
Tag Clouds in Software Visualisation

Chris Deaker, Neville Churcher, Warwick Irwin
Department of Computer Science and Software Engineering

University of Canterbury
Christchurch, New Zealand

Email: neville.churcher@canterbury.ac.nz

Abstract—Software visualisation employs techniques from
the more general information visualisation field to help soft-
ware engineers comprehend and manage the size and complex-
ity of software systems. In this paper, we explore the use of
tag clouds for software visualisation. We describe a tool which
implements our approach and illustrate its operation with
examples from our software engineering research programme.

Keywords-software visualisation; information visualisation;
tag clouds; software metrics; software engineering;

I. INTRODUCTION

The term software engineering, coined half a century ago,
has long been associated with the challenges arising from the
software crisis [1]. Despite many advances in theory, tools
and practices scaling software development to cope with
systems of ever-increasing current sizes and complexities
has continued to be very demanding. This is reflected in the
poor success rate for IT projects: while current, universally-
applicable data is difficult to obtain, the consensus (see
e.g. http://www.it-cortex.com/Stat Failure Rate.htm) indi-
cates that a third to a half of all IT projects can be regarded
as having failed.

The problem is multi-faceted: more than just technical
aspects are involved. A typical project will involve more than
one person, making clear, concise, error-free communication
between team members a key factor for success. Since the
advent of the venerable flow chart, various forms of diagram
[2] have been employed to assist with the comprehension
and communication of information between software engi-
neers. The Unified Modelling Language (UML) has become
the lingua franca for this purpose (http://www.uml.org).

A typical project will evolve as successive versions are
developed. The widespread adoption of agile processes, such
as eXtreme Programming or Scrum, means that a developer
team may be sharing a code repository that is being updated
on a daily basis. Developers now need to communicate with
their future and former selves: diagrams and visualisations
provide convenient time capsules for this purpose.

Visualisation techniques provide one important means of
improving the levels of communication and understanding in
order to support overall improvements in the development
process.

Tag clouds are a relatively recent addition to the in-
formation visualisation toolkit. While they are appealing

and appear to have potential applications in information
visualisation and software visualisation, these have not been
explored fully.

In this paper, we extend the tag cloud concept in order
to accommodate information visualisation features. We con-
sider some of the issues which characterise software visuali-
sation as well as more general information visualisation con-
texts. We describe TAGGLE, our prototype implementation,
and present examples drawn from our software engineering
research.

The remainder of the paper is structured as follows. In
the next Section, we give a brief overview of tag clouds
and in Section III we discuss visualisation and its rôle in
supporting software engineering activities. In Section IV we
provide an overview of TAGGLE and discuss software visu-
alisation aspects in Section V. Some implementation issues
are discussed in Section VI followed by our conclusions and
discussion of ongoing work.

II. TAG CLOUDS

Tag clouds have become commonplace in the last few
years. They are often used to indicate the content of blogs
(e.g. http://icanhascheezburger.com) and have become popu-
lar in other information retrieval contexts where the content
of a document or document collection is of interest. Recent
examples include analyses of Barack Obama’s election and
inauguration speeches1.

Figure 1 shows a typical example. Many more are avail-
able at the Wordle site (http://www.wordle.net, which has
contributed significantly to the popularisation of tag clouds.

Tags (text labels for data points) are arranged according
to some layout strategy. The font sizes used generally
correspond to the frequency with which the tags appear in
the document under consideration.

In previous work we have begun to explore the potential
to extend the tag cloud metaphor to enable clouds to be used
as an effective visualisation tool [3]. The key idea involves
mapping variables in the data set to visual attributes of the
tag cloud. In this way, attributes such as colour may be used
to convey additional information rather than just function as
“decoration.”

1e.g. http://www.readwriteweb.com/archives/tag clouds of obamas
inaugural speech compared to bushs.php



Figure 1. Tag cloud summarising blog content

Others are beginning to use basic tag clouds for software
engineering data [4, e.g.] but we are not aware of extensions
such as we advocate here.

III. VISUALISATION ISSUES

Scientific visualisation deals with data representing quan-
tities which are “really there” — such as magnetic field
strength. Information visualisation differs significantly in
that it deals with quantities—such as economic data—which
have no natural shape. Computed geometry is the basis
of these visualisations: choosing an effective metaphor is
a key challenge. Software visualisation is a sub-field of
information visualisation, dealing with quantities such as
software complexity.

Despite this key difference, many of the techniques and
challenges are common to both scientific and information
visualisation, allowing us to draw on them in our software
visualisation activities.

The number of relevant variables may be high and the
sizes of data sets is often extremely high. This leads to issues
such as information overload. The distribution of values for

a single variable may be skewed and the range of data
points may be large. This is typical of software metrics such
as cyclomatic complexity, NPATH or LOC. Since outliers
are often of particular interest in software visualisation,
truncation or scaling approaches are problematic.

The models which are the subjects of visualisations es-
sentially consist of elements, properties of elements and
relationships between elements.

Users of the visualisations perform a range of navigation,
comprehension and exploration tasks involving:

• Determining the presence/absence of an element, prop-
erty or relationship

• Studying the distributions of quantities
• Examining the correlations and relationships between

quantities
• Discovering new knowledge from the data
In the software visualisation domain, data distributions

(such as a histogram of LOC) are heavily skewed, may
contain large numbers of data points, may cover large value
ranges and may include outliers [5]). No single technique is
universally ideal: the challenge is to find “horses for courses”
using individual techniques in contexts where they are most
effective.

We see tag clouds fitting alongside multivariate data
alternatives such as kiviat charts, treemaps and parallel
coordinates [6], [7].

Another key challenge is the focus+context problem,
where drilling in to explore detailed properties of specific
components leads to the user losing awareness of the rela-
tionships with the remainder of the system.

Whatever technique is used, we need to be able to map
sufficient variables to be useful in software engineering
contexts and to support users in the information analysis
tasks they perform.

We have previously considered the design of software
visualisations [8] and make use of that approach in this work.

IV. TAG CLOUDS WITH TAGGLE

We have implemented an application, TAGGLE, both as a
prototype for users and as a platform for ongoing research
into layout algorithms and other areas. TAGGLE is written
in Java and makes particular use of the Java 2D API for
advanced graphics and imaging.

The typical workflow involved in generating a tag cloud
is shown in Figure 2.

Data is typically maintained in XML files conforming to
a DTD appropriate for input to TAGGLE. This approach
allows transformation, using XSLT or other technologies,
from other common formats—such as that used by ggobi
(http://www.ggobi.org). Similarly, data in TAGGLE’s format
can be transformed readily into the formats expected by
other tools.

TAGGLE’s internal data structures provide an API allow-
ing direct connection to application data sources. This is



Figure 2. Workflow

particularly useful where the data set is evolving during a
TAGGLE session.

Figure 3 indicates the data set structure: records contain-
ing fields of various types.

The user “designs” a cloud by selecting values for the
parameters which determine layout, mappings and other
properties. The settings can be saved (again in XML) and
loaded to allow re-use of particular combinations with
different data sets.

Figure 4(a) shows the visual properties settings tab, which
contains individual tabs for setting font colour and other
properties. The layout settings tab is shown in Figure 4(b).

TAGGLE then takes care of the extraction of the required
data, application of mappings and rendering of the cloud.
Our current application uses a Java component for this but
the application design allows for other forms. However, we
have found it sufficient to save cloud layouts in XML and
then use XSLT to translate them to other formats, such as
SVG, as required.

Users can interact with the rendered cloud in a several
ways. Figure 5 provides an overview. Users may select
tags as targets for subsequent actions (e.g. removal, new
cloud creation, . . . ), obtain more detail about individual tags,
observe areas at higher magnification and so on. Depending
on the nature of the operation, the cloud may need to be

Figure 3. Data structures (simplified)

re-computed and re-rendered.
In our work to date, most of our data sets have been

taken form our software metrics projects. For example,
we might generate a cloud whose labels are class names,
font sizes indicate WMC, font colours indicate CBO, font
transparency indicates proportion of public elements and
font style indicates whether the class is abstract or concrete.

V. TAG CLOUD VISUALISATION ISSUES

Like all information visualisation techniques, tag clouds
have their strengths and weaknesses. Understanding these
help us determine the best contexts in which to use them.

If only a few tags are present then a cloud adds little
value. If the number of tags is very large then navigation
and comprehension tasks become difficult. Similar issues
arise with alternative techniques. The challenge is to find
the “sweet spot” where the number of tags is manageable
and the advantages of the tag cloud are not outweighed by
other effects.



(a)

(b)

(c)

Figure 4. Settings

Figure 5. interactions

There is no “right” mapping from data variables to tag
cloud properties. Different mappings may be appropriate as
users perform different tasks. Similarly, the user may wish
to change mappings during a task. It is important that this
process be well-supported and as unobtrusive as possible in
order to support tasks.

Tasks performed by users vary considerably but include
elements such as the following:

Search: Is particular tag value present or absent? Ordering
(lexical, numeric, colour, . . . ) makes searching
easier.

Filter: Include/exclude tags whose values are specified in
terms of criteria (see Figure 4(c).

Browse: Examining a data set to confirm expected pat-
terns and note outliers or deviations from typical
distributions.

Explore: Looking for patterns, such as correlations be-
tween variables, which may then be studied further
with other techniques.

In order to comprehend a tag cloud, we also need to
consider what should happen as the containing window or
region is re-sized or re-shaped. Ideally, changes in aspect
ratio or overall dimension should lead to smooth changes in
the tag cloud layout.

If the tag cloud region shrinks then one option is simply
to reduce the font size of each tag. However, this approach
eventually leads to problems as people’s ability to perceive
differences in tag properties such as size, colour, font family
and transparency diminishes as the tag size becomes small.

These issues also become more apparent as the number
of tags increases, whether this is because of the intrinsic



size of the data set or because new tags are being added
dynamically.

Conventional responses to such problems in other con-
texts include scrollbars or distortion-oriented techniques [9].
However, these are less desirable in the case of tag clouds
since they either prevent the cloud from being viewed in its
entirety or alter the relative sizes and locations of tags.

We address this problem in a number of ways:

• truncation
• filtering
• selection and new cloud creation
• linking

Truncation addresses a potentially problematic aspect of
tag clouds. A tag with a very long text label will appear to be
more prominent than it should even at very small font sizes.
We have explored and implemented mechanisms which
constrain the aspect ratio of a tag’s bounding rectangle.
However, we are not convinced that this is a good solution
in general. Another option would be to display only a fixed
width ‘window’ showing a sub-string of the tag text, with
support for horizontal scrolling.

However, we have had good experience with our
implementation of a partial truncation scheme—
suggested by our software engineering application
domain. Many of the data sets we have used
consist of tags representing file/path names, such as
/home/cosc/staff/nic11/research/tag_
cloud/papers/apsec, qualified expressions, such
as java.util.Observable.clearChanged() or
mangled identifiers, such as TYP_angle_layout_
reporters_SimpleReporter, where a ‘natural’
delimiter could be used to truncate the tag labels. When
required, further detail can be obtained by drilling in again.
TAGGLE binds the truncation/expansion operation to the
mouse wheel.

Figure 6(a) shows a tag cloud corresponding to classes
in the Angle graph layout tool [10]; the labels are mangled
identifiers from the corresponding JST semantic model [11],
[12]. Successive truncations each remove a layer (e.g. TYP_
in the first truncation) and the fully-truncated version is
shown in Figure 6(b).

Filtering allows tags not directly relevant to the ex-
ploration in hand to be suppressed. Only simple filtering
expressions (see Figure 4(c)) are currently implemented and
we expect this to be a fruitful aspect to explore further in
our future work.

More detail about individual tags is available. Hovering
over a tag (Figure 7(a)) reveals details of the corresponding
data record.

While regular zooming and scrolling is not practicable
for tag clouds, we have implemented a feature based on
the bifocal display [13]. Figure 7(b) illustrates how this can
be used to explore regions of a cloud where the font size

is small, in order to select subsequent operations such as
selecting tags or changing the mappings.

Individual tags, or rectangular regions, may be selected.
The user can then

• create a new cloud containing only the selected tags,
• remove the selected tags form the current cloud
• remove all un-selected tags from the current cloud.
Clouds can be linked so that selections on one cloud

automatically highlight corresponding elements in another
cloud. This is a particularly effective way to explore more
than one relationship concurrently.

VI. IMPLEMENTATION ISSUES

A. Data

A DataSet contains Records—the internal data repre-
sentation of what is eventually displayed as a rendered
tag. Each Record contains a number of Measurements
for different Variable types. The legal value set for each
Variable is determined by its Domain, which can be either
Nominal, Ordinal, or Ratio. Relationships can be used to
bind two Records together, as well as defining a weighting
for relationship strength. This area is also responsible for
providing a number of record iterators, allowing records
to be quickly ordered according to particular measurement
values. Figure 3 indicates the basic structure.

B. Mapping

There are three implemented visual properties for each
tag: font size, colour, and transparency, with possibilities
for a number of additional properties to be added. During
configuration, users may select which variable is to be
mapped on to which property, as well as specify the lower
and upper bounds for each property (for example, minimum
and maximum font size). Default values are available for
tag colour (black), and transparency (fully opaque) if no
mapping is selected.

Once the constraints of the visual property are set, a
relative weighting for each record is calculated, according
to the record’s rank when all records are ordered by the
selected variable. The method of calculation is dependent
upon variable type. As ordinal domains have no intrinsic
concept of “distance” between values, a “bucket ranking”
value is calculated as follows:

ω = ρ/η

Where ρ is the records rank in the ordered record set, η is
the total number of records, and ω is the resulting weighting,
such that 0 ≤ ω ≤ 1. In ratio domains we can calculate a
value which takes into account distance between values on
a scale, using the following formula:

ω =
(α−min(ξ))

(max(ξ)−min(ξ))



(a)

(b)

(c)

Figure 6. Typewriter layout examples



(a)

(b)

Figure 7. Obtaining detail

Where α is the actual value of the records measurement
for the specified variable, min(ξ) and max(ξ) are the lowest
and highest values for all record measurements for the
specified variable, and ω is the resulting weighting, such
that 0 ≤ ω ≤ 1.

At this point, if specified by the user, ω is converted to its
hyperbolic tangent. Discussion of the effect of the different
mapping scaling options available can be found in Section
4.2. Using this ω, we can calculate the actual value of the
visual property. An example using font size is shown:

β = (int)(((max(θ)−min(θ)× ω) + min(θ) + 0.5)

Where ω is the previously calculated record weighting,
min(θ) and max(θ) are the specified minimum and maxi-
mum font sizes, and β is the tag s final font size. As shown,
values are cast and rounded to the nearest integer value.
In the case of font colour, values are calculated according
to the above algorithm for each of the hue, saturation, and
brightness values.

C. Layout

Once a cloud has been created, its words are positioned
according to the selected algorithm. Layout is an abstract
class which provides utility methods for algorithms, such
as for intersection and boundary testing, and defines the
abstract method placeWords, which takes a list of non-
positioned Words, ordered according to user configuration,
and returns a list containing the same words, but with
specified positions. All layout algorithms must subclass
Layout. This is the extension point for any future alternate
layout methods.

Several algorithms have been implemented. Each layout
describes a tags position as an x, y co-ordinate on a 2-
dimensional canvas, where x determines horizontal position,
y determines vertical position, and an x, y co-ordinate of 0, 0
describes the upper-left-most corner of the canvas.

Figure 8 shows some of the sequence of steps in a
spiral layout. The tag Decl cannot be placed in the first
(highest priority) position and is eventually placed at the
lower right of the aggregating cloud. The next tag to be
placed, DeclVisitor, does fit in that location.

A 1-D “Typewriter” algorithm is shown in Figure 6.
The mappings for Figure 6(c) order the tags alphabetically,
making search tasks easier.

VII. CONCLUSION & FUTURE WORK

In this paper we have demonstrated that tag clouds can
be extended to include additional information visualisation
functionality. This enables tag clouds to be used effectively
in software visualisation.

We have described a tool, TAGGLE, which implements
our extended tag cloud models. We are encouraged by our
experiences thus far, and are continuing to develop our
techniques further. One current idea is to include tag clouds
in standard javadoc HTML pages.

We have used TAGGLE on data from software engineering
projects; typical variables are class names, method names,
access modes, and software metrics such as lines of code,
cyclomatic complexity and the Chidamber & Kemerer suite.
Using the mapping mechanism, with its linear and non-linear
(tanh) transformations has allowed us to gain insight into our
data sets as effectively as other techniques we have used.

Evaluation is a vital, but challenging, part of visualisation.
Our department has recently obtained a Tobii eye tracker



(a)

(b)

(c)

(d)

Figure 8. Spiral layout

(www.tobii.com) and we are currently planning empirical
studies to help us both quantify the effectiveness of the
current implementation but also to help us determine the
most appropriate software visualisation tasks to deploy tag
clouds on.

REFERENCES

[1] P. Naur and B. Randell, Eds., Software Engineering: Report
of a conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7–11 Oct 1968.

[2] J. Martin and C. McClure, Diagramming Techniques for
Analysts and Programmers. Prentice Hall, 1985.

[3] C. Deaker, L. Pettigrew, N. Churcher, and W. Irwin, “Software
visualisation with tag clouds,” in ASWEC 2010 Industry Track
Proceedings, J. Hosking and B. Long, Eds., Auckland, New
Zealand, Apr. 2010, pp. 129–133.

[4] C. Anslow, J. Noble, S. Marshall, and E. Tempero, “Visu-
alizing the word structure of java class names,” in OOPSLA
Companion ’08: Companion to the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems languages
and applications. New York, NY, USA: ACM, 2008, pp.
777–778.

[5] K. Fujimura, S. Fujimura, T. Matsubayashi, T. Yamada,
and H. Okuda, “Topigraphy: visualization for large-scale tag
clouds,” in Proceeding of the 17th international conference
on World Wide Web, ser. WWW ’08. New York, NY,
USA: ACM, 2008, pp. 1087–1088. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367669

[6] R. Spence, Information Visualisation. Addison-Wesley, 2001.

[7] C. Ware, Information Visualization: Perception for Design,
2nd ed. Morgan Kaufman, 2004.

[8] N. Churcher and W. Irwin, “Informing the design of pipeline-
based software visualisations,” Department of Computer Sci-
ence & Software Engineering, University of Canterbury, Pri-
vate Bag 4800, Christchurch, New Zealand, Technical Report
TR-COSC 06/04, Sep. 2004.

[9] G. Furnas, “Generalised fisheye views,” in Proc ACM SIGCHI
’86 Conference on Human Factors in Computing Systems,
1986, pp. 16–23.

[10] N. Churcher and A. Creek, “Building virtual worlds with the
big-bang model,” in Information Visualisation 2001, ser. Con-
ferences in Research and Practice in Information Technology,
P. Eades and T. Pattison, Eds., vol. 9. Sydney, Australia:
ACS, Dec. 2001, pp. 87–94.

[11] W. Irwin and N. Churcher, “Object oriented metrics: Precision
tools and configurable visualisations,” in METRICS2003: 9th
IEEE Symposium on Software Metrics. Sydney, Australia:
IEEE Press, Sep. 2003, pp. 112–123.

[12] W. Irwin, “Understanding and improving object-oriented soft-
ware through static software analysis,” PhD Thesis, University
of Canterbury, Christchurch, New Zealand, 2007.

[13] Y. K. Leung and M. D. Apperley, “A review and taxonomy
of distortion-oriented presentation techniques,” ACM Trans-
actions on Computer-Human Interaction, vol. 1, no. 2, pp.
126–160, 1994.


