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Abstract 

 

Myrmarachne assimilis, an ant-like (myrmecomorphic) jumping spider (Araneae, Salticidae) from 

the Philippines, is a Batesian mimic of Oecophylla smaragdina, the Asian weaver ant. Salticids are 

well known for their acute eyesight and the elaborate vision-based display behaviour they adopt 

during encounters with conspecific individuals, but most salticids are not myrmecomorphic. 

Despite its unusual morphology, M. assimilis adopts display behaviour during intraspecific 

interactions that is similar to the display behaviour of more typical salticids. The specificity with 

which M. assimilis deploys display behaviour is investigated and provides insights into this mimic’s 

ability to differentiate, by sight alone, between models, conspecific individuals and prey. During 

each standardized test, an adult M. assimilis female was in a large cage along with a small 

transparent glass vial, a stimulus animal being enclosed in the vial such that potential optical cues, 

but not potential chemical cues, were available to the tested M. assimilis individual. Depending on 

the test, the stimulus animal was another adult M. assimilis female, a house fly (prey) or an ant 

(Camponotus sp. or O. smaragdina). Only the conspecific female consistently elicited display from 

M. assimilis, implying that M. assimilis is a Batesian mimic that can, when relying on vision alone, 

discriminate between conspecific individuals, models and prey. 

 



 

Introduction 

 
Signals can be defined as acts or structures of the sender that, because of evolutionary modification, 

are effective at influencing the behaviour of the receiver (Maynard Smith and Harper, 2003), with 

displays being sequences of signals that transmit information in a way that, on average, benefits the 

sender. Whether the signal is reliable or deceptive can be related to whether or not the transmitted 

information also benefits the receiver (Searcy and Nowicki, 2005). One of the best examples of 

deceptive signalling is Batesian mimicry, where predators that avoid a model (e.g., an ant) also 

avoid a mimic (e.g., an ant-like, or myrmecomorphic, spider). Within the largest family of spiders, 

the jumping spiders (Salticidae), numerous species appear to be Batesian mimics of ants (Jackson, 

1982a, 1986; Edmunds, 1993; McIver and Stonedahl, 1993; Jackson and Willey, 1994; Cushing, 

1997; Nelson and Jackson, 2006), with the best studied of these being in the genus Myrmarachne 

(Wanless, 1978; Cutler, 1991; Edmunds, 2000, 2006; Nelson et al., 2004, 2006a,b). Pronounced 

sexual dimorphism has also evolved in Myrmarachne, with the adult male’s chelicerae being greatly 

elongated in comparison with the chelicerae of adult females and juveniles (Wanless, 1978; 

Cushing, 1997). 

 In nature, Myrmarachne is generally found in the vicinity of ants, and living near ants may 

be advantageous because it encourages predators to associate mimic with model. However, 

Myrmarachne may have to balance this advantage against the risk of being attacked by the model or 

becoming the model’s prey (Nelson et al., 2004, 2006a). This may be especially true for M. 

assimilis, as this species mimics the Asian weaver ant, Oecophylla smaragdina (Nelson et al. 2005), 

a species known for being exceptionally aggressive (Hölldobler, 1983; Hölldobler and Wilson, 

1990).  

 Salticids are unique among because of having complex eyes and eyesight based on 

exceptionally high spatial acuity (Land, 1969a,b; Williams and McIntyre, 1980; Blest et al., 1990; 

Land and Nilsson, 2002; Harland and Jackson, 2004) and also because of the especially elaborate 



vision-based display behaviour that they adopt during intersexual and intrasexual encounters with 

conspecific individuals (Crane, 1949; Jackson and Pollard, 1997). Ant-mimicking salticids may 

face special problems, but surprisingly little is known about how readily these salticids discriminate 

by sight between conspecific individuals, prey and ants. Yet a Batesian mimic that relies on vision-

based identification of conspecific individuals would have to be proficient at discriminating 

accurately between the mimic and the model, despite this being precisely the discrimination that, 

for defence, the mimic relies on its own visual predators in having difficulty achieving.  

 Despite its unusual morphology, Myrmarachne assimilis adopts during intraspecific 

interactions display behaviour that is similar to that of more typical salticids (Nelson and Jackson, 

unpublished; Jackson, 1982a,b). We use the specificity of the display behaviour readily deployed by 

M. assimilis in intersexual and intrasexual encounters with conspecific individuals as an assay by 

which we investigate this mimic’s ability to differentiate, by sight alone, between models, 

conspecific individuals and prey.  

 

Materials and methods 

 

For each test there was one ‘test spider’ (an adult female of Myrmarachne assimilis) and one 

‘stimulus animal’ (in each test, body lengths of test spider and stimulus animal matched to within1 

mm). Our testing procedure limited the test spider to vision-based cues, and we compared how 

readily M. assimilis females displayed when the stimulus animals were conspecific females, prey 

(house flies; Musca domestica), and two different ant species, Oecophylla smaragdina (the specific 

model of M. assimilis) and Camponotus sp. (a representative ant to which M. assimilis had a 

general resemblance short of the more precise resemblance to the specific model). The rationale for 

using two ant species was that we might detect whether the ability of M. assimilis to distinguish 

ants from conspecific individuals depends on how similar the ant is to M. assimilis’ own 

appearance. 



 All spiders used for testing came from a laboratory culture (spiders reared from eggs under 

standardized conditions: see Jackson and Hallas 1986) started from specimens collected at the field 

site (Los Baños, Laguna Province, Luzon, the Philippines; 14o10’ N 121o14’ E) (voucher 

specimens: Taxonomy Laboratory, International Rice Research Institute, Los Baños; Florida State 

Collection of Arthropods, Gainesville, Florida). The laboratory-rearing environment for salticids 

was ‘‘enriched’’ (spacious cages, mesh works of twigs within each cage; see Carducci and Jakob 

2000). Spiders were reared on homopterans and, before testing, had no contact with ants, dipterans 

or, except for conspecifics in eggsacs before dispersal, spiders of any species. Ants were collected 

from the field site as needed and house flies came from laboratory stock. Testing was carried out 

between 0800 h and 1700 h (laboratory photoperiod: 12:12 L:D, lights on at 0800 h). No individual 

spider or insect was used in more than one test (N=38 tests with each of the four stimulus animals).  

A rectangular chamber (Fig. 1), as used in previous salticid studies (Harland and Jackson, 

2001), was adopted for our testing apparatus. The chamber had two narrow walls, a floor and a roof, 

all made from wood, and two wide sides made of transparent glass (glass removable, facilitating 

cleaning). There were two holes (diameter 15 mm), one on each of the two wooden walls (centred 

30 mm below the top of the frame), the holes being used for introducing the test spider and for 

presenting the stimulus animal.  

Test duration was 10 min. A test spider was first transferred from a 30 mm long plastic tube 

(diameter 15 mm; stoppered at one end) into the chamber by placing the open end of the tube flush 

with the open introduction hole and then removing the stopper from the tube and prodding the 

spider with a small brush until it passed through the introduction hole. Once the test spider was in 

the chamber, the introduction hole was plugged with a rubber stopper and the test began. There was 

a transparent glass vial positioned inside the stimulus-presentation hole (open end flush with 

outside of cage; rest of vial protruding 35 mm into chamber). During the test, the live stimulus 

animal was visible inside the vial, but potential chemical cues from the stimulus animal were ruled 

out because the vial was airtight (opening situated outside chamber plugged with rubber stopper). 



Between tests, the glass sides were removed and the entire chamber was washed with 80% ethanol, 

followed by distilled water, and then allowed to dry before subsequent testing. 

We recorded whether the spider displayed during the test at the stimulus animal during the 

test. A display was defined as erect-legs posturing: forelegs extended stiffly forward while spider 

faced the stimulus animal. Display, when it occurred, was always brief (duration less than 3 s). Data 

were analysed using one-way Kruskal-Wallis tests and Mann-Whitney tests on SPSS v11, with 

Bonferroni adjustments being applied whenever multiple comparisons were made using the same 

dataset. 

Although the findings we analyze came only from formal tests, we also tested Myrmarachne 

assimilis informally with each of the stimulus animals (test spider and stimulus animal placed 

together in clean cage (no vial) and watched for 60 min or until predation occurred; 20 tests with 

each stimulus animal. For each type of stimulus animal, findings from informal tests were 

qualitatively similar to findings from formal tests. 

 

Results 

 
In informal tests, when the stimulus animal was a house fly it was always captured and fed on. Only 

one spider displayed (briefly) before capturing the fly, but the test spider always displayed when the 

stimulus animal was a conspecific female, and none stalked or attacked conspecific females. No 

ants were stalked or attacked, but five test spiders displayed momentarily at the ant. 

 In formal tests, 35 individuals of Myrmarachne assimilis displayed at conspecifics, 

compared with 18 at Oecophylla smaragdina, 15 at Camponotus sp. and five at house flies. 

Differences in the number of displays per test were especially pronounced (Fig. 2). Stimulus animal 

had a significant effect on the frequency with which females displayed (H3 = 68.281, P < 0.0001).  

Paired comparisons showed that M. assimilis females displayed toward conspecific females 

significantly more often than toward O. smaragdina (Z = -6.232, P < 0.0001), Camponotus sp. (Z = 

-6.568, P < 0.0001) and house flies (Z = -7.206, P < 0.0001). M. assimilis also displayed 



significantly more often at O. smaragdina (Z = -3.404, P < 0.01) and Camponotus sp. (Z = -2.796, 

P < 0.05) than at house flies, but the number of displays at the two ant species were not 

significantly different (Z = -0.702, NS). 

 

Discussion 

 
We were interested in the ability of Myrmarachne assimilis to classify stimulus animals by sight 

alone, and our tests can be envisaged as letting M. assimilis tell us, by displaying or not, when it has 

classified a stimulus animal as a conspecific individual instead of something other than a 

conspecific individual. By consistently displaying at conspecific individuals but not at flies, M. 

assimilis demonstrated its ability to discriminate readily between normal prey and conspecific 

individuals, a conclusion that is not particularly surprising. However, other findings suggest that M. 

assimilis, a Batesian mimic of Oecophylla smaragdina, does something more interesting: it readily 

distinguishes, by sight, between conspecific individuals and ants. When discriminating between 

ants and conspecific individuals, whether or not the ant is M. assimilis’ specific model, O. 

smaragdina, appears to be unimportant, as M. assimilis readily discriminated between conspecific 

individuals and ants, regardless of whether the ant was O. smaragdina or Camponotus sp.. As a 

Batesian mimic, M. assimilis has evidently evolved a special facility for solving the very mimic-

model discrimination problem that it depends on being difficult for other predators with good 

eyesight. 

We currently have only a poor understanding of the cues by which any salticid makes 

vision-based identifications. Interest in this topic began especially with Drees (1952) who 

performed experiments in which models (2-D drawings and 3-D models made of plasticene and 

wire) were presented to males of Salticus scenicus, a common wall-dwelling salticid in Europe. 

Attacking a model was interpreted as evidence of having classified the model as prey (i.e., in the 

context of Drees’ study, an insect) and display behaviour was interpreted as evidence of having 

classified the model as a conspecific individual (i.e., in the context of Drees’ study, a salticid). Leg 



characteristics (thickness, density and a particular angle to vertical, 25o – 30o) were shown to be 

critical cues by which S. scenicus identified salticids, with just about any other object of appropriate 

size being, by default, accepted as prey. 

More recent research has shown that vision-based classification by salticids must often be 

considerably more intricate than Drees’ (1952) findings would suggest. In particular, Portia is a 

genus of spider-eating salticids that, by sight, discriminates between different types of spiders and 

adopts different prey-specific tactics depending on how it classifies the spider it sees (Harland and 

Jackson, 2004). P. fimbriata from Queensland is of particular interest because it adopts a special 

tactic, called ‘cryptic stalking’, for preying on other salticids (Jackson and Blest, 1982). However, 

unlike Salticus scenicus, P. fimbriata relies primarily on cues from the salticid’s large forward-

facing anterior medial eyes, instead of cues from legs, when classifying a prey item as a salticid 

(Harland and Jackson, 2002). Furthermore, because P. fimbriata displays at conspecifics, instead of 

adopting cryptic stalking (Jackson, 1982c), it is evident that, for P. fimbriata, identifying a 

conspecific individual is more than simply confirming that the other animal is a salticid. 

It is probably common for salticids to distinguish between ants and other insects, and to 

respond to Myrmarachne in much the same way as they respond to ants (see Nelson and Jackson, 

2006). Portia fimbriata, being a salticid that specializes at preying on other salticids, avoids getting 

close either to ants or to Myrmarachne, and does not adopt cryptic stalking when the other salticid it 

encounters is Myrmarachne (Harland and Jackson, 2001; Nelson and Jackson, 2006). 

Classifying the arthropods it encounters is, evidently, for Myrmarachne assimilis, a more 

demanding task than Drees’ (1952) study would suggest. For M. assimilis, some insects, but not 

ants, are prey. As for many non-myrmecomorphic salticids, ants tend to be dangerous neighbours 

(James et al. 1999; Nelson et al., 2004, 2005), but simply to avoid ant-like arthropods is not a 

realistic option for M. assimilis, as this would imply avoiding conspecific individuals. M. assimilis’ 

solution to this problem has apparently included the evolution of special perceptual abilities that 

facilitate rapid vision-based discrimination between mimic and model, the very type of 



discrimination that it depends being, for other visual predators, not so readily achieved. 
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Figure 1. Apparatus used in formal tests (wooden frame with two glass sides). To start test, sealed 

glass vial, with stimulus animal inside, inserted into chamber. Myrmarachne assimilis introduced 

through hole (stoppered during test) in opposite end. Glass walls slide out to allow cleaning of 

apparatus between tests. 

 

 

Figure 2. Number of bouts of display per test (mean ± SE). Myrmarachne assimilis females tested 

with ants (Camponotus sp. and Oecophylla smaragdina), house flies (Musca domestica) and 

conspecifics (N=38 tests with each stimulus animal) 


