail testing in this approach for Cohort B.

Analysis 3. Impact of mortality differential between control and intervention groups.
• Cohorts Studied: Cohort B
• Outcome Metrics: VFD, LoMV28metrics.

Finally, both Analysis 1 and Analysis 2 assume equivalent mortality as simulated.
However, a good intervention might be expected to reduce mortality, which in turn

affects VFD and LoMV28. This aspect was also simulated, by randomly selecting patients

to have their mortality changed in the intervention cohort, and repeating Analysis #1:

The three fundamental analyses clearly delineate the impact on trial design and trial

size, using such nonlinear distributions and metrics, for explicit exclusion criteria in

cohort selection (Analysis #1), statistical test used (Analysis #2), and the impact of
mortality when using mortality affected metrics (Analysis #3).
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2.3 Results
2.3.1 Impact of exclusion criteria on sample size estimation

(Analysis #1)
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Figure 2.3: Results of Monte Carlo simulation for 25% LoMV difference.

Graphical results for sample size estimation with a 25% difference in LoMV between

control and intervention groups are shown in Figure 2.3. The X-axis shows the sam-

ples size and the Y-axis shows the corresponding power obtained through the 10,000

iteration Monte-Carlo simulation at each sample size. Cohort A, which included all in-
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vasively ventilated patients, had a much lower power compared to Cohort B. Due to

the negatively skewed distribution of the VFD metric, as shown in Figure 2.2, a log-

transformed student t-test was not suitable for the significance testing. This issue is

often not noted in the many trial designs that use VFD, yet it clearly can have a major

effect.

The power analysis was carried out for each metric at change in length of mechanical

ventilation (∆ LoMV) of 10%, 15%, 20% and 25% and the estimated sample sizes per
trial arm are shown in Table 2.9. These effect sizes are realistic based on the trials

summarised in Table 2.1.

Table 2.9: Estimated sample sizes per trial arm for LoMV outcome metric sizes of 10-

25% in 5% increments, for both Cohorts A and B, using all 3 statistical tests.

∆LoMV
Wilcoxon-Ranksum Kolmogorov-Smirnov Student T-Test(log scale)

Cohort A B A B A B
10% 2000+ 1350 2000+ 750 2000+ 2000+15% 1340 530 1530 370 1330 67020% 670 270 850 240 670 31025% 400 160 530 160 390 180∆VFD

Wilcoxon-Ranksum Kolmogorov-Smirnov Student T-Test(log scale)
Cohort A B A B A B
10% 2000+ 2000+ 2000+ 850

T-Tests were not

able to be used

for the VFD metric

15% 2000+ 2000+ 1800 50020% 1460 700 1030 33025% 790 390 650 220∆LoMV-28
Wilcoxon-Ranksum Kolmogorov-Smirnov Student T-Test(log scale)

Cohort A B A B A B
10% 2000+ 2000+ 2000+ 860 2000+ 2000+15% 2000+ 2000+ 860 480+ 2000+ 2000+20% 700 700 330 330 1160 116025% 490 380 510 230 490 540

Transferring the input parameter uncertainties to ranges is achievable. The uncertainty

in patient types and which patients might arrive at a given trial period was covered
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parametrically by the dimensions Ncohort, change in treatment effect (∆ Effect) and a
reducedmortality on the VFD and LoMV28metrics, as well as by using 4-years of patient

data from the trial centre. Thus, the resulting, Monte-Carlo range of p-values from each

Monte-Carlo run yields the power at a significance level of 0.05, as seen in Figure 2.4

and Table 2.9.
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Figure 2.4: Results of each Monte-Carlo simulation for 25% LoMV difference in box

and whiskers format for both Cohorts A and B, with p <0.05 shown. The percentage of
results below p = 0.05 indicates the power at that sample size.

For clarity, Figure 2.3 demonstrates the ability of this method to also show the range of

p-values that dictate whether or not the sample size can achieve a power of 80%. The

box and whisker plots show the results from a 25% LoMV difference, as in Figure 2.2,

but with the full range of Monte-Carlo run results, where Cohort B has the objective

trial exclusion criteria applied.

2.3.2 Single vs double-tailed tests (Analysis #2)
Single (upper) tailed WR-Test and (lognormal) T-Tests were carried out on each metric

with a set significant level of α = 0.05 to assess whether this had an impact on the results.

At a ∆ LoMV of 25%, there is no difference in the required sample size in LoMV and
LoMV28, as shown in Table 2.10. However, for the VFDmetric, a significant reduction of

required sample size to achieve 80% power was found.
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Table 2.10: Sample size comparison between single-tailed and double-tailed statisti-

cal tests for LoMV, LoMV-28 and VFD when the intervention effect is 25% reduction

in LoMV

∆ LoMV ∆ VFD ∆ LoMV-28
SingleTailed DoubleTailed SingleTailed DoubleTailed SingleTailed DoubleTailed

WR-Test 160 160 290 390 380 380KS-Test 160 160 170 230 230 230(lognormal) T-Test 180 180 N/A N/A 550 540

2.3.3 Impact of mortality difference (Analysis #3)
Schoenfeld et al. (Schoenfeld & Bernard, 2002) hypothesised using VFD to determine

intervention differences would require a much higher sample size than LoMV if there

was not a significant difference in mortality rates. To this end, concomitant mortality

rate reductions of 5% and 10%were simulated in the intervention cohort for the LoMV28

and VFD metrics (Brower et al., 2004). The sample sizes for a 25% LoMV difference and

5 to 10% of mortality rate difference for the WR-Test and KS-Test analyses are shown in

Table 2.11, and in Figures 2.5 and 2.6.

Table 2.11: Impact of simulating a mortality differential between control and interven-

tion cohorts for VFD and LoMV-28 outcome metrics.

No MortalityDifference 5% MortalityDifference 10% MortalityDifference
WR-Test KS-Test WR-Test KS-Test WR-Test KS-Test

LoMV28 380 230 190 190 110 140VFD 280 220 130 130 90 100

As can be seen, the sample size required to reach 80% power is significantly reduced

if a mortality differential of 5% occurs between each cohort. Such an improvement is

reasonably possible for a targeted cohort receiving better care. To capitalise on these

findings, it is recommended that the mortality rate is accounted for at the end of the

trial to assess the efficacy of the intervention treatment.
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Figure 2.5: Results of Monte Carlo simulation for 25% LoMV difference and a 5% mor-

tality differential.
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Figure 2.6: Results of Monte Carlo simulation for 25% LoMV difference and a 10% mor-

tality differential.
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2.4 Discussion
The Monte-Carlo simulation based design method was able to estimate the sample size

required for a clinical trial to detect a significant difference with set power. When the

intervention effect is 10%, large sample sizes of more than 2,000 patients per trial arm

are required as compared to larger intervention effects, as expected. This larger sam-

ple size from the typical design method is due to the skewed and highly variable distri-

bution of ventilation duration of the cohort, and is indicative of the range of patients

underlying conditions that require mechanical ventilation. Importantly, these distribu-

tions in Figure 2.2 are typical and, more critically, do not match the assumptions made

by typical design tools.

When exclusion criteria are implemented in the simulation, the required sample sizes

per arm at the same intervention effect, is further reduced. From Figure 2.2, it is clear if

Cohort A was considered as the trial cohort, the sample size required for clinical signifi-

cance and a well-powered study is much higher compared to targeting a specific patient

cohort (Cohort B). This result shows targeting a specific cohort through implementing

objective and easily defined inclusion and exclusion criteria available at patient admis-

sion can result in a narrower metric distribution, which is important. Thus, a clinical

trial that aimed to reduce LoMV, or increase VFD, should be designed to target specific

patient groups by diagnostic codes who are likely to benefit from the treatment and

whose distribution of patient-specific LoMV is amended to seeing a change for reason-

able sample size (Chiew, Pretty, Moltchanova, et al., 2015) .

Finally, and importantly, trial sizes also impact patient risk. A trial with equipoise in

its hypothesis includes the risk of the intervention possibly having a negative effect

on patient outcome. Thus, the fewer the number of patients in the trial design that

are needed to achieve significance and power, achieved here with a non-parametric

Monte-Carlo simulation design approach, the lesser the risk to patients in determining
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the impact and safety of the intervention.

2.4.1 Impact of different outcome metrics and intervention effect
Sample sizes for different outcome metrics were examined in this study. The LoMV

metric was found to have the smallest sample size required to achieve significance with

80% power compared to the other 2 metrics. This result was attained with 160 patients

required per trial arm for a 25% LoMV reduction difference in Cohort B. However, at

a difference of 20% this value increases to 270 patients per arm. Choosing 15% and

10% differences sees a rise to 1,000 patients per arm for an 80% powered study. This

finding also shows the perils of these outcome metrics and one possible reason behind

non-significant RCTs aside from non-effective clinical interventions. If sample sizes are

too small, the probability of not observing a true underlying difference increases. If

a large intervention effect, which is difficult to achieve, cannot be obtained trial sizes

grow rapidly along with the likelihood of other risks to the trial.

Both the VFD and LoMV28 outcome metrics were studied with the hypothesis that the

inclusion of mortality would affect the power of the study. The VFD metric was specifi-

cally designed with the intention that a new treatment that either reduced the length of

ventilation, or mortality, would be more likely to show a significant difference in a trial

(Schoenfeld & Bernard, 2002). However, this simulation does not include any changes

in mortality and thus the effect is minimal and both metrics have led to a lower pow-

ered study than the standard LoMV outcome. It is expected the discrepancy in the t-test

results for the LoMV28metric is due to the change in distribution shape due to the peak

at 28 days. This issue obstructs the ability of the typically used statistical testing method

to detect a significant difference.

2.4.2 Impact of different statistical tests
Incorrect assumptions about the distribution of data can result in an inconclusive and

under-powered study (Van Der Lee et al., 2009). A two sample unpaired t-test requires
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data with a Gaussian distribution. The log-normal distribution of the LoMV and LoMV28

allowed a (lognormal) T-Test to be carried out on the data. This distribution shape was

verified by the similar results from the WR-Test analysis. The negatively skewed VFD

metric did not meet the Gaussian distribution assumption for a t-test, even when log-

transformed, showing its significant limitations when used in typical trial design.

The impact of using a single-tailed test with a significance level of 0.025was assessed for

the LoMV and LoMV28 outcome metrics and found to be minimal. However, it showed

a significant improvement in the study power for the VFD metric in Table 2.10. While

it is possible to use a single-tailed test to determine optimal sample size for a trial, the

risk of the intervention group having worse clinical outcomes than the control arm can

increase risk. The criteria for choosing one statistical method over another has often

been due to statistical correctness, a limitation of resources for the trial favouring lower

numbers, or due to ethics committee or independent statistician requirements. If it is

known that a treatment is not improving prognoses, it is not ethical to continue with it.

Thus, with skewed data sets, such as LoMV, it is often preferable to use a non-parametric

statistical test. Hence, of the three tests used in this study (KS-Test, WR-Test and (lognor-

mal) T-Test), only the t-test assumes a distribution, which is then log corrected. Ideally,

either of the two non-parametric tests would be used, where the KS-Test is more sensi-

tive to differences in distribution spread, while WR-Test is more sensitive to differences

in the data set median. Which test should be used would depend on what a given trial

is aiming to achieve.

2.4.3 Absolute vs percentage decrease in intervention effects for
VFD outcome metric

As shown in Tables 2.10 and 2.11, the VFD outcome metric displayed a considerably

lower power than LoMV28. This result was unexpected, as the distributions of each

metric are mirrored, and non- parametric tests were used. The inconsistency is due
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to the use of percentage LoMV reductions. Percentage reductions imply less change

for shorter stay patients, which is clinically reasonable versus an absolute change that

has lesser impact for longer stay patients. Table 2.12 demonstrates the discrepancy in

percentage changes for an initial LoMV of 5 days, with intervention of 20% LoMV.

Table 2.12: Differences between absolute and percentage reductions, for initial median

LoMV of 5 days

Pre-Intervention Value Post-Intervention Value % Change
LoMV 5 4 20%LoMV-28 5 4 20%VFD 28-5 = 23 28-4 = 24 4%

In this case, the VFD metric with a typically seen median LoMV of 5 days means a large

change in LoMV and thus LoMV28 as a percentage is a relatively small change in VFD. At

LoMV = 14 days the effect would be equal, and over 14 days the situation would reverse

with greater effect for VFD and an easier ability to detect change in this metric. This

latter case is shown in Table 2.13 with an initial LoMV of 20 days, and a percentage

reduction of 20%.

Table 2.13: Differences between absolute and percentage reductions, for an initial

LoMV of 20 days

Pre-Intervention Value Post-Intervention Value % Change
LoMV 20 16 20%LoMV-28 20 16 20%VFD 28-20 = 8 28-16 = 12 33%

Hence, the choice of LoMV28 or VFD should depend primarily on the given initial distri-

bution, of retrospective data informing the trial design, and this outcome would apply

more generally to other trial design approaches with similar metrics. In addition, Us-

ing LoMV as the root outcome to test in simulation is important, as well as knowing

the exact distribution. This Monte-Carlo approach can do this simulation, unlike other

commonly used statistical assumption based design methods.
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2.4.4 Statistical significance and power
A significant problem in many trials is concentrating on the clinical results, while ne-

glecting the statistical significance (Bhardwaj et al., 2004). Conducting a power analysis

allows the probability of correctly detecting a difference between the control and inter-

vention groups to be determined (Bhardwaj et al., 2004). This process is complicated

when analysing highly variable data that is not normally distributed. This analysis

used Monte-Carlo simulation, combined with clinically relevant exclusion criteria as a

viable method of determining the power of a study that uses a primary outcome metric

of LoMV.

If the specific RCT assessed in this paper solely analysed LoMV, 160 patients in each arm

would be sufficient to achieve a statistically significant result with 80% power and an

intervention difference of 25%. However, using an outcome metric that also considers

mortality data, such as VFD or LoMV28, could be beneficial if there is a mortality differ-

ence between each cohort. Using the VFD metric with the same intervention effect can

reduce the number of patients required to 130/arm with a mortality differential of 5%.

Due to the high variability and skewed distribution of LoMV data, it is a difficult metric

to use to assess the power of a clinical trial (Chiew, Pretty, Moltchanova, et al., 2015).

However, it remains one of the most effective methods of determining the efficacy of

MV treatment. In addition due to the high cost of ventilator therapy, reductions in ven-

tilator duration have significant economic impacts for care units and hospitals (Dasta

et al., 2005).

2.4.5 Limitations
Use of data from a specific ICU
The study was undertaken with the assumption the data used in the simulation was

indicative of that which would be used in the RCT. However, use of LoMV distribu-

tion data from a single, specific Intensive Care Unit (ICU) may mean the results are not
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universally applicable, and only able to be used in those with similar characteristics

(Van Der Lee et al., 2009). Nevertheless, the approach followed in this study is general

enough to be able to be repeated and utilised formost centres or acrossmultiple centres

in either randomised or centre randomised trials. If information on LoMV distribution

is required, then a small and centre-specific pilot study could be carried out. In the case

of a multi-centre study, information from multiple centres should be used.

2.4.6 Overall impact of Monte Carlo simulation method, cohorts
and analyses

The struggle the design of many mechanical ventilation trials face is the excessive di-

mensionality of patient factors (diagnosis, age, sex) and MV care factors (how they are

treated, and thus the size of the intervention effect). The key to this method and trial

design approach is it collapses that dimensionality in two ways. First, the objective

exclusion criteria, eliminate unintended subjectivity and patient dimensions, where

subjectively patients may be either included or excluded, creating variability between

the trial cohort and the intended target cohort who might benefit. Second, it does so

through the use of repeated simulation, thus covering all possible or likely cohort out-

comes, where the use of 4-years of data from the trial unit provides a final means of

reducing potential un- intended variability in this model-based approach. Thus, the use

of objective inclusion and exclusion in-silico criteria reduces a lot of dimensionality and

uncertainty that would otherwise occur.

The overall non-parametric simulation methods and design approach was selected as it

would be feasible in a clinical trial. The objectivity implemented in a manner where it

can be used in the actual trial ensures the desired lower dimensionality is preserved.

In turn, this outcome provides an increased chance of reaching significance through

better control of the trial design and the actual trial so that the trial design is a far

better match for what occurs in implementation, increasing the likelihood that if the

assumed intervention benefit is observed the trial will be significant.
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2.5 Summary
This chapter presented a generalisable Monte-Carlo simulation approach to determine

required sample sizes for RCTs with highly skewed outcome metrics. In addition, the

use of relevant exclusion criteria was found to reduce the required number of patients

in each arm to reach statistical power, as well as inintended added dimensionality. Use

of LoMV as an outcome metric required 160 patients/arm to reach 80% power with a

clinically expected intervention difference of 25% LoMV if clinically relevant exclusion

criteria were applied to the cohort, but 400 patients/arm if they were not. However,

only 130 patients/arm would be required for the same statistical significance at the

same intervention difference if VFD was used. Assessment of ∆ LoMV in response to
treatment should be considered to avoid an under-powered study. Monte-Carlo simu-

lation, combined with objective patient selection criteria provides better design of ven-

tilation studies. Finally, the overall approach used here is readily generalisable to most

trials where the outcomemeasures are based on a log-normal or otherwise skewed data

set, such as most length of care outcomes commonly used in medical research trials.
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CHAPTER3
Overview of Current
Pulmonary Mechanics
Models
3.1 Introduction
A range of models have been developed to describe lung mechanics from simple com-

partments models to complex finite element analyses. There is a limited amount of

information and computational power available at the bedside. As a result of this,

bedside models need to be able to convey critical information about patient condition

with limited input data. The benefit of identifying aspects of the complexity and vari-

ability of lung physiology and lung injury or disease is currently ambiguous and thus,

to date, has not justified the high costs of high fidelity data collection. In short, for a

model to have clinical relevance and widespread use it needs to be structured simply

enough to ensure clinical relevance and be mathematically identifiable using informa-

tion readily available at the bedside (Chase et al., 2018; Chiew, Chase, Shaw, Sundare-
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san, & Desaive, 2011; Cobelli & DiStefano, 1980; Docherty, Chase, Lotz, & Desaive, 2011;

Ljung, 1999; Riedlinger, Kretschmer, & Möller, 2015; Schranz, Docherty, Chiew, Chase, &

Möller, 2012).

Currently, only airway pressure and flow are measured during standard practice me-

chanical ventilation in most Intensive Care Unit (ICU) settings. The data is thus limited

compared to pulmonary model complexity in the literature. In addition, respiratory

failure is a secondary outcome to many disease or injury states, complicating the appli-

cation of Mechanical Ventilation (MV) in a broad clinical cohort.

Thus, an evaluation of a range of pulmonary models is included in this chapter, fol-

lowed by the development of a predictive model of lung mechanics to be used through-

out this thesis. In addition, the clinical data used for model analysis is outlined. The

overall aim is to present a succinct summary of model methodology and clinical data

cohorts underpinning the rest of this thesis

3.2 Current retrospective model-based methods
Two main groups of retrospective lung models exist (Ben-Tal, 2006):

• Complex, Finite Element Analysis (FEA) models. The complexity of FEA mod-
els allows lung and disease mechanics to be better understood. In particular, FEA

models can provide scientists and clinicians with a much more thorough idea of

the localised effects of clinical factors, such as patient positioning (Burrowes &

Tawhai, 2006), along with expected disease progression and pulmonary effects

(Eom, Xu, De, & Shi, 2010; Werner, Ehrhardt, Schmidt, & Handels, 2009). However,

for very large scale models, non-identifiability or non-observability can become a

serious limitation requiring new identification and statistical approaches or addi-

tional data (Chase et al., 2018; Docherty et al., 2011). In many cases, these models

are too complex to identify from the clinical data typically available, and are thus
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not feasible for clinical use.

• Variants on simpler, lumped-parameter models. Lumped parameter models
generally define elastic-resistive respiratory behaviours and have a much lower

physiological resolution and complexity than FEA models (Ben-Tal, 2006; Major et

al., 2018). Alveoli and airways are often initially modelled as a balloon at the end

of a pipe or similar (Bates, 2009). The simplicity of these models means they are

readily accessible for use in a clinical context. More specifically, they are mathe-

matically identifiable (Docherty et al., 2011; Ljung, 1999; Schranz et al., 2012) from

available pressure and flow data at the bedside. However, their simplicity gener-

ally means some dynamics are not captured. In particular, a key improvement to

be made in lumped-parameter models would be more detailed parameterisation

to enable disease evolution to be better understood via better insight into chang-

ing lung mechanics.

3.2.1 Finite Element Analysis Models
A range of more complex finite element models seeking to accurately describe the true

physiological behaviour of the lungs have been developed (Burrowes, Clark, & Tawhai,

2011; Burrowes & Tawhai, 2006; Crampin et al., 2004; Ma & Bates, 2010; Polak & Lutchen,

2003; Swan et al., 2012; Tawhai & Bates, 2011; Tawhai & Burrowes, 2003, 2008; Tawhai,

Hoffman, & Lin, 2009; Tawhai, Pullan, & Hunter, 2000; Tgavalekos, Venegas, Suki, &

Lutchen, 2003). These models typically use detailed scale-models of the pulmonary sys-

tem produced using anatomical information from computed tomography (CT) or other

imaging (Tawhai & Burrowes, 2003). Segmented lung data is fitted to a high order

mesh, providing a very detailed anatomical model for simulating respiratory mechan-

ics (Tawhai & Bates, 2011). As these models typically have a very high computational

cost and require individual CT scans for optimum accuracy, they are often not feasi-

ble for use in a clinical setting. They can also include a range of multi-scale models

for various lung functions that contribute to gas exchange (Burrowes et al., 2011, 2013;
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Burrowes, Swan, Warren, & Tawhai, 2008; Tawhai & Bates, 2011; Tawhai & Burrowes,

2008), and provide valuable information about changes in perfusion and ventilation

throughout the lungs (Swan et al., 2012). They can also be used to indicate the extent

and progression of disease (Tgavalekos et al., 2005), but not in a personalised manner

as they are not identifiable with available data.

There is thus scope for their clinical use in better understanding perfusion and disease

state in general, and over time for some patients. Equally, emerging simplified approxi-

mations using Bond Graphmethods offers the potential to significantly increase compu-

tational speed (Safaei, Blanco, Müller, Hellevik, &Hunter, 2018). Combinedwith enough

data or imaging, they provide a link to bring greater detail to simpler elastic-resistive

models.

3.2.2 Elastic-Resistive Models
Single Compartment Model
The simplest model of the lung is an elastic balloon at the end of a pipe. The balloon rep-

resents the distensible tissues, while the airways are modelled by the pipe (Bates, 2009).

From this concept, a single compartment mathematical model is generated. Many vari-

ants on this basic model have been established (Ben-Tal, 2006).

A single compartment model was pioneered in 1953, for patients capable of sponta-

neous breathing (Mead & Whittenberger, 1953). This form of model describes the res-

piratory system as containing an elastic compliant section representing the lung, along

with a resistive component representing the airways (Bates, 2009; Chelucci et al., 1991;

van Drunen et al., 2014). This simple model is disproportionally effective for basic

analyses. However, as it assumes pressure increases linearly with volume increase,

it neglects non-linear flow and other specific dynamics (Bates, 2009; Chiew et al., 2011;

Lucangelo et al., 2007).
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Thismodel includes the pressure difference (RV̇ (t)) in the lungs, and the elastic pressure

(EV(t)) in the lungs. Assuming linear flow, it is defined (Bates, 2009):

P(t) = EV (t) + RV̇ (t) + PEEP (3.1)

Where P is the inspiratory pressure delivered to the lungs (cmH2O), PEEP is the venti-

lator positive end-expiratory pressure (PEEP) setting (cmH2O), t is time (s), V(t) is the

applied volume (L), V̇ (t) is the time-dependent flow (L/s), E is the elastance (cmH2O/L)

and R is the resistance (cmH2O/L*s) (van Drunen et al., 2014).

The low number of parameters in this model means it is easily identifiable using clini-

cally available data, and is computationally inexpensive in its basic form (Chiew, 2013;

Chiew et al., 2011). Thus, it can be widely applied in clinical settings with given typical

clinical data. It has thus been significantly extended.

SLICE method
The SLICE method was developed by Guttmann et al. in 1995 (Guttmann et al., 1995).

Lung mechanics are often non-linear and volume dependent. These issues present a

challenge when attempting to fit clinically relevant linear models to data. As a linear

piecewise approximation of lung mechanics, the SLICE method splits the tidal volume

into a set of ’slices’ with a single resistance and single compliance value per volume

’slice’. Combining the resistance and compliance across the delivered volume ’slices’

gives quasi-dynamic compliance and resistance values (Guttmann et al., 1995; Zhao,

Guttmann, & Möller, 2011, 2012). To further linearise the behaviour, the Rohrer equa-

tion (Rohrer, 1925) is used to calculate the tracheal pressure (Guttmann et al., 1995), as

opposed to the airway pressure. Equation 3.1 is thus adapted to become:

Paw,slice(t) = Vslice(t)
Ck

+ V̇slice(t)xRk + Pk (3.2)
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where Paw,slice, V̇ slice, andVslice are the pressure, volume and airwayflow for a single slice,

respectively (Guttmann et al., 1995). Pk represents the pressure offset for each slice. Ck

and Rk are the identified compliance (L/(cmH2O)) and resistance ((cmH2O)*s/L*s) for

each slice (Zhao et al., 2011).

An adaptive slice model was developed to automate selection of the slice sizes based

on the results confidence interval, thereby reducing error while maximising computa-

tional efficiency (Zhao et al., 2011). The linearisation of lung mechanics in the SLICE

model, along with the additional accuracy in the adaptive form means it remains clini-

cally identifiable, while still providing as many trustworthy estimates of elastance and

resistance as possible (Zhao et al., 2011). However, it requires tracheal pressure mea-

surement, which ismuchmore invasive andmuch less common than ventilator recorded

airway pressure.

Time-Varying Elastance Model
Lung elastance is dependent on recruitment, which is a time-varying phenomena (Ma &

Bates, 2010; Massa, Allen, & Bates, 2008). Therefore, a method to assess changes in this

property throughout the progression of a disease is essential to guide therapy (Chiew et

al., 2011; van Drunen et al., 2014). Dynamic lung elastance (Edrs) is time-varying elas-

tance changing over a breath (Chiew et al., 2011). It is typically fit over inspiration using

the single compartment model in Eq. 1.

Having Edrs and a breath-constant lung resistance (Rrs) fit to every breath allows the

model to be used to optimise PEEP settings (Chiew, Pretty, Shaw, et al., 2015; van Drunen

et al., 2014). It can also indicate the occurrence of over-distension or recruitment within

the breath (van Drunen et al., 2014).

The time-varying model is defined:

P(t) = EdrsV (t) + RV̇ (t) + PEEP (3.3)
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where Edrs is an overall respiratory system elastance (cmH2O/L) comprising chest wall

elastance, treated as a constant, and lung elastance (assumed to change throughout

inspiration (van Drunen et al., 2014)). Resistance is assumed to be a constant over a

breath in this model.

Identifying time-varying elastance over a breath also enables detection and monitoring

of the incidence and magnitude of asynchronies (Chiew et al., 2018; Kannangara et al.,

2016). Asynchrony interrupts MV care and worsens outcomes, as it reflects poor inter-

action between the patient and ventilator (Chiew et al., 2018; Kannangara et al., 2016).

Hence, the model of Equation 3.3 can also be used to address andmonitor this clinically

important outcome, as well.

Spontaneous Breathing Model
Spontaneously breathing patients apply their own inspiratory efforts on top of a venti-

lator supported breathing cycle (Langdon, Docherty, Chiew, Damanhuri, & Chase, 2015).

A time-varying elastance model was developed to describe the mechanics of sponta-

neously breathing patients on partial assist mechanical ventilation (Chiew, Pretty, Shaw,

et al., 2015). This model utilises a negative time-varying elastance component to de-

scribe patient-specific breathing efforts. The overall model is based on the single com-

partment model of Equation 3.1 and the time-varying model of Equation 3.3, but an

adjusted Edrs value captures the additional patient effort on top of the ventilator sup-

port. The components of this adjusted Edrs value are defined:

Edrs = Echest + Edemand(t) + Elung (t) (3.4)

where Edrs is the overall time-varying respiratory system elastance (cmH2O/L), Echest is

the constant elastic properties of the chest wall, Elung(t) is a time-varying measure of the

elastic properties of the lung, or the collection of alveoli, and Edemand(t) is the patient-

specific inspiratory demand, which varies from breath-to-breath (Chiew, Pretty, Shaw,
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et al., 2015).

Given a value for Echest, the net balance of Edemand(t) and Elung(t) can be identified. It

may be a positive or negative value as that patient may provide either inspiratory or

expiratory pressure. Negative elastance thus accounts and allows for patient breathing

efforts separate to the support provided by the ventilator.

The ability of this model to accurately capture mechanics of spontaneously breathing

patients without invasive measures extends the clinical ability of minimal models to

enable titrating care for all ventilated patients (Chiew, Pretty, Shaw, et al., 2015). Neg-

ative elastance and area above this curve allows estimation of breathing effort by the

patient. Finally, it lets the same model be used for sedated and spontaneous breathing

MV modes, enabling continuity in model-based MV care approach.

Other Elastic-Resistive Models
A range of other elastic-resistive models have been developed (Ben-Tal, 2006). These

models include those of Massa et al. (Massa et al., 2008) and Ma et al. (Ma & Bates,

2010), which were used to define the processes of recruitment and derecruitment. Both

of these models attempt to capture the specific, time-dependent processes carried out in

an airway branch before extending this local model to estimate global lung behaviour

based on expected distributions (Massa et al., 2008). It assumes each branch has a criti-

cal opening and closing pressure, along with corresponding time constants (Ma & Bates,

2010).

Abboud et al. (Abboud, Barnea, Guber, Narkiss, & Bruderman, 1995) developed amodel

to capture the lung’s flow-volume curve throughout forced expiration. This model was

used to more thoroughly investigate the differences in lung stiffness between differ-

ent lung diseases. Finally, in 2007, Lucangelo et al. adapted Equation 3.1 to capture

dysfunctional patient-ventilator interactions such as asynchronies, air-leaks or sudden

changes in patient condition (Lucangelo et al., 2007).
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3.2.3 Modelling Summary
A range of models have been developed to define lung mechanics. Finite element mod-

els are too complex for bedside use inmodel-predictive and potentially automated care.

Simple, mathematically identifiable models have demonstrated the ability to capture

clinically relevant dynamics and lung mechanics. However, improvements in the field

require the ability to predict the effect of changes in therapy on individual patients and

cohorts as a whole, prior to making the change, which has not yet been demonstrated.

3.3 Forward prediction of future lung behaviour
While many pulmonary models have been developed to the point where they can accu-

rately describe elastance and suggest a suitable PEEP level, it is a reactive, retrospective

process. For more effective and patient specific treatment, models need to be able to

extrapolate from past or current data to predict how the lung will respond to MV set-

ting changes (Langdon, Docherty, Chiew, & Chase, 2016). This predictive capability is

demonstrated in glycaemic care (Chase et al., 2011, 2010; J. L. Dickson et al., 2018; Evans

et al., 2011; Langdon, Docherty, Mansell, & Chase, 2018; Stewart et al., 2016; Uyttendaele

et al., 2018) and is essential in MV care for defining when and how to alter ventilator

settings for optimised patient outcomes.

3.3.1 Stochastic Models
Stochastic models use distribution information about a population to predict future

behaviour in an individual patient. Stochastic models have been used for predictive

models of insulin sensitivity and virtual patient development to ensure safety in semi-

automated glycaemic control (Chase et al., 2016, 2018, 2008, 2010; J. L. Dickson et al.,

2018; Fisk et al., 2012; Le Compte et al., 2010; Lin et al., 2007). Specifically, these models

have been instrumental in the STAR glycaemic control protocol (J. L. N. Dickson, Lynn,

Shaw, & Geoffrey Chase, 2019; Evans et al., 2011; Fisk et al., 2012; Le Compte et al., 2012;
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Stewart et al., 2016), using information from large amounts of clinical data to inform

clinical decisions about future changes in insulin uptake to avoid hyperglycaemic and

hypoglycaemic episodes.

However, stochastic modelling may be limited in its application for lung mechanics.

Insulin sensitivity is modelled as a one-dimensional problem, either increasing or de-

creasing over time. More recent work has extended this variable in a model-based

glycaemic control scenario to a two-dimensional variable that takes into consideration

rate of change by including rate of change (Uyttendaele et al., 2018). However, for lung

mechanics models, this variability is spread over a more variable and high, breath-to-

breath time resolution.

Notably, the single compartment model of pulmonary mechanics P = EV +RQ+PEEP

in Equation 3.1 already has two dimensions. However, once identified this model lacks

predictive capability if ventilator settings, such as PEEP, change. To allow for changes

in elastance and resistance or ventilator settings over time to be taken into account, the

model needs to be of a higher dimension.

3.3.2 NARX Models
Work has been done to predict lung mechanics at a high PEEP using information pro-

vided at a lower PEEP (Langdon, Docherty, Chiew, & Chase, 2016; Langdon, Docherty,

Chiew, Moeller, & Chase, 2015). A non-linear autoregressive (NARX) resistance and

basis function elastance model was developed from a viscoelastic form of the single

compartment model (Langdon, Docherty, Chiew, & Chase, 2016; Langdon, Docherty,

Chiew, Moeller, & Chase, 2015). Basis functions were developed from overlapping B-

spline functions of different orders (Langdon, Docherty, Chiew, & Chase, 2016; Langdon,

Docherty, Chiew, Damanhuri, & Chase, 2015; Langdon, Docherty, Chiew, Möller, & Chase,

2016). This model successfully predicts lung behaviour at high PEEP levels using infor-

mation provided at a lower PEEP setting/value. However, the basis function terms used
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cannot be explicitly linked to lung mechanics. This issue reduces the clinical utility of

this particular model to be used in a virtual patient, as well as its diagnostic relevance.

3.3.3 Summary
Each of these models is able to provide useful information about current lung response

to ventilation and uses clinically-available information. However, each of the mod-

els lack the key combination of predictive capabilities and clinical identifiability to be

used in determining lungmechanics during future changes in ventilation. In particular,

none of these models has been used to forward predict pressure or flow outcome given

different mechanical ventilation modes or settings. This work attempts to develop a

simple model capturing underlying lung mechanics to be used to predict pressure out-

comes given different PEEP and flow conditions.
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CHAPTER4
Clinical Data
4.1 Clinical Data Cohorts
Pressure and flow data from N=21 invasively ventilated patients diagnosed with acute

respiratory distress syndrome (ARDS) from ICUs in Germany (N=17) and New Zealand

(N=4) (Davidson et al., 2014; Stahl et al., 2006) will be analysed throughout the rest of this

thesis. The four patients from New Zealand were part of the CURE pilot trial conducted

at Christchurch Hospital Intensive Care Unit (ICU) in August 2016. Pressure-flow data

for this cohort was sampled at 50 Hz (Szlavecz et al., 2014). The German data spans

eight ICUs, and was collected from September 2000 until February 2002 as part of the

McREM trial (Stahl et al., 2006). It was sampled at 125 Hz. All patients were fully sedated

and received invasive volume-controlled ventilation via an Endotracheal Tube (ETT).

4.2 CURE Data
This study used pressure-flow data from four mechanically ventilated patients that

were treated as part of the CURE pilot trial (ANZTR Number: ACTRN12613001006730)

(Szlavecz et al., 2014). The CURE pilot trial was a randomised control trial where the in-
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tervention arm received repeated RMs. All patients were intubated and fully sedated,

receiving volume controlled MV. Those with APACHE III diagnostic codes associated

with prior pulmonary disease admission (asthma, COPD), or neurological, spinal injury,

or head trauma, were excluded from the pilot trial.

All patients were fully sedated with muscle relaxants, which is common to prevent

spontaneous breathing during RMs. Inclusion criteria for the trial require a PaO2/FiO2

ratio (PaO2/FiO2 ratio) <300 mmHg, classifying the patient as having ARDS according to

the Berlin definition (The ARDS Definition Task Force, 2012). Pressure, flow, and time

data were extracted at 50Hz from a Puritan Bennett 840 ventilator (Covidien, Boulder,

CO, USA). Patient demographic and clinical data is shown in Table 4.1. More informa-

tion about the CURE trial can be found in (Chiew, Pretty, Shaw, et al., 2015; Davidson et

al., 2014; Szlavecz et al., 2014). Only the four patients from the intervention arm of the

CURE pilot trial underwent major RMs, per protocol (Szlavecz et al., 2014), and are thus

the only data available from this ten patient pilot study for this development and vali-

dation study. Each of these patients had mild (200 – 300 mmHg) or moderate (100—200

mmHg) ARDS.

Table 4.1: Patient demographic information.

PatientNumber Sex Age(years) LoMV # RMs ClinicalDiagnostic P/F Ratio
1 M 33 23 days 2 Peritonitis 177

2 M 77 24 days 2
Legionella

pneumonia
209

3 M 61 23 days 2

Staphylococcus

Aureus

pneumonia

109

4 F 73 2 days 2
Streptococcus

pneumonia
155

Each RM comprised two staircase increases and decreases in PEEP. The first was per-

formed to recruit lung volume, and the second to assess lung mechanics at different

PEEP levels once recruitment was achieved (Chiew, Pretty, Shaw, et al., 2015; Davidson
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et al., 2014). As lung mechanics change throughout an RM, each data set was split into

four sections: two upwards and two downwards staircase sections, as shown in Fig-

ure 4.1a. PEEP levels containing less than six usable breaths (40% of CURE PEEP levels,

33% of McREM PEEP levels) were excluded to reduce the impact of outliers; this issue

occurs when the ventilator does not achieve exactly the stated PEEP in some breaths.

The average length of PEEP levels studied in this research was (median [IQR]) 10 [7 –

12] breaths.

0 10 20 30 40 50 60 70 80
Breath Number

10

15

20

25

30

P
E

E
P

 (
cm

H
2O

)

CURE Cohort

0 5 10 15 20 25 30 35 40 45
Breath Number

10

15

20

25

30

P
E

E
P

 (
cm

H
2O

)

McREM Cohort

Figure 4.1: Example of RMs used in CURE and McREM trials. The number of breaths

spent at each PEEP level are not representative of those found in the data. A more

detailed depiction of the breakdown of RM arms for the CURE data can be seen in Chap-

ter 8, Figure 8.1.
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4.3 McREM Data
The McREM trial examined whether or not lung mechanical observations differed be-

tween measurements taken under static conditions and those taken dynamically. The

study had ethics approval under the local ethics committee of each of the eight German

ICUs participating in the trial (Stahl et al., 2006). All patients were ventilated with a

Draeger Evita 4 (Draeger Medical, Lübeck, Germany) ventilator. Exclusion criteria in-

cluded patients with obstructive lung disease, presence of a bronchopleural fistula or

known air leakage, haemodynamic instability, or being considered ready to wean off

ventilation by the attending physician. The maximum PaO2/FiO2 ratio was 298 mmHg

(PF<300mmHg), whichmatches the inclusion criteria for the CURE pilot trial. The tidal

volume was targeted at 8 ± 2 mL/kg initial body weight. Before the measurements, res-

piratory rate was adjusted to keep the PaCO2 at around 55 mmHg. Inspiratory time and

flow rate were set to obtain an end-inspiratory hold of 0.2 secs. (Stahl et al., 2006) Dur-

ing the protocol, ventilator settings remained unchanged. Patient demographics are

shown in Table 4.2.

Each patient underwent a staircase recruitment manoeuvre where PEEP was increased

in steps of 2 cmH2O up to 13 times from ZEEP or to a limit of 26 cmH2O, as shown in Fig-

ure 4.1b. Each PEEP step was maintained for 10 breaths (Stahl et al., 2006). Figure 4.1b

shows a typical RM carried out in this study. The McREM study included 28 patients, of

which only 17 received RMs that could be used in this study. These latter patients were

used in this analysis.
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Table 4.2: Patient Demographics for McREM trial

Patient # Sex Age LoMV (Days) Clinical Diagnostic P/F Ratio
1 M 37 10 Pneumonia 163

2 M 39 2
Traumatic aortic dissection,

lung contusion
170

3 F 50 8 Pancreatitis, pneumonia 202

4 F 49 3 Pneumonia 289

5 M 34 10 Traumatic open brain injury 192

6 M 67 4 Post-resuscitation 234

7 M 39 10 Perf. sigma, peritonitis 188

8 M 42 9 Pneumonia, pancreatitis 235

9 M 51 5
Traumatic brain injury,

pneumonia
230

10 M 77 6 Pneumonia 225

11 M 74 10
Subarachnoid and

subdural haemorrhage
298

12 M 41 16 Peritonitis 178

13 M 62 2 Subarachnoid haemorrhage 288

14 M 39 7
Traumatic brain injury,

pneumonia
143

15 M 74 9
S/P coronary artery,

bypass grafting, pneumonia
271

16 M 59 19 ARDS 75

17 M 45 8
Blunt abdominal trauma,

pneumonia
173

4.3.1 End-Inspiratory Pause
TheMcREM trial also administered a 0.2 second long end-inspiratory pause during ven-

tilation for the majority of the patients. End-inspiratory pauses are a held pressure

lower than peak pressure after PIP is reached and before expiration begins, as indi-

cated in Figure 4.2 for Patient 8 in theMcREM cohort (Stahl et al., 2006). End-inspiratory

pauses are used to improve patient ventilation by reducing hypercapnia through re-

duction of both dead space and PaCO2 levels (Aguirre-Bermeo et al., 2016; Åström et al.,

2008; Devaquet et al., 2008).
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Figure 4.2: Typical end-inspiratory pause for the McREM cohort, shown for Patient 8.

4.4 Data Consolidation
In both cohorts, every breath at each PEEP level was used to create an ’average’ breath

that was used to fit the model parameters. This was determined using the median val-

ues for each parameter at every time-step. This breath was then used for prediction

and compared to the average breath at the higher PEEP level. PEEP was taken as the

minimum pressure value in a breath, it was rounded to the nearest whole number.

4.5 Summary
In this chapter, the clinical data from the CURE and McREM trial cohorts that will be

used throughout the thesis is presented. Additionally, an explanation of the structure

of the RMs that are used in each cohort is included.



CHAPTER5
Development of a Predictive
Pulmonary Mechanics Model
5.1 Introduction
In this chapter a predictive pulmonary elastance model is developed to predict the im-

pact of PEEP changes on lung mechanics throughout a staircase recruitment manoeu-

vre (RM). This model uses physiologically relevant ‘basis function’models for elastance

and resistance changes over positive end-expiratory pressure (PEEP) steps along with

an estimation of the additional lung volume gained (additional lung volume (Vfrc)) to

predict peak inspiratory pressure (PIP) over PEEP steps in RMs (Morton, Dickson, Chase,

Docherty, Desaive, et al., 2018; Morton, Dickson, Chase, Docherty, Howe, et al., 2018a,

2018b; Morton, Dickson, Docherty, Shaw, & Chase, 2017; Morton, Docherty, Dickson, &

Chase, 2018; Morton et al., 2019; Morton, Knopp, et al., 2018). The ability to predict lung

response prior to changing ventilator settings would allow clinicians to better assess

the trade-off between risk (high pressures and PIP) and reward (alveolar recruitment

(increased Vfrc) and improved gas exchange).
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5.2 Modelling Methodology
5.2.1 Model Development
The single compartment model of lung elastance and pressure shown in Equation 3.1

was used as a starting point for model development (Bates, 2009; Chelucci et al., 1991;

van Drunen et al., 2014). Pulmonary elastance is defined as a function of both volume

and pressure, in two separate basis functions, shown in Figure 5.1. This split allows

more specific physiological behaviours of the lungs to be captured, compared with the

single, lumped parameter model values in Equation 3.1. The elastance (E, cmH2O/L) is

defined:

E(P(t), V (t)) = Erec + Edist = E1Φ1(V (t)) + E2Φ2(P(t)) (5.1)

where P(t) is the pressure delivered by the ventilator and V(t) is the tidal volume deliv-

ered. Φ1 (V(t)) and Φ2 (P(t)) are dimensionless recruitment and distension basis func-
tions, respectively, and E1 and E2 are constant coefficients with units (cmH2O/L).
The recruitment elastance, captures the decreasing rate of recruitment of alveoli with

an increase in volume delivered. It is piecewise parabolic with respect to tidal volume

above end-expiratory volume at the current PEEP and is defined as zero when V >Vm

(Morton et al., 2019). Vm is set to 1L here as this value represents a sensible upper limit

on gained recruited volume at the PEEP changes studied, based on clinical observation.

Equally, this parameter cannot be easily or uniquely identified for each individual pa-

tient or breath, its value is set constant (Docherty et al., 2011). This recruitment basis

function is defined:

Erec = E1Φ1(V (t)) =

E1(V − Vm)2 ifV ≤ Vm

0 ifV > Vm

(5.2)

The distension function (Morton, Dickson, Chase, Docherty, Desaive, et al., 2018; Morton
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et al., 2019) captures the increasing elastance with pressure due to distension effects.

It is modelled as a linear function, where the value of 60 is the maximum Mechanical

Ventilation (MV) pressure considered. This is well above peak limits that are observed

or considered safe (Brower et al., 2004). It is defined:

Edist = E2Φ2 = E2P(t)60 (5.3)

Airway resistance is a function of flow, and is defined using the Rohrer equation for

flow resistance (Flevari et al., 2011; Rohrer, 1925). These terms capture linear and non-

linear components of flow resistance, and R1 and R2 are constants to be identified. This
equation is also similar to those used to model endotracheal tube resistance (Flevari

et al., 2011; Jarreau et al., 1999), which is a major form of resistance encountered in

MV. Resistance was defined per the structure of the Rohrer equation for flow resistance

(Flevari et al., 2011; Rohrer, 1925):

R = R1Θ1 + R2Θ2 (5.4)

where

Θ1 = 1 (5.5)

Θ2 = |V̇ (t)| (5.6)

Combining both the elastance and resistance basis functions into the model of Equa-

tion 3.1 yields:

P(t) = ( E1(V − Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP (5.7)

where E1, E2, R1, and R2 are to be identified and the other variables are known.
The general elastance and resistance basis function shapes used in themodel are shown
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in Figure 5.1 and Table 5.1, and are defined over the pressure range 0-60 cmH2O and

volume range 0-1 L for the elastance basis functions, and a flow range -2 to 2 L/s for

the resistance basis functions. These ranges more than cover typical mechanical ven-

tilation ranges. Note that as pressure rises with volume during inspiration, the two

elastance basis functions of Equations 5.3 and 5.2 create an overall parabolic shape

in combination. This overall shape cannot be directly plotted in sum together as they

are functions of pressure and volume, respectively, whose relationship differ for each

patient and with MV settings.

Pneumonia-affected lungs often display very heterogeneous localised lung mechanics,

with optimal PEEP potentially occurring over a large range (Lorx et al., 2010). Further-

more, airflow resistance in patients presenting with pneumonia-induced ARDS often

shows wide variation, making achieving optimal ventilation challenging (Lorx et al.,

2010; Wright & Bernard, 1989). The model was developed to account for heterogeneity

in lung disease. In particular, where lung stiffness in certain lobes reduces the ability of

the lung to be recruited, themodel captures this loss of recruitment as increased overall

elastance (stiffness), and a decreased ability to gain Vfrc.

Table 5.1: List of basis function shapes. These basis function shapes are also presented

in Figure 5.1.

Relevance Title Coefficient AFunction of Chosen Shape
Elastance(Recruitment) Erec Φ1 Volume Parabolic decay

Elastance(Distension) Edist Φ2 Pressure Linearly increasing slope

Resistance 1 R1 θ1 Constant Constant value

Resistance 2 R2 θ2 Flow

The absolute value of

ventilator flow throughout

the breath
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Figure 5.1: Depiction of basis functions for elastance and resistance. The shapes above

assume coefficient values of 1. All basis functions are dimensionless.
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5.2.2 Model Identification
An identified model can be subsequently used to predict patient-specific outcomes for

different settings or pressure and volume, as the basis functions are identified over an

entire reasonable range of these variables. The median breaths for each PEEP level (de-

fined in Section 4.4) were used for model identification. Data from the entire breath,

including expiration, was used to identify model parameters to identify E1, E2, R1, and
R2 using Equation 5.1. While these points are often discarded in parameter identifica-
tion, the first data points of each breath were used to capture the viscoelastic behaviour

present in this section of ventilation.

Parameter fitting was done independently for every PEEP level in a patient data set.

Once a PEEP level was fit, forward prediction to other PEEP levels was achieved us-

ing the parameters from the current PEEP level only. Model parameters, E1, E2, R1,
and R2 were identified for the median breath across a PEEP level using MATLABs (The
Mathworks, 2017) linear least squares lsqnonneg function to constrain all parameters

to physiologically possible positive values in MATLAB and clinical data in a problem

defined:

min(0, V (ti)− Vm)2 � V (ti) V (ti)� P(ti)60 V̇ (ti) |V̇ (ti)|V̇ (ti)
.
.
.

.

.

.
.
.
.

.

.

.





E1
E2
R1
R2


=
P(ti)− PEEP

.

.

.


(5.8)

where � indicates pointwise multiplication.

5.2.3 Model Prediction
The solution for an identified model is generated using volume controlled MV and thus

specified V(t) and V̇ (t) are used to simulate P(t). Fit error describes the difference be-
tween clinical and simulated data at the same PEEP, and prediction error describes the
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difference between clinical and simulated pressure at a higher PEEP. Forward simula-

tion using V(t) and V̇ (t) inputs at different PEEP levels, which are specified and known
ahead of time in volume controlledMV, can be computed to assess prediction and utility.

Prediction was carried out for PEEP increases in each upwards RM arm (shown in Fig-

ure 4.1a). Therewas a focus on prediction on increasing PEEP as an increase in pressure

and volume pose a greater immediate risk to patient safety. PIP and gained recruitment

volume Vfrc can be used to reflect the relative gains and risks of mechanical ventilation,

for the purposes of avoiding barotrauma and volutrauma. Prediction across PEEP lev-

els also requires calculation of the change in Vfrc or the volume recruited by a PEEP step

change relative to the current PEEP (Lambermont et al., 2008; van Drunen, Chase, et al.,

2013). It is assumed that the change in Vfrc is positive or zero when PEEP is increased,

and negative or zero when PEEP is decreased.

Forward simulation of P(t) using V(t) and V̇ (t) given by the volume controlled ventila-
tion mode at different PEEP levels as inputs can be used to assess prediction, and thus

the potential clinical utility of themodel and overall approach. The change in Vfrc across

a particular PEEP step (n to n+1) is assessed iteratively using:

Vnfrc = PEEPn+1 − PEEPn
E1(Vfrc − Vm)2 + E2PEEPn+160 (5.9)

The minimum value for V – Vm was set to zero through use of themin function in MAT-

LAB.

Incorporating Vnfrc from Equation 5.9 yields a model to predict P(t) using Equation 5.7

and the known volume controlled flow inputs at a new PEEP level (PEEPn+1), where
the resulting formula is defined:

P(t) = (E1((V + Vfrc)− Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

(5.10)
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5.2.4 Model Validation
The same error metrics are used to describe the identified model fit to data (fit error),

and the accuracy of the identified model prediction for a higher PEEP level (prediction

error). Root Mean Square (RMS) indicates the average sum-squared error residuals

throughout the breath. To ensure this value is normalised across all PEEP levels and

between data sets with different numbers of data points per breaths, the percentage

RMS error is also calculated.

PIP is a key clinical indicator of the risk of ventilator-induced lung injury (VILI) due

to barotrauma in volume controlled ventilation (Dreyfuss & Saumon, 1992; Gammon,

Shin, & Buchalter, 1992). To assess the clinical relevance and safety of the model, both

the error in PIP and its percentage error are calculated for identified model fit and

prediction. Finally, predictions are made for 1 – 8 PEEP steps forward for all PEEP

levels where there was data. To assess the accuracy of the model across the entire

PEEP range, model fit and prediction error are compared across the entire range and

for different prediction step sizes. Unless, otherwise stated, PIP (cmH2O) error is in it’s

original, signed form, while PIP (%) error is taken as an absolute error.

5.2.5 Summary
This chapter presents a predictive model and parameter identification framework that

will be used in subsequent chapters.



CHAPTER6
Impact of Recruitment
Function Shape on
Prediction
6.1 Introduction
Prior work suggested the rate of recruitment follows an exponential decaywith increas-

ing pressure(Albert et al., 2009; Bates & Irvin, 2002; Crotti et al., 2001; Graham et al.,

2005; Harris, Hess, & Venegas, 2000; Massa et al., 2008; Medoff et al., 2000; Mutch et al.,

2000; Owens, Hess, Malhotra, Venegas, & Harris, 2008; Ranieri et al., 1991; Sundaresan

et al., 2009; Venegas, Harris, & Simon, 1998; Williamson et al., 2011). This decrease in

elastance due to recruitment could be mathematically described with different basis

functions yielding similar overall shapes. In this chapter, an exponential basis func-

tion is compared to a parabolic basis function from Chapter 5, where it is hypothesised

the latter will improve identifiability while not sacrificing accuracy. This chapter also

serves as model validation for the parabolic model from Chapter 5.
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6.2 Methods
A single compartment model is used in conjunction with basis function shapes for elas-

tance and resistance, as presented in Section 5.2.1. This study examines the impact of

the difference in recruitment elastance basis function shape (Φ1) on model identifica-
tion and PIP prediction. While both the parabolic and exponential models broadly de-

scribe elastance as decreasing to a minimum of zero, there are differences in the shape

and rate of that decrease, as shown in Figure 6.1 where the exponential of Equation 6.2

has a much steeper initial drop from its maximum value. This comparison can indi-

cate which definition is better across all the data in this study, noting an exponential

shape has been very commonly used in previous studies (Crotti et al., 2001; Medoff et

al., 2000; Mutch, 2005; Sundaresan et al., 2009; Venegas et al., 1998), and parabolic func-

tions have not been used previously. The overall results should thus provide significant

new insight into lung mechanics.

6.3 Model Definition
The definition and identification of the parabolic recruitment function model is out-

lined in Chapter 5.2, where the parabolic basis function is defined in, Equation 5.2

(Φ1 = E1(V − Vm)2).
In the exponential basis function, an exponential decay is used to describe the rela-

tionship between the increasing volume and the rate of alveolar recruitment (Morton,

Dickson, Chase, Docherty, Desaive, et al., 2018). This function is defined:

Erec = E1Φ1(V (t)) = E1eb(V (t))
(6.1)

where b is a constant controlling the rate of recruitment with increased tidal volume

delivered, which also makes it useful for assessing different levels of volume deficiency.
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The overall single compartment model with exponential recruitment is defined:

P(t) = ( E1eb(V (t))︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP (6.2)

The overall single compartment model for the parabolic case is defined in Equation 5.7

and is repeated here:

P(t) = ( E1(V − Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

The differing shapes of the parabolic and exponential recruitment function are shown

in Figure 6.1. The models are fit to the CURE and McREM data cohorts described in

Section 4.
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Figure 6.1: Difference in shape between the exponential recruitment function used in

Morton, Dickson, Chase, Docherty, Desaive, et al. (2018) and the parabolic function used

in Morton et al. (2019). The shapes above assume coefficient values of 1 and an expo-

nential constant, b, of −2.71 for the exponential function.
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6.3.1 Exponential Model Identification
Parameters were identified for the entire average breath for both the exponential and

parabolic models. Identification methods for the parabolic basis function of Equa-

tion 5.2 can be found in Section 5.2.1. In short, a linear least squares method is used

to identify E1, E2, R1andR2, assuming that Vmax = 1.0. For the exponential model, an
iterative linear identification employs three equations defined:

V (t) V (t)� P(t) V̇ (t) |V̇ (t)|V̇ (t)
.
.
.

.

.

.
.
.
.

.

.

.





E1∗
E2
R1
R2


=
P(ti)− PEEP

.

.

.

 (6.3)

1 −V (t)
.
.
.

.

.

.


ln(E1)

b

 =


ln(P(t)− PEEP − E2P(t)60 (V (t)− (R1 + R2|V̇ (t)|V̇ (t))
V (t)
.
.
.

 (6.4)

V (t)� P(t) V̇ (t) |V̇ (t)|V̇ (t)
.
.
.

.

.

.
.
.
.



E2
R1
R2

 =
P(ti)− PEEP − E1e−bV (t)V (t)

.

.

.

 (6.5)

where � indicates pointwise multiplication, and where E2, R1, and R2 are estimated
from Equation 6.3 to provide an initial estimate for later iterations. Equations 6.4 and

6.5 are then iterated to estimate E1 and b, then E2, R1, and R2, respectively.

6.3.2 Exponential Model Forward Prediction
Forward simulation of P(t) using V(t) and V̇ (t) inputs at different PEEP levels can be
used to assess prediction and thus the potential clinical utility of the model and over-

all approach. Prediction across PEEP levels requires calculation of the additional lung

volume (Vfrc) induced in a PEEP step relative to the current PEEP. It was assumed Vfrc
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changes would be positive when PEEP was increased and negative when PEEP was de-

creased.

To determine the change in Vfrc across a particular PEEP step (Vnfrc), a quasi-static solu-

tion for Vfrc was iterated until convergence, ∆vnfrc < 0.01%, defined:
Vnfrc = PEEPn+1 − PEEPn

E1e−bVnfrc + E2PEEPn+160 (6.6)

The final prediction model is shown:

P(t) = ( E1eb(V (t)+Vfrc)︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP (6.7)

where Vfrcmodifies the recruitment elastance term.

6.4 Results
6.4.1 Model Fit Results
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Figure 6.2: CDF comparison of PIP and RMS fitting error results between exponential

and parabolic model for elastance as a function of recruitment.

The parabolic and exponential models showed similar accuracy with fitting the data

across the CURE cohort. As can be seen in Tables 6.1 and 6.2, both models showed

very low fitting error and estimation of the peak inspiratory pressure. More specific

comparisons for PIP (%) and RMS (%) error results are shown in the CDFs in Figure 6.2.

The R2 valuewas 0 cmH2O*s/L inmost cases as it is constrained frombeing non-physically
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negative. The Rohrer equation’s second term using (|V̇ (t)|V̇ (t)) is for high energy flows,
where the laminar flows and geometry in mechanical ventilation often do not reach

these levels. However, in some cases it is needed for a more accurate fit.

Table 6.1: Summarised model parameters and fitting error (median [IQR]) for the

parabolic and exponential model for the CURE cohort.

Parabolic Model Exponential Model
E1 5.8 [0.5 - 13.4] 6.7 [0.0 - 14.8]

E2 55.9 [46.2 - 70.7] 53.9 [46.9 - 74.2]

b N/A -5.0 [-7.9 - -2.5]

R1 6.5 [6.1 - 7.7] 6.4 [6.1 - 7.2]

R2 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0]

RMS error (cmH2O) 1.0 [0.9 - 1.2] 1.1 [1.0 - 1.2]RMS error (%) 2.4 [2.1 - 2.8] 2.4 [2.0 - 2.8]PIP error (cmH2O) 0.8 [0.5 - 1.1] 0.9 [0.6 - 1.2]PIP error (%) 2.4 [1.6 - 3.0] 2.7 [1.7 - 3.3]

Table 6.2: Summarised model parameters and fitting error (median [IQR]) for the

parabolic and exponential model for the McREM cohort.

Parabolic Model Exponential Model
E1 14.0 [10.1 - 19.2] 21.7 [14.1 - 27.7]

E2 47.0 [41.1 - 58.6] 44.0 [32.9 - 61.2]

b N/A -3.8 [-5.4 - -0.6]

R1 8.4 [7.5 - 11.0] 9.0 [7.2 - 12.0]

R2 0.0 [0.0 - 0.0] 1.4 [0.0 - 3.8]

RMS error (cmH2O) 0.6 [0.5 - 0.9] 0.9 [0.7 - 1.3]RMS error (%) 2.3 [1.7 - 3.6] 3.0 [1.9 - 5.1]PIP error (cmH2O) 1.0 [0.8 - 1.3] 1.4 [0.9 - 2.0]PIP error (%) 2.5 [1.7 - 3.4] 3.6 [2.2 - 4.7]

6.4.2 Model Prediction Results
Impact of Recruitment Function Shape
Model predictions for the parabolic model have low RMS and PIP prediction errors

across all PEEP changes studied for both cohorts, as shown in Tables 6.3 and 6.4.

Figure 6.3a shows PIP prediction error is lowest across the entire PEEP range studied

when the parabolic basis function is used, compared to the exponential model. The

difference in error also includes much lower outliers so the 95th percentile errors in

Figure 6.3a are 30-40% lower (relative) for both cohorts. Overall, fit and prediction
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Table 6.3: Comparison of prediction error (PIP) across the entire clinical recruitment

manoeuvre range (14cmH2O) for the parabolic and exponential model for the CURE

and McREM cohorts.

CURE Cohort
PEEPChange PIP Error(cmH2O) PIP Error(%)

ParabolicModel ExponentialModel ParabolicModel ExponentialModel
2 cmH2O 2.8 [2.8 - 3.6] 3.3 [-0.2 - 5.0] 4.1 [2.6 - 5.2] 6.9 [3.4 - 11.2]4 cmH2O 1.4 [0.8 - 1.7] 2.9 [1.3 - 3.9] 3.6 [2.7 - 5.0] 7.1 [3.5 - 9.6]6 cmH2O -1.0 [-2.5 - 1.9] 1.7 [-1.4 - 7.2] 4.5 [3.2 - 6.8] 5.3 [3.5 - 14.9]8 cmH2O 1.5 [0.3 - 2.6] 4.1 [1.8 - 5.9] 3.6 [1.9 - 6.6] 9.1 [4.5 - 14.2]10 cmH2O -0.6 [-2.2 - 3.7] 4.5 [1.1 - 10.4] 6.3 [4.5 - 8.3] 9.9 [3.1 - 21.3]12 cmH2O 2.5 [1.5 - 3.4] 3.4 [-0.1 - 9.2] 7.1 [3.5 - 8.1] 8.3 [1.6 - 20.5]14 cmH2O 0.3 [-0.9 - 4.3] 9.6 [2.9 - 13.8] 4.5 [1.0 - 8.8] 19.4 [6.6 - 29.9]

Total 1.4 [-0.5 - 2.2] 3.2 [1.1 - 5.9] 4.5 [2.8 - 6.5] 8.3 [3.4 - 14.1]
McREM Cohort

PEEPChange PIP Error(cmH2O) PIP Error(%)
ParabolicModel ExponentialModel ParabolicModel ExponentialModel

2 cmH2O 1.1 [0.3 - 1.4] 3.0 [1.2 - 4.2] 2.7 [1.6 - 3.5] 6.3 [2.9 - 10.8]4 cmH2O 1.4 [0.2 - 2.0] 2.7 [0.9 - 4.6] 3.5 [2.0 - 4.4] 6.3 [4.0 - 11.2]6 cmH2O 1.7 [-0.1 - 2.4] 2.3 [0.8 - 4.7] 4.3 [3.3 - 5.6] 6.5 [4.0 - 11.2]8 cmH2O 2.2 [0.3 - 2.9] 1.6 [-1.0 - 6.3] 5.2 [3.8 - 7.0] 5.5 [3.1 - 13.9]10 cmH2O 2.6 [1.4 - 3.6] 0.9 [-2.0 - 4.8] 6.2 [5.0 - 9.1] 4.7 [2.7 - 13.2]12 cmH2O 3.4 [2.1 - 5.5] 1.0 [-3.1 - 10.6] 7.2 [5.6 - 11.5] 10.6 [3.4 - 22.0]14 cmH2O 6.4 [3.3 - 7.2] 12.8 [4.1 - 14.8] 13.1 [6.7 - 15.1] 26.0 [8.3 - 31.2]

Total 1.4 [0.3 - 2.2] 2.5 [0.9 - 4.6] 3.9 [2.4 - 5.3] 6.4 [3.5 - 11.5]

error were low for the parabolic form of the model for all data sets studied.

Prediction error (median [IQR]) for all patients increased as expected with increasing

PEEP changes over the range studied (2 cmH2O - 14 cmH2O ). PIP prediction error was

1.4 [-0.5 - 2.2] cmH2O (4.5 [2.8 - 6.5]%) for PEEP changes up to 14 cmH2O using the

parabolic model and 3.2 [ 1.1 - 5.9] cmH2O and (8.3 [3.4 - 14.1]%) for the exponential

model. The prediction error for the parabolic model across the relevant range is likely

clinically insignificant, given a 0.5-2 cmH2O variation in breath to breath PIP.

Examples of specific predictions for the CURE cohort are shown in Figures 6.11 - 6.14 for

Patient 1, with predictions starting at 11 cmH2O, 15 cmH2O, 23 cmH2O and 27 cmH2O, re-

spectively. These figures are shown at the end of the chapter. As can be seen, prediction
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Table 6.4: Comparison of prediction fitting error (RMS) across the entire clinical re-

cruitment manoeuvre range (14cmH2O) for the parabolic and exponential model for

the CURE and McREM cohorts.

CURE Cohort
PEEPChange RMS Error(cmH2O) RMS Error(%)

ParabolicModel ExponentialModel ParabolicModel ExponentialModel
2 cmH2O 1.3 [1.0 - 1.4] 2.0 [1.5 - 2.4] 1.3 [-1.0 - 2.2] 4.0 [3.7 - 4.0]4 cmH2O 1.1 [1.0 - 1.2] 1.6 [1.5 - 2.1] 2.6 [2.2 - 3.0] 3.4 [2.4 - 4.1]6 cmH2O 1.7 [1.4 - 2.0] 2.6 [1.8 - 3.0] 3.6 [3.1 - 4.9] 4.0 [3.3 - 5.2]8 cmH2O 1.2 [1.1 - 1.3] 2.0 [1.7 - 2.1] 2.3 [2.1 - 3.2] 4.1 [2.4 - 4.6]10 cmH2O 1.8 [1.6 - 2.0] 2.7 [2.3 - 3.9] 3.8 [3.3 - 4.3] 3.7 [3.0 - 6.2]12 cmH2O 1.3 [1.3 - 1.6] 2.4 [2.0 - 3.0] 3.2 [2.3 - 3.8] 3.9 [2.2 - 5.6]14 cmH2O 1.9 [1.7 - 2.0] 3.2 [2.8 - 5.0] 3.8 [2.6 - 4.0] 5.3 [2.9 - 7.7]

Total 1.2 [1.1 - 1.6] 2.1 [1.6 - 2.6] 2.9 [2.3 - 3.6] 3.6 [2.8 - 4.8]
McREM Cohort

PEEPChange RMS Error(cmH2O) RMS Error(%)
ParabolicModel ExponentialModel ParabolicModel ExponentialModel

2 cmH2O 0.7 [0.6 - 1.0] 1.6 [1.1 - 2.2] 2.3 [1.7 - 3.6] 4.1 [2.6 - 6.8]4 cmH2O 0.8 [0.6 - 1.0] 1.9 [1.4 - 2.4] 2.3 [1.8 - 3.2] 4.2 [3.2 - 6.3]6 cmH2O 0.9 [0.7 - 1.1] 2.0 [1.6 - 2.7] 2.5 [1.9 - 2.9] 4.3 [3.4 - 6.0]8 cmH2O 1.1 [0.9 - 1.4] 2.1 [1.7 - 3.0] 2.8 [2.1 - 3.3] 4.4 [3.3 - 7.4]10 cmH2O 1.3 [1.0 - 1.9] 2.5 [1.4 - 3.1] 3.8 [2.4 - 4.0] 4.6 [3.1 - 6.3]12 cmH2O 1.6 [1.2 - 2.3] 2.9 [1.7 - 3.4] 3.8 [3.2 - 5.1] 5.2 [3.8 - 5.7]14 cmH2O 2.9 [1.6 - 2.9] 4.4 [1.9 - 4.7] 6.3 [4.1 - 6.6] 7.2 [3.8 - 7.6]

Total 0.9 [0.6 - 1.1] 2.0 [1.2 - 2.7] 2.5 [1.9 - 3.4] 4.3 [3.1 - 6.4]

accuracy increases as the prediction interval decreases. It is expected this trend results

from greater certainty in the proportions of recruitment and distension the closer you

are to the fitting PEEP.

The McREM cohort showed a similar results trend, as shown in Figures 6.5 - 6.10. These

figures are shown at the end of the chapter. The prediction intervals shown range

from 2 cmH2O to 12 cmH2O. However,intervals of up to 20 cmH2O were predicted. The

McREM data varied from the CURE cohort as each patient received an end-inspiratory

pause. As can be seen, the parabolic model was more successful at capturing lung

mechanics throughout the end-inspiratory pause. In addition, the exponential model

often significantly ’undershot’ pressure at the beginning of expiration. However, the

parabolic model was more successful at adjusting to the sudden change in lung me-
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chanics at this point.
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Figure 6.3: CDF comparison of PIP and RMS prediction error results between exponen-

tial and parabolic model for elastance as a function of recruitment.

Prediction fit error (RMS) was also lower in the CURE and McREM cohorts, as shown

in Figure 6.3b. More specific results can be seen in the boxplots in Figure 6.4, which

presents these results by ∆ PEEP prediction interval, again showing little sensitivity
to this value for the new model. Across each cohort, the parabolic model fit the lung

mechanics better throughout the entire breath and more accurately predicted PIP.
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Figure 6.4: Boxplot comparisons of PIP prediction results between exponential and

parabolic model for elastance as a function of recruitment. The box plots reflect the

CDF in Figure 6.3.
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6.5 Discussion
It is always possible that the generic hyperbolic and linear elastance basis functions

and/or the Rohrer Equation based resistance basis functions are not the exact or opti-

mal form. Prior work has used exponential recruitment basis functions (Albert et al.,

2009; Bates & Irvin, 2002; Crotti et al., 2001; Graham et al., 2005; Harris et al., 2000;

Massa et al., 2008; Medoff et al., 2000; Morton, Dickson, Chase, Docherty, Desaive, et al.,

2018; Mutch et al., 2000; Owens et al., 2008; Ranieri et al., 1991; Sundaresan et al., 2009;

Venegas et al., 1998; Williamson et al., 2011) and other similar shapes may better suit

some patients or disease states. However, given the breath to breath variability in typ-

ical patients and any noise on the data, differentiating between several similar shaped

functions would be difficult. Equally, prior works examining more complex basis func-

tions found no improvement and greater identifiability problems, where identifiability

limits the complexity of possible basis function shapes given the limited data (Chase et

al., 2018; Docherty et al., 2011).

The higher complexity of the exponential model resulted in tradeoffs between differ-

ent parameters. However, the simplicity of the parabolic recruitment model enabled

clear shapes to be developed. This outcome ensured that the prediction accuracy was

consistent, allowing for a higher level of accuracy.

6.6 Summary
In both cohorts studied, the parabolic model both better represented lung mechanics

throughout the entire breath and was more accurate at predicting PIP. As was shown

in 6.4, significant reductions in prediction error were seen across the entire clinical

pressure range when the parabolic model was used as opposed to the exponential. Ad-

ditionally, as shown in Figures 6.5 - 6.10, the parabolic model was much more effective

at capturing lung mechanics throughout an end-inspiratory pause. The parabolic form
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of the model shall accordingly be used for the rest of the analyses in this thesis.



82 6.6. SUMMARY
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Figure 6.5: Comparison of model prediction results for Patient 5 of the McREM cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 10

cmH2O, PEEP levels of 12 cmH2O, 14 cmH2O, 16 cmH2O, 18 cmH2O, 20 cmH2O and 22

cmH2O are predicted.
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Figure 6.6: Comparison of model prediction results for Patient 5 of the McREM cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 12

cmH2O, PEEP levels of 14 cmH2O, 16 cmH2O, 18 cmH2O, 20 cmH2O and 22 cmH2O are

predicted.
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Figure 6.7: Comparison of model prediction results for Patient 5 of the McREM cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 14

cmH2O, PEEP levels of 16 cmH2O, 18 cmH2O, 20 cmH2O and 22 cmH2O are predicted.



CHAPTER 6. IMPACT OF RECRUITMENT FUNCTION SHAPE ON PREDICTION 85

Exponential Model Parabolic Model

0 0.5 1 1.5 2 2.5 3
Time (s)

10

20

30

40

50

60

P
re

ss
u

re
 (

cm
H

2O
)

Predicting 18 cmH
2
O from a initial PEEP of 16 cmH

2
O

Airway Pressure
Prediction

0 0.5 1 1.5 2 2.5 3
Time (s)

10

20

30

40

50

60

P
re

ss
u

re
 (

cm
H

2O
)

Predicting 18 cmH
2
O from a initial PEEP of 16 cmH

2
O

Airway Pressure
Prediction

0 0.5 1 1.5 2 2.5 3
Time (s)

10

20

30

40

50

60

P
re

ss
u

re
 (

cm
H

2O
)

Predicting 20 cmH
2
O from a initial PEEP of 16 cmH

2
O

Airway Pressure
Prediction

0 0.5 1 1.5 2 2.5 3
Time (s)

10

20

30

40

50

60

P
re

ss
u

re
 (

cm
H

2O
)

Predicting 20 cmH
2
O from a initial PEEP of 16 cmH

2
O

Airway Pressure
Prediction

0 0.5 1 1.5 2 2.5 3
Time (s)

10

20

30

40

50

60

P
re

ss
u

re
 (

cm
H

2O
)

Predicting 22 cmH
2
O from a initial PEEP of 16 cmH

2
O

Airway Pressure
Prediction

0 0.5 1 1.5 2 2.5 3
Time (s)

10

20

30

40

50

60

P
re

ss
u

re
 (

cm
H

2O
)

Predicting 22 cmH
2
O from a initial PEEP of 16 cmH

2
O

Airway Pressure
Prediction

Figure 6.8: Comparison of model prediction results for Patient 5 of the McREM cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 16

cmH2O, PEEP levels of 18 cmH2O, 20 cmH2O and 22 cmH2O are predicted.
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Figure 6.9: Comparison of model prediction results for Patient 5 of the McREM cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 18

cmH2O, PEEP levels of 20 cmH2O and 22 cmH2O are predicted.
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Figure 6.10: Comparison of model prediction results for Patient 5 of the McREM cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 20

cmH2O, the PEEP level of 22 cmH2O is predicted.
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Figure 6.11: Comparison of model prediction results for Patient 1 of the CURE cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 11

cmH2O, PEEP levels of 15 cmH2O, 23 cmH2O, 27 cmH2O and 31 cmH2O are predicted.
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Figure 6.12: Comparison of model prediction results for Patient 1 of the CURE cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 15

cmH2O, PEEP levels of 23 cmH2O, 27 cmH2O and 31 cmH2O are predicted.
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Figure 6.13: Comparison of model prediction results for Patient 1 of the CURE cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 23

cmH2O, PEEP levels of 27 cmH2O and 31 cmH2O are predicted.
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Figure 6.14: Comparison of model prediction results for Patient 1 of the CURE cohort

using the exponential and parabolic recruitment functions. Starting at a PEEP of 27

cmH2O, the PEEP level of 31 cmH2O is predicted.



CHAPTER7
Impact of Expiration Data on
Prediction
7.1 Introduction
Most pulmonary modelling approaches to optimising mechanical ventilation focuses

on the physical changes during inspiration. This focus is due to the increased risk of

over-distension and VILI throughout inflation, where expiration is a lessening of these

pressures, volumes, and thus risks. However, expiratory lung mechanics differ from

those during inspiration (Howe et al., 2018; Möller, Zhao, Stahl, Schumann, & Guttmann,

2008; Schumann et al., 2014; van Drunen, Chiew, et al., 2013). It is believed data from

expiration used in concert with that from inspiration could provide useful additional

information about patient lung condition to enable more accurate model prediction.

The duration of inspiration and expiration are often unequal in spontaneous breathing,

and also in mechanical ventilation to ensure that air has a sufficient time to escape the

alveoli. . The inspiration:expiration ratio (I/E ratio) is set to 1:2 in both data cohorts

outlined in Sections 4.2 and 4.3 considered in this chapter. The impact of normalising
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the expiration data to ensure an equal weighting to inspiration is assessed to find if this

modelling and identification method choice improves model fit and prediction.

Work has been done using body plethysmography indicating elastance and airway re-

sistance vary between inspiration and expiration (Möller et al., 2008). Lucangelo et al.

suggested using linear least squares fitting to fit a single compartment linear model of

Equation 3.1 to inspiration and expiration data independently (Lucangelo et al., 2007).

More recent work indicated fitting model parameters to expiration alone could pro-

vide erroneous results (Möller et al., 2008), indicating expiration may contain unique

mechanics or dynamics not present in inspiration. To investigate this possibility, the

model parameters are only identified using inspiration data but are used to predict

lung mechanics across the entire breath. This outcome is compared to:

• Fitting the model to inspiration and only predicting inspiration

• Fitting the model to the entire breath and predicting across the entire breath.

These comparisons and analyses allow determination of the presence and impact of

any expiration specific mechanics and/or dynamics.

This chapter uses data from the CURE and McREM cohorts to assess the usefulness

of expiration data in pulmonary modelling. There is a particular focus on how it im-

pacts the accuracy of elastance prediction throughout recruitment manoeuvres (Mor-

ton, Docherty, et al., 2018; Morton et al., 2019).

7.2 Methods
7.2.1 Patient Data
Pressure and flow data from the N=21 invasively ventilated patients diagnosed with

acute respiratory distress syndrome (ARDS) from ICUs in Germany (N=17) and New

Zealand (N=4) (Davidson et al., 2014; Stahl et al., 2006) outlined in Chapter 4 was anal-

ysed.
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7.2.2 Impact of Use of Inspiration and Expiration Data on
Prediction Accuracy

The model used in this study was the model defined in Section 5.2, specifically Equa-

tions 5.7 and 5.10 respectively, as reproduced below.

Overall model for parameter fitting (Equation 5.7):

P(t) = ( E1(V − Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

Overall model for prediction (Equation 5.10):

P(t) = (E1((V + Vfrc)− Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

The model parameters were identified and used for prediction for three cases to test

the minimum amount of data required for prediction, and whether the expiratory sec-

tion of the breath contains different mechanics or dynamics (Möller et al., 2008). Ex-

piration is defined as the point at which ventilator flow first becomes negative after

PIP is reached. In the McREM protocol, this point is reached after an end-inspiratory

pause, defined in Section 4.3.1. In addition, the first five data points of each breath

were excluded, as these points are more reflective of ventilator PEEP adjustment and

Monitoring Procedure (PUMP) dynamics than the pressure response of the lung.

The following cases are used for model identification and prediction and compared:

• Case 1: The full breath
• Case 2: Only the inspiratory section of the breath.
• Case 3: Only the inspiratory section for identification, with prediction across the
entire breath.

The first two cases both identify the model and predict over the specified portions of

the breathing cycle. The last case assesses whether expiration contains unique dynam-

ics, and thus identifies the model over only a portion of the breath, while assessing its
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performance across the entire breath.

7.2.3 Necessity of Normalising Expiration Data to the the Length of
Inspiration

The I/E ratio in mechanical ventilation often requires a longer expiration time to en-

sure air is not trapped in the alveoli. This analysis assesses whether or not expiration

data should be normalised to the length of inspiration to optimise model accuracy. Both

the McREM and CURE cohorts use an I/E ratio of 1:2. To normalise this data, all input

measurements (flow and pressure) during expiration were halved prior to model iden-

tification and prediction. This data reduction was then compared to the model fit and

prediction of Case 1 (fitting and predicting across the entire breath) to assess whether

or not normalisation is required.
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7.3 Results
7.3.1 General Results
Table 7.1: Impact of the inclusion of expiratory data in prediction accuracy for PEEP

increases of up to 16 cmH2O, indicated by PIP % error (median [IQR]) in the CURE and

McREM cohorts. Case 1, Case 2 and Case 3 studied.

CURE Cohort
RMS Error (cmH2O) PIP Error (%)

Case 1: entire breath 1.2 [1.0 - 1.5] 3.8 [2.5 - 5.4]Case 2: fitted to inspiration 2.2 [1.3 - 3.5] 5.5 [3.8 - 8.7]Case 3: fitted to inspiration with
RMS assessed across entire breath

2.6 [2.0 - 3.0] 5.5 [3.8 - 8.7]

McREM Cohort
RMS Error (cmH2O) PIP Error (%)

Case 1: entire breath 0.9 [0.6 - 1.1] 3.9 [2.4 - 5.3]Case 2: fitted to inspiration 1.0 [0.7 - 1.5] 1.5 [0.5 - 3.6]Case 3: fitted to inspiration with
RMS assessed across entire breath

1.0 [0.8 - 1.4] 1.5 [0.5 - 3.6]

CURE Data McREM Data
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Figure 7.1: Impact of the inclusion of expiration data on prediction of PIP and prediction

fit error (RMS) for the CURE and McREM cohorts.

The impact of using different sections of the breath data to fit elastance and resistance

was explored for the model outlined in Chapter 5. Results for both cohorts are shown in

Table 7.1 and cover Cases 1, 2 and 3, as defined in Section 7.2.2. These results are split

into each of the two cohorts, as the end-inspiratory pause used in the McREM clinical

trial has an impact on the ability of the model to predict lung mechanics using only
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inspiration data to identify the model.

Fitting the data to the entire breath (Case 1) showed a significant improvement to the

prediction accuracy in the CURE cohort. In contrast, the inclusion of expiratory data

(Case 1) in the model identification did not improve PIP prediction for the McREM data.

However, as the PIP (%) IQR error was still relatively low (3.9 [2.4 - 5.3]), it is recom-

mended to continue to use the entire breath for prediction so as to avoid potential pa-

rameter tradeoff (Docherty et al., 2011).

Case 3 was included to assess whether or not the expiratory section of the breath in-

cluded different enough mechanics to warrant a separate fit to inspiration. In the CURE

cohort data, there was a significant reduction model prediction accuracy for this case.

This result indicates that expiration data may possess significantly different features to

inspiration. However, the larger McREM cohort did not showmuch difference between

Case 3 and either Case 1 or 2. Overall, using all available data improved the prediction

fit error in both cohorts, as seen in Figures 7.1c and 7.1d and is the best option for

improved fitting of lung mechanics.

7.3.2 Specific Cohort Results
CURE Cohort
Figure 7.2 shows the difference in prediction across PEEP levels for Case 1 and Case 2

for a typical patient of the CURE cohort. Case 1 shows a much higher level of accuracy

in model fit across inspiration and in prediction of PIP. This difference is particularly

pronounced as the prediction interval increases to 8 cmH2O, where PIP is significantly

underestimated. As under-prediction of PIP could lead to less conservative and higher

risk treatment decisions, use of the entire breath to fit model parameters is strongly

recommended for this clinical cohort.
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Figure 7.2: Typical effect of the inclusion of expiratory data on prediction across PEEP

steps. Patient 2, CURE cohort. Fit of a PEEP of 16 cmH2O, prediction of a PEEP level of

20 cmH2O from a PEEP of 16 cmH2O, and prediction of a PEEP level of 24 cmH2O from a

PEEP level of 16 cmH2O are shown.
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Figure 7.3: Typical effect of the inclusion of expiratory data on prediction. Patient 11,

McREM cohort. Fit of a PEEP of 12 cmH2O, prediction of a PEEP level of 16 cmH2O from

a PEEP of 12 cmH2O, and prediction of a PEEP level of 20 cmH2O from a PEEP level of

12 cmH2O are shown.
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McREM Cohort
Both Case 1 and Case 2 provided similar prediction accuracy throughout inspiration

up until PIP was achieved, as shown in Figure 7.3. However, in this particular case, the

end-inspiratory pause was more accurately predicted when data from the entire breath

was used.

7.3.3 Effect of Normalisation on Results
Normalising the expiration data to ensure an equal weighting fit to inspiration data

did not improve prediction in the two cohorts studied as shown in Figure 7.4. While

overall PIP (%) error stayed fairly constant when normalisation was carried out across

both cohorts (from 4.5 [2.8 - 6.5]% to 4.0 [1.6 - 5.6]% for the CURE cohort and from 3.9

[2.4 - 5.3]% to 4.5 [2.5 - 7.0]% for the McREM cohort), the fit error showed a significant

increase. While the un-normalised CURE fit had an RMS error of 1.2 [1.1 - 1.6] cmH2O,

when normalised this error increased to 9.2 [8.2 - 10.6] cmH2O. Similar results were

seen for the McREM cohort, with an increase from 0.9 [0.6 - 1.1] cmH2O to 5.7 [4.5 - 6.7]

cmH2O . More specifically, there was an increase in median RMS percentage error from

2.9% to 60% for the CURE cohort, and 2.5 to 44.9% for the McREM cohort.

7.4 Discussion
Incorporating expiration into model identification had a positive effect on prediction

error across both cohorts. Including expiration data improved the prediction RMS er-

ror from (median [IQR]) 2.2 [1.3 - 3.5] cmH2O for only using inspiration data to 1.1 [1.0

- 1.5] cmH2O in the CURE cohort. Likewise, including expiratory data also improved

the McREM prediction fit from 1.0 [0.7 - 1.5] cmH2O to 0.9 [0.6 - 1.1] cmH2O. It is ex-

pected this improvement occurs because there is a lower chance of parameter trade-off

between elastance and resistance. Having each of these parameters explicitly defined

enables the model to better capture the mechanical behaviour of the lungs throughout
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Figure 7.4: Boxplots of prediction error across PEEP steps for the CURE and McREM

cohorts.

the entire breathing cycle.

Fitting the parameters to inspiration, before using them to predict across the entire

breath, increased RMS error for the CURE cohort (up to 2.6 [2.0 - 3.0] cmH2O) compared

to both Case 1 and Case 2. While Case 2 and Case 3 both use inspiratory data to identify

parameters, the larger amount of data RMS is calculated across in Case 3 is expected to

increase error. Results stayed relatively constant for the McREM cohort (1.0 [0.8 - 1.4]

cmH2O). This finding could suggest expiration does contain unique dynamics. Alterna-

tively, this finding could also be caused by a higher RMS value due to the model need-

ing to accurately predict a higher number of data point. However, the small change in

values in the results indicates these findings may be inconclusive and require further

study.

Including expiration data improved PIP prediction for the CURE cohort (PIP error de-

crease from 5.5 [3.8 - 8.7]% to 3.8 [2.5 - 5.4]%). However, it did not improve for the

McREM cohort (PIP error increase from 1.5 [0.5 - 5.6]% to 3.9 [2.4 - 5.3]% . The util-

isation of an end-inspiratory pause in the McREM cohort may have had an effect on
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the ability of the model to simultaneously fit and predict across both inspiration and

expiration. The model was designed to deal with simple, more linear mechanics, and

this portion of the breath contains much more non-linear behaviour. Accounting for

this drop and hold in pressure immediately after PIP was reached may cause the model

to overcompensate by fitting to the smoother transition from the pause into expiration

instead of fitting to PIP. It is recommended to continue to incorporate expiratory data

into the model identification to reduce the chance of parameter trade-off in the model,

which may cause unforeseen issues with prediction in a clinical setting.

Normalising expiration data to achieve an equal I/E ratio neither improved PIP predic-

tion nor prediction fit across PEEP levels in either cohort. Prediction fit, in particular,

showed a significant decrease in accuracy with an increase in RMS (%) error from 2.9 to

60% for the CURE cohort, and 2.5 to 44.9% for the McREM cohort. While these findings

may not hold true for other I/E ratios, in this case, normalising the data is not recom-

mended.

Both cohorts studied in this chapter were from trials excluding patients with obstruc-

tive pulmonary diseases. Obstructive diseases result in reduced gas exchange in the

lungs, preventing carbon dioxide from escaping the lungs (Hogg et al., 2004) while also

slowing the rate of oxygen reaching the alveoli. As the model has not yet been tested on

these patients, it is possible it cannot accurately model expiratory mechanics in these

cases. Therefore, future work will need to reinvestigate the utility of this model for

these patients.



CHAPTER 7. IMPACT OF EXPIRATION DATA ON PREDICTION 99

7.5 Summary
In this chapter, the effect of the inclusion of expiration on themodel developed in Chap-

ter 5 was assessed, and found to improve prediction errors due to an anticipated reduc-

tion in parameter tradeoff. In addition, normalising the length of expiration to inspira-

tion in this data was found to be unnecessary. In future chapters, data from the entire

breath will be used for parameter identification and prediction across PEEP levels.
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CHAPTER8
Overall Model Results
8.1 Introduction
This chapter assesses the utility of the model developed over Chapters 5 - 7 as a whole.

It provides extended results and discussion not previously presented. These results

represent a definite, more complete outcome from themodel developed over Chapters 5

to 7, and explore wider considerations than previously presented.

Fitting and prediction results are provided for both the CURE and McREM cohorts out-

lined in Chapter 4. In addition, the use of the model to predict both increases and de-

creases in PEEP level throughout ’mini’ recruitment manoeuvres is assessed. Clinically,

once a preferred PEEP level is determined, it is rarely significantly altered throughout

ventilation. Mini RMs can occasionally be used to make small changes to PEEP and

maintain optimal alveolar recruitment and gas exchange (Stahl et al., 2006). However,

as patient and lung condition evolves, the optimal PEEP may change. Respiratory mod-

els generated from data available at the bedside could be used to predict behaviour at

higher or lower PEEP levels without the need for mini RMs, potentially reducing clini-

cian attendance, cost of care and improving patient care and outcomes.
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Conditions possibly affecting model efficacy are also considered. First, the impact of

the initial PEEP level on model predictions at higher PEEP levels is assessed. The goal of

this is to determine whether the model has equivalent relevance and accuracy regard-

less of what PEEP level at it is implemented in a recruitment manoeuvre (RM). Impor-

tantly, this analysis provides better understanding of the relevance and limitations of

the model and prediction in a clinical context, particularly at higher PEEP levels where

the potential risk of injury with PEEP changes is greater.

8.2 Methods and Analyses
8.2.1 Final Model
Themodel usedwas developed in Chapter 5 and optimised in Chapters 6 (use of parabolic

recruitment function) and 7 (use of the entire breath to fit and predict). The model

forms for fitting and predication are described by Equation 5.7 and Equation 5.10, re-

spectively, and are reproduced in their final forms here for clarity.

Overall model for parameter fitting (Equation 5.7):

P(t) = ( E1(V − Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

Overall model for prediction (Equation 5.10):

P(t) = (E1((V + Vfrc)− Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

8.2.2 Clinical Data Cohorts
CURE and McREM Cohorts
The model was tested on the full RMs carried out in the CURE and McREM cohorts out-

lined in Chapter 4. Both PIP prediction accuracy and fitting error (RMS) were assessed

and compared for each cohort of patient data. A breakdown of how many predictions
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were studied at each PEEP interval size are shown in Table 8.1. The variation in the

number of breaths at each PEEP level between each cohort is due to the McREM co-

hort using PEEP interval sizes of 2 cmH2O, whereas the CURE trial used PEEP steps of

4 cmH2O. Sometimes the set PEEP increase was not met by the ventilator and in these

cases 2, 6, 10, and 14 cmH2O prediction intervals occurred and were studied.

Table 8.1: Full CURE and McREM RMs: Number of predictions studied for each PEEP
interval size. This includes both upwards and downwards arms of the CURE RMs.

∆ PEEP CURE Cohort McREM Cohort
0 cmH2O 91 892 cmH2O 9 714 cmH2O 45 546 cmH2O 9 408 cmH2O 30 2810 cmH2O 9 1712 cmH2O 17 814 cmH2O 7 3Total 217 310

Mini Recruitment Manoeuvres
To assess whether the model is effective in cases where minimal changes in distension

and recruitment are expected, the model was tested on mini recruitment manoeuvre

data. In the case of mini RMs, the smaller nature of overall changes in PEEP may affect

recruitment dynamics. Thus, results may differ from those found by examining 1-2

larger PEEP changes in a full RM.

As mini recruitment manoeuvres were not used in the McREM trial, only data from the

CURE pilot trial defined in Section 4.2 was used in this analysis. As Patient 4 of the CURE

cohort did not receive any mini RMs, only the first three patients were studied. Patient

1 received 14 RMs, whereas Patients 2 and 3 each received 2. Of these, 7 of Patient

1’s mini RMs and one each of Patient 2 and 3’s had enough breaths to enable model

analysis. Hence, a total of 172 predictions (Arm 1: 55, Arm 2: 52, Arm 3: 30, Arm 4: 35)

were studied across the 4 patients in the CURE trial.
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Figure 8.1: Demarcation of data sets across an example mini RM where two staircase

manoeuvres are performed. Step size and duration are not necessarily representative

of those used in the data.

Mini RMs were comprised of two staircase increases and decreases in PEEP as part of

typical MV treatment (Chiew, Pretty, Shaw, et al., 2015; Szlavecz et al., 2014). To capture

changes in lung mechanics, each data set was split into four sections, two increasing

PEEP and one or two decreasing PEEP sections, shown in Figure 8.1. In a typical mini

RM this procedures comprises one or two 4 cmH2O PEEP increases followed by one or

two 4 cmH2O PEEP decreases. This analysis primarily studies mini RMs, as opposed to

full RMs, which can involve many more PEEP increases. The purpose of this analysis is

to ensure that the model remains accurate in cases where there are limited changes in

either recruitment or distension throughout the entirety of an RM. The efficacy of the

model to both fit and predict across mini RMs is assessed.

8.2.3 Conditions of Model Accuracy
To anticipate potential usage limitations of themodel, it was tested to seewhether or not

there were conditions required for accurate prediction. This analysis was carried out

using both full and mini RM data as needed, specific data cohorts are outlined below.

While not an exhaustive list, the conditions tested in this chapter include:

1. The impact of initial PEEP level. To ensure the model performs well regard-
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less of what PEEP level during an RM it is used, the impact of initial PEEP level

on prediction analysis is considered. This attempts to assess if there is a differ-

ence between results from different initial PEEP levels with identical prediction

interval sizes of 2 or 6 cmH2O. Data from both the McREM and CURE trial cohorts

defined in Chapter 4 was used in this analysis. As outlined in Chapter 5, the model

parameters were identified and used to predict across the RM range.

2. Accuracy of predicting lungmechanics through a decrease in PEEP level com-
pared with an increase. Previous chapters examined prediction over the up-
wards arm of an RM only. While lower risk, downward prediction of pressure

outcomes for decreasing PEEP is also of interest. The CURE pilot trial mini RM

data outlined in Chapter 4 and Section 8.2.2 along with the full RMs from this trial

were used in this analysis. To enable comparison between each set of data, the

PEEP changes were not split into specific PEEP changes. Instead, they were de-

lineated as one-step (change of 2-6 cmH2O), two step (change of 6-11 cmH2O) and

three-step (change of 12-16 cmH2O).

3. Accuracy of prediction betwen the first half of an RM (Arm 1 and Arm 2) and
the second (Arm 3 and Arm 4). The CURE pilot trial mini RM data outlined in
Chapter 4 and Section 8.2.2 along with the full RMs from this trial were used in this

analysis. To enable comparison between each set of data, the PEEP changes were

not split into specific PEEP changes. Instead, they were delineated as one-step

(change of 2-6 cmH2O), two step (change of 6-11 cmH2O) and three-step (change of

12-16 cmH2O).

4. Error increase in prediction as PEEP interval increases. The aim of this anal-
ysis is to quantify any potential loss in prediction as the prediction interval in-

creases. Outcomes could enable more confident and robust utilisation of predic-

tionmethods clinically. Data from the full RMs carried out in the CURE andMcREM

trials outlined in Chapter 4 was used in this analysis.



106 8.3. RESULTS

8.3 Results
8.3.1 Overall CURE and McREM Results
Full Recruitment Manoeuvre
Table 8.2: Full CURE and McREM RMs: Summarised model parameters and fitting
error (median [IQR]) for the CURE and McREM cohort.

CURE Cohort McREM Cohort
E1 (recruitment) 5.8 [0.5 - 13.4] 14.0 [10.1 - 19.2]

E2 (distension) 55.9 [46.2 - 70.7] 47.0 [41.1 - 58.6]

R1 6.5 [6.1 - 7.7] 8.4 [7.5 - 11.0]

R2 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0]

RMS error (cmH2O) 1.0 [0.9 - 1.2] 0.6 [0.5 - 0.9]RMS error (%) 2.4 [2.1 - 2.8] 2.3 [1.7 - 3.6]PIP error (cmH2O) 0.8 [0.5 - 1.1] 1.0 [0.8 - 1.3]PIP error (%) 2.4 [1.6 - 3.0] 2.5 [1.7 - 3.4]

Fitting Results: The model showed a high level of accuracy for capturing and fitting
lung mechanics. As can be seen in Table 8.2, the model showed very low fitting error

(RMS (%) error of 2.4 [2.1 - 2.8]% for the CURE cohort and 2.3 [1.7 - 3.6]% for the McREM

cohort) and estimation of the peak inspiratory pressure (PIP (%) error of 2.4 [1.6 - 3.0]%

for the CURE cohort and 2.5 [1.7 - 3.4]% for theMcREM cohort) across each of the two co-

horts. In addition, as also shown in Table 8.2, both cohorts had similar fitted parameter

values.

In particular, the CURE cohort showed slightly higher values for E2, possibly caused

by the CURE trial including PEEP values up to 30 cmH2O. Thus, distension would have

been more greatly represented in the CURE data and identified E2 values. In contrast,

the higher E1 values for the McREM cohort were potentially caused by this trial includ-

ing data from a PEEP of 10 cmH2O up to 24 cmH2O, which in many patients is within

the zone (5 - 25 cmH2O) where the majority of alveolar recruitment occurs (Borges et

al., 2006). As the majority of the CURE data began at a PEEP of 12 cmH2O, some recruit-

ment may have already occurred prior to the staircase RM commencing, resulting in

higher median E1. The ability of the model to accurately fit the data across both of these
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cohorts with similar parameter values for clinically similar patients indicates that the

basis functions were well selected.

CURE Cohort McREM Cohort
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Figure 8.2: Full CURE and McREM RMs:Model prediction error results for the final
model for the CURE and McREM cohorts for increases of up to 14 cmH2O.

Prediction Results: Cohort results for PIP prediction and fitting error are shown in
Figure 8.2. The prediction error was larger formost of theMcREM cohort clinical range.

It is expected that this greater error is due to the presence of the end inspiratory pause,

which is likely non-linear and not well captured by the simple dynamics model used

here. However, with the exception of this portion of the breath, the model accurately
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predicted airway pressure with less than 10% of fitting error in PEEP increases of up to

14 cmH2O.

Table 8.3: Compiled model prediction results for CURE and McREM cohorts. PIP error

(%) is an absolute value, while PIP error (cmH2O) is signed.

CURE Cohort
PEEPChange PIP Error(cmH2O) PIP Error(%) RMS Error(cmH2O) RMS Error(%)
2 cmH2O 2.8 [2.8 - 3.6] 4.1 [2.6 - 5.2] 1.3 [1.0 - 1.4] 1.3 [-1.0 - 2.2]4 cmH2O 1.4 [0.8 - 1.7] 3.6 [2.7 - 5.0] 1.1 [1.0 - 1.2] 2.6 [2.2 - 3.0]6 cmH2O -1.0 [-2.5 - 1.9] 4.5 [3.2 - 6.8] 1.7 [1.4 - 2.0] 3.6 [3.1 - 4.9]8 cmH2O 1.5 [0.3 - 2.6] 3.6 [1.9 - 6.6] 1.2 [1.1 - 1.3] 2.3 [2.1 - 3.2]10 cmH2O -0.6 [-2.2 - 3.7] 6.3 [4.5 - 8.3] 1.8 [1.6 - 2.0] 3.8 [3.3 - 4.3]12 cmH2O 2.5 [1.5 - 3.4] 7.1 [3.5 - 8.1] 1.3 [1.3 - 1.6] 3.2 [2.3 - 3.8]14 cmH2O 0.3 [-0.9 - 4.3] 4.5 [1.0 - 8.8] 1.9 [1.7 - 2.0] 3.8 [2.6 - 4.0]Total 1.4 [-0.5 - 2.2] 4.5 [2.8 - 6.5] 1.2 [1.1 - 1.6] 2.9 [2.3 - 3.6]

McREM Cohort
PEEPChange PIP Error(cmH2O) PIP Error(%) RMS Error(cmH2O) RMS Error(%)
2 cmH2O 1.1 [0.3 - 1.4] 2.7 [1.6 - 3.5] 0.7 [0.6 - 1.0] 2.3 [1.7 - 3.6]4 cmH2O 1.4 [0.2 - 2.0] 3.5 [2.0 - 4.4] 0.8 [0.6 - 1.0] 2.3 [1.8 - 3.2]6 cmH2O 1.7 [-0.1 - 2.4] 4.3 [3.3 - 5.6] 0.9 [0.7 - 1.1] 2.5 [1.9 - 2.9]8 cmH2O 2.2 [0.3 - 2.9] 5.2 [3.8 - 7.0] 1.1 [0.9 - 1.4] 2.8 [2.1 - 3.3]10 cmH2O 2.6 [1.4 - 3.6] 6.2 [5.0 - 9.1] 1.3 [1.0 - 1.9] 3.8 [2.4 - 4.0]12 cmH2O 3.4 [2.1 - 5.5] 7.2 [5.6 - 11.5] 1.6 [1.2 - 2.3] 3.8 [3.2 - 5.1]14 cmH2O 6.4 [3.3 - 7.2] 13.1 [6.7 - 15.1] 2.9 [1.6 - 2.9] 6.3 [4.1 - 6.6]Total 1.4 [0.3 - 2.2] 3.9 [2.4 - 5.3] 0.9 [0.6 - 1.1] 2.5 [1.9 - 3.4]

Tabularised prediction results across the entire clinical RM range are presented in Ta-

ble 8.3. Prediction results are similar in both cohorts, with 4.5 [2.8 - 6.5]% (1.4 [-0.5 -

2.2] cmH2O) PIP error for the CURE cohort and 3.9 [2.4 - 5.3]% (1.4 [0.3 - 2.2] cmH2O) for

the McREM cohort for PEEP changes of up to 14 cmH2O. RMS error was 2.9 [2.3 - 3.6]%

(1.2 [1.1 - 1.6] cmH2O) for the CURE cohort and 2.5 [1.9 - 3.4]% (0.9 [0.6 - 1.1] cmH2O) for

the McREM cohort.

As shown in Figure 8.2 and in Table 8.3, both PIP prediction error and fitting error

increased with the size of prediction interval. While each cohort had similar error for

smaller interval predictions (<6 cmH2O), the McREM cohort, but displayed higher error

for larger predictions for both PIP prediction and fitting accuracy. PIP prediction error

showed a steady increase for the McREM cohort however stayed reasonably constant

for the CURE trial data.
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Table 8.4: Full CURE RMs: Model prediction error (median [IQR]) results for one-step,
two-step and three-step predictions. Upwards and downwards predictions are com-

pared. PIP error (%) is an absolute value, while PIP error (cmH2O) is signed.

One-Step Prediction (2 - 6 cmH2O)
Error Metric Upwards Prediction Downwards Prediction
PIP Error (cmH2O) 0.8 [-0.3 - 1.6] 0.9 [-0.1 - 1.4]PIP Error (%) 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0]RMS Error (cmH2O) 1.1 [1.0 - 1.3] 1.1 [1.0 - 1.3]RMS Error (%) 3.1 [2.4 - 3.6] 3.0 [2.3 - 3.5]

Two-Step Prediction (7 - 11 cmH2O)
Error Metric Upwards Prediction Downwards Prediction
PIP Error (cmH2O) 1.0 [-0.5 - 1.9] 0.5 [-0.7 - 1.7]PIP Error (%) 0.0 [0.0 - 0.1] 0.0 [0.0 - 0.1]RMS Error (cmH2O) 1.3 [1.1 - 1.6] 1.3 [1.1 - 1.5]RMS Error (%) 4.0 [2.7 - 5.1] 3.6 [3.0 - 4.6]

Three-Step Prediction (12 - 16 cmH2O)
Error Metric Upwards Prediction Downwards Prediction
PIP Error (cmH2O) -0.0 [-1.7 - 1.8] 0.3 [-1.5 - 2.4]PIP Error (%) 0.1 [0.0 - 0.1] 0.0 [0.0 - 0.1]RMS Error (cmH2O) 1.6 [1.3 - 2.1] 1.4 [1.3 - 1.8]RMS Error (%) 4.1 [3.3 - 7.1] 4.1 [3.3 - 5.5]

Table 8.4 shows the variation in prediction across PEEP changes between upwards arms

(1 and 3) and downwards arms (2 and 4), as defined in Figure 8.1. Table 8.5 splits this

information into individual arms. Upwards and downwards predictions show similar

accuracy for both PIP prediction and RMS error across the entirety of the prediction

range. PIP (%) error for downwards predictions was 0.0 [0.0 - 0.0]%, 0.0 [0.0 - 0.1]% and

0.1 [0.0 - 0.1]% for one, two and three-step predictions, respectively. In comparison,

for the downwards predictions, the PIP (%) errors were 0.0 [0.0 - 0.0]%, [0.0 - 0.1]%

and 0.0 [0.0 - 0.1]% for the same step sizes. However, as can be seen in the signed

PIP (cmH2O) errors in Table 8.4, PIP was more frequently over-predicted in upwards

arms. This result is clinically useful as an over-prediction of PIP could lead to more

conservative treatment. Whereas, the slight tendency of the model to under-predict PIP

in downwards arms would not have much of an effect on clinical value, as there is less

patient riskwhen pressure is decreasing. Therewas very little difference between these

results and those of individual arms, suggesting in full RMs, there is little difference in

model prediction accuracy between the first and second half of a staircase RM.
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Table 8.5: Full CURE RMs: Model prediction error (median [IQR]) results comparing
each arm of an full RM for one-step and two-step prediction. PIP error (%) is an absolute

value, while PIP error (cmH2O) is signed.

One-Step Prediction (2 - 6 cmH2O)
Error Metric Arm 1 Arm 2 Arm 3 Arm 4
PIP Error (cmH2O) 1.2 [0.1 - 2.1] 0.4 [-0.3 - 1.5] 1.3 [0.3 - 1.7] 0.5 [-0.1 - 1.3]PIP Error (%) 0.0 [0.0 - 0.1] 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0]RMS Error (cmH2O) 1.2 [1.0 - 1.3] 1.1 [0.9 - 1.3] 1.2 [1.0 - 1.3] 1.1 [0.9 - 1.3]RMS Error (%) 2.7 [2.3 - 3.5] 3.1 [2.5 - 3.8] 3.0 [2.6 - 3.3] 2.7 [1.9 - 3.6]

Two-Step Prediction (7 - 11 cmH2O)
Error Metric Arm 1 Arm 2 Arm 3 Arm 4
PIP Error (cmH2O) 0.9 [-0.0 - 2.2] 1.2 [-0.5 - 1.8] 1.5 [-0.2 - 3.1] -0.0 [-1.1 - 1.4]PIP Error (%) 0.0 [0.0 - 0.1] 0.1 [0.0 - 0.1] 0.0 [0.0 - 0.1] 0.0 [0.0 - 0.1]RMS Error (cmH2O) 1.2 [1.1 - 1.4] 1.3 [1.1 - 1.6] 1.3 [1.1 - 1.4] 1.3 [1.1 - 1.6]RMS Error (%) 2.6 [2.2 - 4.1] 4.3 [3.4 - 7.0] 3.3 [2.6 - 3.6] 4.1 [3.2 - 5.2]

Three-Step Prediction (12 - 16 cmH2O)
Error Metric Arm 1 Arm 2 Arm 3 Arm 4
PIP Error (cmH2O) 1.8 [-0.5 - 3.0] Not 2.4 [1.0 - 4.2] -0.4 [-1.7 - 0.5]PIP Error (%) 0.0 [0.0 - 0.1] Enough 0.1 [0.0 - 0.1] 0.0 [0.0 - 0.1]RMS Error (cmH2O) 1.4 [1.3 - 1.7] Data for 1.5 [1.3 - 1.8] 1.4 [1.3 - 1.8]RMS Error (%) 2.9 [2.6 - 3.6] IQR 3.3 [2.5 - 3.9] 5.2 [3.9 - 5.9]

Mini Recruitment Manoeuvre
Fitting Results: Elastance and resistance functions were fit across 3 patients, over 1056
breaths. PIP fitting error was 0.4 [0.3 - 0.5] cmH2O (0.0 [0.0 - 0.0] %) and RMS error was

0.9 [0.7 - 1.2] cmH2O (2.5 [1.6 - 3.3] %). Both error metrics (PIP error and RMS error)

have very low values, indicating the model fits the lung behaviour well in all arms of

the mini RMs studied.

Prediction Results: The model showed high accuracy in predicting upwards through-
out mini RMs, as shown in Table 8.6. PIP (%) error was 0.0 [0.0 - 0.0]% for a one-step

prediction and 0.0 [0.0 - 0.1]% for two-steps. As shown by the signed PIP (cmH2O) errors

of 0.5 [-0.1 - 0.9] (one step) and 0.4 [-0.3 - 1.2] (two steps), the model showed a tendency

to over-estimate pressure when predicting upwards arms. Greater prediction accuracy

was seen in the upwards arms of the recruitment manoeuvre than the downwards,

however this difference was minimal. Fitting error was also low for both upwards and

downwards predictions. The high accuracy of the model to fit lung mechanics (RMS er-
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Table 8.6: Mini CURE RMs: Model prediction error (median [IQR]) results for one-step
and two-step prediction. Upwards and downwards predictions are compared. PIP error

(%) is an absolute value, while PIP error (cmH2O) is signed.

One-Step Prediction (2 - 6 cmH2O)
Error Metric Upwards Prediction Downwards Prediction
PIP Error (cmH2O) 0.5 [-0.1 - 0.9] 0.4 [-0.2 - 1.0]PIP Error (%) 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0]RMS Error (cmH2O) 1.0 [0.9 - 1.2] 0.9 [0.8 - 1.3]RMS Error (%) 2.8 [2.1 - 3.6] 2.9 [1.9 - 3.8]

Two-Step Prediction (7 - 11 cmH2O)
Error Metric Upwards Prediction Downwards Prediction
PIP Error (cmH2O) 0.4 [-0.3 - 1.2] 0.2 [-0.7 - 1.0]PIP Error (%) 0.0 [0.0 - 0.1] 0.0 [0.0 - 0.0]RMS Error (cmH2O) 1.2 [1.0 - 1.4] 1.2 [1.0 - 1.4]RMS Error (%) 3.8 [2.6 - 4.7] 3.2 [2.5 - 4.6]

ror) and fit PIP (PIP error) when predicting both upwards and downwards indicates the

capability of themodel to be able to re-assess the best PEEP level for a patients condition

throughout ventilation.

Table 8.7: Mini CURE RMs: Model prediction error (median [IQR]) results comparing
each arm of an mini RM for one-step and two-step prediction. PIP error (%) is an abso-

lute value, while PIP error (cmH2O) is signed.

One-Step Prediction (2 - 6 cmH2O)
Error Metric Arm 1 Arm 2 Arm 3 Arm 4
PIP Error (cmH2O) -0.1 [-0.3 - 0.2] 0.8 [0.5 - 1.2] 0.1 [-0.4 - 0.4] 0.7 [0.4 - 1.0]PIP Error (%) 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0]RMS Error (cmH2O) 1.0 [0.9 - 1.2] 1.0 [0.8 - 1.2] 0.9 [0.7 - 1.2] 1.1 [0.8 - 1.3]RMS Error (%) 2.3 [1.7 - 2.5] 3.6 [3.0 - 4.1] 2.0 [1.6 - 3.0] 3.8 [3.1 - 4.7]

Two-Step Prediction (7 - 11 cmH2O)
Error Metric Arm 1 Arm 2 Arm 3 Arm 4
PIP Error (cmH2O) -1.0 [-1.3 - -0.0] 1.2 [0.5 - 1.7] -0.5 [-0.8 - 0.7] 0.6 [0.2 - 1.3]PIP Error (%) 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.1] 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.1]RMS Error (cmH2O) 1.2 [1.0 - 1.4] 1.2 [0.9 - 1.4] 1.0 [0.8 - 1.3] 1.2 [1.1 - 1.4]RMS Error (%) 2.2 [1.8 - 2.6] 4.5 [3.9 - 4.9] 2.5 [2.0 - 2.9] 4.6 [4.1 - 5.3]

As can be seen in Table 8.7, there was very little difference in prediction error between

Arms 1 and 2, and Arms 3 and 4 of themini RMs. Asmini RMs are often used tomaintain

oxygenation and reduce the impacts of time-dependent de-recruitment, this may vary

from the results from a full RM. As described in Section 4.2, the purpose of the first half

of the RM is to recruit alveoli while the second is to assess lung mechanics. Prediction
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results for Patients 1-3 are shown in Table 8.6 with (median [IQR]) PIP error of 0.5 [-0.1

- 0.9] cmH2O for a one-step increase in PEEP level and 0.4 [-0.3 - 1.2] cmH2O for a two-

step increase. The specific prediction results for Patient 1, RM 3 are shown in Figure 8.3.

Prediction results for other mini RMs are provided in Appendix A (Chapter 12).

Mini CURE RMs: 4 cmH2O PEEP Change 8 cmH2O PEEP Change
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Figure 8.3: Mini CURE RMs: Prediction results for Patient 1, RM 3 across all arms.
The blue, solid line shows the model prediction and the dashed black line indicates the

median airway pressure at that PEEP level.
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8.3.2 Impact of Initial PEEP Level
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Figure 8.4: McREM RMs: Cumulative distribution functions (CDFs) showing consistent
prediction errors across all PEEP levels for step increases of 2 and 6 cmH2O using the

parabolic basis function model. The PEEP shown in the legend is the initial PEEP level

from which a prediction is made.

To ensure higher levels of clinical relevance for themodel, the impact of the initial PEEP

level was assessed. This study helps to ensure that the model has clinical benefit and

can be used at any point of a RM. The cumulative distribution function (CDFs) in Fig-

ure 8.4 show that prediction errors are similar for all initial PEEP levels, irrespective of

whether the PEEP step increase magnitude is 2 cmH2O or 6 cmH2O. There is thus no no-

ticeable sensitivity to PEEP level or PEEP interval in prediction error. Figure 8.4 shows

prediction error is reasonably consistent across variable PEEP levels used to generate

prediction and consistent prediction ranges. The errors are still clinically acceptable

and relatively small compared to inter- and intra- patient variability, but do grow as the

model is “stretched” to predict over larger intervals. For comparison, the median [IQR]

variation in PIP across each PEEP level was 1.2 [0.8 - 1.9] cmH2O, with 95% of the data

up 4.3 cmH2O for the McREM cohort. The CURE cohort had (median [IQR]) variation

of 1.3 [0.9 - 2.4] cmH2O with a 95% value of 11.2 cmH2O. The success at prediction in

the results thus validates the choice of basis function shapes, as well as their potential
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to accurately capture mechanics outside the range of breath data used to identify their

parameters.

8.4 Discussion
8.4.1 General Model Efficacy and Clinical Implications
As shown in Table 8.3, the model predicts lung mechanics with very high accuracy over

the entire expected MV pressure range (14 cmH2O) with (median [IQR]) PIP Error of 1.4

[-0.5 - 2.2] cmH2O (CURE cohort) and 1.4 [0.3 - 2.2] cmH2O (McREM cohort). In addition,

as also shown in Table 8.3, a total prediction RMS error of 1.2 [1.1 - 1.6] (CURE) and 0.9

[0.6-1.1] (McREM) cmH2O was achieved. These preliminary results show the model is

capable of predicting respiratory responses of critically ill patients during RMs using

data from a baseline PEEP level. The ability of the model to predict across such a large

PEEP change interval suggests the basis functions chosen for distension and recruit-

ment provide an accurate depiction of the pulmonary processes occurring throughout

a RM.

Prediction of potential respiratory mechanics at different MV settings may allow more

informed decisions around ventilation practice to be made. In addition, these sorts of

predictions could be used to test potential treatment strategies in silico, rather than di-

rect testing in patient cohorts, thus increasing safety. One potential application is the es-

timation of PEEP for minimum elastance (M. Amato et al., 1998; Chiew, Pretty, Docherty,

et al., 2015) without the need to perform RM steps at much higher pressures, reducing

risk and personalising care. In addition, the model would also offer clinicians an idea

of the risk of over-distension resulting from excessive airway pressure and volume at

any PEEP.

The model was tested on median breaths at each PEEP level. However, due to intra-

patient variability there was variation in what the PIP of each breath at a PEEP level
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was. Themedian [IQR] variation in PIP across each PEEP level was 1.2 [0.8 - 1.9] cmH2O,

with 95% of the data up 4.3 cmH2O for theMcREM cohort. The CURE cohort had (median

[IQR]) variation of 1.3 [0.9 - 2.4] cmH2O with a 95% value of 11.2 cmH2O. As shown in

Table 8.3, the model was within this variation for predictions up to 8 cmH2O ahead for

the CURE cohort and 4 cmH2O for the McREM cohort, which is two PEEP steps ahead for

each protocol. This suggests that these low errors are clinically insignificant in these

cases.

The overall capability of this model should make the process of PEEP titration to find

minimum elastance and the implementation of RMs much safer and more efficient.

However, there was some variation in over- and under- prediction of PIP (cmH2O), as

shown in Table 8.3, caused by the variance in whether the effects of either recruitment

or distension were having a more significant effect on lung mechanics at that pressure.

Estimating at exactly what point this change in mechanics occurs is difficult to achieve

for an individual patient due to high levels of variability.

Due to this variation, it is not clinically advisable to base PEEP settings on a sole predic-

tion of lung mechanics at a PEEP level 14 cmH2O higher than the current one. Smaller

predictions of a single step would be more commonly used to ensure patient safety.

Equally, the method could be extended to include data from more than the current

PEEP step to further reduce errors (Langdon, Docherty, Chiew, & Chase, 2016; Langdon,

Docherty, Chiew, Möller, & Chase, 2016).

The analysis carried out in Chapters 5 - 7 and in this chapter focussed on volume con-

trolled ventilation data, where pressure is the uncontrolled factor. While these exper-

iments use volume controlled ventilation, the field is increasingly changing towards

pressure controlled ventilation. However, the methods presented are readily generalis-

able to the choice of controlled variables (volume or pressure) and fitted model outputs

(pressure or volume). Future work will utilise pressure control data to forward predict

volume outcomes across a recruitment manoeuvre, where peak tidal volume could be a
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clinically interesting risk metric. The ultimate goal of MV is to maximise recruitment of

alveoli and thus gas exchange, while minimising incidences of VILI (Bates & Irvin, 2002;

Lambermont et al., 2008; Mercat et al., 2008; Rocco et al., 2010; Valentini et al., 2014),

which is supported by the model prediction results presented here.

Model Prediction across Mini RMs
To assess whether the model is effective in cases where minimal changes in distension

and recruitment are expected, the model was tested on mini recruitment data. The

results presented in Tables 8.6 and 8.7 suggest themodel captures lung dynamics across

a nearer, more local pressure range very well with PIP (%) error of 0.0 [0.0 -0.1]% in

increases of PEEP up to 11 cmH2O. This low level of error indicates the model would

be clinically useful for making small changes to PEEP levels throughout treatment as

patient condition evolves.

Fitting results were accurate across all PEEP levels and arms in each mini RM studied,

with amedian PIP % error less than 10% and amedian RMS (%) error less than 7% in all

cases. The model showed good accuracy in predicting noth upwards and downwards

across entire mini RMs. Fitting error across one PEEP level was similar in both up-

wards and downwards arms with (median [IQR]) RMS error of 1.2 [1.0 - 1.4] cmH2O for

two-step prediction. The model was more accurate at predicting PIP when predicting

upwards both one and two steps, in the majority of cases over-predicting peak pres-

sure. This over-prediction is clinically important as it is presenting the conservative

case, reducing the change of over-distension and VILI.

Predicting downwards often results in an under-prediction of PIP. However, as pres-

sure is decreasing between the steps this error is much less likely to result in VILI.

This difference is likely due to the variation in mechanics between recruitment and de-

recruitment resulting in the recruitment basis function holding less relevance for the

downwards arms in the mini RMs. The ability of the model to predict lung mechanic
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changes with such high accuracy in mini RMs is a strong indication that it maintains

efficacy even when there are small changes in distension and recruitment.

8.4.2 Conditions of Model Accuracy
Four model conditions were tested in this chapter to assess their impact on model accu-

racy.

1. The impact of initial PEEP level. This was found to not have an impact on predic-
tion accuracy in the cohorts studied. This means that the model has the versatility

to be used in a variety of contexts. It could be used to predict across an entire

RM to work out approximate point (starting point of 10 cmH2O) or minimum elas-

tance, or partway through the process (18 cmH2O (when additional information

about patient condition is available)) to ensure that the initial prediction was ac-

curate prior to further increasing pressure. In addition, it could be used to make

small alterations to PEEP level in mini RMs.

2. Accuracy of predicting lungmechanics through a decrease in PEEP level com-
pared with an increase. While the absolute (%) error of PIP estimation was not
changed by the direction of prediction, predicting across a decrease in PEEP often

resulted in an under-prediction for both the full and mini RMs. Predicting an in-

crease in PEEP level tended slightly towards over-predicting PIP however showed

reasonably similar amounts of over- and under-predictions

3. Accuracy of prediction betwen the first half of an RM (Arm 1 and Arm 2) and
the second (Arm 3 and Arm 4). There was not a difference in model accuracy
between the first and second half of RMs for both the mini and full RMs.

4. Error increase in prediction as PEEP interval increases. Error tended to in-
crease as PEEP prediction interval increased in all cohorts and RM types studied.

While both PIP prediction and fitting error (RMS) error levels stayed reasonably

constant in increases of up to 6 cmH2O, steady increases occurred past this point.
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8.5 Summary
This chapter has provided a general overview of model development and efficacy. In

addition, the potential utility of this ability in mini RMs has been investigated. Analysis

carried out in this chapter has also suggested that there is little change inmodel efficacy

if any of the studied model conditions were changed. The high level of accuracy and

robustness of this model indicates that it could hold clinical relevance.



CHAPTER9
Estimation of Additional
Lung Volume Gained
through PEEP Increases
9.1 Introduction
Functional Residual Capacity (FRC) represents recruited lung volume at zero end-expiratory

pressure (ZEEP), or at atmospheric pressure after normal expiration (Bates, 2009; Major

et al., 2018; van Drunen, Chase, et al., 2013). A less studied impact of increasing PEEP

is the added pressure results in an increased end-expiratory (recruited) lung volume,

or dynamic function residual capacity. It is essentially the residual additional lung vol-

ume additional lung volume (Vfrc), due to alveolar recruitment at this higher pressure

(Dellamonica et al., 2011; van Drunen, Chase, et al., 2013; Wallet et al., 2013).

Determining Vfrc is often invasive, or requires imaging that either cannot be carried out

at the bedside or is not available in every care unit. Estimating changes in Vfrc across

each RM step could aid PEEP optimisation by enabling clinicians to better manage risk
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vs reward, and minimise the risk of lung damage. Potentially, PEEP could be titrated

based on Vfrc as this volume is the direct goal of applying PEEP.

This chapter assesses the accuracy of a model-based method of Vfrc estimation against

raw volume data, and investigates how much this accuracy affects the predictive abili-

ties of the model developed in Chapter 5.

9.2 Methods
9.2.1 Patient Data
Pressure and flow data from the N=21 invasively ventilated patients diagnosed with

acute respiratory distress syndrome (ARDS) from ICUs in Germany (N=17) and New

Zealand (N=4) (Davidson et al., 2014; Stahl et al., 2006) outlined in Chapter 4 was anal-

ysed.

9.2.2 Models Used in Analysis
The model used in this study was the model defined in Section 5.2. Specifically, Equa-

tions 5.7 and 5.10, respectively as reproduced below.

Overall model for parameter fitting (Equation 5.7):

P(t) = ( E1(V − Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

Overall model for prediction (Equation 5.10):

P(t) = (E1((V + Vfrc)− Vm)2︸ ︷︷ ︸
Recruitment Elastance

+ E2P(t)60︸ ︷︷ ︸
Distension Elastance

)
V (t) +( R1 + R2V̇ (t)︸ ︷︷ ︸

Rohrer Resistance

)
V̇ (t) + PEEP

Calculation of Vfrc
The change in volume due to an increase in PEEP (Vfrc) was calculated using a steady

state assumption applied to the elastance component of the overarching model equa-
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tion of Equation 5.7. It is defined in Equation 5.9 and reproduced below for clarity:

Vnfrc = PEEPn+1 − PEEPn)
E1(Vfrc − Vm)2 + E2PEEPn+160

Where Vfrc across a particular PEEP step from n to n+1 is denoted Vnfrc. This equation

(Equation 5.9) was iterated until convergence (∆Vnfrc <0.01%). The minimum value for
V – Vm was set to zero through use of the min function in MATLAB. Vfrc was calculated

in this manner across all PEEP steps in all RMs.

Calculating Vfrc from Clinical Data
Volume was calculated across the final breath at PEEPn and the first breath at PEEPn+1

by integrating clinical flow data with respect to time. Vfrc was determined to be the

difference in end expiratory volume across this PEEP change thus matching the def-

inition as volume retained by increased PEEP. For 2 steps up in PEEP, Vfrc across this

larger PEEP change was calculated as the sum of the two Vfrc calculations for each sin-

gle step up in PEEP. This calculation was used to avoid flow sensor noise causing drift

effects confounding volume estimation. The same additive process was also used for

step increases of 3 PEEP levels and higher.

9.2.3 Validation of Results
The error between the modelled Vfrc estimate and the calculated clinical Vfrc value was

determined for each PEEP step. The percentage error was also calculated. However,

absolute percent error was used.PEEP steps of less than 2 cmH2O were not included in

the analysis as these were often due to a change in PEEP level not being achieved.

Forward simulation of Equation 5.10 using previously identified parameters and with

a Vfrc shift in the volumetric recruitment elastance function (V(t)Ï V(t) + Vfrc) was used

to compare model fit of this forward prediction a forward-prediction of the model to

that using the calculated clinical Vfrc value. Model fit was assessed via the difference

between model and clinical peak inspiratory pressure, a clinical outcome as it is an
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indicator of the risk of ventilator-induced lung injury (VILI).

9.3 Results
9.3.1 Accuracy of Vfrc Estimation
Table 9.1 shows Vfrc estimate errors tend to increase with increasing PEEP interval

size. However, many of the larger errors were under-estimations of Vfrc. This under-

estimation is clinically preferable to over-estimation as it would encourage more con-

servative treatment plans due to reduced predicted response to a PEEP change with less

risk of patient harm.

Table 9.1: Vfrc error (L) (median [IQR]) for each PEEP interval size for the CURE and

McREM cohorts.

∆ PEEP CURE Cohort Vfrc Error (L) McREM Cohort Vfrc Error (L)
2 cmH2O 0.03 [-0.03 - 0.07] 0.00 [-0.04 - 0.02]4 cmH2O -0.03 [-0.09 - 0.00] -0.00 [-0.07 - 0.03]6 cmH2O 0.12 [-0.11 - 0.14] -0.03 [-0.07 - 0.01]8 cmH2O -0.11 [-0.14 - -0.04] -0.04 [-0.16 - -0.02]10 cmH2O -0.12 [-0.17 - 0.05] -0.13 [-0.24 - -0.03]12 cmH2O -0.11 [-0.22 - -0.07] -0.13 [-0.32 - -0.02]14 cmH2O -0.08 [-0.13 - -0.04] -0.29 [-0.33 - -0.09]

The boxplots in Figure 9.1 suggest the Vfrc estimate was more accurate in the CURE co-

hort than in the McREM cohort with median absolute errors of around 15% for changes

in PEEP level up to 14 cmH2O. In addition, the McREM cohort also demonstrated more

cases of under-estimation of Vfrc.

The outliers shown in the boxplots are defined as cases where the data point is more

than 1.5 times the IQR away from the box. While these values are high percentage

errors, this magnitude of error is due to the small volume increases being estimated

making these errors seem larger than they are clinically. For example, the largest clin-

ical Vfrc value for the CURE cohort was 0.68 L whereas in the McREM cohort this was

0.76 L. In comparison to these values, the average lung capacity of an adult is around 6

L.
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9.3.2 Validation of Vfrc Estimation
The fitted elastance curves for each PEEP level are shown for two cases in Figure 9.2.

When curve was offset with the estimated Vfrc change from the starting PEEP level, they

overlapped into a parabolic shape in most cases studied. As expected, the recruitment

elastance was often steeper earlier in the recruitment manoeuvre than at higher PEEP

levels such as 20 or 22 cmH2O where distension is expected to be the primary dynamic.

9.3.3 Effect of Vfrc Estimation Accuracy on Model Prediction
Figure 9.3 shows there is very little improvement in PIP prediction when the model Vfrc

estimate is replaced with the exact, calculated clinical Vfrc value. Tables 9.2 - 9.21 pre-

sented at the end of the chapter show detailed Vfrc estimation and prediction results for

the 21 patients studied. PIP prediction was less accurate in the McREM cohort than in

the CURE cohort when the clinical Vfrcwas used, mimicking the results from Chapters 6

- 8. This result and the small difference in error between the prediction when using

the modelled Vfrc value and the clinical Vfrc indicates the larger errors in this cohort are

caused more by the elastance and resistance basis functions not completely capturing

the non-linear behaviour, than by Equation 5.9 not capturing the true value of Vfrc.

9.4 Discussion
The model provided good estimation of Vfrc across a range of patients and PEEP levels

with a median [IQR] error of 0.03[-0.09 - 0.00]L (CURE cohort) and -0.00 [-0.07 - 0.03]L

(McREM cohort) for PEEP increases of up to 4 cmH2O. For an increase of up to 8 cmH2O,

the model estimated Vfrc with error of -0.11 [-0.14 - -0.04]L for the CURE cohort and -

0.04 [-0.16 - -0.02]L for the McREM cohort. This high accuracy in a non-invasive Vfrc

estimation which can be carried out using information readily available at the bedside

and without any added workload will aid in clinical decision making.
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In particular, precise Vfrc knowledge could aid themanagement of the trade-off between

added recruited volume and increasing the airway pressure applied to the lung. For

example, Patient 4, Arm 3 (Table 9.21 shows significant saturation of Vfrc gains to low

values at higher PEEP, indicating very little recruited volume is gained for an increase

in risk of VILI. This method thus offers a non-invasive means to titrate pressures based

on recruited volume instead of, or in addition to, elastance or pressure.

As demonstrated in Figure 9.3, using the clinical Vfrc value showed limited improve-

ments to model prediction of PIP over using the modelled Vfrc estimate. In PEEP in-

creases of 4 cmH2O PIP (%) error, themodelled Vfrc estimate was 4.0 [2.9 - 5.0]%whereas

when this value was replaced with the calculated clinical Vfrc value it only decreased to

3.6 [1.9 - 4.5 ]% for the CURE cohort. For the McREM cohort, substituting the modelled

Vfrc estimate (PIP (%) error of 3.5 [2.0 - 4.4]%) with the clinical value (PIP (%) error of 3.6

[1.9 - 4.5]%) had no effect on the prediction accuracy across a 4 cmH2O PEEP increase.

This lack of change indicates better Vfrc estimation can provide no further information

with the current model and basis function.

In addition to the high accuracy of results, the estimated values of Vfrc showed expected

physical behaviour. In particular, increasing positive end-expiratory pressure (PEEP)

has falling Vfrc, as expected with diminishing available volume at higher PEEP. While

there were a few outlier values of Vfrc error, generally results were internally consis-

tent within patients and reflected clinically and physiologically expected trends. Fu-

ture work could look at reducing these outliers by identifying models over several PEEP

steps, by aggregating average breaths across a PEEP level, or by statistical analysis of

trends in larger data sets.

The initial analysis carried out in this study used data from a limited number of pa-

tients. In addition, 3 of the 4 patients in the CURE cohort presented with forms of bac-

terial pneumonia, which may lead to reduced pulmonary recruitability along with lim-

iting patient disease type (Lorx et al., 2010). However, all patients studied across both
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cohorts had PF <300 mmHg, meeting ARDS guideline definitions for impaired function

(Brower et al., 2000). To mitigate the impact of this sample size, a large number of

breaths and RM steps were studied from each patient to ensure a diverse range of lung

mechanics was assessed.

Pneumonia-affected lungs often display heterogeneous behaviour across different pul-

monary regions, with optimal PEEP potentially occurring over a large range (Lorx et al.,

2010). Furthermore, airflow resistance in patients presenting with pneumonia-induced

ARDS often shows wide variation, making achieving optimal ventilation challenging

(Lorx et al., 2010). Therefore, the ability of this model to accurately estimate Vfrc across

a range of PEEP changes is promising for clinical use.

The model used to determine a value of Vfrc assumed a steady state system, and showed

very good accuracy at estimating the measured change in volume. There was a strong

correlation between low error in Vfrc and good accuracy in prediction results. Thus,

future work into developing a more accurate estimation of the volume gained through-

out a RM would further aid clinician ability to set the optimal PEEP levels. The results

also offer a clinical opportunity to titrate PEEP based on the estimated lung volume re-

cruited, a direct indication of the success of an RM. This combined with prediction of

the point ofminimum elastancewould allow clinicians tomanage the trade-off between

the risk of VILI and lung recruitment.

9.5 Summary
In this study a model-based method to predict additional recruited lung volume (Vfrc)

gained throughout a recruitment manoeuvre was developed and validated against clin-

ical data. Initial results were promising with high accuracy shown in both approximat-

ing Vfrc and using this information to predict lung behaviour at higher PEEP levels. The

results offer a clinical opportunity to titrate PEEP based on the estimated lung volume

recruited. Combined with prediction of the point of minimum elastance this would al-
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low clinicians to manage the trade-off between the risk of VILI and lung recruitment,

improving patient outcomes.

Table 9.2: Prediction results for Patient 1 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 1.1 5.0 2.0 5.5 0.09 0.08 0.0114 4 1.0 4.0 2.6 6.5 0.17 0.17 0.0016 6 1.0 3.7 2.6 6.0 0.29 0.27 0.0118 8 1.1 3.2 3.2 7.0 0.39 0.38 0.00

12 14 2 0.9 3.9 2.2 5.5 0.08 0.08 0.0016 4 0.9 3.6 1.9 4.4 0.20 0.17 0.0218 6 0.9 3.0 2.4 5.1 0.30 0.27 0.03

14 16 2 0.9 3.6 1.0 2.2 0.12 0.09 0.0318 4 1.0 3.1 1.2 2.6 0.22 0.18 0.03

16 18 2 0.9 3.1 1.4 2.9 0.10 0.09 0.02

Table 9.3: Prediction results for Patient 2 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 0.5 2.4 1.4 3.9 0.08 0.07 0.0114 4 0.7 2.4 2.0 5.5 0.16 0.15 0.0116 6 0.9 2.3 2.5 6.3 0.17 0.24 0.0718 8 1.0 2.4 2.9 6.7 0.17 0.33 0.1620 10 1.1 2.5 2.9 6.2 0.18 0.43 0.25

12
14 2 0.5 2.0 1.3 3.6 0.08 0.08 0.0116 4 0.6 1.8 1.6 4.1 0.09 0.16 0.0718 6 0.6 1.7 1.8 4.1 0.09 0.25 0.1520 8 0.7 1.8 1.7 3.6 0.10 0.34 0.24

14 16 2 0.4 1.5 0.9 2.1 0.01 0.08 0.0718 4 0.5 1.5 0.8 1.8 0.01 0.17 0.1620 6 0.5 1.5 0.5 1.0 0.02 0.26 0.24

16 18 2 0.4 1.4 0.5 1.2 0.00 0.08 0.0820 4 0.5 1.5 0.1 0.1 0.01 0.17 0.16
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Table 9.4: Prediction results for Patient 3 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 1.1 4.7 2.3 6.0 0.00 0.08 0.0814 4 1.0 4.7 2.2 5.3 0.02 0.18 0.1516 6 0.9 2.1 1.5 3.4 0.13 0.28 0.1518 8 0.7 1.5 2.3 4.8 0.24 0.39 0.1520 10 0.8 1.9 2.6 5.3 0.37 0.50 0.1322 12 1.2 1.9 3.2 6.5 0.38 0.60 0.23

12
14 2 1.0 4.2 2.1 4.9 0.02 0.10 0.0816 4 0.9 2.0 1.3 2.9 0.13 0.20 0.0718 6 0.7 1.4 2.0 4.1 0.24 0.31 0.0620 8 0.8 1.8 2.3 4.6 0.37 0.41 0.0422 10 1.2 1.9 2.9 5.9 0.38 0.50 0.13

14
16 2 1.0 1.9 1.4 3.0 0.11 0.11 0.0018 4 0.7 1.3 2.0 4.2 0.22 0.22 0.0020 6 0.8 1.7 2.3 4.6 0.35 0.32 0.0322 8 1.2 2.0 2.9 5.9 0.35 0.41 0.05

16 18 2 0.7 1.7 2.2 4.5 0.11 0.09 0.0220 4 0.7 1.6 2.2 4.5 0.24 0.18 0.0622 6 1.0 1.8 2.6 5.2 0.24 0.27 0.03

18 20 2 0.7 1.6 1.6 3.3 0.13 0.10 0.0322 4 1.0 1.7 2.0 4.1 0.13 0.19 0.06

20 22 2 0.9 1.8 2.0 4.0 0.01 0.09 0.08

Table 9.5: Prediction results for Patient 5 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 0.6 2.4 0.6 1.8 0.09 0.07 0.0214 4 0.6 2.3 0.6 1.7 0.19 0.15 0.0416 6 0.7 1.9 0.2 0.5 0.28 0.23 0.0518 8 1.0 2.6 -1.3 2.8 0.36 0.31 0.0520 10 1.9 3.8 -2.9 5.7 0.47 0.39 0.0822 12 2.0 3.8 -3.4 6.6 0.54 0.47 0.07

12
14 2 0.6 2.1 0.9 2.3 0.10 0.07 0.0316 4 0.6 1.7 0.4 1.1 0.19 0.15 0.0418 6 0.9 2.5 -1.1 2.4 0.27 0.23 0.0420 8 1.8 3.7 -2.8 5.4 0.38 0.31 0.0722 10 1.9 3.8 -3.2 6.3 0.45 0.38 0.07

14
16 2 0.5 1.6 0.8 1.9 0.09 0.08 0.0118 4 0.8 2.2 -0.7 1.5 0.17 0.16 0.0220 6 1.6 3.4 -2.4 4.6 0.28 0.23 0.0522 8 1.7 3.5 -2.9 5.6 0.35 0.30 0.04

16 18 2 0.7 1.9 -0.5 1.0 0.09 0.08 0.0120 4 1.5 3.2 -2.2 4.3 0.19 0.15 0.0422 6 1.7 3.4 -2.7 5.3 0.26 0.23 0.03

18 20 2 1.1 2.4 -1.1 2.1 0.10 0.08 0.0322 4 1.2 2.6 -1.7 3.3 0.17 0.15 0.03

20 22 2 0.6 1.6 0.0 0.1 0.07 0.07 0.00
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Figure 9.1: Boxplot of Vfrc results separated by PEEP interval size for the CURE and

McREM cohorts.
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Figure 9.2: Recruitment and distension elastance curves across PEEP steps, including

the associated volume gain offsets relative to the lowest PEEP data.
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Figure 9.3: Boxplot of Vfrc results separated by PEEP interval size for the CURE and

McREM cohorts.

Table 9.6: Prediction results for Patient 6 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10 12 2 0.6 3.1 1.4 3.5 0.08 0.08 0.0014 4 0.6 2.5 1.6 3.7 0.17 0.17 0.00

12 14 2 0.6 2.5 1.1 2.5 0.09 0.08 0.01
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Table 9.7: Prediction results for Patient 7 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10 12 2 0.5 2.1 0.6 1.7 0.08 0.07 0.0114 4 0.7 2.4 0.0 0.1 0.16 0.15 0.0116 6 0.9 2.6 -0.4 0.9 0.21 0.23 0.01

12 14 2 0.6 2.2 0.2 0.5 0.08 0.07 0.0016 4 0.8 2.4 -0.3 0.6 0.13 0.15 0.01

14 16 2 0.6 1.8 0.3 0.7 0.06 0.07 0.02

Table 9.8: Prediction results for Patient 8 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 1.2 4.5 2.5 5.9 0.13 0.08 0.0514 4 1.1 3.3 2.4 5.4 0.26 0.17 0.0916 6 1.1 2.7 2.5 5.3 0.38 0.28 0.1018 8 1.2 2.8 2.5 5.1 0.38 0.41 0.0320 10 1.3 2.6 3.3 6.6 0.40 0.58 0.18

12
14 2 1.1 3.3 2.1 4.7 0.13 0.08 0.0416 4 1.1 2.6 2.0 4.2 0.24 0.18 0.0618 6 1.1 2.5 1.8 3.7 0.25 0.29 0.0420 8 1.2 2.3 2.6 5.2 0.27 0.42 0.15

14 16 2 1.0 2.7 1.9 4.1 0.12 0.09 0.0318 4 1.1 2.3 1.6 3.3 0.12 0.18 0.0620 6 1.1 2.1 2.2 4.4 0.14 0.29 0.15

16 18 2 1.0 2.3 1.7 3.4 0.01 0.08 0.0820 4 1.0 2.2 2.0 4.1 0.02 0.18 0.15
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Table 9.9: Prediction results for Patient 9 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 0.8 3.5 1.7 5.3 0.15 0.11 0.0414 4 0.8 3.1 1.7 4.8 0.28 0.25 0.0316 6 0.9 2.4 2.3 6.1 0.40 0.40 0.0118 8 1.0 2.5 2.9 7.1 0.53 0.55 0.0220 10 1.0 2.3 3.2 7.4 0.66 0.68 0.0222 12 1.3 3.0 3.6 7.9 0.76 0.78 0.02

12
14 2 0.7 3.2 1.0 2.8 0.13 0.12 0.0116 4 0.8 2.4 1.4 3.7 0.25 0.25 0.0018 6 0.8 2.5 1.9 4.7 0.38 0.39 0.0120 8 0.8 1.9 2.2 5.0 0.51 0.53 0.0322 10 0.9 2.3 2.5 5.5 0.61 0.65 0.04

14
16 2 0.7 2.5 1.4 3.7 0.12 0.12 0.0018 4 0.8 2.4 1.8 4.4 0.25 0.25 0.0020 6 0.7 1.9 2.0 4.7 0.38 0.38 0.0022 8 0.8 2.2 2.4 5.2 0.48 0.50 0.02

16 18 2 0.7 2.5 1.4 3.4 0.13 0.11 0.0120 4 0.6 2.0 1.5 3.4 0.26 0.24 0.0222 6 0.6 1.8 1.8 3.9 0.36 0.36 0.00

18 20 2 0.6 2.0 1.2 2.7 0.13 0.12 0.0122 4 0.6 1.7 1.3 2.9 0.23 0.23 0.00

20 22 2 0.6 1.8 1.2 2.6 0.10 0.12 0.01

Table 9.10: Prediction results for Patient 10 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)
10 11 13 2 0.9 4.3 1.2 2.5 0.01 0.05

Table 9.11: Prediction results for Patient 11 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 0.7 3.0 1.3 4.0 0.11 0.08 0.0314 4 0.6 2.4 1.5 4.3 0.22 0.17 0.0516 6 0.6 1.9 1.3 3.6 0.33 0.27 0.0618 8 0.6 1.7 1.2 2.9 0.44 0.39 0.0520 10 1.6 6.0 0.3 0.6 0.45 0.52 0.06

12
14 2 0.6 2.3 1.1 3.2 0.11 0.09 0.0216 4 0.6 1.9 0.9 2.4 0.22 0.18 0.0318 6 0.6 1.8 0.6 1.4 0.32 0.29 0.0420 8 1.6 6.2 -0.5 1.2 0.34 0.40 0.06

14 16 2 0.6 1.9 0.6 1.8 0.11 0.09 0.0218 4 0.7 1.8 0.2 0.6 0.22 0.19 0.0320 6 1.7 6.2 -1.0 2.3 0.24 0.30 0.06

16 18 2 0.6 1.7 0.4 1.0 0.11 0.10 0.0120 4 1.6 6.0 -0.9 2.0 0.13 0.19 0.07

18 20 2 1.4 5.4 -0.3 0.6 0.02 0.10 0.08
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Table 9.12: Prediction results for Patient 12 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

12
14 2 0.4 1.7 0.2 0.6 0.05 0.06 0.0016 4 0.3 1.2 0.2 0.6 0.12 0.12 0.0018 6 0.4 1.1 -0.4 1.0 0.19 0.18 0.0020 8 0.5 1.4 -0.8 1.8 0.25 0.25 0.00

14 16 2 0.3 1.2 0.1 0.1 0.07 0.06 0.0118 4 0.4 1.2 -0.6 1.6 0.13 0.12 0.0120 6 0.6 1.5 -1.1 2.6 0.19 0.18 0.01

16 18 2 0.3 1.0 -0.2 0.6 0.07 0.06 0.0020 4 0.4 1.2 -0.6 1.5 0.13 0.13 0.00

18 20 2 0.3 1.1 -0.3 0.7 0.06 0.06 0.00

Table 9.13: Prediction results for Patient 13 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)
10 12 2 1.3 6.8 -0.4 0.9 0.07 0.04 0.02
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Table 9.14: Prediction results for Patient 14 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10

12 2 0.6 2.9 1.1 3.3 0.06 0.06 0.0014 4 0.6 2.5 1.0 2.8 0.12 0.13 0.0116 6 0.7 2.9 1.3 3.3 0.18 0.19 0.0118 8 0.9 3.1 1.7 4.0 0.24 0.26 0.0120 10 0.9 3.0 1.8 4.3 0.30 0.32 0.0222 12 1.2 3.8 1.9 4.1 0.35 0.37 0.0224 14 1.2 3.4 2.2 4.6 0.40 0.42 0.02

12
14 2 0.6 2.1 0.9 2.5 0.06 0.07 0.0116 4 0.6 2.5 1.3 3.3 0.12 0.14 0.0218 6 0.8 2.8 1.7 4.1 0.18 0.21 0.0320 8 0.9 2.9 1.9 4.4 0.24 0.27 0.0322 10 1.2 3.8 2.0 4.3 0.29 0.32 0.0424 12 1.3 3.4 2.4 4.8 0.34 0.37 0.03

14
16 2 0.6 2.3 1.0 2.7 0.06 0.07 0.0118 4 0.7 2.5 1.4 3.5 0.12 0.14 0.0220 6 0.8 2.4 1.6 3.7 0.18 0.20 0.0322 8 1.0 3.3 1.6 3.5 0.23 0.26 0.0324 10 1.0 2.9 1.9 3.9 0.28 0.32 0.03

16
18 2 0.6 2.1 1.2 3.0 0.06 0.08 0.0120 4 0.7 2.0 1.5 3.4 0.12 0.14 0.0322 6 0.9 2.7 1.5 3.2 0.17 0.21 0.0424 8 0.9 2.5 1.8 3.6 0.22 0.27 0.04

18 20 2 0.6 1.8 1.3 2.9 0.05 0.08 0.0222 4 0.8 2.3 1.3 2.8 0.11 0.14 0.0424 6 0.8 2.1 1.6 3.2 0.16 0.21 0.05

20 22 2 0.7 2.0 0.9 2.0 0.05 0.07 0.0224 4 0.6 1.8 1.1 2.3 0.11 0.14 0.03

22 24 2 0.6 1.6 1.1 2.3 0.05 0.08 0.03
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Table 9.15: Prediction results for Patient 15 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10

12 2 0.7 3.2 1.9 5.6 0.13 0.09 0.0414 4 0.9 2.7 2.8 8.0 0.25 0.19 0.0616 6 1.1 3.0 3.4 8.8 0.25 0.31 0.0618 8 1.5 3.4 4.4 10.7 0.26 0.45 0.1920 10 1.9 4.0 5.3 12.4 0.27 0.60 0.3322 12 2.5 5.2 6.3 14.1 0.39 0.72 0.3324 14 3.0 6.3 7.4 15.8 0.52 0.81 0.2926 16 3.6 8.2 8.1 16.6 0.57 0.87 0.30

12

14 2 0.6 2.3 1.7 4.8 0.12 0.09 0.0316 4 0.8 2.4 2.1 5.4 0.12 0.20 0.0818 6 1.0 2.5 3.0 7.3 0.13 0.32 0.1920 8 1.4 2.9 3.8 9.0 0.15 0.46 0.3222 10 1.8 4.0 4.8 10.7 0.27 0.60 0.3324 12 2.3 5.0 5.8 12.3 0.40 0.71 0.3226 14 2.9 6.7 6.4 13.1 0.45 0.80 0.35

14
16 2 0.6 2.2 1.2 3.2 0.00 0.10 0.1018 4 0.7 1.9 2.0 4.9 0.01 0.21 0.2020 6 1.0 2.2 2.8 6.6 0.02 0.33 0.3122 8 1.4 3.1 3.7 8.3 0.14 0.46 0.3224 10 1.8 4.0 4.7 9.9 0.27 0.59 0.3126 12 2.3 5.7 5.3 10.7 0.33 0.69 0.37

16
18 2 0.5 1.7 1.3 3.3 0.01 0.10 0.0920 4 0.7 1.6 2.1 4.9 0.02 0.20 0.1822 6 1.0 2.5 2.9 6.5 0.14 0.32 0.1824 8 1.4 3.3 3.8 8.1 0.27 0.44 0.1726 10 1.9 4.8 4.3 8.9 0.33 0.56 0.24

18
20 2 0.5 1.4 1.3 3.1 0.01 0.10 0.0922 4 0.8 2.0 2.0 4.5 0.13 0.21 0.0724 6 1.0 2.7 2.9 6.1 0.26 0.32 0.0626 8 1.5 4.1 3.4 6.9 0.32 0.44 0.13

20 22 2 0.6 1.7 1.2 2.8 0.12 0.10 0.0224 4 0.7 2.1 2.0 4.2 0.25 0.21 0.0426 6 1.2 3.5 2.4 5.0 0.30 0.33 0.03

22 24 2 0.5 1.5 1.4 3.1 0.13 0.11 0.0226 4 0.9 2.7 1.8 3.7 0.18 0.23 0.05

24 26 2 0.8 2.2 1.3 2.7 0.05 0.12 0.07
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Table 9.16: Prediction results for Patient 17 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10
12 2 1.0 4.4 0.1 0.3 0.00 0.04 0.0414 4 1.0 3.7 -0.5 1.4 0.02 0.09 0.0716 6 1.5 4.7 -1.7 3.9 0.02 0.14 0.1218 8 2.1 5.5 -3.4 7.1 0.03 0.19 0.1720 10 3.3 7.2 -5.3 10.4 0.08 0.25 0.17

12
14 2 1.0 3.6 -0.4 1.0 0.01 0.04 0.0316 4 1.4 4.4 -1.5 3.5 0.02 0.09 0.0818 6 2.0 5.0 -3.2 6.8 0.02 0.14 0.1220 8 3.2 6.8 -5.1 10.1 0.08 0.20 0.11

14 16 2 1.1 3.6 -0.6 1.5 0.00 0.05 0.0418 4 1.6 4.1 -2.3 4.8 0.01 0.09 0.0820 6 2.7 5.7 -4.1 8.1 0.07 0.14 0.07

16 18 2 1.1 3.0 -1.1 2.3 0.01 0.05 0.0420 4 2.0 4.3 -2.9 5.7 0.07 0.09 0.03

18 20 2 1.3 3.0 -1.3 2.5 0.06 0.05 0.01

Table 9.17: Prediction results for Patient 18 of the McREM cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)

10 12 2 1.2 5.8 0.7 1.4 0.06 0.05 0.0114 4 1.1 4.3 0.6 1.1 0.13 0.10 0.03

12 14 2 1.0 4.4 1.2 2.2 0.07 0.05 0.02
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Table 9.18: Prediction results for Patient 1 (Arms 1 and 3) of the CURE cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)
Arm 1

11
15 4 1.0 2.9 1.4 4.6 0.16 0.15 0.0120 9 1.3 3.6 2.8 7.7 0.17 0.34 0.1623 12 1.3 2.2 3.1 7.5 0.31 0.44 0.1327 16 1.5 2.2 3.7 7.7 0.34 0.56 0.21

15 20 5 1.1 3.1 1.6 4.6 0.02 0.19 0.1723 8 1.0 1.7 1.5 3.6 0.16 0.30 0.1427 12 1.2 1.5 1.5 3.2 0.19 0.44 0.25

20 23 3 1.0 1.6 0.9 2.2 0.14 0.13 0.0127 7 1.2 1.3 0.9 1.8 0.17 0.28 0.12

23 27 4 1.1 1.5 0.4 0.9 0.03 0.14 0.12Arm 310 11 1 1.2 6.4 1.2 4.5 0.00 0.03 0.0210 15 5 1.1 3.9 1.5 4.6 0.14 0.14 0.0110 19 9 1.0 2.8 1.6 4.4 0.17 0.27 0.0910 23 13 1.1 2.5 2.0 4.6 0.20 0.41 0.21

11 15 4 0.9 2.5 1.6 5.1 0.14 0.14 0.0011 19 8 1.1 2.5 2.4 6.5 0.17 0.29 0.1211 23 12 1.4 2.8 3.4 7.8 0.20 0.41 0.22

15 19 4 0.9 2.0 1.1 3.1 0.03 0.14 0.1215 23 8 1.1 2.1 1.4 3.3 0.06 0.28 0.23

19 23 4 1.1 2.0 0.9 2.1 0.03 0.14 0.11
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Table 9.19: Prediction results for Patient 2 (Arms 1 and 3) of the CURE cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)
Arm 113 14 1 0.8 2.5 0.1 0.3 0.00 0.04 0.0413 16 3 1.0 2.8 -0.8 3.0 0.09 0.14 0.0613 20 7 1.2 3.2 -0.8 2.4 0.22 0.37 0.1513 21 8 1.1 2.3 -0.8 2.5 0.22 0.42 0.2113 24 11 1.6 3.6 -1.3 3.3 0.37 0.59 0.2313 27 14 1.9 4.2 -2.0 4.5 0.68 0.73 0.04

14 16 2 1.0 2.9 -1.0 3.7 0.08 0.10 0.0114 20 6 1.3 3.4 -1.0 3.2 0.21 0.32 0.1014 21 7 1.2 2.4 -1.2 3.5 0.22 0.38 0.1614 24 10 1.7 4.0 -1.7 4.5 0.37 0.55 0.1914 27 13 2.1 4.6 -2.5 5.7 0.68 0.69 0.01

16 20 4 1.1 2.6 0.3 1.1 0.13 0.22 0.0916 21 5 1.1 2.7 0.4 1.3 0.13 0.27 0.1416 24 8 1.2 2.1 0.4 1.0 0.28 0.40 0.1116 27 11 1.5 2.6 0.0 0.0 0.60 0.50 0.10

20 21 1 1.2 3.5 -0.1 0.3 0.00 0.04 0.0420 24 4 1.4 2.5 -1.3 3.4 0.15 0.16 0.0120 27 7 2.0 4.1 -3.0 6.7 0.47 0.30 0.17

21 24 3 1.3 2.9 -0.5 1.3 0.15 0.15 0.0021 27 6 1.7 3.7 -1.4 3.2 0.46 0.29 0.18

24 27 3 1.4 2.4 -1.4 3.1 0.31 0.10 0.21Arm 316 17 1 1.0 2.5 0.3 1.0 0.19 0.04 0.1516 20 4 1.2 2.2 -0.9 2.8 0.21 0.19 0.0316 24 8 1.2 2.1 -0.5 1.4 0.43 0.39 0.0416 26 10 2.0 4.7 -2.2 5.1 0.59 0.48 0.11

17 20 3 1.2 2.0 -1.3 3.8 0.02 0.13 0.1117 24 7 1.3 2.3 -1.0 2.8 0.23 0.33 0.1017 26 9 2.1 4.9 -2.9 6.6 0.40 0.43 0.03

20 24 4 1.4 2.6 -1.1 3.0 0.21 0.16 0.0520 26 6 2.4 5.3 -3.7 8.5 0.38 0.26 0.12

24 26 2 1.6 3.6 -1.1 2.6 0.17 0.09 0.08



138 9.5. SUMMARY

Table 9.20: Prediction results for Patient 3 (Arms 1 and 3) of the CURE cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)
Arm 1

13 17 4 1.1 3.2 1.5 4.6 0.13 0.14 0.0121 8 1.3 3.0 1.5 3.7 0.25 0.26 0.0124 11 1.5 2.3 1.5 3.3 0.40 0.33 0.06

17 21 4 1.3 2.9 1.1 2.9 0.12 0.14 0.0224 7 1.4 2.3 1.2 2.6 0.27 0.23 0.04

21 24 3 1.4 2.5 1.6 3.4 0.15 0.11 0.04

Arm 3

13
17 4 1.2 3.4 1.5 4.3 0.11 0.14 0.0220 7 1.3 2.9 1.7 4.2 0.27 0.22 0.0524 11 1.6 3.5 2.7 5.9 0.43 0.32 0.1126 13 1.8 3.7 3.7 7.7 0.56 0.36 0.21

17 20 3 1.3 2.9 1.4 3.6 0.16 0.11 0.0524 7 1.5 3.4 2.5 5.5 0.32 0.22 0.1026 9 1.7 3.5 3.6 7.4 0.45 0.26 0.19

20 24 4 1.5 3.6 2.4 5.3 0.16 0.12 0.0426 6 1.7 3.6 3.4 7.2 0.29 0.18 0.12

24 26 2 1.4 2.8 2.6 5.4 0.13 0.07 0.07

Table 9.21: Prediction results for Patient 4 (Arms 1 and 3) of the CURE cohort.

PEEPn(cmH2O) PEEPn+1(cmH2O)
PEEPChange(cmH2O)

RMSError(cmH2O)
RMSError(%)

PIPError(cmH2O)
PIPError(%)

Clinical
Vfrc(L)

Model
VfrcEstimate(L)

VfrcError(L)
Arm 1

11
13 2 1.0 5.2 1.3 5.2 0.00 0.04 0.0421 10 1.0 3.0 0.4 1.2 0.11 0.23 0.1225 14 1.1 2.7 0.3 0.7 0.20 0.33 0.1329 18 1.2 2.4 0.2 0.4 0.28 0.42 0.13

13 21 8 1.1 3.2 2.4 6.6 0.11 0.22 0.1125 12 1.5 3.8 3.5 8.5 0.20 0.30 0.1029 16 1.9 4.1 4.4 9.5 0.28 0.35 0.07

17 21 4 1.0 2.8 1.9 5.2 0.10 0.13 0.0325 8 1.3 3.4 3.1 7.5 0.18 0.22 0.0429 12 1.7 3.8 4.1 8.8 0.27 0.28 0.02

21 25 4 1.0 2.8 2.1 5.1 0.09 0.12 0.0329 8 1.4 3.2 3.1 6.6 0.17 0.21 0.04

25 29 4 1.1 2.6 1.7 3.6 0.08 0.11 0.03Arm 3
16 21 5 1.1 4.0 1.0 2.7 0.02 0.11 0.0925 9 1.2 3.5 1.0 2.4 0.07 0.20 0.1228 12 1.3 3.5 1.4 3.0 0.19 0.26 0.07

21 25 4 1.1 2.9 2.1 5.0 0.05 0.11 0.0728 7 1.3 3.3 3.3 7.0 0.16 0.18 0.02

25 28 3 1.1 2.7 1.9 4.1 0.11 0.08 0.03



CHAPTER10
Conclusions
Mechanical ventilationMV is a core life-support therapy for patients suffering from res-

piratory failure or acute respiratory distress syndrome (ARDS). Respiratory failure is a

secondary outcome of a range of injuries and diseases, and results in almost half of all

Intensive Care Unit (ICU) patients receiving some form of MV. Funding the increasing

demand for ICU is a major economic and social issue and MV, in particular, can dou-

ble the cost per day due to significant patient variability, over-sedation, and the large

amount of clinician time required for patient management.

Reducing cost and increasing productivity in this area requires both a decrease in the

average duration of MV by improving care, and a reduction in clinical workload. Both

could be achieved by safely automating all or part of MV care via model-based dynamic

systems modelling. The development of the first virtual patients, extends these models

in this research to include lung mechanics prediction, providing clinicians with infor-

mation about how a patient will respond to a change in treatment prior to making that

change, improving patient treatment while reducing clinical workload. Virtual patients

leads directly to the creation of virtual cohorts, extending impact by enabling in-silico

design and testing of clinical protocols, speeding up the development of new treatment
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plans.

All major changes in clinical ICU care are based on major clinical trial results, which

are often poorly designed or powered. The high level of patient variability and the

non-normal distribution of the key clinical outcome, length of mechanical ventilation,

meansmanyMVRCTs struggle to achieve statistical significance. As a result of this, RCTs

often require a very large sample size to achieve statistical power to prevent inconclu-

sive findings that cannot be extrapolated to other care units. This thesis first presents a

non-parametric method to estimate required sample sizes for MV trials to achieve sta-

tistical power. AMonte-Carlo simulationmethodwas developed and used to investigate

several outcome metrics of ventilation treatment. As these metrics have highly skewed

distributions, it also included the impact of imposing clinically relevant exclusion cri-

teria on study power to enable better design for significance. Overall, a Monte-Carlo

simulation approach using local cohort data combined with objective patient selection

criteria can yield better design of ventilation studies to desired power and significance,

with fewer patients per arm than traditional trial design methods, which in turn re-

duces patient burden and risk. In addition, composite outcome metrics, such as VFD,

should be used when a difference in mortality is also expected between the two co-

horts. The non-parametric approach developed is readily generalisable to a range of

trial types where outcome data is similarly skewed.

This thesis next developed a virtual patient model for use in staircase recruitment

manoeuvres. The virtual patient model was designed to provide accurate predictions

about how a patient’s lungs will respond to increases in positive end-expiratory pres-

sure (PEEP), while only using measurements that are easily accessible at the patient

bedside. Lung mechanics were captured using a well-validated single compartment

model adapted to include basis functions for elastance and resistance. Elastance was

defined using separate basis functions for the effects of alveolar recruitment and dis-

tension on elastance. Resistance basis functions were developed with respect to flow
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and followed the form of the Rohrer equation (Rohrer, 1925). The ability of these vir-

tual patients to accurately identify, fit, and predict patient-specific mechanics across the

wide range of presenting conditions studied suggests these basis functions accurately

capture the lung dynamics that occur in a RM. As titrating PEEP to minimum elastance

has been suggested to improve patient outcomes, providing this accurate information

to clinicians about patient-specific lungmechanics could enable them to better optimise

ventilation.

The virtual patient model was validated against pressure-flow data from 21 patients

to assess how accurately it could predict peak inspiratory pressure (PIP) at a higher

PEEP level. As PIP is a key indicator of the risk of over-distension, it provides valuable

information to the clinician about at which PEEP level the RM should either stop, or

much smaller incremental changes should be made. Achieving prediction across PEEP

levels was done by adding a novel, model estimated value for additional lung volume

(Vfrc), the volume gained or lost from a change in PEEP. This value provides clinicians

with additional information about whether it is beneficial to increase PEEP levels as

additional recruited volume is the main goal of RMs. The ability to estimate PIP and the

Vfrc gain (or saturation of this gain) would allow clinicians to decide if increases in PIP

are likely to achieve the desired recruitment, and as they are numeric values enables

automation and optimisation if defined.

The incorporation of virtual patient methods into mechanical ventilation will aid the

healthcare sector in meeting increasing demand in intensive care units. In particular,

a change from more generic protocols to the use of predictive, patient-specific models

will improve individual patient outcomes while also reducing clinical workload. The ef-

ficacy of the physiologically relevant model in determining lung behaviour throughout

an entire RM in ventilation indicates it could be used as a diagnostic clinical tool. The

future use of virtual patients and cohorts will also allow new treatments and therapies

to be safely and more efficiently tested, allowing for faster advancements in the field.
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CHAPTER11
Future Work
Further development of this research could focus on a range of different areas. Much

of this would require additional information about the lungs which cannot be solely

provided by information about mechanics.

Extension to Pressure Controlled Ventilation
At this stage, themodel is only capable of working with volume controlled ventilation to

reduce the risk of barotrauma. However, volutrauma is an equivalent risk for pressure

controlled ventilation. The model could be extended to use information about pressure

inputs to predict tidal volume across positive end-expiratory pressure (PEEP) increases.

Virtual Cohorts
The first of these developments would focus on virtual cohorts. While a virtual patient

model is used to personalise and optimise care for an individual patient by predicting

response to a change in treatment prior to implementing the change, virtual cohorts

offer a method of safely and efficiently validating the effect that testing new treatments

can have on a population of patients (Chase et al., 2016). A validated in-silico virtual

trial platform could reduce the number of Phase II and III human trials (Chase et al.,
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2018). It would thus be a substantial development in mechanical ventilation, as two

of the main metrics for judging an improvement in treatment across a cohort (length

of mechanical ventilation and ventilator-free days (Schoenfeld & Bernard, 2002)) are

both highly skewed (Morton, Chiew, et al., 2017). This skew requires a large number of

patients in a given clinical trial to reach statistical power (Morton, Chiew, et al., 2017).

Capitalising on the recent FDA change to recognising virtual trials (Smalley, 2018) as

a method of testing medical treatments, having virtual cohorts to test new mechanical

ventilation protocols would allow the field to move forward much faster.

More Investigation into Vfrc
While this thesis has developed an accurate method for estimating the additional lung

volume gained from a RM, more research needs to be conducted into how much addi-

tional lung volume (Vfrc) is required for a RM to be considered useful. While popula-

tion statistics can provide general information about lung capacity in healthy individu-

als, the variation in patients suffering from respiratory failure means this information

needs to be personalised to ensure that long-term damage is not caused to the lungs.

The emergence of bedside accessible, non-invasive imaging techniques such as EIT will

also be increasingly essential for this application and to further improve care.

Determination of Optimal PEEP
A further question may ask how optimal PEEP can be defined for patients and how best

to continually assess and alter this value. While research has indicated titration of PEEP

to minimum elastance results in good patient outcomes (Carvalho et al., 2007; Chiew,

Pretty, Shaw, et al., 2015; Lambermont et al., 2008; Pintado et al., 2013), this approach

may not hold true for all cohorts of patients. Potentially, Vfrc should also be considered

in setting PEEP and other MV settings. In addition, lung mechanics often change as

lung condition evolves and previously opened alveoli collapse, necessitating another

RM or change in MV settings. Assuming perfect prediction of lung response throughout
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these RMs, their optimal frequency needs to be considered – whether additional gains

in oxygenation are worth potential lung injury from changes in pressure. All of these

methods will require the models and methods first, before their clinical investigation.

Combination with Gas Exchange Models
Ultimately MV is about maintaining blood oxygenation. Mechanical models can also

be combined with gas exchange models and bedside oxygenation data to allow the ef-

fect that RMs have on oxygenation, specifically the existence of pulmonary shunt, to be

better understood. Elastance and resistance values calculated from pressure and flow

data offer information about the mechanical health of the lungs and subsequent alveo-

lar recruitment. However, the success of oxygen and carbon dioxide diffusion from the

alveoli to the bloodstream cannot be determined from mechanical information alone.

Combining mechanical and gas exchange models would provide clinicians with more

data to be able to better optimise care.
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CHAPTER12
Appendix A
This appendix presents additional mini RM (Morton, Dickson, Chase, Docherty, Howe,

et al., 2018b) results from Chapter 8 .
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Figure 12.1: Prediction results for Patient 1, RM 1 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.2: Prediction results for Patient 1, RM 2 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.3: Prediction results for Patient 1, RM 3 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.4: Prediction results for Patient 1, RM 5 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.5: Prediction results for Patient 1, RM 6 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.6: Prediction results for Patient 1, RM 7 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.7: Prediction results for Patient 1, RM 9 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.8: Prediction results for Patient 2, RM 1 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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Figure 12.9: Prediction results for Patient 3, RM 1 across all arms. The blue, solid line

shows themodel prediction and the dashed black line indicates themedian airway pres-

sure at that PEEP level.
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