
Analysing Students’ Scratch Programs and
Addressing Issues using Elementary Patterns

Kashif Amanullah
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

kashif.amanullah@pg.canterbury.ac.nz

Tim Bell
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

tim.bell@canterbury.ac.nz

Abstract—In this Work in Progress paper in the Research Cate-
gory we report on existing concerns about Scratch programming,
and introduce patterns as a possible solution. Scratch is a popular
language for introducing students to programming, but there is
a concern that the students might not be exposed to all the key
elements of programming when the development environment
tempts them to explore elements such as the range of sprites
available. We propose the use of programming patterns as a
measure of the sophistication of student work. To understand
the importance of patterns we report on our initial work that
analyzes a large number of projects from the public Scratch
repository to evaluate how extensively the basic patterns appear
in student work. This can help inform the improvement of
teaching methods to include use of broader range of patterns.

Index Terms—programming patterns; Scratch; primary school
students

I. INTRODUCTION

Block-based programming languages such as Scratch have
become popular in early school curricula. With this there is
a risk that teaching might focus on surface features of the
language, rather than deeper programming concepts. Program-
ming is a challenging skill, and a progression of difficulty is
appropriate. This raises the question of how learning should
progress, to avoid students being stuck using only relatively
simple programming concepts, or simply exploring cosmetic
elements of the language. They might be building larger and
larger programs, but still not learning how they can apply their
programming to different computational problems.

This Research Work in Progress paper presents an investi-
gation of issues found in Scratch programs shared by users on
the Scratch public repository. We use “elementary patterns”
(patterns that are suitable for novices to help them learn
fundamental programming skills [1]) as a lens to identify the
sophistication of the programming being done by students in
a large sample of Scratch projects. Unsurprisingly, beginner
programmers tend to use only very simple programming
constructs. Based on this, we propose an approach to ensure
that students are able to progress to a wider range of techniques
to broaden their programming skill.

Scratch is by far the most popular block-based programming
language. It does an excellent job as an introductory medium
to the world of programming, partly because it has a very
strong community. Still, there are concerns among the research

community that Scratch could lead to unwanted programming
practices in novice programmers.

In Section II we review issues from the literature around
programming in Scratch. We then introduce patterns and
how they can help in solving these issues in Section III. In
Section IV we give an analysis of Scratch projects that shows
how little these patterns are being used, and use this to inform
what is needed to extend student’s programming.

II. ISSUES WITH SCRATCH PROGRAMS

There is no doubt about the utility and reach of Scratch, but
it is not without its drawbacks. A number of studies raise con-
cerns after looking into code smells, code quality issues, and
bad programming habits. Aivaloglou et.al [2] harvested a large
number of projects from Scratch public repository into a pub-
licly accessible database. They used Dr. Scratch [3] to report
the programming skills used in the Scratch projects based on
seven dimensions of computational thinking. Aivaloglou and
Hermans [4] further used this dataset to perform an analysis
based on software metrics. The results of the study substantiate
our concerns that children might be becoming familiar with the
use of Scratch, but their programming is not exercising deeper
concepts. For example, only 7.48% of projects used 5 or more
variables; 78% of projects had a cyclomatic complexity of 1
(which means no control or decision points), and 13.08% of
projects had a cyclomatic complexity of 2 (exactly 1 decision
point). Techapalokul [5] analyzed a million projects submitted
to the Scratch public repository and came up with a number of
bad smells in the code. Moreno and Robles [6] developed two
plugins to automatically detect two bad programming habits
they found to be regular with high school student’ code. They
downloaded 100 Scratch projects for analysis, which verified
their observations. Meerbaum-Salant et al. [7] worked with 9th
grade middle school students using Scratch for one semester
and identified two poor programming habits with their codes.

Table I summarizes some key problems that these authors
have found in students’ Scratch programs, along with some
suggested solutions that have been reported in the literature.

III. PATTERNS FOR TEACHING PROGRAMMING

Despite significant research in the domain, there is a lack of
formal or viable solutions to many of the problems highlighted



TABLE I
A SUMMARY OF ISSUES WITH SCRATCH PROGRAMMING

Problem Description Suggested solutions
Bottom-up
Programming

This is when the program is constructed by using primitive ele-
ments, which are combined to build up a more and more complex
program. Instead of approaching a problem on algorithmic and
design level, novices tend to drag all seemingly appropriate blocks
into the solution space and then start building the solution [7].

Scratch should be used in the same way as other pro-
gramming languages to teach good programming habits
infused by solid teaching [7]

Extremely Fine-
Grained Programming

This is when a program is constructed starting from a high level
description and broken down to the primitives of the programming
language. Novices also take the top-down approach to the extreme
[5], [7]. Novices tend to break the problem into small pieces
devoid of any logical coherency.

The teaching methodology and textbooks could play a
vital role in encouraging the use of complex program-
ming constructs as opposed to Extremely Fine-Grained
Programming [7]

Poor Object Naming Students do not change the automatic name provided by the
environment (e.g. cat1, button2, etc.), which makes the code
unreadable and difficult to debug, makes objects in large pro-
grams extremely difficult to identify, and slows down the overall
programming process [5], [6]

Scratch doesn’t enforce the deliberate naming of a new
variable, and a name is assigned automatically. A change
in this feature could improve the situation [5], [6]

Code Repetition/ Dupli-
cated Code

There is a large percentage of code cloning and duplicated code
in the Scratch projects repository [4]–[6]

Code repetition could be reduced by teaching abstraction
and modularization [6]

Unreachable
Code/Dead Code

A significant percentage of scripts contain dead code (uninvoked
procedures, unmatched broadcast-receive messages, uninvoked
code, empty event scripts, unused variables) [4], [5]

Scratch programmers could benefit from: a separate
workspace to store unused blocks, sharing projects, and
sharing functionality (in the form of a library). This would
help novices a great deal to get started [4]. Scratch also
lacks support to identify dead/unused code [5]

Long Scripts A large number of projects exhibit this code smell [4]. It is
a sign of “inadequate decomposition” and can “hinder code
readability” [5]

The quality of code can be improved by implementing
support to identify this and other code smells and by
training programmers to avoid these code smells [5]

Broad Variable Scope In Scratch all variables have global scope by default, and are
visible between sprites. Having so many global variables means
that the programmer cannot tell if it is “private” to a sprite, and
the menus for choosing a variable become cluttered with irrelevant
options [5].

The default behavior of Scratch is to have global variable
scope [5], [6] which can’t be changed. Making it possible
to change scope might encourage appropriate scope,
otherwise students need to get it right before the program
is complete [6]

in Table I. The aforementioned problems call for an approach
that instills good programming habits, trains students to avoid
bad programming style, and opens them to a range of pro-
gramming techniques. Programming patterns are a promising
way to achieve these goals, and we explore how these could
address existing problems in Scratch programs. Patterns have
been applied successfully for teaching tertiary students [1], [8],
but haven’t been explored for younger students. We propose
the application of elementary patterns at primary school level.
Although elementary patterns were primarily designed for
older students, they can be adapted to teach good programming
practices to children. An advantage of using patterns as an
approach is that it teaches problem solving independently
from whichever programming language is being used. Using
a teaching pedagogy based on patterns can help achieve the
following benefits:

• It can show novices’ worked programming solutions to
known problems and will show them how to structure the
program and how to write code using good style (since
reading code is an important step to learning to write
it [9].)

• Teaching good programming practices will help reduce
code smells, particularly those mentioned in Table I.

• It can prepare children at an early age to face the complex
programming challenges that they will encounter in the
future in a more confident way [10].

• Patterns work in most programming languages that stu-

dents are likely to encounter, so as they move to new
programming languages they will be able to generalize
what they have learned.

Elementary patterns lend themselves as a natural choice
to teach programming based on the issues identified above
with block-based programming. Bottom-up programming, and
extremely fine-grained programming highlight the issue of
novices having a lack of understanding with algorithmic
design, which can be mitigated with the use of elementary
patterns as they become aware of the common approaches
that can be used for problem solving.

Similarly, code repetition, dead code, and large scripts are
issues raised by many researchers. Elementary patterns can
also be helpful here because they are effective solutions to
common programming problems, and using those solutions
will naturally reduce the number of blocks used. Also, func-
tions are a good way to organize and reduce code repetition.
Although some curricula recommend introducing functions
later, perhaps because they are perceived to be a complex
topic not suitable for young children, in Scratch we can teach
novices a simple form of decomposition that functions offer
either with the “More Blocks” feature, or by using message
passing, broadcast, and custom blocks in Scratch.

A list of some of the most relevant elementary patterns is
given in Table II. This list was created by merging patterns
from [11] and [12] that can be implemented in Scratch. Some
useful patterns are also given in [13], which targets good



TABLE II
PATTERNS SELECTED FOR ANALYSIS OF SCRATCH PROGRAMS

Loop Patterns
Process All Items Process all items in a collection (such as a list or

file)
Linear Search Loop over a collection and stop when a condition is

met
Guarded Linear Search Loop over a collection, stop when a con-

dition is met and provide an alternative action if the condition
is not met

Loop and a Half Loop over a collection until a sentinel is reached
(the number of items in the collection is not known in advance)

Polling Loop Ask the user to enter a value, then loop until the user
enters a valid value

Extreme Values Loop over a collection to find extreme values in a
collection (e.g. maximum or minimum); initialize the extreme
value to the first value in the collection and replace it if a better
candidate is found

Selection Patterns
Whether or Not Use an if statement without an else part to test

a condition; there are no other actions to do instead of this one
Alternative Action Use an if statement with an else part; exactly

one of the two actions is appropriate based on a condition
Unrelated Choice Executing several actions that each have associ-

ated conditions; each condition/action pair is decided indepen-
dently

Independent Choice Use nested if statements when only one
action must be taken and the action depends on several inde-
pendent factors

programming practices and could address many problems
found with Scratch programming, although these patterns
aren’t covered in this paper; for example, one of Bergin’s
patterns is “Consistent Naming”, which would be useful for
students to follow to overcome the issue of poor object naming
highlighted in Table I.

IV. ANALYSIS OF SCRATCH PROGRAMS

As an initial step towards thinking about patterns for young
novices, we have evaluated what kind of patterns they already
use. The online public Scratch repository has a huge number
of projects that are accessible to all, so by analyzing these
programs, we can get an idea of the coverage of elemen-
tary patterns amongst Scratch users. This will help us see
the breadth of techniques that students are using for their
programming.

Scratch has a very large and active community and the
number of projects shared increases every day. At the time of
writing there were 30,868,915 projects shared on-line. We have
sampled from these projects to keep download and processing
time reasonable; the results reported here are based on 212,250
projects that were selected to be representative of the range
of projects that students have made available. Projects were
selected by taking every project in a numeric sequence, which
essentially selects projects from a date range. The projects
sampled here were mainly from one weekday of activity in
March 2016 and April 2018 each.

We have only analyzed programs written in Scratch 1.4
and Scratch 2.0, which forms the major proportion of shared

projects. Scratch 1.4 was officially released on July 19, 2009,
which is only two and a half years after the first version of
Scratch (Scratch 1.0, released on January 8, 2007). Scratch 2.0
was released on May 9, 2013, and has been in use since then;
it has the largest number of projects of any version.

We have analyzed the 212,250 Scratch programs to gather
statistics about students’ use of the language, with the main
focus being on finding patterns. Python software was written
to run through each file and find the frequency of elementary
patterns, which are shown in Table II. The patterns are divided
into the two main categories: Loop patterns and Selection
patterns. Most loop patterns work on a collection, which
is significant because there is only one type of collection
provided in Scratch, the list. Being able to perform certain
actions (add items, search items, remove items) on a collec-
tion, and the ability to perform decision making in complex
programming situations is a sign of a good programmer. These
skills indicate an understanding of control and flow structures,
problem solving, and logical thinking, which is exactly what
loop patterns try to explore.

Table III shows our analysis of the use of various command
blocks and features in the sample Scratch programs, as well
as patterns. The analysis shows that less than three percent
of the programs use a list, which means that less than 3% of
projects are likely to use Loop patterns.

The “repeat”, “forever”, and “repeat until” blocks in Scratch
represent an important programming construct i.e. loops. Good
understanding of using loops is one of the fundamental re-
quirements of using the full power of programming. We can
think of the “repeat” block as a simplified version of a “for
loop” and the “forever” and the “repeat until” blocks are a
special case of a “while loop”.

The usage of repeat and forever loops is around 19.97% and
33.11% respectively, which is a high proportion considering
that young students form a major part of Scratch users, and
shows familiarity with the general idea of a loop. However,
these are very simple constructs that appear in introductory
Scratch tutorials as a common pattern. The “forever” block
is frequently used as either a continuous animation, or a
busy polling loop, where it might be testing repeatedly for a
condition such as a sprite reaching the edge of the screen. In
many programming languages this would be very inefficient,
but Scratch seems to deal with these by having relatively large
time delays on each loop, which means that other forever
loops can also be polling for a condition without heavy CPU
usage. This behavior is unique to Scratch and unsuited for
pattern-based approaches, which might be one of the reasons
for low usage of loops in more generally applicable patterns,
and inelegant solutions involving forever loops. The “repeat
until” loop (the only loop with a Boolean expression) is used
in only 7.06% of the projects, suggesting that relatively few
students are able to use loops in combination with conditions
for termination.

The List is the only data structure provided in Scratch that
can hold a collection of data. The ability to manipulate the list
becomes a vital skill set in a programmer’s toolkit. However,



TABLE III
PATTERNS FOUND IN ANALYSIS OF SCRATCH PROGRAMS

Pattern Percentage
Repeat 19.97%
Forever 33.11%
Repeat Until 7.06%
Search 3.83%
List 2.81%
Process All Items Pattern 1.17%
Linear Search Pattern 0.02%
Loop and a Half 0.20%
Polling Loop Pattern 0.48%
Whether or Not Pattern 24.83%
Alternative Action Pattern 8.53%
Nested if/else 0.68%

less than 3% of the projects used lists.
Process All Items is a pattern which shows the ability of a

programmer to traverse and process all items in a collection
using loops. Only 1.17% of the Scratch programs showed this
pattern.

Search is an essential feature of many computer based
applications, and it is key for a programmer to know how
to implement it. Advanced searching algorithms can be quite
complicated, but a basic search is relatively simple, although
could still be a daunting task for young programmers. There-
fore not surprisingly, when we looked for the signature of a
basic search (a “repeat”/“forever” block containing an “if/else”
block), only 3.83% of the projects contained it. Of course,
the signature doesn’t mean that the program is using a linear
search; the use of the actual “Linear Search” pattern (traversing
a list using a loop and finding a specific item) is significantly
lower than this number (only 0.02%).

The “Loop and a Half” pattern is a good pattern to eval-
uate programming skills, as it looks for the use of multiple
structures in a program. A correct use of this pattern requires
a good understanding of loops (“forever” block), collections
(“list”), user input (“ask”), control structures (“if/else”), and
using most these in combination. This pattern is only found
in 0.20% projects.

In the “Polling Loop” pattern, the loop runs until the user
enters a valid value. This functionality can be achieved using
“repeat until” block in Scratch. Usage of this pattern is found
in only 0.48% of the projects. The “Polling Loop” pattern
can also be written using the “Loop and a Half” pattern [11],
therefore the occurrence of 0.15% for the “Loop and a Half”
can also be considered as contributing to the “Polling Loop”
pattern.

“Whether or Not” and “Alternative Action” patterns cor-
respond to the “if” construct of programming languages.
Selection and decision making is a big part of programming,
and is often one of the first command structures taught when
starting programming. Although it is very basic, for young
programmers it can still involve significant comprehension
effort on their part, particularly since it involves Boolean logic.
The “Whether or Not” pattern involves testing a condition,
and “Alternative Action” adds a course of action in case that

condition is not satisfied. All this requires programmers to
construct a proper condition, decide on which logical operators
to choose, and what alternative route to take in case the first
condition is not met. All of this can be a challenging task
for young learners. The results show that the coverage of
the “Whether or Not” pattern is 24.83%, which shows that a
reasonable number of projects are indicating familiarity with
the “if” condition.

The “Alternative Action” pattern, on the other hand, was
found in only 8.53% of the projects, showing a preference for
using the “if” condition, and perhaps a lack of experience with
“if/else”.

The “Unrelated Choice” pattern and “Independent Choice”
pattern both examine the use of nested “if/else”. The use of
a nested “if/else” shows the ability to handle complex condi-
tions. It is significantly more complicated than using simple
“if/else” structures since it checks for multiple conditions to
make a decision. This is also confirmed from the results as
the use of nested “if/else” is only 0.68%.

One of the major reasons for this exercise was to high-
light the issues with Scratch programming and to argue that
elementary patterns could be a useful solution to many of
these problems. We have observed through the analysis of
Scratch programs available on Scratch public repository, and
based on the numbers retrieved, that Scratch programs do show
most of the problems raised in literature. Elementary patterns,
due to their inherent nature of advocating problem solving
and developing logical thinking, present themselves as a good
solution. It is also important to note that some of these patterns
might be thought of as too complicated for young students,
but as students are exposed to information earlier and earlier,
they may have the opportunity to develop cognitive skills to
understand and use these patterns.

V. CONCLUSIONS

Scratch is widely used as an introductory programming tool,
but it could be giving rise to some unintentional issues. We
have thrown light on some of these issues taken from literature
and proposed a solution based on elementary patterns. The
analysis of programs from the Scratch repository strengthens
our stance that these patterns are being under-used despite hav-
ing all the ingredients to be a good choice to develop problem
solving and logical thinking skills in young programmers.

For future work we are doing user-based patterns usage and
the progression of programming skills based on the analysis
of Scratch projects. To demonstrate that patterns are important
and fairly common but still not taught, an analysis of materials
for teaching programming (books, online resources, etc.) will
also be conducted. Also, we will be conducting studies with
young students to show the impact of introducing patterns in
their programming lessons.

REFERENCES

[1] M. J. Clancy and M. C. Linn, “Patterns and pedagogy,” in
The Proceedings of the Thirtieth SIGCSE Technical Symposium
on Computer Science Education, ser. SIGCSE ’99. New York,
NY, USA: ACM, 1999, pp. 37–42. [Online]. Available: http:
//doi.acm.org/10.1145/299649.299673



[2] E. Aivaloglou, F. Hermans, J. Moreno-León, and G. Robles, “A dataset
of Scratch programs: Scraped, shaped and scored,” in Proceedings of
the 14th International Conference on Mining Software Repositories,
ser. MSR ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 511–514.
[Online]. Available: https://doi.org/10.1109/MSR.2017.45

[3] J. Moreno-León, G. Robles et al., “Analyze your Scratch projects with
Dr. Scratch and assess your computational thinking skills,” in Scratch
Conference, 2015, pp. 12–15.

[4] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the Scratch repository,” in Proceedings of the 2016
ACM Conference on International Computing Education Research, ser.
ICER ’16. New York, NY, USA: ACM, 2016, pp. 53–61. [Online].
Available: http://doi.acm.org/10.1145/2960310.2960325

[5] P. Techapalokul, “Sniffing through millions of blocks for bad
smells,” in Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’17. New
York, NY, USA: ACM, 2017, pp. 781–782. [Online]. Available:
http://doi.acm.org/10.1145/3017680.3022450

[6] J. Moreno and G. Robles, “Automatic detection of bad programming
habits in Scratch: A preliminary study,” in 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings, Oct 2014, pp. 1–4.

[7] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of
programming in Scratch,” in Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’11. New York, NY, USA: ACM, 2011, pp. 168–
172. [Online]. Available: http://doi.acm.org/10.1145/1999747.1999796

[8] A. V. de Aquino Leal and D. J. Ferreira, “Learning programming patterns
using games,” International Journal of Information and Communication
Technology Education (IJICTE), vol. 12, no. 2, pp. 23–34, 2016.

[9] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm,
R. McCartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon,
and L. Thomas, “A multi-national study of reading and tracing skills
in novice programmers,” in Working Group Reports from ITiCSE
on Innovation and Technology in Computer Science Education, ser.
ITiCSE-WGR ’04. New York, NY, USA: ACM, 2004, pp. 119–150.
[Online]. Available: http://doi.acm.org/10.1145/1044550.1041673

[10] L. Seiter and B. Foreman, “Modeling the learning progressions of
computational thinking of primary grade students,” in Proceedings
of the Ninth Annual International ACM Conference on International
Computing Education Research, ser. ICER ’13. New York, NY, USA:
ACM, 2013, pp. 59–66. [Online]. Available: http://doi.acm.org/10.1145/
2493394.2493403

[11] O. Astrachan and E. Wallingford, “Loop patterns,” in Proc. Fifth Pattern
Languages of Programs Conference, Allerton Park, Illinois, 1998.

[12] J. Bergin, “Patterns for selection version 4,” https://csis.pace.edu/
∼bergin/patterns/, 1999.

[13] ——, “Coding at the lowest level: Coding patterns for java beginners,”
in EuroPLoP, 2001, pp. 251–286.


