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Abstract 
Antarctica has become a rich area of research over the last few decades, and there has 

been a fair amount of research that has focused on the wildlife that inhabit this extreme 

environment. Within this ecosystem seals are high trophic level predators that provide 

important insight to the health of the environment. While our knowledge of the viruses 

circulating among Antarctic animals is limited, this is especially the case for Antarctic 

pinnipeds. This thesis highlights that our understanding of Antarctic animal virology is 

changing, albeit slowly. The application of metagenomics and development of high 

throughput sequencing has allowed for the discovery of novel viruses in this area, 

particularly around the Ross Sea and McMurdo Sound where research efforts have been 

concentrated.  

The aim of this research was to assess the diversity of papillomaviruses in vaginal swabs 

collected from 81 female Weddell Seals over the summer field seasons of 2014-2016. 

Using metagenomic approaches seven papillomavirus genomes were identified 

andrecovered from this sample set. These viruses were highly diverse with six 

representing novel species and distinct evolutionary lineages within the family 

Papillomaviridae. This discovery extends our knowledge of viruses circulating among 

Antarctic animals that inhabit McMurdo Sound and the Ross Sea, which may offer 

support for monitoring the health of this ecosystem especially under conditions of 

environmental change. 
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Introduction 

Marine mammals are regarded as sentinel species for monitoring ecosystem health 

because these are high trophic level predators with long life spans and large fat stores that 

act as depos for anthropogenic toxins (Kucklick et al., 2002; Mos et al., 2006). Looking 

at microbial diversity among these animals can reveal exposure to potential pathogens in 

the environment (Bossart, 2011; Mos et al., 2006). Furthermore, changes in response to 

certain infectious organisms / entities may be indicative of immunosuppression. This 

impact may be due to environmental stress and therefore is important for monitoring 

environmental changes (Acevedo-Whitehouse and Duffus, 2009). Viral pathogens have 

caused or been associated with several mortality events and disease in pinniped 

populations around the globe. From outbreaks of influenza virus in populations of harbour 

seals (Phoca vitulina) (Anthony et al., 2012; Bodewes et al., 2015; Mamaev et al., 1996; 

Zohari et al., 2014) to herpesvirus infections associated with high mortality in young 

harbour seals and cancer in California sea lions (Zalophus californianus) (King et al., 

2002; King et al., 2001; Osterhaus et al., 1985). Morbilliviruses have caused several mass 

mortality events among pinniped populations. Namely, canine distemper virus (CDV) 

outbreaks in Baikal seals (Phoca sibirica) (Butina et al., 2010; Mamaev et al., 1996), 

Caspian seals (Phoca caspica) (Kennedy et al., 2000), harbour seals (Jensen et al., 2002; 

Osterhaus et al., 1990) and even crabeater seals in Antarctica (Laws and Taylor, 1957). 

Phocine distemper virus (PDV) has also been responsible for mortality among harbour 

seals (Jensen et al., 2002). While morbillivirus was detected in grey (Halichoerus grypus), 

harp (Pagophilus groenlandica), hooded (Cystophora cristata) and ringed (Phoca 

hispida) seals it has not been associated with as severe a mortality rate as in other 

pinnipeds (Duignan et al., 1997; Duignan et al., 1995). It has been suggested that under 

some circumstances, susceptibility to viral pathogens is exacerbated by exposure to 

environmental toxins (Ross et al., 2003).  

The increase in metagenomics sequence data over the last decade has allowed for 

the identification of viruses whose role and pathogenicity is not yet understood. 

Adenoviruses have been associated with hepatitis of stranded California sea lions  

(Goldstein et al., 2011; Wright et al., 2015) and mortality of a captive California sea lion, 

South American fur seal (Arctocephalus australis), and South African fur seal 
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(Arctocephalus pusillus) all kept at the same zoo (Inoshima et al., 2013). Adenoviruses 

have also been identified in a zoo captive Hawaiian monk seal (Neomonachus 

schauinslandi) (Cortes-Hinojosa et al., 2016) and free-range stranded Northern elephant 

seals (Mirounga angustirostris), pacific harbour seals (Phoca vitulina richardsii) (Wright 

et al., 2015), South American fur seals and Sub Antarctic fur seals (Arctocephalus 

tropicalis) (Chiappetta et al., 2017). Parvoviruses have been identified in organ and brain 

samples of harbour seals, South American fur seals and sub Antarctic fur seals (Bodewes 

et al., 2013; Kluge et al., 2016). Small circular DNA viruses have been identified in faeces 

of a New Zealand fur seal (Arctocephalus forsteri) (Sikorski et al., 2013) and putative 

circoviruses in South American and sub Antarctic fur seals (Chiappetta et al., 2017).  

To date, Antarctic seal associated viruses have been extremely understudied with 

the majority of viruses identified based on serological approaches. Within the last year, 

however, a polyomavirus (WsPyV) was identified in the kidney tissue of a deceased 

Weddell seal (Leptonychotes Weddellii) on the sea ice around McMurdo Sound (Varsani 

et al., 2017). Polyomaviruses have been detected in other pinnipeds including a California 

sea lion with T-cell lymphoma, a captive Hawaiian monk seal and placenta of a northern 

fur seal (Callorhinus ursinus) pup (Colegrove et al., 2010; Cortes-Hinojosa et al., 2016; 

Duncan et al., 2013; Wellehan et al., 2011). Anelloviruses are widespread and persistent 

among seals, identified in sub Antarctic fur seals, South American fur seals, harbour seals 

and California sea lions (Bodewes et al., 2013; Fahsbender et al., 2015; Kluge et al., 2016; 

Ng et al., 2011). Anelloviruses (TTLwV1 & 2) have also recently been recovered from 

Weddell seals around the McMurdo Sound and Ross Sea region (Fahsbender et al., 2017). 

While several pinniped species inhabit sub-Antarctic islands and surrounding 

areas, only four species live on Antarctica and breed on the associated pack and fast ice. 

These include Weddell, leopard (Hydrurga leptonyx), crabeater (Lobodon 

carcinophagus) and Ross seals (Ommatophoca rossii). Weddell seals are the most 

southerly distributed seal species with a population of about 730,000- 800,000 (Erickson 

and Hanson, 1990) and they inhabit three regions of Antarctica: McMurdo Sound, 

Vestfolds and Signy Island (Testa et al., 1990). Weddell seals around McMurdo Sound 

have been studied the most extensively since the 1960s (Kooyman, 1965; Stirling, 1969). 

The sedentary, passive nature of Weddell seals combined with their proximity to research 

bases in McMurdo Sound (McMurdo Station, USA and Scott Base, New Zealand) has 
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allowed detailed life histories and studies of their physiology that continue today 

(Hückstädt et al., 2017; Siniff et al., 1977; Stirling, 1969). Weddell seals are unique from 

other Antarctic seals in that they breed on Antarctic fast ice, that is ice “fastened” to and 

extending out from the shoreline, where they remain over winter, making holes in the ice. 

These breathing holes also allow Weddell seals to forage for a wide range of prey under 

the ice such as different species of fish including Antarctic silverfish (Pleuragramma 

antarcticum), Bald notothen (Pagothenia borchgrevinki) and Trematomus spp, and 

cephalopods such as squid (Ainley and Siniff, 2009; Burns et al., 1998; Burns, 1999; 

Goetz et al., 2017; Green and Burton, 1987; Stirling, 1969).  

Unlike leopard and crabeater seals, Weddell seals have a high tendency to return 

to breeding sites year after year and there is very little evidence of migration between 

colonies (Davis et al., 2008). This has allowed individuals to be tracked over different 

field seasons, as they can be expected to return to the same place each year. Breeding 

season of Weddell seals is between October and December where females aggregate 

together in breeding colonies, likely increasing the mating success of males (Stirling, 

1969). Pupping takes place in congregated colonies of females hauled out on the fast ice 

around October to give birth, pups are weaned for about 6 weeks and quickly learn to 

swim (Burns et al., 1999; Stirling, 1969; Testa and Siniff, 1987). Despite the extremely 

harsh Antarctic winter, Weddell seals have adapted to surviving in these conditions 

(Heerah et al., 2017).  

During early Antarctic expeditions, Weddell seals around Ross Sea were 

harvested to feed dog teams brought with expedition groups. However, in 1996 dogs were 

banned from Antarctica after a mass mortality of crabeater seals suspected to have been 

infected with canine distemper virus that could be transmitted from dogs (Laws and 

Taylor, 1957). This raised concerns to the anthropogenic impact on the ecosystem and led 

to research investigating potential pathogens and toxins introduced to the environment 

(Kerry and Riddle, 2009). Since then the increasing awareness of conservation in 

Antarctica has led to the Commission for the Conversation of Antarctic Marine Living 

Resources (CCAMLR) approving the Ross Sea as the world’s largest marine protected 

area. Of the 730,000-800,000 Weddell seals in Antarctica, about 32,000- 50,000 are 

estimated to inhabit the Ross Sea (Ainley, 1985). As a high trophic level predator 

occupying this area year around Weddell seals play a vital role in this ecosystem. It 
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follows that much of the research in the Ross Sea has continued to monitor the behaviour 

and physiology of this population. These extensive studies of a sentinel species provides 

important insight to impacts of environmental change on the marine environment 

(Hückstädt et al., 2017).  

In the last decade, with the introduction of metagenomics approaches and high 

throughput sequencing our understanding of microbes in this area has dramatically 

increased and led to the classification of several novel viruses. The Varsani research 

group in collaboration with that of Jennifer Burns have been the main contributors to 

understanding pinniped-associated associated viruses in the Ross Sea and McMurdo 

Sound. Until recently, the majority of these studies have looked at avian species and only 

in the past year have two novel viruses been classified in Weddell seals inhabiting the 

Ross sea (Fahsbender et al., 2017; Varsani et al., 2017).  

Over the last three Austral summer field seasons (2014-2016), vaginal swab 

samples from Weddell seals on the fast ice on in the McMurdo sound have been collected 

by Jennifer Burns and her research group specifically for viral research. The research 

team from the University of Anchorage, USA included Michelle Shero, Roxanne Beltran, 

Amy Kirkham and Greg Frankfurter and the samples were taken under the National 

Marine Fisheries Service Marine Mammal permit #17411, Antarctic Conservation Act 

permit #2014-003, and University of Alaska Anchorage’s Institutional Animal Care and 

Use Committee approval #419971.  Preliminary results from next generation sequencing 

of 2014/2015 collected samples identified papillomavirus-like sequences in vaginal 

swabs. This prompted investigation the recovery of these viruses as well as further 

sampling of individuals in the following seasons.  

Papillomaviruses are a highly diverse family of dsDNA viruses found in a very 

wide range of hosts, however, they have only been characterised in one other pinniped 

species, a California sea lion (Rivera et al., 2012). Papillomaviruses have co-evolved with 

their host with some host switching, adaptive radiation, recombination and positive 

selection also contributing to their divergence (Bravo and Alonso, 2007; Burk et al., 2013; 

García-Vallvé et al., 2005; Gottschling et al., 2007; Varsani et al., 2006). In Antarctica, 

only two papillomaviruses have been characterised in the last five years are those among 

Adelie penguins (Van Doorslaer et al., 2017; Varsani et al., 2014). As part of this MSc 

thesis research we aimed to identify and characterise novel papillomaviruses in Weddell 
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seals inhabiting the Ross Sea and McMurdo Sound. Further we will comparatively 

analyse these with known papillomaviruses from seal and other host species. This MSc 

research expands our knowledge of papillomaviruses diversity among Antarctic 

pinnipeds.  

  



xi 
 

References 

Acevedo-Whitehouse, K., Duffus, A.L.J., 2009. Effects of environmental change on 

wildlife health. Philosophical Transactions of the Royal Society B: Biological 

Sciences 364(1534), 3429-3438. 

Ainley, D.G., 1985. Biomass of Birds and Mammals in the Ross Sea. In: Siegfried, W.R., 

Condy, P.R., Laws, R.M. (Eds.), Antarctic Nutrient Cycles and Food Webs. 

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 498-515. 

Ainley, D.G., Siniff, D.B., 2009. The importance of Antarctic toothfish as prey of 

Weddell seals in the Ross Sea. Antarctic Science 21(4), 317-327. 

Anthony, S., Leger, J.S., Pugliares, K., Ip, H., Chan, J., Carpenter, Z., Navarrete-Macias, 

I., Sanchez-Leon, M., Saliki, J., Pedersen, J., 2012. Emergence of fatal avian 

influenza in New England harbor seals. Mbio 3(4), e00166-00112. 

Bodewes, R., Bestebroer, T.M., van der Vries, E., Verhagen, J.H., Herfst, S., Koopmans, 

M.P., Fouchier, R.A., Pfankuche, V.M., Wohlsein, P., Siebert, U., 2015. Avian 

influenza A (H10N7) virus–associated mass deaths among harbor seals. Emerging 

infectious diseases 21(4), 720. 

Bodewes, R., Garcia, A.R., Wiersma, L.C.M., Getu, S., Beukers, M., Schapendonk, 

C.M.E., van Run, P.R.W.A., van de Bildt, M.W.G., Poen, M.J., Osinga, N., 

Contreras, G.J.S., Kuiken, T., Smits, S.L., Osterhaus, A.D.M.E., 2013. Novel 

B19-Like Parvovirus in the Brain of a Harbor Seal. Plos One 8(11). 

Bossart, G., 2011. Marine mammals as sentinel species for oceans and human health. 

Veterinary Pathology 48(3), 676-690. 

Bravo, I.G., Alonso, Á., 2007. Phylogeny and evolution of papillomaviruses based on the 

E1 and E2 proteins. Virus genes 34(3), 249-262. 

Burk, R.D., Harari, A., Chen, Z., 2013. Human papillomavirus genome variants. Virology 

445(1), 232-243. 

Burns, J., Trumble, S., Castellini, M., Testa, J., 1998. The diet of Weddell seals in 

McMurdo Sound, Antarctica as determined from scat collections and stable 

isotope analysis. Polar Biol 19(4), 272-282. 

Burns, J.M., 1999. The development of diving behavior in juvenile Weddell seals: 

pushing physiological limits in order to survive. Canadian Journal of Zoology 

77(5), 737-747. 



xii 
 

Burns, J.M., Castellini, M.A., Testa, J.W., 1999. Movements and diving behavior of 

weaned Weddell seal (Leptonychotes weddellii ) pups. Polar Biol 21(1), 23-36. 

Butina, T.V., Denikina, N.N., Belikov, S.I., 2010. Canine distemper virus diversity in 

Lake Baikal seal (Phoca sibirica) population. Veterinary Microbiology 144(1), 

192-197. 

Chiappetta, C.M., Cibulski, S.P., Lima, F.E.S., Varela, A.P.M., Amorim, D.B., Tavares, 

M., Roehe, P.M., 2017. Molecular Detection of Circovirus and Adenovirus in 

Feces of Fur Seals (Arctocephalus spp.). EcoHealth 14(1), 69-77. 

Colegrove, K.M., Wellehan, J.F., Jr., Rivera, R., Moore, P.F., Gulland, F.M., Lowenstine, 

L.J., Nordhausen, R.W., Nollens, H.H., 2010. Polyomavirus infection in a free-

ranging California sea lion (Zalophus californianus) with intestinal T-cell 

lymphoma. J Vet Diagn Invest 22(4), 628-632. 

Cortes-Hinojosa, G., Doescher, B., Kinsel, M., Lednicky, J., Loeb, J., Waltzek, T., 

Wellehan, J.F., Jr., 2016. Coinfection of California Sea Lion Adenovirus 1 and a 

Novel Polyomavirus in a Hawaiian Monk Seal (Neomonachus Schauinslandi). J 

Zoo Wildl Med 47(2), 427-437. 

Davis, C.S., Stirling, I., Strobeck, C., Coltman, D.W., 2008. Population structure of ice‐

breeding seals. Molecular Ecology 17(13), 3078-3094. 

Duignan, P.J., Nielsen, O., House, C., Kovacs, K.M., Duffy, N., Early, G., Sadove, S., 

Aubin, D.J.S., Rima, B.K., Geraci, J.R., 1997. Epizootiology of morbillivirus 

infection in harp, hooded, and ringed seals from the Canadian Arctic and western 

Atlantic. Journal of Wildlife Diseases 33(1), 7-19. 

Duignan, P.J., Saliki, J.T., St. Aubin, D.J., Early, G., Sadove, S., House, J.A., Kovacs, K., 

Geraci, J.R., 1995. Epizootiology of morbillivirus infection in North American 

harbor seals (Phoca vitulina) and gray seals (Halichoerus grypus). Journal of 

Wildlife Diseases 31(4), 491-501. 

Duncan, C., Goldstein, T., Hearne, C., Gelatt, T., Spraker, T., 2013. Novel polyomaviral 

infection in the placenta of a northern fur seal (Callorhinus ursinus) on the Pribilof 

Islands, Alaska, USA. J Wildl Dis 49(1), 163-167. 

Erickson, A.W., Hanson, M.B., 1990. Continental estimates and population trends of 

Antarctic ice seals, Antarctic Ecosystems. Springer, pp. 253-264. 

Fahsbender, E., Burns, J.M., Kim, S., Kraberger, S., Frankfurter, G., Eilers, A.A., Shero, 

M.R., Beltran, R., Kirkham, A., McCorkell, R., Berngartt, R.K., Male, M.F., 



xiii 
 

Ballard, G., Ainley, D.G., Breitbart, M., Varsani, A., 2017. Diverse and highly 

recombinant anelloviruses associated with Weddell seals in Antarctica. Virus 

Evolution 3(1), vex017. 

Fahsbender, E., Rosario, K., Cannon, J.P., Gulland, F., Dishaw, L.J., Breitbart, M., 2015. 

Development of a Serological Assay for the Sea Lion (Zalophus californianus) 

Anellovirus, ZcAV. Scientific Reports 5, 9637. 

García-Vallvé, S., Alonso, Á., Bravo, I.G., 2005. Papillomaviruses: different genes have 

different histories. Trends in microbiology 13(11), 514-521. 

Goetz, K.T., Burns, J.M., Hückstӓdt, L.A., Shero, M.R., Costa, D.P., 2017. Temporal 

variation in isotopic composition and diet of Weddell seals in the western Ross 

Sea. Deep Sea Research Part II: Topical Studies in Oceanography 

140(Supplement C), 36-44. 

Goldstein, T., Colegrove, K.M., Hanson, M., Gulland, F.M.D., 2011. Isolation of a novel 

adenovirus from California sea lions Zalophus californianus. Diseases of Aquatic 

Organisms 94(3), 243-248. 

Gottschling, M., Stamatakis, A., Nindl, I., Stockfleth, E., Alonso, Á., Bravo, I.G., 2007. 

Multiple evolutionary mechanisms drive papillomavirus diversification. 

Molecular Biology and Evolution 24(5), 1242-1258. 

Green, K., Burton, H., 1987. Seasonal and Geographical Variation in the Food of Weddell 

Seals, Leptonychotes-Weddelii, in Antarctica. Wildlife Research 14(4), 475-489. 

Heerah, K., Hindell, M., Andrew‐Goff, V., Field, I., McMahon, C.R., Charrassin, J.B., 

2017. Contrasting behavior between two populations of an ice‐obligate predator 

in East Antarctica. Ecology and Evolution 7(2), 606-618. 

Hückstädt, L.A., McCarthy, M.D., Koch, P.L., Costa, D.P., 2017. What difference does a 

century make? Shifts in the ecosystem structure of the Ross Sea, Antarctica, as 

evidenced from a sentinel species, the Weddell seal. Proceedings of the Royal 

Society B: Biological Sciences 284(1861). 

Inoshima, Y., Murakami, T., Ishiguro, N., Hasegawa, K., Kasamatsu, M., 2013. An 

outbreak of lethal adenovirus infection among different otariid species. Veterinary 

Microbiology 165(3), 455-459. 

Jensen, T., van de Bildt, M., Dietz, H.H., Andersen, T.H., Hammer, A.S., Kuiken, T., 

Osterhaus, A., 2002. Another phocine distemper outbreak in Europe. Science 

297(5579), 209-209. 



xiv 
 

Kennedy, S., Kuiken, T., Jepson, P.D., Deaville, R., Forsyth, M., Barrett, T., van de Bildt, 

M.W., Osterhaus, A.D., Eybatov, T., Duck, C., Kydyrmanov, A., Mitrofanov, I., 

Wilson, S., 2000. Mass die-Off of Caspian seals caused by canine distemper virus. 

Emerging Infectious Diseases 6(6), 637-639. 

Kerry, K.R., Riddle, M.J., 2009. Health of Antarctic Wildlife: An Introduction. In: Kerry, 

K.R., Riddle, M. (Eds.), Health of Antarctic Wildlife: A Challenge for Science 

and Policy. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-10. 

King, D.P., Hure, M.C., Goldstein, T., Aldridge, B.M., Gulland, F.M., Saliki, J.T., 

Buckles, E.L., Lowenstine, L.J., Stott, J.L., 2002. Otarine herpesvirus-1: a novel 

gammaherpesvirus associated with urogenital carcinoma in California sea lions 

(Zalophus californianus). Veterinary microbiology 86(1), 131-137. 

King, D.P., Lie, A.R., Goldstein, T., Aldridge, B.M., Gulland, F.M., Haulena, M., 

Adkison, M.A., Lowenstine, L.J., Stott, J.L., 2001. Humoral immune responses to 

phocine herpesvirus-1 in Pacific harbor seals (Phoca vitulina richardsii) during an 

outbreak of clinical disease. Veterinary Microbiology 80(1), 1-8. 

Kluge, M., Campos, F.S., Tavares, M., de Amorim, D.B., Valdez, F.P., Giongo, A., 

Roehe, P.M., Franco, A.C., 2016. Metagenomic Survey of Viral Diversity 

Obtained from Feces of Subantarctic and South American Fur Seals. Plos One 

11(3). 

Kooyman, G.L., 1965. Techniques used in measuring diving capacities of Weddell seals. 

Polar Record 12(79), 391-394. 

Kucklick, J.R., Struntz, W.D.J., Becker, P.R., York, G.W., O'Hara, T.M., Bohonowych, 

J.E., 2002. Persistent organochlorine pollutants in ringed seals and polar bears 

collected from northern Alaska. Science of The Total Environment 287(1), 45-59. 

Laws, R.M., Taylor, R., 1957. A mass dying of crabeater seals, Lobodon carcinophagus 

(Gray). Journal of Zoology 129(3), 315-324. 

Mamaev, L., Visser, I., Belikov, S., Denikina, N., Harder, T., Goatley, L., Rima, B., 

Edginton, B., Osterhaus, A., Barrett, T., 1996. Canine distemper virus in Lake 

Baikal seals (Phoca sibirica). The Veterinary Record 138, 437-439. 

Mos, L., Morsey, B., Jeffries, S.J., Yunker, M.B., Raverty, S., Guise, S.D., Ross, P.S., 

2006. Chemical and biological pollution contribute to the immunological profiles 

of free‐ranging harbor seals. Environmental Toxicology and Chemistry 25(12), 

3110-3117. 



xv 
 

Ng, T.F., Wheeler, E., Greig, D., Waltzek, T.B., Gulland, F., Breitbart, M., 2011. 

Metagenomic identification of a novel anellovirus in Pacific harbor seal (Phoca 

vitulina richardsii) lung samples and its detection in samples from multiple years. 

J Gen Virol 92(Pt 6), 1318-1323. 

Osterhaus, A., Groen, J., Spijkers, H., Broeders, H., UytdeHaag, F., de Vries, P., 

Teppema, J., Visser, I., Van de Bildt, M., Vedder, E., 1990. Mass mortality in 

seals caused by a newly discovered virus-like morbillivirus. Veterinary 

microbiology 23(1-4), 343-350. 

Osterhaus, A., Yang, H., Spijkers, H., Groen, J., Teppema, J., Van Steenis, G., 1985. The 

isolation and partial characterization of a highly pathogenic herpesvirus from the 

harbor seal (Phoca vitulina). Arch Virol 86(3), 239-251. 

Rivera, R., Robles-Sikisaka, R., Hoffman, E.M., Stacy, B.A., Jensen, E.D., Nollens, H.H., 

Wellehan, J.F., 2012. Characterization of a novel papillomavirus species (ZcPV1) 

from two California sea lions (Zalophus californianus). Veterinary microbiology 

155(2), 257-266. 

Ross, P.S., Vos, J.G., Osterhaus, A., 2003. The immune system, environmental 

contaminants and virus-associated mass mortalities among pinnipeds. Toxicology 

of Marine Mammals, 534-557. 

Sikorski, A., Dayaram, A., Varsani, A., 2013. Identification of a Novel Circular DNA 

Virus in New Zealand Fur Seal (Arctocephalus forsteri) Fecal Matter. Genome 

Announcements 1(4), e00558-00513. 

Siniff, D., DeMaster, D., Hofman, R., Eberhardt, L., 1977. An analysis of the dynamics 

of a Weddell seal population. Ecological Monographs 47(3), 319-335. 

Stirling, I., 1969. Ecology of the Weddell Seal in McMurdo Sound, Antarctica. Ecology 

50(4), 573-586. 

Testa, J.W., Siniff, D.B., 1987. Population dynamics of Weddell Seals (Leptonychotes 

weddellii) in McMurdo Sound, Antarctica. Ecological Monographs 57(2), 149-

165. 

Testa, J.W., Siniff, D.B., Croxall, J.P., Burton, H.R., 1990. A Comparison of 

Reproductive Parameters Among Three Populations of Weddell Seals 

(Leptonychotes weddellii). Journal of Animal Ecology 59(3), 1165-1175. 

Van Doorslaer, K., Ruoppolo, V., Schmidt, A., Lescroël, A., Jongsomjit, D., Elrod, M., 

Kraberger, S., Stainton, D., Dugger, K.M., Ballard, G., 2017. Unique genome 



xvi 
 

organization of non-mammalian papillomaviruses provides insights into the 

evolution of viral early proteins. Virus Evolution 3(2). 

Varsani, A., Frankfurter, G., Stainton, D., Male, M.F., Kraberger, S., Burns, J.M., 2017. 

Identification of a polyomavirus in Weddell seal (Leptonychotes weddellii) from 

the Ross Sea (Antarctica). Arch Virol 162(5), 1403-1407. 

Varsani, A., Kraberger, S., Jennings, S., Porzig, E.L., Julian, L., Massaro, M., Pollard, A., 

Ballard, G., Ainley, D.G., 2014. A novel papillomavirus in Adelie penguin 

(Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. 

Journal of General Virology 95(6), 1352-1365. 

Varsani, A., van der Walt, E., Heath, L., Rybicki, E.P., Williamson, A.L., Martin, D.P., 

2006. Evidence of ancient papillomavirus recombination. Journal of General 

Virology 87(9), 2527-2531. 

Wellehan, J.F.X., Rivera, R., Archer, L.L., Benham, C., Muller, J.K., Colegrove, K.M., 

Gulland, F.M.D., St. Leger, J.A., Venn-Watson, S.K., Nollens, H.H., 2011. 

Characterization of California sea lion polyomavirus 1: Expansion of the known 

host range of the Polyomaviridae to Carnivora. Infection, Genetics and Evolution 

11(5), 987-996. 

Wright, E.P., Waugh, L.F., Goldstein, T., Freeman, K.S., Kelly, T.R., Wheeler, E.A., 

Smith, B.R., Gulland, F., 2015. Evaluation of viruses and their association with 

ocular lesions in pinnipeds in rehabilitation. Veterinary ophthalmology 18(s1), 

148-159. 

Zohari, S., Neimanis, A., Harkonen, T., Moraeus, C., Valarcher, J.-F., 2014. Avian 

influenza A (H10N7) virus involvement in mass mortality of harbour seals (Phoca 

vitulina) in Sweden, March through October 2014. Euro Surveill 19(46). 



 
 

Viruses associated with Antarctic 

wildlife: from serology based detection to 

identification of genomes using high 

throughput sequencing 

 

Abstract 

 

The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique 

environment for the existence of organisms. Nonetheless, birds and seals of a variety of 

species inhabit them, particularly during their breeding seasons. Early research on 

Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the 

families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and 

Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels 

(Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that 

polymerase chain reaction-based assays have been used to characterize viruses associated 

with Antarctic animals. Furthermore, it is only during the last five years that full/whole 

genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, 

paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger 

sequencing or high throughput sequencing (HTS) approaches. This review summaries the 

knowledge of animal Antarctic virology and discusses potential future directions with the 

advent of HTS in virus discovery and ecology.  
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1. Introduction 

 

Among Earth’s oceans, those in the Polar Regions are the smallest and most constrained, 

the Arctic Ocean encircled by landmasses and the Southern Ocean by the Antarctic 

Circumpolar Current (ACC). The latter ocean is bounded to its north by the Antarctic 

Polar Front (APF), a well-known faunal barrier, and has a high degree of endemism 

among both vertebrates and invertebrates (e.g. (Briggs, 1995; Eastman, 2013). Owing to 

dramatic annual cycles of heat and light, the productivity of the Southern Ocean is highly 

constrained on a seasonal basis, a characteristic that provides a generally challenging 

environment for the existence of organisms. Moreover, the high latitude Southern Ocean, 

i.e. that portion south of the Southern Boundary of the ACC (SBACC), is covered by sea 

ice for much of the year, in some places the entire year. Most of the birds and seals of a 

variety of species that inhabit that zone are endemic and resident, the most unvarying 

species assemblage found in Southern Hemisphere oceans; only a few migrant species 

augment that assemblage during summer (Ribic and Ainley, 1989). The species 

comprised this assemblage breed either on Antarctic islands (birds) or in the sea ice that 

surrounds the continent (seals). In contrast, waters north of the SBACC host a much more 

speciose, seasonally varying seabird and marine mammal assemblage composed of 

species breeding on low latitude islands bordering the APF (Antarctic and sub-Antarctic) 

as well as seasonal migrants from more temperate regions (e.g. (Ainley et al., 1994; Laws, 

1977a; Laws, 1977b; Ribic and Ainley, 1989; Ribic et al., 2011). In accord with trends of 

diversity varying inversely with latitude, overall diversity of vertebrate species is low in 

the Southern Ocean, especially south of the SBACC, but populations are immense (e.g. 

(Laws, 1977a; Laws, 1977b). 

 

Inhabiting the pack-ice surrounding Antarctica is a unique assemblage of pagophilic 

seals, crabeater (Lobodon carcinophaga), leopard (Hydrurda leptonyx), Ross 

(Ommatophoca rossii) and Weddell seal (Leptonychotes weddellii). Weddell seals 

colonize near-shore fast-ice regions feeding mainly on fish, while other Antarctic seals 

remain year round in the pack-ice composed of individual, often compacted floes. 

Crabeater seals feed principally on krill (Euphausia spp.), and Ross seals mostly on squid. 



3 
 

Unlike the other Antarctic seals, leopard seals are solitary and highly predatory feeding 

on penguins and other seals as well as fish, krill and cephalopods (Siniff, 1981). Southern 

elephant seals (Mirounga leonina) occupy sub-Antarctic islands for breeding, then 

migrate south to Antarctica, some hauling out on land for moulting; Antarctic fur seals 

(Arctocephalus gazella) breed on peri-Antarctic islands, such as Macquarie, South 

Georgia and South Sandwich, as well as islands of the northern Antarctic Peninsula, 

around which they also hunt for krill and fish (Siniff et al., 2008). 

 

Confined to pack-ice affected waters south of the SBACC are the Adélie (Pygoscelis 

adeliae) and emperor (Aptenodytes forsteri) penguins; north of that boundary are three 

other penguin species: gentoo (P. papua), chinstrap (P. antarctica) and macaroni 

(Eudyptes chrysolophus) (Williams, 1995). While mostly distributed to the north, 

populations of chinstrap, gentoo and macaroni penguins breed on islands of the 

northwestern Antarctic Peninsula, overlapping with Adélie penguins. Gentoo penguins 

are distributed as far as temperate waters surrounding the Falkland Islands, while 

macaroni penguins mainly colonize Heard and South Georgia islands in proximity to the 

APF (Trathan et al., 2016). Colonies of king penguins (A. patagonicus), royal penguins 

(E. schlegeli) and rockhopper penguins (E. chrysocome) are found on sub-Antarctic 

islands and do not inhabit the coastal Antarctic continent. Flying birds inhabiting 

Antarctica and sub-Antarctic regions include skuas, petrels, terns, gulls and Albatross 

(Brooke, 2004; Murphy, 1936).  

 

In addition to the two penguins endemic to the sea ice zone are the endemic snow 

(Pagodroma nivea) and Antarctic petrels (Thalassoica antarctica), this pagophilic 

community increased only in summer by a few other flighted seabirds: skuas, albatross 

and a few petrel species. The peri-Antarctic and sub-Antarctic islands, and surrounding 

ice-free ocean, are densely populated by many more petrel and albatross species, with 

sparse inclusion of skuas and larid species (Brooke, 2004; Murphy, 1936). 
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2. Early reports of mass mortality in Antarctic animals 

 

Due to its zoogeographical isolation, introduction of pathogens and parasites to these 

populations of Antarctic wildlife, particularly the endemics of high latitude, may have 

detrimental effects. Understanding these potential effects required a knowledge of the 

entities circulating in the ecosystem. This concern drove interest toward detecting viruses, 

bacteria and parasites among Antarctic animals providing insight to their health. There 

have been a few reported cases of mass mortality where the disease-causing agent was 

undetermined. In 1971, several hundred gentoo penguin chicks at a Signey Island colony, 

South Orkneys, were found dead (MacDonald and Conroy, 1971). Although symptoms 

were described as similar to puffinosis coronavirus infection, no isolation of the disease 

agent was possible (Barbosa and Palacios, 2009). In 1972, about 65% of Adélie penguin 

chicks were reported dead in a colony near Mawson Station. In this case, penguins were 

found face down and apparently unable to walk or stand properly (Kerry et al., 2009). 

The cause of this disease was not determined. The only mass mortality reported in seals 

was the death of over 1500 crabeater seals in a colony around Crown Prince Gustav 

Channel, Antarctic Peninsula in 1955 (Laws and Taylor, 1957). Interestingly, Weddell 

seals in the area were unaffected and while the nature of this disease was unknown, a viral 

infection was suggested. Laws and Taylor (1957) noted that the population of seals in this 

area was almost ten times higher than normal and predicted that this crowding and partial 

starvation likely contributed to the effects of the disease.  

 

3. Viruses associated with Antarctic animals 

 

Only within the last ten years has an increase in knowledge of the viral diversity been 

evident among Antarctic wildlife at a genome level. Early work, beginning in the mid-

1970s, on identifying viruses associated with Antarctic animals relied on serology-based 

assays (Table 1). The research then was particularly focused around detecting pathogens 

posing a risk to animal health due to concerns regarding the impact of increased 

anthropogenic activity, e.g. research, tourism, on birds and marine mammals (Kerry and 
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Riddle, 2009). During the early period of Antarctic virus research, paramyxoviruses, 

orthomyxoviruses, birnaviruses, herpesviruses and flaviviruses were serologically 

detected (Table 1, Figure 1). Subsequently, between 2000 and 2010, probe based assays 

using polymerase chain reaction (PCR) were used to detect paramyxoviruses, 

orthomyxoviruses and a poxvirus (Table 2, Figure 1). Finally, in the last decade, 

advancements in high throughput sequencing (HTS) approaches are beginning to have an 

impact on our knowledge of Antarctic animal virology. For example, in the last five years 

using viral metagenomic based approaches with HTS, various novel viruses have been 

identified and characterized at a genomic level (Table 2, Figure 1). These include 

adenoviruses, anelloviruses, orthomyxoviruses, papillomaviruses, polyomaviruses and 

paramyxoviruses. 

  



6 
 

Table 1: Summary of Antarctic bird- and mammal-associated viruses detected through serological approaches.  
  

Virus taxonomy 
  

 Notes 
ID Order family genus Virus Host  Method Sample Location Year of 

collection 
Reference 

1 Mononegavirales Paramyxoviridae Avulavirus Avian paramyxovirus Adelie penguins 
(Pygoscelis adeliae) 

Hemagglutination-inhibition, 
immunodiffusion tests, 
morphology 

2/42 serum samples 
with antibodies to 
NDV, cloacal swabs 

Wilkes base - (Morgan and 
Westbury, 1981) 

2      Hemagglutination-inhibition, 
immunodiffusion tests, 
morphology 

serum, 2 APMV 
viruses isolated 
from 550 cloacal 
swabs 

Peterson Island, 
Midgley Island, 
Shirley Island, 
Cameron Island, 
d'Urville (casey 
station) 

- (Morgan and 
Westbury, 1981) 

3      Virus isolation, 
Haemagglutination test 

Serum samples and 
cloacal swabs 

Vestfold Hills December 1981 (Morgan and 
Westbury, 1988) 

4      Indirect ELISA, electron 
microscopy 

Cloacal swab, 
serum 

Ross Island 1978 (Austin and Webster, 
1993) 

5     Royal penguins  
(Eudyptes chrysolophus) 

Hemagglutination-inhibition, 
immunodiffusion tests, 
morphology 

Cloacal samples Macquarie Island - (Morgan et al., 1981) 

5     King penguin  
(Aptenodytes patagonicus) 

Hemagglutination-inhibition, 
immunodiffusion tests, 
morphology 

Cloaca samples Macquarie Island - (Morgan et al., 1981) 

7     South Polar skua  
(Stercorarius maccormicki) 

Indirect ELISA, electron 
microscopy 

Serum Ross Island 1978, 1986 (Austin and Webster, 
1993) 

8     
 

Haemagglutination-inhibition 
test 

Serum samples and 
cloacal swabs 

Davis station November / 
December 1999 

(Miller et al., 2008) 

9   Morbillivirus Canine distemper 
virus 

Leopard seal  
(Hydrurda leptonyx) 

CDV-like antibodies detected 
through microneutralization 
test using two CDV strains 
and a phocine distemper 
virus isolate 

2/3 serum samples 
tested positive 

Antarctic 
peninsula 

1989 (Bengtson et al., 
1991) 

10    
 

Crabeater seal  
(Lobodon carcinophaga) 

CDV-like antibodies detected 
through microneutralization 
test using two CDV strains 
and a phocine distemper 
virus isolate 

35% serum samples 
tested positive for 
CDV 

Antarctic 
peninsula 

January / March 
1989 

(Bengtson et al., 
1991) 

11 Unassigned Orthomyxoviridae Influenzavirus Influenza A virus Adelie penguins  
(Pygoscelis adeliae) 

Hemagglutination-inhibition, 
immunodiffusion tests 

Serum Peterson Island 
(Casey) 

- (Morgan et al., 1981) 

12      Hemagglutination-inhibition, 
Neuraminidase-inhibition 
tests 

Serum Ross Island 1978 (Austin and Webster, 
1993) 

13      Hemagglutination-inhibition 
test against H1N1, H3N2, 
H5N1, and H7N2 antigens  

Serum Hope Bay December-March, 
1998, 2001, and 
2002 

(Baumeister et al., 
2004) 
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14     South Polar skua  
(Stercorarius maccormicki) 

Indirect ELISA, 
Hemagglutination-inhibition 
tests 

Serum Ross Island 1978, 1986 (Austin and Webster, 
1993) 

15      Capture ELISA Serum and cloacal 
swabs 

Davis station November / 
December 1999 

(Miller et al., 2008) 

16      Hemagglutination inhibition 
test against H1N1, H3N2, 
H5N1, and H7N2 antigens  

Serum Potter peninsula 
and Hope Bay 

December-March, 
1998, 2001, and 
2002 

(Baumeister et al., 
2004) 

17     Chinstrap penguins  
(Pygoscelis antarctica) 

Hemagglutination inhibition 
test against H1N1, H3N2, 
H5N1, and H7N2 antigens  

Serum Potter peninsula December-March, 
1998, 2001, and 
2002 

(Baumeister et al., 
2004) 

18     Gentoo penguins  
(Pygoscelis papua) 

Hemagglutination inhibition 
test against H1N1, H3N2, 
H5N1, and H7N2 antigens  

Serum Potter peninsula December-March, 
1998, 2001, and 
2002 

(Baumeister et al., 
2004) 

19     
 

Influenzavirus type A virus 
antibody ELISA kit 

 
Bird Island  1996 

 

20     Giant petrel  
(Macronectes giganteus)  

Hemagglutination inhibition 
test against H1N1, H3N2, 
H5N1, and H7N2 antigens  

Serum Potter peninsula 
and Harmony 
peninsula 

December-March, 
1998, 2001, and 
2002 

(Baumeister et al., 
2004) 

21 
 

Birnaviridae Avibirnavirus Infectious bursal 
disease virus  

Adelie penguins  
(Pygoscelis adeliae) 

Virus neutralization tests, 
IBDV serotype 1 and 2 
antibodies 

High titer of 
neutralizing 
antibodies detected 
in 2.6% or 133 
penguins 

Mawson station 1995/96 summer (Gardner et al., 1997) 

22     
 

Virus neutralization tests to 
measure antibody titers to 
IBDV serotype 1 

Seroprevalence 
7.7%, no significant 
difference between 
locations or years. 
Highly significant 
titres were obtained 
from 1.8% of birds 

Mawson coast, 
Davis Coast, 
Terra Nova Bay 

November- 
February 1996-
2002 

(Watts et al., 2009) 

23     Emperor penguin  
(Aptenodytes forsteri) 

Virus neutralization tests, 
IBDV serotype 1 and 2 
antibodies 

High titer of 
neutralizing 
antibodies detected 
in 65.4% of 53 
penguins 

Mawson station 1995/96 summer (Gardner et al., 1997) 

24     
 

Virus neutralization tests to 
measure antibody titers to 
IBDV serotype 1 

 
Auster Rookery, 
Amanda Bay 
rookery, Cape 
Washington 
rookery 

November - 
February 1996-
2001 

(Watts et al., 2009) 

25     King penguin  
(Aptenodytes patagonicus) 

Virus neutralization tests, 
IBDV serotype 1 and 2 
antibodies, cough and 
conjunctivitis clinical signs 

Serum of adults and 
chicks 

sub-Antarctic Iles 
Crozet 

November 1996-
February 1997 

(Gauthier-Clerc et al., 
2002) 

26     South Polar skua  
(Stercorarius maccormicki) 

Antibody neutralization test Serum and cloacal 
swab 

Davis station November/Decem
ber 1999 

(Miller et al., 2008) 
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27     
 

Virus neutralization tests to 
measure antibody titers to 
IBDV serotype 1 

Antibodies detected 
in 11.8% of 
individuals, 
Significant 
difference in 
prevalence between 
sample years 

Vestfolds, Davis 
station 

November- 
February 1999-
2002 

(Watts et al., 2009) 

28 
 

Flaviviridae Flavivirus - South Polar skua  
(Stercorarius maccormicki) 

Capture ELISA Serum samples and 
cloacal swabs 

Davis station November / 
December 1999 

(Miller et al., 2008) 

29 Herpesvirales Herpesviridae Varicellovirus Phocid 
alphaherpesvirus 1 

Ross seal  
(Ommatophoca rossii) 

Indirect ELISA using PhHV-1 
as antigen, serum 
neutralization test 

Serum Queen Maud 
Land 

2001 (Tryland et al., 2012) 

30     Crabeater seal  
(Lobodon carcinophaga) 

Indirect ELISA using PhHV-1 
as antigen, serum 
neutralization test 

Serum Queen Maud 
Land 

2001 (Tryland et al., 2012) 

31      Testing for neutralizing 
antibodies against phocine, 
feline and canine herspevirus 
using either 
microneutralization or by 
neutralizing peroxidase-
linked antibody assay 

Serum Weddell Sea 1990 (Harder et al., 1991) 

32     Weddell seal  
(Leptonychotes weddellii) 

Indirect ELISA using PhHV-1 
as antigen, serum 
neutralization test (SNT) 

Serum Queen Maud 
Land 

2001 (Tryland et al., 2012) 

33     
 

Testing for neutralizing 
antibodies against phocine, 
feline and canine herspevirus 
using either 
microneutralization or by 
neutralizing peroxidase-
linked antibody assay 

Serum Weddell Sea 1990 (Harder et al., 1991; 
Stenvers et al., 1992) 

34 
   

 Antarctic fur seal  
(Arctocephalus gazelle) 

Indirect ELISA using PhHV-1 
as antigen  

Serum Bouvet Island 2000-2001,2001-
2002 

(Tryland et al., 2012) 

CDV: Canine distemper virus 
ELISA: Enzyme-linked immunosorbent assay 
IBDV: Infectious bursal disease virus
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Table 2: Summary of Antarctic bird- and mammal-associated viruses identified through sequencing based approaches, including respective 

accession numbers of the partial and full genome sequences.  

 Virus taxonomy  Notes 
ID Family Genus Species 

& virus 
Host Method Sample type Location Year of 

collection 
Accession # Reference 

A Togaviridae Alphavirus Southern elephant seal 
virus 
[Southern elephant seal 
virus (SES virus)] 

Southern elephant 
seals  
(Mirounga leonina) 

Virus cultured in BHK-21 cells 
virus from blood sucking lice 
Lepidophthirus macrorhini and 
used in viral neutralization assay 
for serology. Negative stain 
electron microscopy. RT-PCR 
and Sanger sequencing of 
capsid protein gene. 

Lepidophthirus 
macrorhini and 
serum from 
southern elephant 
seal virus 

Macquarie 
Island 

- AF315122 
HM147990 

(Forrester et al., 
2012; La Linn et 
al., 2001) 

B Paramyxoviridae Avulavirus Avian avulavirus 1 
[New castle disease 
virus (NDV)] 

Adélie penguins  
(Pygoscelis adeliae) 

RT-PCR and real-time PCR 
targeting F gene of NDV, virus 
culture, haemagglutination test 
using antigen against B1 NDV 
strain, Sanger sequencing. 

Cloacal/tracheal 
swabs and serum 
samples 

King George 
Island 

2006 HM143848 –  
HM143850 

(Thomazelli et 
al., 2010) 

C   Avian avulavirus 10  
[Avian paramyxovirus 
10 (APMV10)] 

Rockhopper penguins 
(Eudyptes chrysocome) 

Real-time RT-PCR, 
hemagglutination assay, 
binaxNOW influenza A&B test, 
hemagglutination inhibition 
assay, ELISA, electron 
microscopy, Sanger sequencing. 

Cloacal/tracheal 
swabs and serum 
samples 

Falkland Islands 2007 HM147142,  
HM755886 –  
HM755888  
(updated following the 
publication of Goraichuk 
et al. 2017) 

(Miller et al., 
2010) 

D   
 

Rockhopper penguins  
(Eudyptes chrysocome) 

Complete genome sequencing 
using Illumina and Sanger 
sequencing. 

Cloacal/tracheal 
swabs and serum 
samples 

Falkland Islands 2007 HM147142,  
HM755886 - HM755888 

(Goraichuk et 
al., 2017) 

E   Unclassified 
[Avian paramyxovirus 
15, 16, 17 (APMV15, 
APMV16, APMV17)] 

Gentoo penguins  
(Pygoscelis papua) 

Hemagglutination assay, RT-
PCR and Sanger sequencing. 

Virus isolated from 
12 cloacal swabs, 
5 confirmed by 
sequencing 

Kopaitic Island 2014 - 
2016 

KY452442 - KY452444 (Neira et al., 
2017) 

F Orthomyxoviridae Influenzavirus A Influenzavirus A 
[Avian Influenza A virus 
H5N5] 

Chinstrap penguins  
(Pygoscelis antarctica) 

RT-PCR, HTS, ELISA using 
nucleoprotein, hemagglutination 
assay.  

Cloacal/tracheal 
swabs and serum 
samples 

Antarctic 
peninsula 

2015 GISAID #s 
[EPI774530-EPI774536, 
EPI774538- 
EPI774539];  
[EPI774527- EPI774529] 

(Hurt et al., 
2016) 

G   Influenzavirus A 
[Avian influenza A virus 
H11N2] 

Adélie penguins  
(Pygoscelis adeliae) 

RT-PCR, virus culture, ELISA, 
whole genome Sanger 
sequencing. 

Cloacal/tracheal 
swabs and serum 
samples 

Rada 
Covadonga, 
Antarctic 
Peninsula and 
King George 
Island 

2013 KJ729348 –  
KJ729379 

(Hurt et al., 
2014) 

H Papillomaviridae Treisepsilonpapillomavirus Treisetapapillomavirus 
1 
[Pygoscelis adeliae 
papillomavirus 1] 

Adélie penguins  
(Pygoscelis adeliae) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Faeces  Cape Crozier, 
Ross Island 

2012 / 
2013 

KJ173785 (Varsani et al., 
2014) 
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I   Unclassified 
[Pygoscelis adeliae 
papillomavirus 2] 

Adélie penguins  
(Pygoscelis adeliae) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Cloacal swab Cape Crozier, 
Ross Island 

2014 MF168943 (Van Doorslaer 
et al., 2017) 

J Polyomaviridae Gammapolyomavirus 
 

Pygoscelis adeliae 
polyomavirus 1 
[Adelie penguin 
polyomavirus (AdPyV)] 

Adélie penguins  
(Pygoscelis adeliae) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Faeces  Cape Royds, 
Ross Island  

2012 / 
2013 

KP033140 (Varsani et al., 
2015) 

K  unassigned Trematomus pennellii 
polyomavirus 1  
[Sharp-spined 
notothenia 
polyomavirus 
(SspPyV)] 

Sharp spined notothen  
(Trematomus pennellii) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Stomach and liver 
samples 

Ross Sea 2012 / 
2013 

KP768176 (Buck et al., 
2016) 

L  Betapolyomavirus Leptonychotes weddellii 
polyomavirus 1 
[Weddell seal 
polyomavirus (WsPyV)] 

Weddell seal  
(Leptonychotes 
weddellii) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Kidney Ross Sea 2014 KX533457 (Varsani et al., 
2017) 

M Adenoviridae Siadenovirus Penguin siadenovirus A 
[Chinstrap penguin 
adenovirus (CSPAdV)] 

Chinstrap penguins  
(Pygoscelis antarctica) 

PCR of protein VI and capsid 
protein hexon genes. 

Lung, liver, 
kidney, heart, 
intestine, trachea 
samples 

King George 
Island 

2009/2010 KC593379 - KC593386 (Lee et al., 
2014) 

N   Penguin siadenovirus A 
[Chinstrap penguin 
adenovirus  (CSPAdV)] 

Chinstrap penguins  
(Pygoscelis antarctica) 

RACE PCR, Sanger sequencing 
of whole genome. 

Lung, liver, 
kidney, heart, 
intestine, trachea 
samples 

King George 
Island 

2008-2013 KP144329- KP144330 (Lee et al., 
2016) 

O   Penguin siadenovirus A 
 [Gentoo penguin 
adenvirus (GPAdV)] 

Gentoo penguins  
(Pygoscelis papua) 

RACE PCR, Sanger sequencing 
of whole genome. 

lung, liver, kidney, 
heart, intestine, 
trachea, feces 

King George 
Island 

2008-2013 KP279746 - KP279747 (Lee et al., 
2016) 

P   Skua siadenovirus A 
[South polar skua 
adenovirus 1 (SPSAdV 
1)] 

South Polar skua  
(Stercorarius 
maccormicki) 

Nested PCR, RACE PCR, 
Sanger sequencing of whole 
genome. 

kidney King George 
Island 

2007-2009 HM585353 (full genome) 
JM585354-HM585358 

(Park et al., 
2012) 

Q Poxviridae  Parapoxvirus Unassigned 
[Seal poxvirus] 

Weddell seal  
(Leptonychotes 
weddellii) 

Electron microscopy, PCR of 
B2L gene, sequencing of B2L 
gene. 

Neck skin lesion 
from a single seal 

Queen Maud 
Land 

2001 AJ622900 (Tryland et al., 
2005) 

R Anelloviridae unassigned Unassigned 
[Torque teno 
Leptonychotes weddelli 
virus 1,-2(TTLwV1 & 
TTLwV2)] 

Weddell seal  
(Leptonychotes 
weddellii) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Vaginal, nasal and 
faecal samples 

Ross Sea November-
February 
2014-2015 

KY246479 – KY246627 (Fahsbender et 
al., 2017) 

S   Unassigned [Torque 
teno Leptonychotes 
weddelli virus 1 
(TTLwV1) 

South Polar skua 
(Stercorarius 
maccormicki) 

HTS-informed approach, 
genome recovered by abutting 
primers, cloned and Sanger 
sequenced. 

Faecal sample Ross Sea November / 
December  
2014 

KY246476 - KY246478 (Fahsbender et 
al., 2017) 

cDNA: complementary DNA 
ELISA: Enzyme-linked immunosorbent assay 
PCR: Polymerase chain reaction 
HTS: High throughput sequencing 
RACE: Rapid Amplification of cDNA ends 
RT-PCR: Reverse transcription PCR
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Figure 1: Distribution of viruses identified among populations of animals of the Antarctic 

and high latitude sub-Antarctic. Colored circles denote the method of viral identification. 

Purple indicates serology based identification, number inside circle corresponding to 

details provided in Table 1. Red circle indicates sequence based identification, letter 

inside circle corresponding to details provided in Table 2. 
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3.1 Positive sense RNA viruses 

3.1.1 Flaviviridae 

 

Flaviviridae is a family of enveloped positive sense RNA viruses with four genera: 

Flavivirus, Hepacivirus, Pegivirus and Pestivirus. Their genomes range in length from 

8.9-13 kb (Simmonds et al., 2017b). While no genomic information is available for 

flaviviruses circulating in Antarctic animals, neutralizing antibodies to a flavivirus were 

detected in the serum of South Polar skuas (Stercorarius maccormicki) around Davis 

station, East Antarctica (Miller et al., 2008). As lower latitude seabirds are infested with 

ticks (e.g. (Lee and Baust, 1987), which are known to carry flaviviruses, this may indicate 

the transmission of tick-borne flaviviruses to seabirds, especially given the fact that a 

flavivirus was isolated from seabird ticks (Ixodes uriae) infecting king penguins on 

Macquarie Island (Major et al., 2009).   

 

3.1.2 Togaviridae 

 

The family Togaviridae consist of enveloped positive sense RNA viruses with a genome 

length of about 11-12 kb in length. Togaviruses are classified into two genera, Alphavirus 

and Rubivirus (Power et al., 2017). While the human pathogenic virus, rubella virus, is 

the only known member of the single species in the genus Rubivirus to date (species 

Rubella virus), all animal togaviruses are classified as alphaviruses (Power et al., 2017). 

The life cycle of alphaviruses requires an arthropod vector, either a mosquito or tick, for 

transmission to their vertebrate host. The first instance of alphaviruses found in marine 

mammals was shown in southern elephant seals of Macquarie Island. Initially the seal 

alphavirus was isolated from the blood-sucking louse (Lepidophthirus macrorhini) that 

is widespread among southern elephant seals. However, a high seroprevalence of 

antibodies against the southern elephant seal alphavirus strongly indicated its 

transmission from lice to seals (La Linn et al., 2001). The full genome of this alphavirus 

(Southern elephant seal virus) was determined in a later study (Forrester et al., 2012).  



13 
 

 

3.2 Negative sense RNA viruses 

3.2.1 Orthomyxoviridae  

 

Viruses in the family Orthomyxoviridae have enveloped, negative sense RNA genomes 

that consist of 6-8 segments. Seven genera are established in this family (Influenzavirus 

A, Influenazavirus B, Influenzavirus C, Influenzavirus D, Isavirus, Quaranjavirus and 

Thogotovirus) (McCauley et al., 2011) . Influenza A virus is the only species in the genus 

Influenzavirus A, consisting of several pathogenic strains infecting humans, horses, pigs, 

whales, seals, birds and mink(McCauley et al., 2011). Influenza A virus strains are 

transmissible to humans and have caused worldwide endemics. This zoonotic nature of 

influenza viruses has led to extensive research on Influenza A virus. Antarctica continues 

to provide an interesting environment to study Influenza A viruses, especially in the case 

of migratory birds. For example, the South Polar skuas that breed on the Antarctic 

continent in the summer but move north, well into the Northern Hemisphere during the 

non-breeding season (Weimerskirch et al., 2015), thus act as potential vectors bringing in 

new variants and reassortants to Antarctica during each breeding season. 

 

The majority of studies screening for influenza have used hemagglutination-inhibition 

assays to detect antibodies against several common strains of avian influenza virus 

circulating among Antarctic animals. Antarctic influenza virus research carried out 

between 1978 and 2002, detected antibodies against several strains of avian influenza 

virus in South Polar skuas, southern giant petrels (Macronectes giganteus), and Adélie, 

chinstrap and gentoo penguins from various locations around the Antarctic Peninsula, 

Ross Island and East Antarctica (Table 1, Figure 1) (Austin and Webster, 1993; 

Baumeister et al., 2004; Miller et al., 2008; Morgan and Westbury, 1981). Such research 

has indicated that influenza virus is highly widespread and prevalent in Antarctic birds. 

However, the pathogenicity of avian influenza virus in these populations is unknown. No 

genomic information for Influenza A viruses in Antarctic birds was available until Hurt 

et al. (2014) used HTS approaches to identify influenza A virus (H11N2) in Adélie 
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penguins around the Antarctic Peninsula. A following study around the same area later 

identified the strain H5N5 among chinstrap penguins (Hurt et al., 2016).  

 

None of the early studies have detected antibodies against influenza A virus strains in 

Antarctic pinnipeds, although several studies have looked at crabeater and Weddell seals 

(Austin and Webster, 1993; McFarlane, 2009).  

 

3.2.2 Paramyxoviridae 

 

Paramyxoviridae is a family of enveloped, non-segmented negative sense RNA viruses 

in the order Mononegavirales with genomes of ~15 kb. Paramyxoviruses are divided into 

seven genera: Aquaparamyxovirus, Ferlavirus, Respirovirus, Morbillivirus, Rubulavirus, 

Henipavirus, and Avulavirus. The genus Avulavirus includes of 13 formally classified 

species of avian paramyxoviruses including avian paramyxovirus 1 (AVPM-1) (Afonso 

et al., 2016). The genus Morbillivirus contains paramyxoviruses infecting mammals.  

 

The majority of research on paramyxoviruses in Antarctica has been based on serological 

studies using haemagglutination inhibition assay to detect antibodies against 

paramyxoviruses in serum samples (Table 1). A high prevalence of antibodies to NDV in 

South Polar skuas  has been reported (Miller et al., 2010), whereas low incidences have 

been found in Adélie and royal penguins around coastal Antarctica and Macquarie Island 

(Table 1, Figure 1) (Morgan and Westbury, 1981; Morgan and Westbury, 1988). So far, 

king, gentoo and rockhopper penguin colonies on Macquarie Island have tested negative 

for AVPM-1 antibodies (Morgan et al., 1981) .  

 

Despite serology-based knowledge of these viruses among Antarctic birds, our 

understanding of their diversity is extremely limited due to the lack of available genomic 

data. Partial genome sequences of NDV in Adélie penguins has been obtained using HTS 
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approaches (Thomazelli et al., 2010). Most recently, complete genome sequences of avian 

paramyxovirus 10 (APMV 10) and three novel avulaviruses (APMV 11, 12, 13) have 

been determined from rockhopper penguins on the Falkland Islands and gentoo penguins 

sampled on Kopaitic Island, northern tip of the Antarctic Peninsula (Table 1, Figure 1) 

(Goraichuk et al., 2017; Neira et al., 2017).  

 

With the use of sled dogs (Canis familiaris) during the early Antarctic expeditions, 

concern of morbillivirus infection among Antarctic pinnipeds drove research in 

monitoring for this virus in seal populations. Antibodies to canine distemper virus (CDV) 

have been reported in leopard and crabeater seals around the Antarctic Peninsula 

(Bengtson et al., 1991) and phocine distemper virus (PDV) in Weddell seals from 

Vestfold Hills, East Antarctica (McFarlane, 2009). With the exception of crabeater seals, 

both of these studies revealed low antibody titers against CDV and PDV. Several other 

studies looking at morbilliviruses in Antarctic seals have failed to detect any antibodies 

against these viruses (Harder et al., 1991; Osterhaus et al., 1988; Stenvers et al., 1992; 

Yochem et al., 2009). This may suggest morbilliviruses are not persistent in Antarctic 

seals or perhaps there are diverse morbilliviruses circulating amongst the pinnipeds that 

cannot be detected using conventional serology assays but likely to be identified using 

HTS approaches. Unlike avian paramyxoviruses, no genomic data are available for 

morbilliviruses from Antarctic seals and therefore impossible to tell if there was a 

spillover event from the canines to the pinnipeds. Sled dogs are no longer allowed in 

Antarctica. 

 

3.3 Double stranded RNA viruses 

3.3.1 Birnaviridae  

 

Viruses in the family Birnaviridae have non-enveloped capsids that encapsidate two 

linear double stranded segments of RNA, each ~2.3-3 kb in length. Four genera have been 

established in this family: Avibirnavirus, Aquabirnavirus, Blosnavirus and 

Entomobirnavirus (Delmas et al., 2011). Infectious bursal disease virus is the only 
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characterized virus belonging to genus Avibirnavirus. Since its initial identification as 

virus responsible for a highly infectious disease among chickens, infectious bursal disease 

virus (IBDV) has widely been isolated from other birds in the poultry industry including 

ducks and turkeys, however, disease has only been identified in chickens. Between 1995-

2002 neutralization assays identified high titers of antibodies against IBDV in Adélie 

penguin at colonies around Mawson and  Davis stations, and Terra Nova Bay, East 

Antarctica; and emperor penguin at the Auster, Amanda and Cape Washington colonies, 

also in East Antarctica (Table 1, Figure 1) (Gardner et al., 1997; Watts et al., 2009). 

Highest seroprevalence has been detected among emperor penguin colonies with no 

difference between sampled locations or years (Watts et al., 2009). South Polar skuas 

around Vestold Hills and Davis Station, East Antarctica, have also had high titer of 

antibodies against IBDV (Miller et al., 2008; Watts et al., 2009), however, a significant 

difference in seroprevalence between sampling periods during 1999-2002 was observed. 

A low titer and prevalence of antibodies to IBDV has been detected in king penguins 

around Possession Island, among the Crozet Islands along the APF (Gauthier-Clerc et al., 

2002). High-titers of IBDV neutralizing antibodies detected in distant populations of 

penguins and South Polar skua around Antarctica suggests it is unlikely IBDV was 

introduced through disposal of chicken products around Mawson Station as previously 

suggested by Gardner et al. (2007). Given that IBDV infection has been commonly 

detected in other wild avian populations (Hollmén et al., 2000; Kasanga et al., 2008; 

Ogawa et al., 1998), this virus may be naturally occurring among Antarctic birds (Watts 

et al., 2009). It is worth noting, however, that IBDV has yet to be isolated from Antarctic 

birds despite several studies detecting neutralizing antibodies. Therefore, it is difficult to 

address any questions about the diversity, evolution or transmission of this virus among 

Antarctic birds.  

 

3.4 Double stranded DNA viruses 

3.4.1 Adenoviridae 

 

Adenoviruses are a family of non-enveloped double stranded DNA viruses with a genome 

length of ~26-45 kb. The diversification of these viruses is thought to have occurred 
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through several animal hosts including mammals, reptiles, birds, fish and amphibians. 

The family Adenoviridae has been divided into five genera: Mastadenovirus, 

Aviadenovirus, Atadenovirus, Siadenovirus, Ichtadenovirus (Harrach et al., 2011).  

 

Most adenovirus research has focused on the implications of human-associated 

adenoviruses, likely due to the known clinical significance in causing respiratory disease 

and gastroenteritis. However, the first adenoviruses from Antarctic animals have only 

recently been identified among South Polar skua (Skua siadenovirus A) (Park et al., 2012), 

as well as chinstrap, Adélie and gentoo penguins (Penguin siadenovirus A) (Table 2, 

Figure 1) (Lee et al., 2014; Lee et al., 2016). This provides important insight to monitoring 

penguin health in Antarctica, as adenoviruses have been known to cause severe disease 

among animals.  

 

Whole genomes for these adenoviruses were confirmed using HTS approaches and 

subsequent phylogenetic analyses of the genomic sequences provide support for the 

classification of the South Polar skua and penguin adenoviruses in the genus 

Siadenovirus. Despite this classification, penguin adenovirus genomes are unique in that 

they lack a putative sialidase gene that is characteristic of other genomes in this genus 

(Lee et al., 2016).  

 

It is likely that there exits adenoviruses associated with Antarctic seals based on the fact 

that adenoviruses has been identified in California sea lion (Zalophus californianus),  Fur 

seals (Arctocephalus spp.) and South American sea lion (Otaria flavescens) (Chiappetta 

et al., 2017; Cortes-Hinojosa et al., 2016; Cortes-Hinojosa et al., 2015; Goldstein et al., 

2011; Inoshima et al., 2013).  
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3.4.2 Herpesviridae 

 

Herpesviridae is a large family of enveloped viruses with a linear, double stranded DNA 

genome about 120-240 kb in length. This family has been divided into three subfamilies 

(Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae). Herpesviruses 

belonging to two species, based on partial genome sequencing of conserved regions, have 

been found among pinnipeds in the Northern Hemisphere (Harder et al., 1996): phocid 

alphaherpesvirus-1 (PhHV-1, species Phocid alphaherpesvirus 1) belonging to the 

Varicellovirus genus of the Alphaherpesvirinae subfamily and phocid 

gammaherpesvirus-2 (PhHV-2, Phocid gammaherpesvirus 2) belonging to the 

Gammaherpesvirinae subfamily. Both PhHV-1 and PhHV-2 have been identified in 

several non-Antarctic pinniped species around the world from free-ranging populations 

as well as captive populations in zoos and aquaria (Bellehumeur et al., 2016; Goldstein et 

al., 2004; Osterhaus et al., 1985).  

 

Among Antarctic pinnipeds, herpesvirus has not been confirmed by molecular methods, 

however, several studies over the years have shown high levels of PhHV-1 neutralizing 

antibodies in Antarctic fur seals among sub-Antarctic islands, and Ross, Weddell and 

crabeater seals off East Antarctica (Table 1, Figure 1) (Harder et al., 1991; Stenvers et al., 

1992; Tryland et al., 2012). Thus, it is highly likely that herpesvirus is widespread and 

persistent among pinnipeds. However, genomic data is required to confirm this virus 

among Antarctic pinnipeds as the serological data has only indicated infection of a 

herpesvirus antigenically similar to PhHV-1. 

 

3.4.3 Papillomaviridae 

 

Papillomaviridae is a large family of non- enveloped, circular, double stranded DNA 

viruses with ~7-8 kb genomes and are known to infect skin, squamous and mucosal 

epithelial cells. All papillomavirus genomes have a very similar organization that can be 
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divided into three regions encoding replication associated and regulatory proteins, 

structural proteins, and a long control region. While research on human papillomaviruses 

has been extensive due its clinical significance, relatively few studies have looked at non-

human papillomaviruses. Papillomaviruses are found in a range of hosts including 

mammals, birds, reptiles and fish. It is a well-supported hypothesis that they have co-

evolved with their hosts given their diversity and host specificity, with supporting 

phylogenetic analyses that track diversification of papillomaviruses to the evolution of 

their host (Bernard et al., 2010; de Villiers et al., 2004).  

 

Two novel papillomavirus, Pygoscelis adeliae papillomavirus 1, -2 (PaPV1, -2), was 

recently identified in Antarctica from feces and cloacal swab of Adélie penguins at Cape 

Crozier, Ross Island (Table 2, Figure 1) using a HTS-informed approach (Van Doorslaer 

et al., 2017; Varsani et al., 2014). PaPV1 and -2 are related to other avian 

papillomaviruses, PaPV1 has been assigned to the genus Treisepsilonpapillomavirus 

whereas PaPV2 is currently unclassified and shares ~64% genome-wide pairwise identity 

with PaPV1. These PaPVs are the first papillomaviruses to be discovered in Antarctic 

animals and are part of the few known avian papillomaviruses.  

 

3.4.4 Polyomaviridae 

 

Polyomaviruses represent a family of non-enveloped, circular, double-stranded DNA 

viruses with a genome length of 5-6 kb, and infect a range of hosts including mammals, 

birds, reptiles and fish. This family has four genera: Alphapolyomavirus, 

Betapolyomavirus, Deltapolyomavirus, and Gammapolyomavirus with three species 

unassigned to any of these (Moens et al., 2017; Polyomaviridae Study Group of the 

International Committee on Taxonomy of et al., 2016). Phylogenetic analyses have shown 

that avian polyomaviruses cluster together and have been classified under the genus 

Gammapolyomavirus. Avian polyomaviruses are known to cause inflammatory disease 

in birds, and can lead to disease of the skin and feathers and mortality in some species. 

The first polyomavirus identified in Antarctica was found in the feces of Adélie penguins 
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at Cape Royds, Ross Island (Varsani et al., 2015) using a HTS-informed approach. 

Analysis of this genome shows that it falls in the avian polyomavirus lineage, representing 

a novel species (Pygoscelis adeliae polyomavirus 1).  

 

Following this, two other polyomaviruses have been identified from Antarctic animals: a 

polyomavirus from the stomach of a sharp-spined notothen (Trematomus pennellii) (Buck 

et al., 2016) and most recently from the kidney of a Weddell seal, both sampled in the 

Ross Sea (Table 2, Figure 1) (Varsani et al., 2017). The sharp-spined notothen 

polyomavirus is one of the three polyomaviruses to be identified associated with fish and 

all three were identified using HTS approaches (Buck et al., 2016).  

 

Polyomavirus sequences have been identified in three other pinniped species: once in a 

captive Hawaiian monk seal (Neomonachus schauinslandi) (Cortes-Hinojosa et al., 

2016), in the placenta of one northern fur seal (Callorhinus ursinus) (Duncan et al., 2013) 

from Alaska and a stranded free-ranging California sea lion (Zalophus californianus)  

(Colegrove et al., 2010). However, until recently the genome of California sea lion 

polyomavirus (CSLPyV) was the only confirmed pinniped polyomavirus. The recently 

identified Weddell seal polyomavirus is has been proposed to be classified as the species 

Leptonychotes weddellii polyomavirus 1 

(https://talk.ictvonline.org/files/proposals/animal_dna_viruses_and_retroviruses/m/anim

al_dna_ec_approved/6941). 

 

3.4.5 Poxviridae 

 

Poxviruses are a diverse family of double-stranded DNA viruses with a wide host range 

among vertebrates and arthropods (Skinner et al., 2011). Poxviruses have been 

extensively studied for their clinical significance in causing highly pathogenic disease 

among humans and other animals. While sealpox has yet to be formally classified, studies 

have identified this virus in populations of harbor seals (Phoca vitulina) (Muller et al., 
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2003), gray seals (Halichoerus grypus) (Nettleton et al., 1995), Stellar sea lions 

(Eumetopias jubatus), spotted seals (Phoca largha)  (Bracht et al., 2006), and California 

sea lions (Nollens et al., 2006), causing severe proliferative lesions on the bodies of 

infected individuals. Partial sequencing has indicated seal poxvirus falls under the 

parapoxvirus family of which only four species have been classified.  

 

The only case of poxvirus in Antarctica known to date has been the isolation and detection 

from a skin lesion of a deceased Weddell seal in Queen Maud Land, East Antarctica 

(Table 2, Figure 1) (Tryland et al., 2005). Other Weddell seals in the area were analyzed 

for seal poxvirus, however, all individuals were negative, suggesting poxviruses may not 

prevalent in this population. Partial sequencing of the Weddell seal parapoxvirus shows 

it is closely related to harbor and grey seal poxviruses (Tryland et al., 2005).  

 

Recently a seal parapoxvirus was sequenced using HTS from a skin lesion of a grey seal 

from the Baltic Sea (Gunther et al., 2017). While poxviruses have been identified in 

several avian species, very little is known about their diversity and host range. Using HTS 

technology a novel avipoxvirus genome has been sequenced from an African penguin 

(Spheniscus demersus) (Offerman et al., 2014). It is highly likely that poxviruses will also 

be recovered from Antarctic penguins through HTS.  

 

3.5 Single stranded DNA viruses 

3.5.1 Anelloviridae  

 

Viruses in the family Anelloviridae are non-enveloped, circular single stranded DNA 

viruses with a genome length of about 2-3.9 kb (Biagini et al., 2011). These viruses have 

high sequence variability and are highly prevalent in the environment. Despite their 

ubiquitous nature, the significance of infection and pathogenicity remains unknown. 

While research has focused on their diversity and significance in humans, anelloviruses 

have been identified in non-human primates, domesticated animals, rodents and recently 
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in marine mammals. Analysis of lung tissue from a captive California sea lion showing 

signs of respiratory disease led to discovery of the first  anellovirus among pinnipeds, 

Zalophus californianus anellovirus (ZcAV) (Simpson et al., 2009). Since then several 

novel anellovirus genomes have been recovered in harbor seals (Bodewes et al., 2015; 

Bodewes et al., 2013). In lung samples of deceased  harbor seals along the North 

American Pacific coast anelloviruses were identified over multiple years demonstrating 

the persistence of this infection in the population (Ng et al., 2011). Analyses of sub-

Antarctic (Arctocephalus tropicalis) and South American fur seal (A. australis) feces also 

led to the identification of anellovirus sequences (Kluge et al., 2016).  

 

Anelloviruses circulating in the Antarctic ecosystem have recently been shown following 

detection by HTS and using pairs of abutting primers in the recovery of 152 genomes 

from vaginal, nasal and faecal samples of Weddell seals in the Ross Sea during the 2014-

2015 summer (Fahsbender et al., 2017). Analyses identified two novel anelloviruses, 

torque teno Leptonychotes weddellii virus (TTLwV-1, TTLwV-2). TTLwV-1 was 

additionally identified in South Polar skua faecal samples and it was thought that this was 

as a result of skuas feeding on the placenta and dead carcasses of Weddell seals in the 

area (Fahsbender et al., 2017).  

 

4. Potential vectors of viruses associated with Antarctic wildlife 

 

Both ecto- and endoparasites have been reported among Antarctic animals. While neither 

appear to be detrimental to animal health, these organisms may play a significant role as 

vectors of viruses. Ticks, mites and lice commonly parasitize seals, penguins and other 

Antarctic birds (Gauthier-Clerc et al., 1998; González-Acuña et al., 2013; McFarlane, 

1996). Flaviviruses, orbiviruses, phleboviruses, and nairoviruses have been isolated from 

seabird ticks (Ixodes uriae) associated with king, rockhopper and royal penguins on 

Macquarie Island (Major et al., 2009). A novel alphavirus has also been isolated and 

partially sequenced from lice associated with southern elephant seals of Macquarie Island 

and the high seroprevalence in the southern elephant seal population showed to this virus 
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strongly suggests its transmission by lice (La Linn et al., 2001). Gastrointestinal parasites, 

particularly cestode and nematode species, are commonly found in Antarctic seals and 

penguins. Penguins tend to have a low diversity of parasites and similar profiles have 

been identified among penguins of the same genus (Diaz et al., 2016; Diaz et al., 2013; 

Fonteneau et al., 2011; Kleinertz et al., 2014; Vidal et al., 2012). Of the Antarctic seals, 

gastrointestinal parasites are most prevalent among Weddell and leopard seals.  Given 

that helminth parasites are strongly associated with the diet of the host they infect, this 

likely explains the higher abundance of parasites among Weddell and leopard seals 

compared to other Antarctic seals (McFarlane et al., 2009). The potential for 

endoparasites to transmit viruses to their host has been demonstrated by two genera of 

plant viruses, nepoviruses and tobraviruses, transmitted by nematodes (Hull, 2014). 

While our knowledge of parasites in Antarctic animals remains extremely limited and 

research in this area has been sporadic, developments in molecular technology will 

undoubtedly have a strong impact toward revealing relationships between organisms and 

the movement of viruses in the environment.  

 

Recently, Antarctic penguins have been showing signs of disease of unknown pathology, 

e.g. unexplained incursions of feather loss in Adélie penguins (Grimaldi et al., 2015) in 

the Ross Sea (2011 – 2012) but not the years before or after (personal observation). 

Furthermore, in 2014 observations of an Adélie penguin colony at Hope Bay, Antarctica 

identified two chicks showing patches without feathers in two sub colonies (Barbosa et 

al., 2014). Beak and feather disease virus (family Circoviridae) infection in certain 

psittacines causes feather abnormalities and loss (Pass and Perry, 1984) and hence there 

is a likelihood that feather loss observed in penguins may be attributed to an unknown 

circovirus-like agent.  

 

5. Concluding remarks and future directions 

 

Over the last ten years, viral metagenomics has led to a dramatic increase in viral 

discovery from various environmental and animal samples, for example, Shi et al. (2016) 
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identified ~1400 novel RNA viruses (from over 200 invertebrate species), Brum et al. 

(2015) identified ~5500 distinct dsDNA virus populations (from 43 surface ocean sites 

worldwide as part of the Tara Oceans expedition) and Paez-Espino et al. (2016) identified 

~120000 partial viral genomes sequences (from ~3000 geographically diverse samples) 

using HTS. This together with other studies that have identified large datasets of novel 

viruses using HTS (e.g. (Dayaram et al., 2016; Labonte and Suttle, 2013; Rosario et al., 

2015) has shown: 1) the HTS enabled identification of large numbers of previously 

unknown viruses; 2) we have barely scratched the surface of the viral sequence space and 

thus their diversity; 3) new taxa will need to be created to classify viruses at a rapid rate 

to match the pace of virus discovery. All this has opened up discussions on viral 

classification based on sequence data, either derived from Sanger sequencing or HTS, 

and lead to a consensus statement by Simmonds et al. (2017a) to incorporate these into 

current viral taxonomy.  

 

HTS has been used to a large extent in Antarctic environmental virology to study soil 

(Adriaenssens et al., 2017; Zablocki et al., 2014), lake (Aguirre de Carcer et al., 2016; 

Lopez-Bueno et al., 2015; Lopez-Bueno et al., 2009; Yau et al., 2011) and marine (Brum 

et al., 2017; Miranda et al., 2016) viral ecology. Novel viral genomes from various soils 

and lake samples (Dziewit and Radlinska, 2016; Kerepesi and Grolmusz, 2017; Meiring 

et al., 2012; Swanson et al., 2012; Zawar-Reza et al., 2014) have been determined using 

HTS approaches. In contrast, relatively little is known about viruses associated with 

Antarctic animals and the associated virus ecology despite the advent of HTS. This 

perhaps can be attributed to the difficulty in accessing / obtaining animal samples and 

longitudinal sampling for viral ecology studies. Nonetheless, various studies have used 

HTS to identify viruses associated with Antarctic animals (Table 2, Figure 2) and we 

anticipate that the next decade will see a dramatic increase in virology activity and to 

some extent viral ecology studies of Antarctic animals. Furthermore, it is highly like that 

large numbers of diverse viruses will be identified using HTS. As sequencing 

technologies improve, there may be possibility of in-field identification of animal viral 

pathogens in Antarctica, e.g. using Oxford Nanopore Sequencer (ONS). ONS has been 

used for metagenomic studies of microbial mats from three lakes in the Antarctic dry 
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valleys (Lakes Fryxell, Lake Vanda and Lake Vida) by Johnson et al. (2017) 

demonstrating its use in Antarctic field conditions and remote laboratories.  
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Figure 2: Timeline,1975-2017 (present), showing the periods of serology- (purple), PCR- 

(red) and HTS-based (light red) approaches for viral identification. From 2012 onwards, 

viral genomes are determined by PCR-, Sanger- and HTS-based approaches. Top panel 

summarizes the determination of complete genomes by either Sanger sequencing and / or 

HTS from associated Antarctic animals. Colored circles indicating where they were 

found: Antarctic Peninsula (dark blue), Falkland Islands (green), Macquarie Island (pink) 

and Ross Island / sea (orange).
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Diverse papillomaviruses identified in 

Weddell seals 

 

Abstract  

 

Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses 

that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses 

have been characterised most extensively in humans, the study of non-human 

papillomaviruses have greatly contributed to our understanding of their pathogenicity and 

evolution. Using high throughput sequencing approaches, we identified seven novel 

papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals 

(Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven 

papillomavirus genomes were amplified from seven individual seals, and six of the seven 

genomes represented novel species with distinct evolutionary lineages. This highlights 

the diversity of papillomaviruses among the relatively small number of Weddell seals 

samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, 

this study adds information about papillomaviruses associated with Weddell seals and 

contributes to our understanding of papillomavirus evolutionary history.  

 

1. Introduction 

 

Papillomaviridae is a family of circular double stranded DNA viruses that have ~ 7-8kb 

genomes. There are >350 distinct papillomavirus types that infect skin, squamous and 

mucosal epithelial cells (Rector and Van Ranst, 2013) in a wide range of hosts including 

mammals, birds, reptiles and fish. Papillomaviruses have a genome organization that can 

be divided into three major regions; early, late and a long control region (LCR) which is 

involved in viral replication (Doorbar, 2005). Upon infection, the early genes (E1, E2 and 
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E4) are expressed and involved in DNA replication and transcription regulation. Most 

papillomaviruses encode at least one additional early protein (E5, E6, or E7) involved in 

manipulating the cellular environment. Expression of these proteins compromises the 

regulation processes of the cell cycle and leads to proliferation of infected cells. In certain 

papillomaviruses, these proteins are oncogenic in their hosts (Dyson et al., 1989; Munger 

et al., 1992; Munger et al., 1989; Yew and Berk, 1992), likely in part due to their ability 

to inactivate p53 and pRb proteins that have an essential role in modulating the cell cycle. 

The viral late region includes two structural proteins that form the viral capsid (L1 and 

L2) and are expressed later once infected cells have proliferated to the squamous and 

mucosal epithelial layer. The LCR is involved in viral replication (Doorbar, 2005).  

 

Most papillomaviruses identified to date have been associated with humans. The human 

papillomaviruses (HPVs) are classified in five genera Alpha-, Beta-, Mu-, Nu-, and 

Gammapapillomavirus. Non-human animal papillomaviruses have been characterised in 

hosts across 18 taxonomic orders (López-Bueno et al., 2016; Rector and Van Ranst, 

2013). Consistent with the co-evolution hypothesis, phylogenetic analyses have shown 

the divergence of mammalian papillomaviruses from avian and reptile papillomaviruses 

(Van Doorslaer et al., 2017b). Better understanding of papillomavirus diversity and their 

evolutionary history will help to elucidate impacts of the virus on the health of wild 

animal populations. This has important implications for wildlife conservation 

management.   

 

Just as viral diversity is relatively better understood in humans than in other species, it is 

also better understood in regions where human presence is long-established. In more 

remote regions such as polar ecosystems, little is known about viruses and associated 

diseases. Yet these areas are just those that are predicted to change most and for 

understanding the polar disease ecology it essential to collect base line data on viruses 

and other microbes circulating within these ecosystems. For example, very little is known 

about viruses circulating amongst Antarctic animals (Smeele et al. (2018), but there is 

evidence that endemic Antarctic species are infected with a similar viral diversity to that 

in other regions. The handful of viral genomes from Antarctic animals that have been 
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identified include those that belong to the viral families Adenoviridae (Lee et al., 2014; 

Lee et al., 2016; Park et al., 2012), Anelloviridae (Fahsbender et al., 2017), 

Orthomyxoviridae (Hurt et al., 2016; Hurt et al., 2014), Papillomaviridae (Van Doorslaer 

et al., 2017b; Varsani et al., 2014), Paramyxoviridae (Goraichuk et al., 2017; Miller et 

al., 2010; Neira et al., 2017; Thomazelli et al., 2010), Polyomaviridae (Buck et al., 2016; 

Varsani et al., 2017; Varsani et al., 2015), Poxviridae (Tryland et al., 2005) and 

Togavirdae (Forrester et al., 2012; La Linn et al., 2001).  

 

The four Antarctic seals, Weddell, leopard (Hydrurga leptonyx), crabeater (Lobodon 

carcinophaga) and Ross (Ommatophoca rossii), are classified in the taxonomic tribe 

Lobodontini within the Phocidae family. Pinnipeds form a clade within the order 

Carnivora and diverged most recently from the Ursidae family. Within the carnivore 

order, pinnipeds diverged after the split of Feliformia and Caniformia, and therefore, seals 

are also closely related to canines and mustelids (Bininda-Emonds et al., 1999; Higdon et 

al., 2007). Weddell seals are the most southerly distributed pinniped, breeding on the fast 

ice of Antarctica. They remain at high-latitudes year-round by maintaining breathing 

holes along tidal cracks in the fast ice throughout winter months, and consume a diverse 

diet (Burns et al., 1998; Castellini et al., 1991; Stirling, 1969). Building on the first 

identification of a papillomavirus in pinnipeds (ZcPV1) from California sea lions 

(Zalophus californianus) (Rivera et al., 2012) this study aimed to assess whether the 

southernmost mammal, living in the isolated and unique polar habitat of the Ross Sea, 

Antarctica, is associated with unique and diverse papillomaviruses.  

 

2. Materials and methods 

2.1 Sampling and sample processing 

 

Across three Antarctic field seasons, vaginal swabs were taken from a total of 81 

(2014/2015, n=25: 2015/2016, n=29; 2016/2017, n=27) individual adult female Weddell 

seals (Leptonychotes weddellii). All applicable international, national, and institutional 

guidelines for the care and use of animals were followed during sampling. The vaginal 
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swabs were stored in UTM™ Viral Transport Media (Copan, USA) at 4C for up to 6 

months prior to analysis. 1ml of the transport media was filtered through a 0.2µm syringe 

filter for each sample and 200 µl of the filtrate was used for viral DNA extraction using 

the High Pure Viral Nucleic Acid Kit (Roche Diagnostics, USA). Viral circular DNA 

molecules subsequently were amplified using rolling-circle amplification (RCA) using 

the TempliPhi™ kit (GE Healthcare, USA).  

 

2.2 High throughput sequencing and sequence analysis 

 

The RCA products (5 µl from each sample) were pooled for each season. The three pooled 

RCA products were used to prepare 2×100bp libraries and these were sequenced on an 

Illumina HiSeq4000 at Macrogen Inc. (South Korea). The resulting paired-end reads were 

de novo assembled using ABySS v2.02 (kmer=64) (Simpson et al., 2009). BLASTx 

(Altschul et al., 1990) analysis of assembled contigs >2000 nts revealed seven contigs 

that had similarities to papillomavirus sequences. Abutting primers (Table 1) were 

designed based on each PV-like de novo assembled viral contig to recover the full 

genomes from individual samples. Amplification of the papillomavirus-like molecules 

was carried out using KAPA Hifi Hotstart DNA polymerase (Kapa Biosystems, USA), 

the abutting primers, RCA product as template (0.5 µl) with the following polymerase 

chain reaction (PCR) protocol on an Eppendorf Mastercycler: initial denaturation at 95˚C 

for 3 minutes, then 30 cycles at 95˚C for 30 seconds, 60˚C for 30 seconds, 72˚C for 8 

minutes and a final extension at 72˚C for 8 minutes.  The amplicons were resolved on a 

0.7% agarose gel, gel purified and cloned into pJET1.2 plasmid (ThermoFisher, USA). 

The resulting recombinant plasmids were Sanger sequenced at Macrogen Inc. (South 

Korea) by primer walking. The Sanger sequenced contigs were assembled using DNA-

baser v.4 (Heracle BioSoft S.R.L).  

 

Representative annotated papillomavirus genomes (n=352) sequences were downloaded 

from the PaVE database (Van Doorslaer et al., 2017a; Van Doorslaer et al., 2013). From 

the 352 annotated sequences downloaded from PaVE and the seven papillomaviruses 
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genomes recovered in this study, the L1 gene, and E1, E2 and L1 protein sequences were 

extracted. Two datasets were created, one of aligned L1 gene sequences and the other of 

concatenated aligned E1, E2 and L1 protein sequences. All alignments were carried out 

using MAFFT (Katoh et al., 2002).  

 

The aligned L1 gene sequences were used to infer a maximum likelihood phylogenetic 

tree using PhyML 3.0 (Guindon et al., 2010) with GTR+I+G4 as best fit model determine 

using jModelTest (Darriba et al., 2012). A maximum likelihood phylogenetic tree for the 

concatenated aligned E1, E2 and L1 proteins was inferred using PhyML 3.0 (Guindon et 

al., 2010) and LG+F+I+G4 model determined as best fit model for E1, E2 and L1 

partitions determined using PartitionFinder 2 (Lanfear et al., 2017). Branches with <0.75 

aLRT branch support (Anisimova and Gascuel, 2006) were collapsed using TreeGraph 2 

(Stover and Muller, 2010). The phylogenetic trees were visualised and edited using iTOL 

v3 (Letunic and Bork, 2016). The pairwise identities of the full genomes and L1 gene 

were determined using SDT v1.2 (Muhire et al., 2014). The Carnivora host phylogeny 

was inferred with TimeTree (http://www.timetree.org/) (Kumar et al., 2017). 

3. Results and discussion 

3.1 Papillomaviruses associated with Weddell seals 

 

We identified and recovered seven papillomavirus genomes that range in size from 7392 

to 7836 nts from individual Weddell seals (age 10-19 at the time of sampling) from the 

three seasons (Figure 1; Table 1). Seals were deemed clinically healthy at the time of 

sampling, and no lesions or papillomas were noted. 
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Figure 1: (A) Neighbor joining phylogenetic tree of the tree inferred from the aligned 

genome sequences of LwPV1-7 with the genome organisation for each genotype showing 

E6, E7, E2, L2 and L1 ORFs coupled with genome size. (b) Pairwise identity plot with 

percentage pairwise identities provided in colour box for the genome and the L1 

nucleotide sequences.
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Table 1: Sample data for LwPV1-7 providing GenBank accession number (MG571089-

MG571095), season the LwPV was identified, specimen number (SPENO) for individual 

seal in which the respective virus was identified, age of individual at time of sampling, 

date sample was taken and abutting primer pair used to recover genome. 

Name Accession # Season SPENO Age at 
sampling 

Sampling 
date 

Primers 

Leptonychotes weddellii 
papillomavirus 1 

MG571090 2014/2015 13241 16 11/19/2014 F: 5'-GCCTTATACTCATCAGGCTTATATGGATTTTGGG-3' 
R: 5'-CTACCTAAGGCATACAGAGGAATATGACATTGCAT-3' 

Leptonychotes weddellii 
papillomavirus 2 

MG571089 2014/2015 11445 19 1/18/2015 F: 5'-TAATTTCAGAAACCTGTGATGCTGGAAGTGTTTG-3' 
R: 5'-ATACTAAGCATGCTATTATGATGAAGTTGGTTTT-3' 

Leptonychotes weddellii 
papillomavirus 3 

MG571093 2015/2016 17181 10 11/30/2015 F: 5'-TATCCCTTTAATGATGAAGGACAGCCCACATATCT-3' 
R: 5'-CTCATTTTTAAAGGTAAAGCACTGCAGTCTGCTG-3' 

Leptonychotes weddellii 
papillomavirus 4 

MG571095 2014/2015 12091 18 1/28/2015 F: 5'-AAAGTGTTGCCTTCCACTTTATTTACAACATCATC-3' 
R: 5'-TGCAGATAGATTTTTAAAATGGGCAAGCTCTTTTC-3' 

Leptonychotes weddellii 
papillomavirus 5 

MG571094 2016/2017 12975 18 11/24/2016 F: 5'-TAAACAGTGACACACAGCTGTTTAACAGGCCTTTT-3' 
R: 5'-CTAGAGAACCGCTGGGAGTTCCATAGTAGATAGAA-3' 

Leptonychotes weddellii 
papillomavirus 6 

MG571091 2016/2017 17495 10 12/8/2016 F: 5'-CATATCCAATAAAGTCAGATGATTCAGGAGGTAGC-3' 
R: 5'-CTGTGTATAGTGACTTCTATTATGACCCTAGCCTT-3' 

Leptonychotes weddellii 
papillomavirus 7 

MG571092 2016/2017 17629 10 1/19/2017 F: 5'-GGCTATACTAACCTGATTTAGTATCCATTTTGGCC-3' 
R: 5'-CACATATCACAGGACAGTACACCATTTGAACTATC-3' 

 

The L1 gene is relatively conserved among papillomaviruses and is the current basis for 

classification within this family, with the International Committee on Taxonomy of 

Viruses  (ICTV) recommending that L1 gene sequences that share <90% pairwise identity 

with those previously classified should be considered unique papillomavirus types. The 

L1 sequences of the seven recovered papillomaviruses from Weddell seals share <89% 

pairwise identity (Figure 1). When compared to all other papillomavirus L1 sequences, 

the ones from this study share <67% pairwise identity. Thus, the seven papillomaviruses 

are all new types and have been named Leptonychotes weddellii papillomavirus 1-7 

(LwPV1-7). A summary of the protein sequence similarities as determined by BLASTp 

(Altschul et al., 1990) is provided in Figure 2. LwPV6 and -7 which are most closely 

related sharing 89% genome-wide identity both lack an E7 open reading frame (ORF) 

(Figure 1). Both the E6 and E7 protein sequences of LwPV1-5 contain canonical Zinc 

binding motifs (CX2CX21–23CX2C metal-binding motif) in both the E6 and E7 protein 

sequences. In the E7 sequences of three LwPVs (LwPV1, -3, and -4) we identified the 

conserved pRB LxCxE binding motif (Figure 2). LwPV2 and LwPV5 have a slightly 

modified LxSxE motif. In other papillomaviruses, similarly belonging to the Gamma- and 

Taupapillomaviridae, this modified motif is not involved in binding to and degradation 

of pRb (Wang et al., 2010). 
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Figure 2: (A) BLASTp results for each of the proteins encoded by LwPV1-7 with 

Weddell seal papillomaviruses highlighted in red and California sea lion papillomavirus 

1 (ZcPV1) in pink. Protein sequence of first (B) and second (C) zinc binding motif 

(CX2CX21–23CX2C) present in L6 ORF of LwPV1-7. (D) Protein sequence of pRB 

binding motif (Lx[C/S]xE) and zinc binding motif in E7 ORF of LwPV1-5.
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Sequences that share <60% L1 nucleotide sequence identity are classified into different 

genera, while novel species isolates have 60-70% sequence identity, while types differ by 

at least 10% sequence identity (De Villiers et al., 2004). Based on pairwise L1 nucleotide 

sequence comparisons and L1 phylogenetic tree support (Figure 3), LwPV1-5 are likely 

members of new species within existing genera (LwPV1, Lambdapapillomavirus; 

LwPV2, Trisetapapimmomavirus; LwPV3, Dyonupapillomavirus; LwPV4, 

Dyothetapapillomavirus; LwPV5, Taupapillomavirus). Furthermore, it is apparent that 

LwPV6 and -7 share ~68-71 % pairwise identity and cluster with Ailuropoda 

melanoleuca papillomavirus (AmPV) 1-2 and Ursus maritimus papillomavirus 1 

(UmPV1) in the Omegapapillomavirus genus (Figure 3). Thus, LwPV6 and -7 are likely 

to be assigned to a new species in the genus Omegapapillomavirus. 
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Figure 3: Maximum likelihood tree based on L1 nucleotide sequence using the best-fit 

model GTR+I+G4. LwPV1-7 highlighted in red, with red branch showing lineage, 

California sea lion papillomavirus ZcPV1 highlighted in pink, with pink branch showing 

lineage. Branches in black indicated lineages absent of E7 gene. Branch support values 

indicated in blue circle size gradient. Branches with < 0.75 aLRT branch support were 

collapsed. Papillomaviruses marked with asterisk have yet to be classified by ICTV. 
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To investigate the evolutionary history of the seven novel Weddell seal papillomaviruses 

we constructed a phylogenetic tree based on the conserved E1, E2, and L1 ORFs 

(Gottschling et al., 2007) (Figure 4). With regards to the seven novel Weddell seal 

papillomaviruses, this tree is congruent with the L1 nucleotide tree (Figure 3). LwPV1 

clusters with lambdapapillomaviruses (Figures 3 & 4) with the highest L1 amino acid 

pairwise identity (63.9%) with the L1 sequence of AmPV4 (Figure 2). Phylogenetically, 

LwPV3 is most closely related to ZcPV1, despite sharing the highest L1 amino acid 

pairwise identity with AmPV3 (63.3%). LwPV2 shares the highest amino acid pairwise 

identity (50%) with human papillomavirus (HPV) 4 in the Gammapapillomavirus genus, 

but phylogenetically it is most closely related to VvPV1, the sole member of 

Treisetapapillomavirus genus (Figures 3 & 4). The E7 protein of LwPV3 shares 50% 

pairwise identity with that of LwPV4 but in general is most closely related to ZcPV1 

(Figures 2 - 4). The L1 protein of LwPV4 shared 63.4% with that of Felis catus 

papillomavirus (FcaPV2). LwPV5 clusters with taupapillomaviruses, sharing 57.9%, 

57.6% and 56.2% amino acid pairwise identity with the L1, E1 and E2 sequences of 

canine papillomavirus (CPV) 17, CPV2, and CPV7, respectively. LwPV6-7 are most 

closely related to AmPV1 in the Omegapapillomavirus genus with an L1 amino acid 

pairwise identity of 68-69%. 
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Figure 4: Maximum likelihood phylogenetic tree inferred using concatenated protein 

sequence of E1, E2 and L1. LwPV1-7 are highlighted in red and California sea lion 

papillomavirus 1 (ZcPV1) is highlighted in pink. Branches in black indicated lineages 

that have no recognisable E7 ORF. Branches with < 0.75 aLRT branch support have been 

collapsed. Branch support values indicated in purple circle size gradient. 
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3.2 Papillomaviruses lacking E7 gene 

 

The oncoprotein E7 is not encoded by all papillomaviruses and studies based on the high 

risk HPVs have shown that this oncoprotein associates with cellular pRB through the 

conserved LxCxE motif (Roman and Munger, 2013). All classified members of the 

Omega- (including LwPV6-7), Omikron- and Upsilonpapillomavirus genera as well as 

Myotis ricketti papillomavirus (MrPV1) and Sus scrofa papillomavirus (SsPV1) lack the 

E7 ORF (Stevens et al., 2008a; Stevens et al., 2008b; Van Doorslaer, 2013; Wu et al., 

2012; Zhang et al., 2017). The E7 ORF is also absent from all characterised cetacean 

papillomaviruses (Gottschling et al., 2011; Rector et al., 2008; Rehtanz et al., 2006; 

Robles-Sikisaka et al., 2012).  

 

Bold branches in the phylogenetic trees presented in Figures 3 and 4 show lineages 

lacking an E7 gene. As depicted in the partition tree, the bolded clades have diverged 

from a recent common ancestor shared with alpha- and dyoomikronpapillomaviruses. 

Multiple gene loss events have been reported in the evolution of certain papillomavirus 

clades. Loss of the E6 gene has occurred on at least two occasions in the evolution of 

papillomaviruses. Gamma-6 papillomavirus species all lack E6 while it is present in all 

other gammapapillomaviruses, indicating a loss of E6 in the shared ancestor of 

Gammapapillomaviruses 6 (Van Doorslaer and McBride, 2016). Furthermore, loss of E6 

has been hypothesized to have occurred twice in the evolution of Xipapillomavirus 

genera: once in the divergence of bovine papillomavirus 12 (BPV12) and again in the 

Xipapillomvirus 1 species (Van Doorslaer and McBride, 2016).   

 

3.3 Papillomaviruses associated with the order Carnivora 

 

Papillomaviruses in general appear to have co-evolved with their hosts, however, 

recombination, adaptive radiation, host switching and positive selection have been shown 

to contribute to their evolution of papillomaviruses (Burk et al., 2013; García-Vallvé et 
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al., 2005; Gottschling et al., 2007; Varsani et al., 2006). Pinnipeds belong to the order 

Carnivora, and their most recent common ancestor with Caniforms is approximately 45 

mya (Higdon et al., 2007; McKenna and Bell, 1997). Among the Pinnipedia, the Antarctic 

Lobodontines originated and speciated in the late Miocene to early Pliocene, when the 

relative isolation around Antarctica allowed for rapid diversification of those individuals 

that could tolerate the relatively cold climate conditions that existed south of the Antarctic 

Circumpolar current (Higdon et al., 2007). To date, 40 papillomaviruses have been 

identified across 14 distinct carnivore hosts (Figures 5 &6). (Mengual-Chuliá et al., 2015; 

Ng et al., 2011; Rector and Van Ranst, 2013; Smits et al., 2013; Zhang et al., 2017). With 

the exception of UmPV1 (Polar bear; Omega), VvPV1 (red fox; Treiseta), FcaPV2 

(Domestic cat; Dyotheta), and ZcPV1 (California Sea lion; Dyonu), all Carnivora 

associated papillomaviruses belong to the genera Chi-, Lambda- or Taupapillomavirus. 

ZcPV1, the only pinniped associated papillomavirus that was known until this study, is 

most closely related to chipapillomaviruses and belongs to the genus 

Dyonupapillomavirus (Rivera et al., 2012). All LwPVs cluster phylogenetically in clades 

containing papillomaviruses of closely related carnivore hosts (Figures 5 & 6). This is 

reminiscent of primate and artiodactyl papillomaviruses. Primate papillomaviruses form 

five defined clades, and within each genus, the viruses recapitulate the host evolutionary 

history (Van Doorslaer, 2013). It has previously been proposed that, similar to 

polyomaviruses (Buck et al., 2016), extant papillomavirus diversity can be explained by 

intra-host duplication followed by episodes of co-evolution (Bravo and Alonso, 2007; 

Van Doorslaer, 2013). 
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Figure 5: Co-evolution of carnivore papillomaviruses from Omega-, Lambda-, Triesta-, 

Tau-, Dyonu-, Chi- and Dyothetapapillomaviruses. Clades of concatenated E1-E2-L1 

maximum likelihood phylogenetic tree (see figure 3).  All Carnivora papillomaviruses 

known to date are present in the six clades and these are linked to their host phylogenies.  
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Figure 6: Concatenated E1-E2-L1 tree (Figure 3) in left hand box. Shaded clades where 

LwPVs cluster are shown in full with phylogenetic relationship to papillomavirus 

members links drawn to respective hosts in carnivore phylogenetic tree.  
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4. Concluding remarks 

 

The papillomaviruses diversity in Weddell seals supports the presence of four or five 

distinct clades, corresponding to four or five ancestral viruses. We hypothesize that the 

first terrestrial animals were infected with at least four distinct papillomaviruses. As 

papillomaviruses co-evolved with these hosts, viral niche adaptation allowed for intra-

host duplication (Van Doorslaer et al., 2015; Warren et al., 2015), in turn resulting in 

radiation and further host-parasite coevolution.  

 

It has become evident that papillomaviruses identified in a single host may originate from 

multiple evolutionary lineages. This is shown for human papillomaviruses which are 

classified into five highly divergent genera, with the majority classified as Alpha-, Beta-

, and Gammapapillomavirus. Similarly, canine papillomaviruses reveal at least three 

evolutionary lineages that are classified into distinct genera. This work has revealed that, 

even in a fairly small sample set, Weddell seals are similarly infected with a diverse set 

of papillomaviruses that are distinct from those found in other mammals. It is highly likely 

that these seven papillomaviruses are benign as no anogenital or oral cancers associate 

with Weddell seals were identified in this study nor have they been previously reported.  

 

Metagenomics and high-throughput sequencing has exponentially increased the 

knowledge of Antarctic animal virology over the last five years (Smeele et al., 2018). 

Determining the viral diversity in this extreme and isolated habitat is important for 

monitoring animal health. Furthermore, expanding our understanding of carnivore 

papillomaviruses in a novel host has offered strong support for a gene loss event in the 

evolutionary history of papillomaviruses, thus extending our knowledge of the 

Papillomaviridae family.  
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Concluding chapter: Contributions and 

future directions 

 

Antarctica has been an important environment for viral discovery in the last decade, 

despite the extremely harsh climate and limited wildlife. The research described here used 

metagenomics and high throughput sequencing to extend our knowledge of viruses 

among Antarctic animals in the Ross Sea, focusing on Weddell seals. Over three summer 

field seasons from 2014-2016, vaginal and nasal swabs from 81 Weddell seals were 

collected by Jennifer Burns’ group. Previously, studies of Antarctic animal associated 

viruses have focused on avian viruses with little investigation to those associated with 

seals (Goraichuk et al., 2017; Hurt et al., 2016; Hurt et al., 2014; Miller et al., 2010; Neira 

et al., 2017; Thomazelli et al., 2010). Within the Ross Sea area, polyomaviruses have 

been identified in Adelie penguins, a Weddell seal and a sharp spinned notothen (Buck et 

al., 2016; Varsani et al., 2017; Varsani et al., 2015). Furthermore, two papillomaviruses 

have been characterized in Adelie penguins and various anelloviruses representing two 

species have been identified in Weddell seals (Fahsbender et al., 2017; Van Doorslaer et 

al., 2017; Varsani et al., 2014). These are the only viruses confirmed in Antarctic 

pinnipeds to date. The Ross Sea and McMurdo Sound represents a close-knit environment 

of marine, avian and seal life that interact. As Weddell seals are high trophic level 

predators in this ecosystem and remain in here year around (Testa and Siniff, 1987) they 

provide important insight to understanding this virome and monitoring health of the Ross 

Sea and McMurdo Sound. 

Over the years, viral outbreaks have had devastating impacts on pinniped populations as 

well as captive individuals demonstrated by mass mortality events (Anthony et al., 2012; 

Butina et al., 2010; Inoshima et al., 2013; Kennedy et al., 2000; Laws and Taylor, 1957; 

Mamaev et al., 1996). Awareness of viruses among seal populations is therefore 

extremely important for monitoring health. An overview of all pinniped viruses identified 

to date is provided in Table 1. The viruses in bold representing those with fully sequenced 

genomes. In Antarctic seals, viruses are severely understudied with the majority of 
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information based on detection using serological approaches. The contribution this 

research has made to our knowledge of viral diversity in Antarctica is highlighted in red 

(Table 1). The recovery of seven novel papillomaviruses from Weddell seals inhabiting 

the Ross Sea thus extends our understanding of animal virology in the Antarctic as well 

as knowledge of papillomaviruses among pinnipeds. This is only the second study to 

identify papillomaviruses in seals revealing the otherwise lack in knowledge of these 

viruses in pinnipeds. Previously, only a single species of papillomavirus (ZcPV1) was 

found in two male California sea lions (Rivera et al., 2012). Although the 

papillomaviruses identified in this study cluster for the most part with established genera, 

it remains that at a sequence level WsPV1-7 are very distinct from known 

papillomaviruses and only distantly related to the papillomaviruses in their respective 

genera. This distant relationship is likely due to the long term geographical isolation of 

this Weddell seal population.  
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Table 1. Summary of all viruses associated with either free ranging or captive pinnipeds, those in bold resulting in whole genome sequencing 
and red revealing the viruses identified in this thesis 

Pinniped species Associated virus  Viral family  Viral detection Sample and population Reference 
California sea lion 
(Zalophus 
californianus) 

California sea lion polyomavirus (CSLPyV) Polyomaviridae Fibropapilloma mass, 
Electron microscopy 
observation of virions, DNA 
extraction RCA and partial 
sequencing 

Tongue, small intestine and kidney 
samples from wild stranded individuals 
in California  

(Colegrove et al., 2010; Wellehan et al., 2011) 

 
Zalophus californianus papillomavirus (ZcPV1) Papillomaviridae Histopathology, Whole 

genome sequencing 
Swabs from perineal, axillary and 
prepuce lesions from two individuals in 
open ocean enclosure 

(Rivera et al., 2012) 

 
Otarine adenovirus (OtAdV-1) Adenoviridae Genome sequencing, liver 

test, histopathology  
Serum and tissue samples collected 
from Aquarium, stranded 

(Goldstein et al., 2011; Inoshima et al., 2013) 
 

Zalophus californianus anellovirus (ZcAV) Anelloviridae ELISA, whole genome 
sequencing 

Serum, Lung, tonsil, lymph-node, 
liver samples collected from 
stranded, zoo captive individuals  

(Fahsbender et al., 2015; Ng et al., 2009) 

 
Otarine herpesvirus 1 (OtHV1) Herpesviridae PCR amplification of OtHV-1 

terminase and DNA 
polymerase genes, Partial 
genome sequencing of DNA 
polymerase and terminase 
genes 

Tissue samples from tumour masses in 
seals admitted to The Marine Mammal 
Center from along the central California 
Coastline 

(King et al., 2002) 

 
Sea lion parapoxvirus (SLPV-1) Poxviridae Histopathology, Virion 

morphology with electron 
microscopy, partial 
sequencing  

Skin nodule from head, neck and thorax 
collected from stranded on California 
coastline 

(Nollens et al., 2006) 

      
Steller sea lion 
(Eumetopias 
jubatus) 

Poxvirus Poxviridae PCR targeting DNA 
polymerase gene and 
topoisomerase I gene 

skin lesion samples collected from free-
ranging and captive individuals 

(Bracht et al., 2006) 

 
Parapoxvirus Poxviridae PCR targeting DNA 

polymerase gene and 
topoisomerase I gene 

skin lesion samples collected from free-
ranging and captive individuals 

(Bracht et al., 2006) 

 
SSL Vesivirus  Caliciviridae Viral isolation and electron 

microscopy, RT-PCR 
amplification of  

Oral and rectal swabs and vesicular 
fluids from Steller sea lions in Alaska  

(McClenahan et al., 2008) 

Spotted seals 
(Phoca largha) 

Parapoxvirus Poxviridae PCR targeting DNA 
polymerase gene and 
topoisomerase I gene 

skin lesion samples collected from free-
ranging and captive individuals 

(Bracht et al., 2006) 

Pacific harbor 
seal (Phoca 
vitulina richardsii) 

Anellovirus (SealAV) Anelloviridae Metagenomics, whole 
genome sequencing  

Lung samples collected during 
mortality of free-range population 

(Ng et al., 2011) 

 
Harbor seal coronavirus (HSCoV) Coronaviridae Whole genome 

sequencing 
Lung samples collected during 
mortality of free-range population 

(Nollens et al., 2010) 

Harbor seals 
(Phoca vitulina)  

Influenza A virus (H3N8) Orthomyxoviridae Genome sequencing, 
hemagglutination assay, 
intravenous pathogenicity 
test, molecular pathology  

Lung, lymph nodes, tonsil and kidney 
samples collected during mortality of 
free-range (Massachusetts) 

(Anthony et al., 2012) 
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Parapoxvirus Poxviridae Histopathology, virion 

morphology by electron 
microscopy, in situ 
hybridization,  

Epithelial cells of stratum granulosum 
collected from individuals in 
rehabilitation center (Germany) 

(Muller et al., 2003) 

 
Phocine herpesvirus 1 (PhHV-1) Herpesviridae Indirect enzyme-linked 

immunosorbent assay; real-
time PCR assay and ELISA 

Serum samples from wild and captive 
Canadian population; wild seals from 
Svalbard Norway  

(Bellehumeur et al., 2016; Roth et al., 2013) 

 
Parvovirus Parvoviridae Next-generation 

sequencing (NGS), in situ 
hybridization  

Lung and cerebral parenchyma 
samples from free-range population 
(Netherlands) 

(Bodewes et al., 2013) 

 
Anellovirus Anelloviridae NGS, in situ hybridization  Lung samples from free-range 

population (Netherlands) 
(Bodewes et al., 2013) 

Hawaiian monk 
seal 
(Neomonachus 
schauinslandi) 

Polyomavirus Polyomaviridae Histopathology, electron 
microscopy, partial 
genome sequencing 

Liver, kidney and lung samples from 
captive (aquarium) seal 

(Cortes-Hinojosa et al., 2016) 

 
Adenovirus Adenoviridae histopathology, electron 

microscopy, partial 
genome sequencing 

Liver, kidney and lung samples from 
captive (aquarium) seal 

(Cortes-Hinojosa et al., 2016) 

South American 
fur seals 
(Arctocephalus 
australis)  

Adenovirus Adenoviridae Partial genome 
sequencing, qPCR assay, 
histopathology,  

Nasal fecal and liver samples from 
Free-range (Peruvian pup population)  

(Hinojosa, 2014) 

 
sequences of Anelloviridae and parvoviridae families 
detected in metagenomic study 

Anelloviridae Whole genome 
sequencing with Ion 
Torrent and Illumina 
platforms 

Fecal samples from deceased 
individuals along shore 

(Kluge et al., 2016) 

Northern 
elephant seals 
(Mirounga 
angustirostris) 

H1N1 influenza virus Orthomyxoviridae Serology, whole genome 
sequencing 

Nasal swabs and serum from Free-
ranging individuals 

(Goldstein et al., 2013) 

Subantarctic fur 
seal 
(Arctocephalus 
tropicalis) 

Sequences of Anelloviridae and parvoviridae families 
detected in metagenomic study 

Anelloviridae Whole genome 
sequencing with Ion 
Torrent and Illumina 
platforms 

Fecal samples from deceased 
individuals along shore 

(Kluge et al., 2016) 

Hooded seals 
(Cystophora 
cristata) 

Phocid herpesvirus 1 (PhoHV-1) Herpesviridae Indirect enzyme-linked 
immunosorbent assay, 
partial sequencing of herpes 
DNA polymerase 

Serum samples collected from 
Canadian population 

(Bellehumeur et al., 2016) 

Harp seal 
(Pagophilus 
groenlandica) 

Phocid herpesvirus 1 (PhoHV-1) Herpesviridae Indirect enzyme-linked 
immunosorbent assay, 
partial sequencing of herpes 
DNA polymerase 

Serum samples collected from 
Canadian population 

(Bellehumeur et al., 2016) 

Grey seals 
(Halichoerus 
grypus)  

Phocid herpesvirus 1 (PhoHV-1) Herpesviridae Indirect enzyme-linked 
immunosorbent assay 

Serum samples collected from 
Canadian population 

(Bellehumeur et al., 2016) 

 
Parapoxvirus Poxviridae Electron microscopy Outbreak in population off the coast of 

Cornwall  
(Simpson et al., 1994) 

Ringed seal 
(Phoca hispida)  

Phocid herpesvirus 1 (PhoHV-1) Herpesviridae Indirect enzyme-linked 
immunosorbent assay, 

Serum samples from wild population; 
Ulukhaktok, Northwest Territories, 
Canada 

(Bellehumeur et al., 2016) 
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partial sequencing of herpes 
DNA polymerase  

Seal picornavirus 1 (SePV-1) Picornaviridae Random amplification and 
sequencing, RT-PCR of 
SePV-1 region and 
sequencing. 

Nasal swab from a seal hunted in 2002 
around Ulukhaktok, Beaufort Sea 

(Kapoor et al., 2008) 

South American 
sea lion (Otaria 
flavescens) 

Otarine adenovirus Adenoviridae Histopathology, liver 
function tests, genome 
sequencing  

Serum and tissue of seal with 
hepatitis in Japanese aquarium 

(Inoshima et al., 2013) 

South African fur 
seal 
(Arctocephalus 
pusillus) 

Otarine adenovirus  Adenoviridae Histopathology, liver 
function tests, genome 
sequencing 

Serum and tissue of seal with 
hepatitis in Japanese aquarium 

(Inoshima et al., 2013) 

Northern fur seal 
(Callorhinus 
ursinus) 

Polyomavirus Polyomaviridae Transmission electron 
microscopy, genome 
sequencing of VP1  

Placenta of a single newborn pup 
around Pribilof Islands, Alaska 

(Duncan et al., 2013) 

 
Otarine herpesvirus 4 (OtHV4) Herpesviridae Partial sequencing of 

polymerase gene and 
glycoprotein B 

Vaginal swabs (Cortes-Hinojosa et al., 2016) 

Weddell seal 
(Leptonychotes 
weddellii)  

Parapoxvirus Poxviridae Electron microscopy, partial 
sequencing 

Neck skin lesion from deceased 
individual Queen Maud Land, Antarctica 

(Tryland et al., 2005) 

 
Phocid alphaherpesvirus 1 Herpesviridae Histopathology, Partial 

genome sequencing 
Skin lesions of seals around Queen 
Maud Land, Antarctica 

(Harder et al., 1991; Stenvers et al., 1992; Tryland et al., 
2012)  

Phocine distemper virus (PDV) Paramyxoviridae Serology  Serum taken from seals around East 
Antarctica 

(McFarlane, 2009) 

 Torque teno Leptonychotes weddelli virus 1, -2  
(TTLwV1, TTLwV2) 

Anelloviridae HTS-informed approach, 
genomes recovered using 
abutting primers, cloned 
and Sanger sequenced. 

Vaginal, nasal, and faecal samples 
collected around the Ross Sea 
during summer field season of 2014 

(Fahsbender et al., 2017) 

 Polyomavirus (WsPyV) 
 

Polyomaviridae Metagenomics and high-
throughput sequencing 

Kidney sample of deceased seal 
around Ross Sea, Antarctica 

(Varsani et al., 2017) 

 Leptonychotes weddelli papillomavirus 1-7 (LwPV1-7) Papillomaviridae Metagenomics and high-
throughput sequencing 

Vaginal and nasal swabs from seals 
around Ross Sea, Antarctica 
collected during summer field 
season between 2014-2016 

 

Leopard seal 
(Hydrurda 
leptonyx) 

Canine distemper virus (CDV) Paramyxoviridae Microneutralization test used 
to detect CDV-like 
antibodies with two CDV 
strains and PDV isolate 

Serum samples collected around 
Antarctic peninsula in 1989 

(Bengtson et al., 1991) 

Crabeater seal 
(Lobodon 
carcinophagus) 

Phocid alphaherpesvirus 1 Herpesviridae Histopathology, Partial 
genome sequencing 

Skin lesions of seals around Queen 
Maud Land, Antarctica 

(Harder et al., 1991; Tryland et al., 2012) 

 
Canine distemper virus (CDV) Paramyxoviridae Microneutralization test used 

to detect CDV-like 
antibodies with two CDV 
strains and PDV isolate 

Serum samples collected around 
Antarctic peninsula during January/ 
March 1989 

(Bengtson et al., 1991) 

Ross seal 
(Ommatophoca 
rossii) 

Phocid alphaherpesvirus 1 Herpesviridae Histopathology, Partial 
genome sequencing 

Skin lesions of seals around Queen 
Maud Land, Antarctica 

(Tryland et al., 2012) 
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Caspian seal 
(Phoca caspica) 

Canine distemper virus (CDV) Paramyxoviridae Serologic examination, RT-
PCR, sequencing P gene 
fragment 

Serum and tissue samples collected 
during mass mortality event around 
Caspian Sea in 1997 

(Kennedy et al., 2000) 

Atlantic Walrus 
(Obodenus 
rosmarus 
rosmarus) 

Phocine distemper virus (PDV) Paramyxoviridae Virus neutralization test for 
CDV, measles virus, peste 
des petits ruminants virus, 
phocine distemper virus, 
and rinderpest virus 

Serum samples of three male Atlantic 
walruses sampled in Hudson Strait, 
south of Nottingham Island, Canada t 

(Duignan et al., 1994) 

Walrus 
(Obodenus 
rosmarus) 

Walrus calicivirus (WCV) Caliciviridae Viral isolation, Suppression 
Subtractive Hybridization 
(SSH), RT-PCR on 
extracted RNA, amplified by 
SMART PCR cDNA 
synthesis kit 

Walrus feces from resting sea ice 
In south central Chukchi Sea, 1977 

(Ganova-Raeva et al., 2004) 

Antarctic fur seal 
(Arctocephalus 
gazelle) 

Phocid alphaherpesvirus 1 Herpesviridae iELISA using PhHV-1 
antigen 

Serum samples collected around 
Bouvet, sub- Antarctic 2000-2001, 
2001-2002 

(Tryland et al., 2012) 

Siberian seal 
(Phoca sibirica)  

Canine distemper virus (CDV) Paramyxoviridae RT-PCR on samples 
specific for DMV, PMV, and 
PDV. Amplicons were for a 
fragment of the 
phosphoprotein gene. 
Analyzed by direct 
sequencing on a Beckman 
Coulter 8800 automated 
sequencer 

Forty-two samples of brain and spleen 
collected during 2000-2007 

(Butina et al., 2010) 

South American 
Fur seals 
(Arctocephalus 
australis) 

Adenovirus Adenoviridae Nested-PCR for 
amplification of DNA 
polymerase gene using 
primers for all members of 
Mastadenovirus genus. 
Amplicons cloned and 
sequenced 

21 fecal samples collected from South 
American fur seals deceased along the 
coast of Rio Grande do Sul State, 
Southern Brazil. 

(Chiappetta et al., 2017) 

 Fur seal feces-associated circoviridae Circoviridae Nested-PCR using 
degenerate primers to 
amplify a segment of the rep 
gene conserved in 
Circoviruses and 
Cycloviruses. Amplicons 
cloned and sequenced 

21 fecal samples collected from South 
American fur seals deceased along the 
coast of Rio Grande do Sul State, 
Southern Brazil. 

(Chiappetta et al., 2017) 

Southern elephant 
seal (Mirounga 
leonina) 

Southern elephant seal virus (SES virus) Togaviridae Virus from blood sucking lice 
cultured in BHK-21 cells. 
Used in viral neutralization 
assay for serology and 
negative stain electron 
microscopy. RT-PCR and 
Sanger sequencing of 
capsid protein. 

Blood sucking lice (Lepidophthirus 
macrorhini) and serum samples 
collected around Macquarie Island 

(Forrester et al., 2011; La Linn et al., 2001) 

New Zealand fur 
seal 
(Arctocephalus 
forsteri) 

Fur seal feces-associated circular DNA virus Unclassified Metagenomics and High-
throughput sequencing 

A fecal sample collected from a New 
Zealand fur seal off the coast of 
Kaikoura, NZ in October 2012 

(Sikorski et al., 2013) 
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This study demonstrates that papillomaviruses have a far greater diversity among seals 

than a single lineage. The six distinct lineages observed for LwPV1-6 and 7 indicates that 

there were at least six variants of these papillomaviruses in the last common ancestor of 

pinnipeds. These lineages span widely over the phylogenetic trees with LwPV1- 7 

phylogenetically clustered into clades consisting of closely related carnivore host 

papillomaviruses. Given the co-evolution of papillomaviruses with their hosts, this 

association was expected. However, within these clades LwPV1- 7 reveal a distant 

divergence from other members perhaps due to the geographical isolation of Weddell 

seals. Different lineages of papillomaviruses within the same host is observed frequently 

among this family of viruses and has been shown for HPVs that reveal three major 

lineages of papillomaviruses. The identification of LwPV1-7 now draws attention to six 

lineages of papillomaviruses that have infected an ancient common ancestor to carnivores 

and diversified in these hosts. The intrigue lies in that these six highly diverse lineages of 

Weddell seal papillomaviruses was identified within a limited number of sampled 

individuals from relatively a small population.  

This discovery of highly diverse papillomaviruses among Weddell seals has revealed 

trends in the broader evolutionary patterns of papillomaviruses. Gene loss in 

papillomaviruses is reported among certain clades typically involving E6 or E7 

(Gottschling et al., 2011; Rector et al., 2008; Rehtanz et al., 2006; Robles-Sikisaka et al., 

2012; Stevens et al., 2008a; Stevens et al., 2008b; Van Doorslaer and McBride, 2016; Wu 

et al., 2012; Zhang et al., 2017). These encode oncoproteins that bind p53 and pRB, 

respectively, key proteins involved in cell cycle regulation. The influence of this gene 

loss on infection or pathogenesis is not understood. The lack of the E7 gene within 

LwPV6 and 7 and other members of Omegapapillomavirus supports the loss of the E7 

gene from this genus that until now was only known to include bear papillomaviruses. 

Phylogenetic analysis of the E1 E2 L1 concatenated sequences revealed that other clades 

missing this E7 gene such as Dyopi-, Dyodelta, Omicron- and Upsilonpapillomavirus 

share a recent common ancestor with Omega-, Alpha- and Dyoomikronpapillomavirus. 

However it is likely the most recent common ancestor of Alpha and 

Dyoomikronpapillomavirus encoded the E7 gene given papillomaviruses in these genera 

encode an E7 gene and it is in the genera Omega-, Dyopi-, Dyodelta-, Omicron- and 

Upsilonpapillomavirus E7 has been lost. While the discovery of LwPV6 and 7 provide 
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further phylogenetic support for the loss of E7 from Omegapapillomavirus and the 

evolutionary relationship to other E7 absent genera, it raises questions of what drove this 

gene loss in these clades and how this affected pathogenicity of these papillomaviruses. 

The phylogenetic relationship between LwPV2 and VvPV-1 and the significant pairwise 

identities shared with LwPV2 and gammapapillomavirus HPVs may support host 

switching of an HPV to an ancient ancestor of seals and canines. However, the 

phylogenetic analysis presented here shows a split in the gammapapillomavirus clade 

raising questions of the taxonomic classification of this genus.  

During breeding season, females aggregate together into colonies allowing males to mate 

with multiple females (Stirling, 1969). This could potentially result in transmission of 

papillomaviruses between individuals through contact with infected mucosa. L1 specific 

primers were used to screen individuals for the presence of LwPV1-7 in order to gain an 

understanding of their prevalence among individuals. While the same individuals waere 

not sampled across the different field seasons each Weddell seal papillomavirus was 

detected in a single individual and only in samples from a single field season. This may 

indicate papillomavirus transmission is uncommon between female Weddell seals, 

however our dataset lacks information of papillomaviruses among males or offspring and 

thus potential transmission to these individuals in the population that may impact these 

papillomaviruses being maintained among certain individuals. Using this data to screen 

samples from males or offspring in this region could offer a greater understanding as to 

the prevalence of these papillomaviruses in the population and whether they may be 

sexually or congenitally transmitted. Furthermore, whether individuals in other 

populations of Weddell seals that inhabit the Vestfolds of Antarctica and the sub-

Antarctic Signy Island also contain papillomaviruses is unknown. Such research would 

be interesting in order to demonstrate whether papillomaviruses are widely dispersed 

among all populations of Weddells seals and whether they follow similar evolutionary 

lineages.  However, it is important to keep in mind that due to the harsh conditions and 

conservation regulations sampling of Antarctic animals is highly restrictive and therefore 

this dataset provides valuable information toward viruses circulating in this population of 

Weddell seals.  

It is likely that this research has only scratched the surface of the diversity of 

papillomaviruses in seals considering the extremely high diversity within a relatively 
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small and isolated population which in turn contributes to the limited understanding of 

the Antarctic virome through confirmed sequence data. In terms of the evolution of 

Papillomaviridae the discovery of these seven genomes also supports that gene loss has 

been a driver for diversification of papillomaviruses in certain genera and that 

papillomaviruses likely have multiple evolutionary lineages within a single host. Both of 

these influences to our understanding of the mechanisms of papillomavirus evolution 

draw attention to issues in our current taxonomic classification of this viral family. 
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