Overview

We propose that the cross-linguistic similarities and differences illustrated in (1)-(5) are best captured in an approach that combines aspects of Sailor & Ahn’s (2010) analysis of passives with ergative-like case marking and case-driven DP-movement.

(1) [This cake] was cut by me.
(2) [kue ini] dipotong oleh saya. (Indonesian di-passive)
(3) [zhe he dangao] bei wo qie le. (Chinese passive)
(4) [kono keeki-ga] watashi-nyiotte kirareta. (Japanese direct passive)
(5) [kue ini] saya potong. (Indonesian inverse)

Following Sailor & Ahn, we assume that external arguments are merged in SpecVoiceP, due to a [uDP*] feature on Voice. The voice marker is merged in Voice, but moves to the head of a higher functional projection in (1)-(3). To account for the position of the verb, we assume with Sailor & Ahn that Voice also has a [uvP] feature, which attracts vP to the Spec of the higher functional projection when it is strong, and thus moves the verb across the external argument (1)-(2). In (3)-(5), this feature is weak and the vP remains in final position. In order to account for the movement of the internal argument to initial position regardless of whether the vP moves (1)-(2) or not (3)-(5), we follow Béjar & Rezac (2009:68) in assuming that the EPP (=uDP*) feature on T is linked to the operation Agree, more specifically, the checking and valuing of φ- and case-features. We propose that passivisation not only suppresses the structural [acc] case on Voice, but also endows Voice with the ability to assign an oblique inherent case to the external argument in its specifier (cf. Woolford 2006). This means that T will Agree with the internal argument, and as a result the EPP feature on T, which is strong in all four languages, will attract the internal argument to SpecTP.

References

Sailor, Craig and Byron Ahn. 2010. The voices in our heads: morphological voice and its grammatical interfaces. Ms, UCLA Department of Linguistics. (http://byron.bol.ucla.edu/papers/SailorAhn-VoiceP.pdf)
The agent *me* is merged in SpecVoiceP in passives, because of the strong [uDP*] feature on Voice.

The passive marker *by* is generated in Voice and raises up to the head of a higher functional projection (FP), so that it precedes the agent.

The [uvP] feature on Voice is strong, so vP moves to SpecFP, smuggling the verb across the agent.

We assume that a passive participle feature in v endows it with a [uDP*] feature that attracts the internal argument *this cake* to SpecvP.

The agent *me* is inherently oblique case-marked by Voice. Therefore, T Agrees with the internal argument *this cake*.

The EPP ([uDP*]) feature on T is strong and because it is linked to Agree, it causes the internal argument *this cake* to raise to SpecTP from SpecvP.
Tree 2: Indonesian *di*-passive

- The agent *saya* is merged in SpecVoiceP in passives, because of the strong [uDP*] feature on Voice.
- The passive marker *oleh* is generated in Voice and raises up to the head of a higher functional projection (FP), so that it precedes the agent.
- The [uvP] feature on Voice is strong, so vP moves to SpecFP, smuggling the verb across the agent.
- We assume that the marker *di* in v endows it with a [uDP*] feature that attracts the internal argument *kue ini* to SpecvP.
- The agent *saya* is inherently oblique case-marked by Voice. Therefore, T Agrees with the internal argument *kue ini*.
- The EPP (uDP*) feature on T is strong and because it is linked to Agree, it causes the internal argument *kue ini* to raise to SpecTP from SpecvP.
The agent *wo* is merged in SpecVoiceP in passives, because of the strong \[uDP^*\] feature on Voice.

The passive marker *bei* is generated in Voice and raises up to the head of a higher functional projection (FP), so that it precedes the agent.

The \[\nu \nuP\] feature on Voice is weak, so \(\nuP\) stays in its base position and the verb is sentence-final.

The agent *wo* is inherently oblique case-marked by Voice. Therefore, T Agree with the internal argument *zhe he dangao*.

The EPP \((uDP^*)\) feature on T is strong and because it is linked to Agree, it causes the internal argument *zhe he dangao* to raise to SpecTP.
The agent *watashi* is merged in SpecVoiceP in passives, because of the strong \([uDP^*]\) feature on Voice.

The passive marker *-niyotte* is generated in Voice and just stays there.

In the case of Japanese, FP is not necessary, because we don’t have to smuggle the verb across the agent and the passive marker follows the agent.

The \([uP]\) feature on Voice is weak, so \(vP\) stays in its base position and the verb is sentence-final.

The agent *watashi* is inherently oblique case-marked by Voice. Therefore, T Agrees with the internal argument *kono keeki*.

The EPP \((uDP^*)\) feature on T is strong and because it is linked to Agree, it causes the internal argument *kono keeki* to raise to SpecTP.
Tree 5: Indonesian inverse

- The agent *saya* is merged in SpecVoiceP in passives, because of the strong [uDP*] feature on Voice.
- There is no overt marker in Voice.
- FP is not necessary, because we don’t have to smuggle the verb across the agent, and there is no evidence for any movement of the Voice head.
- The [uvP] feature on Voice is weak, so vP stays in its base position and the verb is sentence-final.
- The agent *saya* is inherently oblique case-marked by Voice. Therefore, T Agrees with the internal argument *kue ini*.
- The EPP (uDP*) feature on T is strong and because it is linked to Agree, it causes the internal argument *kue ini* to raise to SpecTP.