Study of ventricular interaction during pulmonary embolism using clinical identification in a minimum cardiovascular system model

Thomas Desaive¹, Alexandre Ghuysen², Bernard Lambermont², Philippe Kolh², Pierre C. Dauby¹, Christina Starfinger³, Christopher E. Hann³, J. Geoffrey Chase³, Geoffrey M. Shaw⁴

¹ Institute of Physics, University of Liège, Belgium
² Hemodynamics Research Laboratory, University of Liège, Belgium
³ Centre of Bioengineering, University of Canterbury, Christchurch, New Zealand
⁴ Department of Intensive Care Medicine, Christchurch Hospital, Christchurch, New Zealand
Introduction

- **General problem**: Cardiovascular disturbances are difficult to diagnose and treat
 - Large range of possible dysfunctions
 - Reflex actions can mask the symptoms
 - Conflicting clinical data
 - Medical professionals often rely on experience and intuition to optimize the hemodynamics in the critically ill

- **Solution**: physiological, identifiable and validated computer model
 - Minimal Model + Patient-Specific Parameter ID process
 - Identification must use common ICU measurements

- **Application**: evolution of induced pulmonary embolism in porcine data
Minimal cardiovascular model:

- Physiologically validated
- Capable of capturing patients dynamics commonly seen in the Intensive Care Unit (ICU)
- Using a small number of physiological variables

→ Suitable for rapid diagnostic feedback
Mathematical model

P-V diagram

One chamber model

\[\dot{V} = Q_1 - Q_2 \]
\[\dot{Q}_1 = \frac{P_1 - P_2 - Q_1 R_1}{L_1} \]
\[\dot{Q}_2 = \frac{P_2 - P_3 - Q_2 R_2}{L_2} \]

\[P_2 = e(t)e_{es}(V - V_d) + (1 - e(t))P_0(e^{\frac{2}{\text{period}}(V - V_0)} - 1), \]

\[e(t) = e^{-80\left(\frac{t}{\text{period}}\right)^2} \]

B. W Smith et al., *Medical Engineering & Physics*, 26(2), 131-139, 2004
• Direct ventricular interaction (VI) has a significant impact on cardiovascular dynamics.

• It is caused by both the septum and the pericardium.

• V_{lvf}, V_{rvf} and V_{spt} are not physical volumes, but are defined to capture the deflection of the cardiac free walls relative to the ventricle volumes.

\[
e(t)E_{es,spt}(V_{spt} - V_{d,spt}) + (1 - e(t))P_{0,spt}(e^{\lambda_{spt}(V_{spt} - V_{0,spt})} - 1) = e(t)E_{es,lvf}(V_{lv} - V_{spt}) + (1 - e(t))P_{0,lvf}(e^{\lambda_{lvf}(V_{lv} - V_{0,lvf})} - 1) - e(t)E_{es,rvf}(V_{rv} + V_{spt}) - (1 - e(t))P_{0,rvf}(e^{\lambda_{rvf}(V_{rv} + V_{0,rvf})} - 1)
\]

Time-varying septal P-V relationship
Experimental trials: pulmonary embolism

- **Pulmonary embolization** induced in pigs with autologous blood clots.
- **Clots** injected every two hours with decreasing concentrations.
- **Aortic pressure** and **pulmonary artery pressure** measured using micromanometer-tipped catheters (Sentron pressure-measuring catheter; Cordis, Miami, FL)
- **Pressures and volume of both ventricles** measured with 7F, 12 electrodes (8-mm interelectrode distance) conductance micromanometer tipped catheters (CD Leycom, Zoetermeer, The Netherlands)
- **Hemodynamics variables** are recorded every 30 min.
- Data from 6 pigs used in this study.
Integral based parameter identification

- Transforms typically non-linear and non convex ID problem into linear and convex problem

- Limited data and minimal computation

 Very suitable for clinical applications

- Available experimental data: \(P_{ao}, P_{pa}, P_{lv}, P_{rv}, V_{lv}, V_{rv} \)

- System of linear equations for the full CVS model

- Parameters identified for each period of experimental data (30 min.)

Results - Pulmonary Embolism

Left Ventricle (30 min)

Right Ventricle (30 min)

- Dashed lines: model output – solid lines: experimental data
- Use only: Pao, Ppa, min/max(Vlv, Vrv) to ID all parameters

Errors ~5%
Results over time (pig 2)

- As the pulmonary embolism grows, the R_{pul} increases
- R_{sys} also increases as a reflex response to raise blood pressure and divert more blood to the heart
VI (pig 2)

- RVEDV/LVEDV increases resulting from the expansion of the RV due to the increased afterload.

- Without VI (\(V_{spt}=0\)) the model overpredicts the RV expansion.

- Main problem about VI: difficult to measure experimentally and very little data are available in the literature.

 -> Whether or not the dynamic of VI is important for diagnosis in the ICU remains to be shown in future human clinical trials.

- VI changes are captured: decreasing septal volume resulting from the compression of the LV by the overfilled RV.
Hemodynamic parameters: summary

<table>
<thead>
<tr>
<th>Pig</th>
<th>% increase R_{pul}</th>
<th>% increase R_{sys}</th>
<th>% increase E_{eslvf}</th>
<th>% increase E_{esrvf}</th>
<th>% increase V_{spt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>261.44</td>
<td>40.66</td>
<td>29.10</td>
<td>154.60</td>
<td>9.13</td>
</tr>
<tr>
<td>2</td>
<td>89.98</td>
<td>49.34</td>
<td>74.78</td>
<td>20.56</td>
<td>40.15</td>
</tr>
<tr>
<td>3(^1)</td>
<td>24.23</td>
<td>27.16</td>
<td>0.81</td>
<td>9.74</td>
<td>8.37</td>
</tr>
<tr>
<td>4</td>
<td>166.85</td>
<td>39.21</td>
<td>19.06</td>
<td>56.44</td>
<td>19.84</td>
</tr>
<tr>
<td>5</td>
<td>103.63</td>
<td>21.16</td>
<td>71.51</td>
<td>80.07</td>
<td>27.64</td>
</tr>
<tr>
<td>6</td>
<td>99.52</td>
<td>53.90</td>
<td>11.00</td>
<td>14.64</td>
<td>14.00</td>
</tr>
</tbody>
</table>

\(^1\) Limited data for this pig and insufficient time for the parameters to change significantly
Conclusions

• **Minimal cardiac model** → simulate time varying disease states
 – Accurately captures physiological trends and magnitudes
 – Accurately captures a wide range of dynamics
 – Very Fast simulation methods available

• **Integral-based parameter ID** → patient specific models
 – Error on max/min pressures/volumes < 5%
 – Identification needs a minimal number of common measurements
 – Rapid ID = Rapid diagnostic feedback

• **Pulmonary embolism:**
 – Hemodynamics successfully captured over time
 – Physiological responses to pulmonary embolism also captured

• **Future Work = septic shock currently in progress**