
MODELLING THE CARDIOVASCULAR SYSTEM 
 
Geoffrey M. Shaw1, J. Geoffrey Chase2, Christina Starfinger2, Bram W. Smith3. 

Christopher E. Hann2. T. Desaive4 and A. Ghuysen5 
 
1 Department of Medicine, University of Otago, Christchurch, New Zealand 
2 Centre of Bioengineering, Dept of Mechanical Eng, Univ of Canterbury, Christchurch, New Zealand 
3 Centre for Model-Based Medical Decision Support, Aalborg University, Aalborg, Denmark 
4 Institute of Physics, University of Liege, Belgium 
5 Hemodynamics Research Laboratory, University of Liege, Belgium 
 
 
ABSTRACT 
 
Cardiovascular disease claims more lives than any other disease in westernised 
countries, affecting millions. Pin-pointing CVS dysfunction is often difficult 
because the clinical signs, or the availability and interpretation of physiological 
measurements are unreliable. Often patient specific information is incomplete 
and/or confusing as it comes from a diverse range of sources such as invasive 
and non-invasive pressure measurements, flow rates and ECG signals. Health 
professionals therefore rely on intuition and experience to make a ‘clinical’ 
diagnosis and treatment decisions. Sometimes this approach results in multiple 
therapies being applied until a suitable treatment is found. Poor outcomes result 
from failure to quickly and correctly diagnose and treat the underlying condition. 
 
This monograph introduces the concept of using full circulatory and 
cardiovascular models to aggregate the large number of diverse signals facing 
clinicians into a clear physiological picture of haemodynamic status. A brief 
review of the field, still in its infancy, of such models is presented focusing 
primarily on the basic approaches taken in the literature. Finally, one of the more 
advanced and best validated models is presented including initial animal 
validation study results. The overall approach is shown to have significant 
potential to provide clear, measured insight to replace often misled intuition in the 
monitoring, diagnosis and treatment of circulatory dysfunction in critical care. In 
the future models and modern sensors will increasingly ‘invade’ the critical care 
environment and will provide the opportunity for better, more consistent care at 
the bedside, and in real time. 
 
 
 
 
Even an orthopaedic surgeon has some notional understanding of why fluids 
might be useful to resuscitate patients with low blood pressure, poor peripheral 
perfusion, or poor urine output. However beyond giving of fluids to support 
circulatory failure, our physiological understanding of the complex cardiovascular 
responses in shocked states is very poor. In particular, there is paucity of 
evidence for any specific therapeutic intervention used in cardiovascular support.  
 



Where evidence does exist regarding supportive therapy, it is usually about 
interventions that don’t work, such as dopamine for renal protection1. The best 
evidence for a positive result pointing clinicians towards what they should do is 
the Early Goal-Directed (EGT) therapy care bundle promulgated by Rivers et al2.  
However, this study is criticised for its high control mortality and lack of 
generalisability, having not been validated outside of a single centre to date3. 
 
One of the disadvantages of looking for answers in randomised controlled trials 
(RCTs) is that the empiric evidence does not help imperfect understanding of the 
complex physiology and reflex actions involved. The level of complexity involved 
in the haemodynamics of the critically ill is significant, even for those 
mathematicians and engineers trained to model and manipulate such complex 
systems. Hence, empirically driven strategies derived from clinical observations 
often fail to meet the highly variable, highly dynamic needs of broad cohorts of 
critically ill patients. Therefore, it is not surprising that while there has been a 
great reliance on RCTs to provide the answers, the results have been, to say the 
least, very disappointing.   
 
For example, studies using the pulmonary artery catheter to guide fluid or 
inotrope choice/dose have not shown specific benefits4,5,6,7.  Even the simplest 
decision, the choice of fluid, has not shown any benefit for either crystalloids or 
colloids in critically patients8. This is not to say that these approaches are wrong, 
but that perhaps they are also not right for all patients.  
 
Where are we going wrong? When treatment strategies for highly complex 
pathophysiological disturbances are based on incomplete or wrong paradigms of 
care, then the chances of finding a one-size-fits-all therapeutic intervention that 
works is almost zero.  In particular, one size fits all paradigms are prone to failing 
whenever the patient’s demands are variable and require adaptive modulation in 
response to changes in condition. Therefore, is it wise to keep pumping money 
and resources into clinical trials, looking for serendipitous ‘fortunes’ lacking in 
scientific foundation or explanation? 
 
Consider the state-of-the art haemodynamic monitoring and interventions today.  
There is no evidence that static pressure measurements of preload, central 
venous and pulmonary artery occlusion pressures are useful in predicting fluid 
responsiveness9.  This problem arises because preload is not the same as 
preload-responsiveness9.  Dynamic tests of preload, such as arterial pulse 
pressure or systolic pressure variations in ventilated patients, or central venous 
pressure falls in spontaneously breathing patients can predict fluid 
responsiveness9. However, this does not inform the clinician how much fluid to 
give, thus providing only a partial answer. In addition, this information tells 
nothing about how, in combination with fluid therapies, to start, or titrate, vaso-
active drugs. Finally this information is not particularly useful diagnostically.  So, 
in the end, patients are subjected to therapies using guesswork- the so called 
‘art’ of medicine. 



 
Overall, hundreds of scientific papers, and dozens of text books, have been 
written about the ‘science’ of resuscitation. However, the foundations of this 
knowledge are essentially all based on small observational or experimental 
studies that have, in isolation, only explored specific aspects of cardiovascular 
responses. None of these limited studies or outcomes explores the fact that 
haemodynamics are a combination of several complex responses linked by a 
wide variety of sometimes redundant and sometimes destabilizing reflex actions. 
I.e. none of them truly touches on the reality of the intensive care clinician looking 
at a specific patient. 
 
What is missing? First, there has been no attempt to integrate these disparate 
packages of knowledge into a robust cardiovascular model to improve 
monitoring, diagnostics and prediction.  Hence, we are left with incomplete 
paradigms that have resulted in potentially poor therapeutic choices for some 
patients, without knowing which patients are receiving the poor choice before 
making the clinical decision. A robust cardiovascular model would allow expert, 
and non-expert clinicians alike access to the tools required delivering appropriate 
and consistent, patient-specific care is long overdue. 
 
The last twenty years has seen a revolution in the computational power of 
computers.  However, access to the high computational speeds required to set 
about developing models of the cardiovascular system have only been made 
available to researchers in very recent times. With an appropriate model, medical 
staff can gain a better understanding of cardiovascular function by varying 
parameters to simulate a variety of dysfunctions, such as stiff heart walls or 
pump failure. In particular, a model whose parameters have been identified to 
match a specific patient could be used to assist diagnosis and treatment by 
comparing model outputs simulating various cardiovascular dysfunctions and 
therapies to make a best choice. Thus, by measuring various physiological 
parameters such as blood pressure, heart rate, stroke volume and ventricular 
pressures, the governing elastances, resistances and pressure-volume 
relationships for a given patient’s haemodynamics can be determined. Hence, 
the performance of a patient’s circulation can be rapidly identified, enabling 
comment on any irregularities found, and the simulated testing of several 
potential therapies. 
 
It is suggested that any such model fulfil the following aims to ensure that it is 
practical and effective as a diagnostic aid: 
 
• Model parameters should be relatively easily identified for a specific 

patient. 
 
• Although quantitatively exact results are not necessary, accurate 

prediction of trends with changes in parameters or therapy are required.  
 



Most current approaches to modelling the human circulation can be grouped into 
either Finite Element (FE) or Pressure Volume (PV) approaches. FE techniques 
offer accurate results, but require immensely detailed inputs such as muscle fibre 
orientations, structures and mechanical properties10,11. Limitations on the 
availability of detailed in vitro patient specific data and computational power 
mean that FE methods are not well suited as rapid diagnostic tools.  
 
In contrast, PV methods divide the circulation into a series of elastic chambers 
separated by resistances, and inductors simulating inertial effects where 
required. Each elastic chamber models a section such as the ventricles, the atria, 
or the aorta, each with their own pressure-volume relationship. Only a minimal 
number of parameters, such as chamber elastances and arterial resistances, are 
required to create such a model. These models can be solved on modern, 
commonly available desktop computers in very reasonable times suitable for 
immediate clinical feedback.  
 
The minimal cardiovascular system (CVS) model used in this study is shown 
schematically in Figure 1, including the governing equations12. The model 
structure and method of implementation is outlined in detail in Smith et al13 and is 
summarised only briefly here. The two central heart chambers represent the left 
and right ventricles (lv and rv). Resistances at the inlet and exit of the right 
ventricle simulate pressure drops of blood flow entering through the tricuspid 
valve (Rtc) and exiting through the pulmonary valve (Rpv). For the left ventricle, 
resistances affect blood flow entering through the mitral valve (Rmt) and exiting 
through the aortic valve (Rav). Ventricular interaction due to the septum (spt) and 
pericardium (peri) is also accounted for in the model. The effects of the thoracic 
cavity (Ppl) pressure on the ventricles and pulmonary circulation chambers are 
also included to account for the influence of respiration. 
 
The systemic circulation is made up of two chambers representing the pressures 
(P) and volumes (V) in the vena-cava (vc) and the aorta (ao) connected by a 
resistor to simulate the systemic resistance (Rsys). Similarly, the pulmonary 
circulation is simulated as the pulmonary artery (pa) connected to the pulmonary 
vein (pu) by the pulmonary vascular resistance (Rpul). Both ventricles are driven 
by time varying elastances which cycle between a maximum defined by the end-
systolic pressure-volume relationship (ESPVR), and a minimum end-diastolic 
pressure-volume relationship (EDPVR). This enables simulation of pulsatile 
blood flow which results in ventricular pressures varying between systolic and 
diastolic values. A cardiac driver function (Equation C4 in Figure 1) is defined 
that controls the variation in ventricular elastance between diastolic and systolic 
levels over the cardiac cycle for a specified heart rate (HR). Figure 2 illustrates 
the ESPVR and EDPVR on a pressure-volume (PV) diagram of the cardiac cycle. 
The contractility (Ees) of the left ventricle wall (lvf), right ventricle wall (rvf) and 
septum (spt) are adjusted by using the parameters Ees,lvf, Ees,rvf and Ees,spt 
respectively. Similarly, the ventricular end-diastolic elastances (P0) are adjusted 



by varying the parameters P0,lvf, P0,rvf and P0,spt, the non-linearity in this elastance 
(λ) being adjusted using the parameters λlvf, λrvf and  λspt.  
 
 

 
 
Figure 1, The minimal closed loop model of the cardiovascular system showing 
the heart (Vlv and Vrv) and pulmonary circulation (Vpa and Vpu) inside the thoracic 
cavity (Ppl), and the systemic circulation (Vao and Vvc) outside. 12 
 



 Figure 2, Pressure-volume diagram of the cardiac cycle and the variations in 
end-diastolic (EDPVR) and end-systolic (ESPVR) pressure-volume relationships 
for the ventricular and septal walls (Vlvf, Vrvf and Vspt). 
 
 
Overall, this model contains 6 state variables representing the compartmental 
volumes (Vpa, Vpu, Vlv, Vao Vvc and Vrv), and uses 38 parameters in the governing 
equations shown in Figure 1. Reference values for these parameters can be 
found in numerous literature sources and are listed in Tables 1 and 2.13,14,15 
Simulations performed using the model have been previously shown to 
reproduce normal values and characteristic trends in volumes and pressures in 
the heart and circulatory system that are comparable to a normal human13,16. The 
model is designed to contain a minimal number of parameters in order to improve 
identifiably, whilst preserving parameters that are necessary to simulate a variety 
of relevant diseases, as will be illustrated12. 
 
Table 1, Base values of the PV relationship parameters used in the CVS model12 

Parameter Ees Vd Vo λ Po 
Units kPa/l l l 1/l kPa 
Left ventricle free wall (lvf) 454 0.005 0.005 15 0.17 
Right ventricle free wall (rvf) 87 0.005 0.005 15 0.16 
Septum free wall (spt) 6500 0.002 0.002 435 0.148 
Pericardium (pcd) - - 0.2 30 0.0667 
Vena-cava (vc)  1.5 2.83 - - - 
Pulmonary artery (pa) 45 0.16 - - - 
Pulmonary vein (pu) 0.8 0.2 - - - 
Aorta (ao) 94 0.8 - - - 

 



Table 2, Base values of the resistances and other parameters in the CVS 
model12 

Parameter Value 
Mitral Valve (Rmt)  0.06 kPa.s/l 
Aortic Valve (Rav)  1.4 kPa.s/l 
Tricuspid Valve (Rtc)  0.18 kPa.s/l 
Pulmonary Valve (Rpv) 0.48 kPa.s/l 
Pulmonary Circulation System (Rpul) 19 kPa.s/l 
Systemic Circulation System (Rsys) 140 kPa.s/l 
Heart Rate (HR)  80 bpm 
Total blood volume (Vtot) 5.5 l 
Thoracic cavity pressure (Ppl) -4 mmHg 

 
 
This model has been validated for a wide variety of clinical data and trends, 
including 5 disease states, and circulatory and septal interaction17,18.  More 
recently, it has been utilised to identify the effect of pulmonary embolism in 
animal studies using pigs, the first validation of model-based diagnostics for 
circulatory haemodynamics in an animal19. 
 
This first validation of model-based diagnosis of cardiac dysfunction utilised data 
from pulmonary embolism induced in pigs20. Details can be found in the 
reference, however pulmonary emboli were injected every 2 hours inducing 
increasing levels of pulmonary hypertension. The model was able to accurately 
identify this behaviour at each interval and the changes in model parameters to 
match it were physiologically justified. This task was accomplished using only 
measurements available in critical care units utilising modern monitoring systems 
like the PiCCO™ system. 
 
In particular, the identification method required measurements of only the 
pressures in the aorta and pulmonary artery, and the volumes in each ventricle. 
This is a very limited set of data. The ideal model goal was to identify an 
increasing level of pulmonary resistance (Rpul) while seeing all or most other 
model parameters remain constant, thus physiologically identifying the 
pulmonary hypertension. 
 
Figure 3 show the PV loops for both ventricles in one pig and the trend in 
pulmonary resistance value (model parameter) for all 6 pigs studied. In the upper 
panel, it is evident that the measured clinical PV loop data and the identified 
model results match within 10%, an extremely accurate fit given the noise on the 
measured data.20 This good fit holds for both ventricles at 0, 120 and 180 
minutes into the experiment. In the lower panel, it is clear that all 6 pigs saw 



increasing pulmonary resistance with increasing pulmonary hypertension as 
greater numbers of emboli were injected. In addition, all 8 pigs have similar 
values for this parameter, showing a fairly general result for the model, with one 
exception that may be due to sensor noise issues with that particular data. 

 Figure 3, Clinical results in pulmonary embolism studies in 6 pigs20 
Top: P-V Loops for left and right ventricle at 30, 120 and 180 mins in pig 2 
(Dashed is clinical data and solid is identified model) 
Bottom: Pulmonary vascular resistance (Rpul) for all 6 pigs during the 
experiment 



SUMMARY 
 
This paper has briefly described the need for modelling or other methods of 
aggregating diverse amounts of data into coherent pictures of the haemodynamic 
state of the highly dynamic critically ill circulation. The idea of modelling has been 
introduced, a method that is very much in its infancy with regard to whole body 
circulatory models of haemodynamics. Finally, a model is presented that has 
been developed, validated on clinical data and used in first of its kind animal 
studies with some moderate success in identifying physiologically meaningful 
model parameter changes. Overall, this discussion is not about what has been 
done but an attempt to provide a glimpse at what is needed and what, in 
hopefully the nearer future, can be done. 
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