Monitoring sediment production from forest road approaches to stream crossings in the Virginia Piedmont

Kris Brown, Kevin McGuire, and Mike Aust
e-mail: krisrb3@vt.edu

Presented at 17th Biennial Southern Silvicultural Research Conference
Shreveport, LA
March 5, 2013
Re-opening legacy roads
Contemporary road design

Virginia road BMPs
- Location
- Grade and water control
- Surfacing of approaches
Sediment delivery at forest road approaches to stream crossings

• A primary sediment source and direct pathway for sediment transport to stream channels

• Ninth Circuit decision that ditched roads are point sources
Objectives

• Measure annual rates of sediment delivery from forest road approaches to stream crossings due to road reopening in the Virginia Piedmont.

• Compare sediment delivery rates of reopened bare approaches with existing graveled approaches.

• Identify the major road approach characteristics above the stream crossing that govern rates of sediment delivery.
Objectives

• Measure annual rates of sediment delivery from forest road approaches to stream crossings due to road reopening in the Virginia Piedmont.

• Compare sediment delivery rates of reopened bare approaches with existing graveled approaches.

• Identify the major road approach characteristics above the stream crossing that govern rates of sediment delivery.

• Evaluate the sediment reduction efficacy of partial and complete graveling of road approaches during storm events.
Plan view of road approach plots

Left approach

Rolling dip, turnout
Downhill
Silt fence
Stream flow

Right approach

Silt fence
Rolling dip, turnout
Downhill
Plan view of road approach plots

Left approach
- Wedge rain gauge
- Tipping-bucket rain gauge
- Box culvert
- Stream flow

Right approach
- 20-ft. irrigation pipe
- Riser with sprinkler
- Flume
- ISCO
- Outflow
- Pump
- Intake
- Strainer
- Rolling dip, turnout
- Downhill
Study 1 Methods

Bulldozer blading to reopen legacy road approaches.

Silt fence barriers and erosion pin networks were installed to trap and measure sediment delivery.
Repeated measures via differential leveling with a total station were used to estimate annual sediment delivery rates.

Elevation gain (m) \times Depositional area (m^2) \times Bulk density of trapped sediment (Mg m^{-3}) = Sediment load (Mg)
Statistical analyses

• Tested for differences in median sediment delivery per measurement interval by road surface type (bare, graveled)

• Multiple linear regression model development to identify the most predictive road characteristics for sediment delivery
Results

Mean bare was 7.5X higher than gravel.
Problem road segments

- Surface runoff traveled between 75 and 130 m between the nearest water control structure and the silt fence
- 90 to 100% bare soil conditions throughout the year

287 Mg ha\(^{-1}\) year\(^{-1}\)

85 Mg ha\(^{-1}\) year\(^{-1}\)
Temporal variability of sediment delivery rates

![Graph showing sediment delivery rates over time with peaks during certain months and correlation with precipitation.]
Bare soil in relation to adjacent forest cover
Sediment delivery in relation to surface type, forest cover
The highest sediment delivery rates were associated with road segments longer than 75 m and bare soil percentages greater than 50%.
Multiple regression model

\[y = 0.0714* X_1 + 0.0341* X_2 - 0.0044* X_3 + 0.0015* X_1: X_3 \]

Sediment \hspace{1cm} Precipitation \hspace{1cm} Approach length \hspace{1cm} Bare soil \hspace{1cm} Rain, bare soil interaction

Relative importance analysis

\(R^2 = 59.31\% \), metrics are normalized to sum 100\%.
Research objectives revisited

- Sediment delivery rates from reopening legacy roads: **34 to 287 Mg ha\(^{-1}\) year\(^{-1}\)**

- Sediment delivery rates from existing gravel approaches: **10 to 16 Mg ha\(^{-1}\) year\(^{-1}\)**

- Important road characteristics: **Approach length, bare soil percentage, rainfall amount, and the interaction between bare soil and rainfall amount**
Application of findings

• Legacy roads may require additional measures to minimize water quality problems, especially if road approaches are steep, bare, and have inadequate water control.

• Findings support contemporary BMP recommendations to:
 – gravel road segments to the top of the approach that is contributing sediment to the stream
 – redistribute stormwater runoff from the road surface at least 7.6 m before the stream crossing
Rainfall Simulation Methods

Bare treatment

Wedge type and automatic tipping bucket rain gauges

25 – 50% coverage

Open-top box culvert

50 – 100% coverage

1” X 18” cutthroat flume and ISCO stormwater sampler

9.8-m gravel

19.6-m gravel
Results

• Simulated rainfall events had recurrence intervals of < 1 to 5 years for Critz, VA. Surface runoff was commonly generated within the first five minutes of the onset of rainfall.

• Gravel application reduced TSS concentration.
Bare gravel (9.8 m) and 19.6 m gravel.
Cost effectiveness of gravel

Median TSS concentration (g L$^{-1}$) by treatment

• Bare treatment (2.34 g L$^{-1}$) was 1.8X greater than gravel 1 (1.32 g L$^{-1}$) and 3.3X greater than gravel 2 (0.72 g L$^{-1}$)

Cost for 3 in. gravel @ $25/ton

• 32 ft. X 10 ft. X 0.25 ft. X 100 lbs./ft3 X 1 ton/2000 lbs. X $25/ton = $100
• $100/32 ft. = $3.13/ft.
Conclusions

Legacy roads and associated stream crossings have the potential to deliver significant quantities of sediment to streams if the roads are not properly closed or maintained.

Corrective best management practices (BMPs), such as gravel, can minimize the sediment contributions of stream crossing approaches.

Judicious BMP implementation can reduce sediment inputs to streams and strike a balance between sediment reduction efficacy and BMP implementation cost.

Road slope lengths are difficult to correct after road construction, so careful road design is an important BMP.
Questions?