Overvie and objectives

The poster presents ongoing Quake-core funded work on ground motion simulations for the Dunedin Central Business District. The project addresses low seismicity area's seismic hazard and risk, that has been neglected for a long time.

The overarching aim is to improve seismic hazard analyses and prediction for Otago region and encourage research that makes contribution for New Zealand's seismic hazard analysis, as a whole.

Method

Physic-based source modelling and ground motion simulations are being carried out using the SCEC (The Southern California Earthquake Center) Broadband Simulation Platform (SCEC BBP). The platform computes broadband (0-10Hz) seismograms for earthquakes. As large earthquakes have not been experienced in Dunedin in the time period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault (Figure 1), the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present stage of the study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effect are key components considered in the simulation process.

Velocity modelling

A 1D shear velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site and then matched with the most similar region supported by BBP (Figure 3). A 3D shear wave velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be a basis for developing 3D shear velocity model for greater Dunedin-Mosgiel for future ground motion simulations, possibly using University of Canterbury software.

Simulations result example

Figure 5: Simulations results for 60 km fault length, Mw = 7.4. From left to right hypocenter located in southern, central and northern part of the fault (a) Synthetic acceleration seismograms (b) Rupture model – slip distribution along fault plane.

Wider context of work and future challenges

- Integrating simulations with 3D velocity model
- Moving 1D ground motion simulations to 3D
- Expanding 3D model to cover wider Otago Region area
- Running 3D earthquakes simulations for multiple sources and stations
- Improving seismic hazard analyses and prediction for Dunedin

Acknowledgements

We thank you QuakeCoRE for funding the research and technical advise; University of Otago for providing field equipment and other resources and SCEC community for software related support.