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Abstract

All evolutionary systems, natural or artificial, are built from essentially the same three
elements: variation, inheritance and selection. What then distinguishes the process of bi-
ological evolution by natural selection, which produces such impressive outcomes, from
the relatively underwhelming results of artificial digital evolution? We focus on one aspect
of this: the emergence of simple replicators from a lower-level foundation in an artificial
chemistry. Previous work has either supplied a handbuilt basic (or shortcut) replicator for
evolution to work upon, or has provided direct support for replication in the chemistry
itself.

Our first research question concerns the relationship between heredity and selective
pressure in a theoretical replicator. We construct a simple model of generalized evolution
that shows complex and non-obvious emergent behaviour. We show by simulation that
inheritance in this model is a target of evolution, and that it evolves under a range of con-
ditions. The degree of inheritance is related to the predictability of environmental change,
and the degree of inheritance is tuned by evolution to balance fitness and robustness. Fit-
ness is maximized in unchanging environments where there is little penalty to reduced
diversity, while a more diverse population is maintained in changing environments to pro-
vide robustness to environmental change. This balance emerges unprogrammed from the
underlying model.

Our second research question regards the practicality of realising replication in an arti-
ficial system. The investigation is founded on ToyWorld, a highly-modular artificial chem-
istry that allows us to explore the effect of different combinations of modules, such as for
reactant or product selection, upon replicator formation. Our underlying hypothesis is that
replicators can form from sequences of linked reaction cycles, where the stochiometry of
the sequence is necessarily greater than one for replication.

We first test the influence of two strategies to select reactants for a reaction, and two
other strategies for selecting the resulting products post-reaction from the alternative product-
sets. Our first reactant selection strategy is to choose reactants with equal-probability from
the set of possible reactants without consideration of position; our second strategy is spa-
tial, where reactants are chosen if they are spatially co-located. For product selection, the
first strategy is again based on an equal-probability choice from the alternative product
sets, while the second biases the choice towards the product set with the greatest energy
return, or least energy input (a “least-energy” strategy). Of the four possible combinations
of reactant and product selection strategies, the combination of spatial reactant selection
and least-energy product selection strategies maximizes the number and cycle-length of
the resulting reaction cycles.

Next we search the ToyWorld reaction network for evidence of exact multipliers: re-
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peated increasing sequences of the same type of reaction cycle, connected by one or more
shared reactants and products. We develop an algorithm for the detection of multipliers
in a reaction network, and using that, we find that multipliers do form in ToyWorld, but
at low rates, and without great longevity. They occur as a result of Product and Reactant
selection strategies, and not by chance alone.

Finally, we examine the reaction network for variable replicators: multipliers that can
take any of a set of structural states that appear equivalent under selection. We extend our
earlier model of external environmental change, and search for variable replicators in the
resulting reaction network. Our results are inconclusive. Candidate variable replicators
emerge, but each is endemic to a single run.
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1 Introduction

Evolutionary systems are commonly described in terms of three foundational elements,
usually some form of variation, selection and heredity1. Selection is the mechanism by
which possibilities are pruned, and focus is maintained. Selection guides evolution by di-
recting the search into promising areas, acting upon the phenome, or the form developed
from a genome under the influence of the environment. However, it is not a generator of
new ideas. Novelty instead is the outcome of the second element, variation. Variation ex-
tends the search into different areas, and creates new alternatives for selection to evaluate.
The final element, inheritance, elevates evolution beyond random search. Instead of start-
ing afresh at each generation, inheritance causes the search to be cumulative, with gains
preserved. Variation and inheritance together are the source of new forms; each variation
is a modification of the previous generation, forming a spreading tree of related entities
when viewed over time. Unlike selection, variation and inheritance are processes that act
upon the genome directly.

An open-ended evolutionary system, capable of ongoing evolution without practical
limit, needs these components to be themselves subject to evolution, change and adapta-
tion2. A system where variation, selection and heredity emerge endogenously from lower-
level elements appears to be a promising approach to open-ended evolution in artificial
systems. After all, this is the approach taken by life itself.

However, creating the conditions under which evolution emerges endogenously has
proved to be extremely difficult in artificial systems, and remains an open problem3. In-
stead of directly addressing this broader problem, therefore, our focus is on only one of the
necessary elements for open-ended evolution, the mechanism for heredity within artificial
evolutionary systems.

In this work we explore two related aspects of an endogenous mechanism for heredity:

1Other related formalisms exist, as discussed in section 2.2; however, none alter these elements
fundamentally.

2This relates this work to evolvability; see for example Pigliucci (2008), Wagner and Altenberg (1996), and
Wagner (2008).

3See recent review in Banzhaf et al. 2016
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1.1. CONTEXT - THE EMERGENCE OF BIOLOGICAL REPLICATORS

1. In what way does selective pressure drive changes in heredity in a population of evolv-
ing replicators?

2. Can variable replicators emerge from a molecular artificial chemistry?

1.1 Context - the emergence of biological replicators

Biological evolution has produced ecosystems of astonishing variety and range, occupying
essentially every viable niche on, above, and within the Earth from a common origin in the
prebiotic world many millions of years ago. This has been far more than a working out
of a single theme; instead a hugely impressive radiation of form and function has left that
original ancestor far behind. The only connection that remains is the unbroken lineage of
genes that links that earliest ancestor to every descendent organism alive today.

The origin of life was almost certainly contingent, and there is an absence of evidence
from early stages (Pross and Pascal 2013). There are many possible pathways, and un-
less some record remains somewhere (either geological or phylogenetic), the actual path is
essentially lost to history.

However, a consensus is forming that early life began with chemoautotrophs fuelled
by energy from inorganic redox couples and biomass from CO2, and that innovations in
carbon-fixation created the main branches in the tree-of-life (Braakman and Smith 2012).

The initiation of selection is marked by the advent of the Initial Darwinian Ancestor
(IDA), probably from an RNA world, followed substantially later by the Last Universal
Common Ancestor (LUCA) (Yarus 2011). It is important to note for clarity that LUCA was
almost certainly not a single entity or even species, but is rather a construct of evolutionary
genetics because of the likely predominance of Horizontal Gene Transfer in archaic biology
(Doolittle and Bapteste 2007). Under Horizontal Gene Transfer, also known as Lateral Gene
Transfer, genetic material is incorporated into an organism’s genome by methods other
than by reproduction along the vertical line of descent.

Horizontal Gene Transfer is thought to have been so common in early life that there was
no single common ancestor; instead genes from multiple lineages intermixed during this
early stage into all lineages today (Ragan, McInerney, and Lake 2009). The starting point
for the development of modern replicators might therefore have begun with horizontal
inheritance, although the changes can then be heritable in a vertical sense: in organisms
with genes, by definition under Horizontal Gene Transfer the change becomes part of the
target’s genome and hence heritable. In entities without genes, there are forms where the
horizontal change can be subsequently inherited vertically4.

4Mechanisms for horizontal transfer don’t require replication (by definition). Therefore it’s possible that
they can act as a precursor for the development of replication. That is, horizontal inheritance plus selection
might be sufficient for replication, rather than replication being required for inheritance.

2



1.1. CONTEXT - THE EMERGENCE OF BIOLOGICAL REPLICATORS

Although the advantages of a distinction between genome and phenome are discussed
by many, including (Taylor 1999a, section 7.2.3) and indirectly Von Neumann (1966); there
is no inherent dependency on this in Evolution by Natural Selection (ENS). Early evolu-
tion may have involved the inheritance of complete portions, or components, of the phe-
nome before the advent of a distinct genome, while research into Horizontal Gene Transfer
(e.g. Ochman, Lawrence, and Groisman (2000), Pace et al. (2008), and Ragan, McInerney,
and Lake (2009)) has shown that not only was component transfer between species a major
driver of early evolution, but a horizontal component-based mechanism continues to exist
even in many of today’s organisms that have a genome built from DNA.

Two alternative models exist for the step from the prebiotic world to IDA (fig. 1.1):
replication- or genes- or RNA-first, and metabolism- or protein-first. Both metabolism
and replication were almost certainly required for IDA, however. Self-replicating RNA
enzymes are described in Lincoln and Joyce (2009), forming the basis of a selective sys-
tem (also see Cheng and Unrau (2010) and Powner, Gerland, and Sutherland (2009) for
formation of RNA in prebiotic conditions).

Some elements of IDA are thought to still be with us in lineages of informational (for
protein synthesis and RNA transcription) and operational genes (for some standard cellu-
lar processes) (Ragan, McInerney, and Lake 2009), for example the ribosome and ribonu-
clease P (RNase P) (Wilson and Lilley 2009). The next major transition was to the protein
world, although predominance of RNA transcripts leads to suggestions that it should more
accurately be called the RNA-Protein world (Altman 2013).

A self-sustaining autocatalytic network5 is generally considered essential (Pross and
Pascal 2013), but not sufficient (Hordijk, Kauffman, and Steel 2011). Both competing models—
replication-first and metabolism-first—build on this. In the case of replication-first, through
autocatalysis as expressed by self-replication of oligomeric compounds; in metabolism-
first, by cycles and networks. From another perspective, metabolism-first privileges func-
tion, while replication-first privileges descent.

The main difficulty with the replication-first model concerns the sizeable step required
from abiotic compounds to template-based, or information-based, replication (although ri-
bonucleotides conceivably could form in pre-life conditions (Powner, Gerland, and Suther-
land 2009)). Templates encode information in biology, so template-based replication re-
quires an encode/decode mechanism to store information in the template and to later re-
trieve it, as well as an information code. This is significantly more complex than simple
multiplication. By contrast, the main issue with the metabolism-first model concerns the

5Perhaps in the form of a Reflexively autocatalytic and F-generated (RAF) set, a “set of molecules and reac-
tions which is collectively autocatalytic in the sense that all molecules help in producing each other (through
mutual catalysis, and supported by a food set)” (Hordijk, Kauffman, and Steel 2011).
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1.1. CONTEXT - THE EMERGENCE OF BIOLOGICAL REPLICATORS

prebiota

metabolism-first

replication-first

IDA LUCA

Figure 1.1: Some of the stages proposed in the evolution of early life

necessary shift from composomal or holistic6 inheritance to template-based, and the ability
of holistic systems to represent a sufficient range of stable states for unrestricted evolution
(Vasas, Szathmáry, and Santos 2010).

In summary, the origin of life can be seen as the transition from chemistry to biology,
and this transition seems tantalizingly similar to the artificial evolutionary goal of moving
from simple, uninteresting, systems to creative systems which evolve.

1.1.1 Replicators in evolutionary theory

Although artificial systems are the main focus of this thesis, there is a natural overlap with
research in biology into the origins of life. In particular the transition from chemistry to
biology has several central concerns in common with our field of emergent replication in
artificial systems. For example, how does the interaction of lower-level elements form
long-lived composite structures? What are the necessary and sufficient conditions for evo-
lution? How does an evolutionary process begin in a non-evolutionary system? This over-
lap means that much of the most relevant previous work is to be found in origins-of-life
research.

In this particular section we adopt a biological classification of replicators from Zachar
and Szathmáry (2010) to structure our review of artificial replication, and in other sections
of this thesis we shall extend our scope as needed to include pertinent results from biology.
However, it’s important to stress that we are informed by biology, but do not hope or intend
to contribute to biology in return. This remains a work concerned primarily with artificial
systems.

In the transfer from the prebiotic world to the biotic one, the proportion of information
held by a predecessor that could be passed on to its successor increased, over many gen-
erations, from “none” to “nearly all”. Vasas and Fernando (2012) relate heritability to the
correlation between the parent and child entities. Heredity is therefore a matter of degree,

6See discussion in section 1.2.3.
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1.1. CONTEXT - THE EMERGENCE OF BIOLOGICAL REPLICATORS

rather than being a binary relationship (related or not-related), and that opens up the pos-
sibility that a series of gradual changes might over time transform a very poor replicator
into a very good one. Of course, one possible process for this transformation might well be
ENS.

But what exactly does it mean for something to be a replicator? Is a rock that erodes
to form grains of sand a replicator7? Is a set of autocatalytic reactions that splits into two
replicating? Dawkins (1976) was the first to define replicators, including a range from
biological genes to non-biological ideas (memes) in the scope of the definition. Many other
definitions and formulations followed as various properties or features were examined.

Relatively recently, Zachar and Szathmáry (2010) saw a need to reexamine the definition
primarily to resolve issues of discrimination between entities which are clearly replicators
or not replicators and those which are borderline, and between biological replicators and
non-biological or cultural ones.

They conclude that a replicator is “any autocatalytic entity for which there is a selection
process defined”, using autocatalysis in the usual sense of a reaction, generally cyclical,
that increases a reactant (say A) n-fold, but in this case the products are not necessarily
identical to the reactant As, but instead equivalent when subject to selection. Selection is
the mechanism used to determine if entities are equivalent. Instead of producing more As,
replication produces something indistinguishable by selection but which is not identical—
we can call these products Bs to make the distinction clear.

Replication therefore has the form Σxi + A→ Σyj +ΣBk (where some n of the B0, B1...Bk

products are equivalent to A under selection,→ means “yields”, and x and y are some re-
actants and products, respectively, as needed), and where selection has the fairly standard
definition of “a process, acting on a particular population of entities in a particular envi-
ronment, which sorts entities according to their phenotypes.” (Zachar and Szathmáry 2010,
p.21)

Note that replicators in this definition are subsets of autocatalytic entities: replication
implies multiplication, but replicators must also have some property (a phenotype) that
is visible to an external process (selection.) Zachar and Szathmáry further discriminate
between types of replicator based on two further factors: variability and heredity.

If the replicator can change and yet still be equivalent under selection, then it is a vari-
able replicator, which can exist in several equivalent states. An exact replicator on the other
hand is one in which any change causes the entity to fail, or to respond differently under
selection. Variability is the first stage towards metabolism and a genotype/phenotype dis-
tinction. Heredity describes which elements of variability are passed on to a descendent
(the genotype.) If variability can be passed on, then the replicator is informational—the

7In Bourrat (2015) rocks are given as examples of persistors, unable to reproduce and subject to only a “weak”
form of selection for hardness.
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Multiplication

Variability

Heredity

Exact

Variable

Non-Informational

Informational

Figure 1.2: Replicator systems according to the hierarchy of Zachar and Szathmáry. Diagram
redrawn from Zachar and Szathmáry 2010, Fig.13.

change in information can persist. If all changes are passed on, then the replicator is an
ideal replicator, where the genotype encompasses the entire entity, while if they are not, the
replicator is real.

Building on this, Zachar and Szathmáry, extending earlier work by Szathmáry (1999)
and Szathmáry (2006), go on to develop the following general classification of replicators as
a logical sequence of forms (Zachar and Szathmáry 2010, p.21, line breaks and numbering
added for emphasis):

1. ”The simplest of replicators is the exact replicator, which is non-informational, and any
change made to it causes a change in the phenotype.

2. If a variation can arise in the structure in such a way that it does not change equivalence
of the entity, then it is a variable replicator, with more than one stable state.

3. If such changes can be passed on to the offspring then the replicator is informational.

4. If the non-heritable part is constructed by a developmental process, then the replicator
is a reproducer.”

An alternative hierarchy, from the same source (Zachar and Szathmáry 2010), is shown
in simplified form in fig. 1.2. Here the hierarchy is by a cumulative arrangement of features
from simple multiplication through to heredity; the main discriminators from the earlier
definition are arranged to the right of the figure.

1.2 Previous work

We now move from biological systems to artificial ones. Many modern artificial replication
systems trace their intellectual ancestry back to one of two main starting points—Bagley
and Farmer (1991) and Kauffman (1986)—both motivated by the goals of origins-of-life
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research. Although these works have been since overtaken by later research, for complete-
ness they are mentioned here.

Bagley and Farmer investigates Auto-Catalytic Metabolisms with catalysts included as
the mechanism to provide the permanently elevated concentrations required. In contrast
to many later methods, the model is based on differential equations to determine concen-
trations, rather than simulation. This approach severely restricts the model’s ability to
describe open-ended scenarios as the equations must be defined in advance.

Kauffman describes a binary polymer model to investigate the formation of autocat-
alytic sets, and in particular how this is affected by the probability of catalysis. In Kauffman
polymers are modelled as strings of binary digits of maximum length, n, and molecules
catalyse randomly chosen reactions for ligation or cleavage, with a constant probability (P)
that a molecule will catalyse any given reaction. Again, the model is primarily analyti-
cal and logical, although in discussion simulation is suggested as the means by which the
proposed extensions to the model might be implemented.

Before examining other systems that show at least some degree of replication, according
to the classification of Zachar and Szathmáry, there is one other interesting system in which
replication was a goal, although in this case it was not achieved. RBN-World (Faulcon-
bridge 2011) is an artificial chemistry where the entities take the form of Random Boolean
Network (RBN) (Kauffman 1969), with the addition of a bonding mechanisms to allow
for their composition and decomposition. The resulting form of RBN is called a bonding
RBN or bRBN. Larger structures are formed by “bonding” two independent bRBNs at each
bRBNs bonding node. “All reactions are between two reactants; it is assumed that more
complicated reactions can be expressed as a series of two-reactant reactions with inter-
mediate structures.” The choice of reactants is described as “Gillespie-like” (i.e. Gillespie
(1976)), and essentially random, uncorrelated in any way with reaction energies or rates
(Faulconbridge 2011, chap.8).

Each bRBN is a synchronous RBN, made up of a number of nodes, each with an ini-
tial state (true or false) assigned randomly and with an input/output matrix assigned ran-
domly. Finally k(=2) inputs are established per node. The bonding method uses “cycle
length as the bonding property and equality as the bonding criterion....bonds only exist be-
tween bRBNs that have the same cycle length.” After initial bond formation the algorithm
recalculates cycle lengths, and checks again for equality. This might result then in decom-
position (records are kept of composition operations so that the reverse decomposition can
be easily done.)

A number of parameters affect the behaviour of the chemistry, and so a series of exper-
iments sampled from the parameter-space, and then used a GA, to search for interesting
variants as measured by non-catalysed “loops” (as the preferred measures of auto-catalytic
sets and hypercycles are too rare for use as a measure) (Faulconbridge 2011, chap.8).
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1.2.1 Replication without self-replication

The systems in this section are capable of replication, but not self-replication. The differ-
ence is that they rely for replication on mechanisms that are completely external to the
entity. As such, they are of limited applicability to our work, although they do illustrate
various methods by which simple chemical entities might replicate before the establish-
ment of even minimal self-replication.

The model for Chemical Evolution by Natural Selection in Fernando and Rowe (2007) and
Fernando and Rowe (2008) is driven by origin-of-life objectives (“the evolution of chemical
networks that lead to autonomous systems”), and takes the form of a simulation of labo-
ratory experiments of lipid aggregates (“phase separated ‘individuals’, e.g. liposomes”) in
a reactor. The molecules and food molecules (that make up an autocatalytic cycle) share a
common representation and underlying chemistry, while replication, unlike the (rare) au-
tocatalytic cycles in Faulconbridge (2011), is by “ division by externally imposed agitation,
i.e. replication rather than self-replication.”.

Mutations in cycles are generally not heritable as mutant copies are rarely functional
in autocatalysis (Vasas and Fernando 2012). Mutation is thus problematic as a source of
variation in these autocatalytic systems; one alternative to mutations, introduced in Fer-
nando and Rowe (2007), is “avalanches”, to form new cycles from temporarily-preferred
side-products of the base networks. Two existing species are chosen at random, tested to
see if a reaction between them is possible by thermodynamics, and then the resulting prod-
ucts seeded in the reactor at low concentrations. These new reactions may be autocatalytic,
or the products may complete a food-set for another autocatalytic reaction, or they may
enable a side-reaction from an existing autocatalytic one. Introducing these new species
into the reactor therefore can trigger the rapid formation of a series of novel products—a
chemical avalanche.

1.2.2 Exact replicators

Remember that autocatalysis by definition is replication; if the entities are molecules, the
autocatalytic reaction Σxi + A→ Σyj + ΣAk replicates the molecule A (e.g. Lifson (1997)).

An exact replicator is where the As on the left-hand side of the equation and the right-
hand side are identical; any change results in a functionally different entity (that is, differ-
ent under selection), and so each entity exists in only one stable state. This fundamentally
limits the evolutionary potential of an exact replicator as there is no heritable variation.

1.2.3 Variable replicators with limited heredity

If states are to be a store of information for a replicator, information must be preserved
from generation to generation. The number of alternative stable states forms an upper
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bound on the total information held by a variable replicator. A limited heredity replicator
(in the original terminology of Szathmáry) is one in which the possible number of states
that the replicator may take is relatively small, and so the amount of information that can
be maintained is likewise restricted. This limits the possible forms that the phenotype,
derived from the genotype, may take, and hence the long-term evolutionary potential of
the replicator.

Gánti (2003) and Eigen (1971) showed that distinct, organisationally different alterna-
tive autocatalytic networks in the same environment might compete, and the fittest would
prevail. A number of models have been proposed since where autocatalytic networks form
stable components that can be inherited in a modular fashion in a process called compo-
sitional inheritance. All these models are analytical in nature, in many cases based on the
Ordinary Differential Equation (ODE) model of Farmer, Kauffman, and Packard 1986.

In the most well-known of these models, the Graded Autocatalysis Replication Domain
(GARD) model (Segré et al. 1998), highly catalytic molecules determine the properties of
the compotype (compositional genotype), and these are not necessarily inherited equally.
Instead a child may, or may not, inherit one of these molecules and so its properties may
be similar to or very different from its parent (Vasas et al. 2015; Vasas et al. 2012; Vasas
and Fernando 2012). Information fidelity varies widely; the Eigen threshold (Eigen 1971)
applies, and mutation rates overwhelm selection (Vasas et al. 2015; Vasas et al. 2012; Vasas
and Fernando 2012).

The model of Vasas et al. (2012), derived from Farmer, Kauffman, and Packard (1986),
and extended in Vasas and Fernando (2012) and Vasas and Fernando (2012), tests the
GARD hypothesis that compositional inheritance is possible where there is a parent-offspring
correlation in molecular composition. Autocatalytic cores made up of one or more linked
autocatalytic loops to provide the compotype. The core forms an attractor, where one core
equals one attractor, but multiple cores are required of course for selection.

Multiple cores provide multiple attractors, but the attractors must be stable for selection
to be stable and meaningful. Unlike GARD, which generates only single-core networks, the
model in Vasas is capable of multiple cores, but as cores are the equivalent of a single bit of
heritable information, it’s hard to see core-based inheritance being capable of unrestricted
heredity as there are practical limits to the number of stable cores that can co-exist in a
system.

1.2.4 Variable replicators with unlimited heredity, but with shortcut replication mech-
anisms

We now move on to systems where the entities are phenotypically-rich, but where the repli-
cation mechanism itself, although part of the entity, is provided by a shortcut; the mecha-
nism is directly implemented by the experimenter rather than being an emergent property
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(Banzhaf et al. 2016). As the mechanism is independent of the entity it is not under se-
lection; shortcut replicators are not, by our definition, open-ended as they have a limited
ability to self-improve. They differ from systems in the earlier section on Replication with-
out self-replication in that systems with a shortcut are capable of self-replication, but the
replication system remains independent of the evolutionary pressures acting on the entity.

One of the most well-known systems with a shortcut replication system is Squirm3
(Hutton 2007; Hutton 2002), an artificial system capable of life-like open-ended evolu-
tion (creativity), initially developed with the goal of testing the hypothesis of Taylor (2001)
(Hutton 2002, p.341).

All elements in Squirm3 are constructed from atoms defined by types (e.g., a, b, c. . . ) and
states (e.g., 0, 1, 2. . . ). Atoms and hence molecules are located on a 2D grid, and molecules
cannot overlap or pass through each other. All reaction rules, such as R1: e8 + e0→ e4e3,
are pre-specified (Hutton (2007, p.4) and Faulconbridge (2011, p.49)), and a shortcut con-
sisting of a set of eight rules in Hutton (2002) is sufficient to replicate single molecules.
As all reaction rules, including those responsible for replication and hence inheritance, are
exogenous to the model, the inheritance mechanism in Squirm3 is not evolvable.

Individual entities in Hutton (2002) are simply single molecules. Hutton (2007) intro-
duces cells made up of a collection of molecules and bounded by a membrane of a par-
ticular atom type of limited reactivity; the membrane is intended to allow individuals to
benefit from innovations by protecting their internal reactions from others. With a greatly
increased set of predefined reaction rules (from the original eight rules to thirty-four in
Hutton (2007) for the cell replication shortcut, extended again in Lucht (2012)), each cell
has the capacity for division and mutation. Selection is purely by indirect competition for
the raw materials (atoms in the environment) required by the reactions in a cell; interac-
tions between individuals are purely through this indirect competition (niche construction
without direct interaction). Cells in Hutton (2007) are incapable of making use of resources
from other cells (as they are effectively protected by non-reactant membranes) and so an
intermittent exogenous mechanism (“floods”) is used to return the atoms in a number of
randomly chosen cells to the environment.

1.2.5 Variable replicators with unlimited heredity

Our final class of artificial replicator systems are where there are no fundamental limita-
tions known to prevent unlimited self-improvement, but where, for one reason or another,
it remains unproven or undemonstrated.

Replication in these systems emerges from base rules 8 without being directly specified
by the experimenter or designer. However, even here most systems still jumpstart this by

8Level-0 rules in the terminology of Banzhaf et al. (2016)
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providing a seed or universal ancestor (e.g. Ofria and Wilke (2004)) that contains a work-
ing module for replication that can be then modified (for good or ill) in each subsequent
generation.

The small number of proposed unlimited heredity systems mostly fall into two closely-
related types: string-manipulation systems, where entities are algorithms encoded in strings
of primitive operators, and pure automata, where the algorithms are similar to assembly-
language programs, running directly in some virtual machine. In both cases, the pheno-
type, or evolutionary-value, of the entity is the result obtained by running its algorithm.

Not all unlimited heredity systems fall into these classes however; we conclude this
section with a summation of two other systems, StringMol and GraphMol, that are neither
pure string-manipulations systems nor pure automata but which contain elements of each.

String-manipulation systems

The most influential string-manipulation system is Fontana’s Algorithmic Chemistry, or
AlChemy (Fontana 1992), originally intended as an exploration of innovation in biological-
like complex systems. Entities in AlChemy are represented by strings of symbols that form
an algorithm according to a LISP-like language. Entities interact through applying the
algorithm (or function in AlChemy terminology) of one entity to that of another through a
recursive evaluation procedure.

A new entity or object, h, is formed by the composition of two parent functions, f and
g: h(x) = f (g(x)). More formally, replication is defined as the interaction expression, h, of
two randomly chosen objects f and g, if, and only if, the interaction expression contains at
least one variable and one primitive operator, and is shorter than some maximum length
(Fontana 1992, p.173–p.180). New objects in AlChemy are therefore the children of two
parents.

How then is the interaction expression ((′ f )(′g)) between f and g evaluated to produce
h? AlChemy is a form of pure LISP (with some “minor idiosyncrasies”) based on toyLISP,
with six primitive operators defined in Fontana (1992, p.205). The interaction expression is
defined in Fontana (1992, definition A.9, p.204) as V[((′ f )(′g)), ()] = (V[ f , (a← g)]), using
the notation V[e, L] = v to mean the expression e with the “association list” L (a list of value
assignments between atoms and expressions) evaluates to v. The result h is described as
f (g) and the process as f + g→ ((′ f )(′g))→ h + f + g.

Clearly reproduction in AlChemy is self-referential and endogenous: the process to
construct a child object is defined in the code of the parent objects. However, inheritance
doesn’t follow straightforwardly as the reproduction process is unusual in some important
ways. Producing new objects as a function of two parents means that the relationship
between parents and child is not a straightforward mutation or other syntactic difference,
but rather a complex functional relationship. What this means for the relationship between

11



1.2. PREVIOUS WORK

the parent’s fitness and the child’s fitness is not obvious. It seems that the fitness differences
in AlChemy might be more extreme than in other systems where parent and child have a
more straightforward relationship.

Automata

The previous systems we’ve described have all, in one way or another, been simulations
of evolution. With Automata, the technique moves from simulations towards direct evo-
lution, even if still within a simulated, digital, world. Entities are algorithms competing
against other algorithms for computer resources. The major insight behind these systems
is that by relaxing the restrictions that prevent programs from modifying themselves or
others, all of the elements thought necessary for ENS are present in the modern digital
computer.

Coreworld (Rasmussen et al. 1990), inspired by the early computer game “Core War”9,
set segments of simplified assembly code into competition in core memory. The assembly
command to copy values from one memory location to another can spontaneously intro-
duce errors into the copying, and hence can introduce evolutionary variation. However, as
reviewed by Ofria and Wilke (2004), the system “collapsed into a non-living state” perhaps
because organisms could copy over each other in the shared system memory (Ofria and
Wilke 2004).

In Tierra (Ray 1991) mutations are introduced during replication by randomly flipping
bits during the copy operation (at a given rate of generally between 1 bit flip per 1,000
and 2,500 instructions copied). This rate is set by the experimenter, and is not evolvable.
Mutations can also be introduced by the copy algorithm itself; as it is an algorithm defined
in the organism in standard Tierra instructions (and hence fully embedded), mutations in
the algorithm during a copy will be inherited by the child. The initial copy algorithm is
part of the 80-instruction ancestral creature documented in Ray (1991, app.C).

In Ray’s words, “...this approach involves engineering over the early history of life to
design complex evolvable organisms, and then attempting to create conditions that will set
off a spontaneous evolutionary process of increasing diversity and complexity of organ-
isms” (Ray 1991, p.3). As Taylor criticises though, the problem with “engineering over” is
that we don’t understand the natural examples well enough to engineer them at all (Taylor
2001)

Tierra has been the testbed for a number of other works. For example, Sugiura et al.
(2003) converted Tierra into a string manipulation systems, introducing a set of 140 regular-
expression based rewriting rules where each rule encoded one or more of the original 32
Tierran instructions. The initial rewriting ruleset was manually generated by the experi-

9See corewar.co.uk
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menters, although details are unclear. Unlike in Tierra where the instruction set is fixed
during a run, the rewriting ruleset for each organism itself could evolve through a separate
genetic algorithm. This algorithm removed the least applied rules and inserted the same
number of new rules generated by mutating (through duplication, removal and addition
of operations) a selection of the most applied rules. Although results support the claim
that the ruleset as well as the genome evolves, the use of a separate genetic algorithm for
ruleset evolution artificially separates the ruleset from the genome; the feedback loop from
genome back to ruleset is broken.

Tierra was also the starting point for Taylor (1999b) and Taylor (2001) to explore the
creation of Artificial Life (Alife), by adding cell regulation, parallel processes and energy
modelling.

Avida (Ofria and Wilke 2004), introduced in the summer of 1993, is based on Tierra with
improvements including better metering and measuring, and a 2D lattice or well-stirred
reaction vessel topography (unlike the shared linear memory of Tierra, for example).

Like Tierra, the automata engine in Avida follows a Turing-tape metaphor, with in-
struction, read, write, and flow control heads that can be moved forward and backwards
through memory using relative rather than absolute addressing. Instructions are grouped
into instruction sets, with the default set containing 26 instructions, and by definition every
program is valid. Each organism runs on its own virtual automata; the only interaction be-
tween organisms is via resources in the shared environment and through competition for
virtual machine CPU cycles based on “merit” or fitness. Direct Tierra-style interactions by
insertion of code into another organism is not enabled by default, but is possible through
configuration.

Phenotypes take the form of computations (entities take in resources, perform compu-
tations that result in merit, and perhaps produce output or by-product resources): “. . . by
inputting numbers from the environment, performing computations on those numbers,
and outputting the results. The organisms receive a benefit for performing specific com-
putations associated with resources” (Ofria and Wilke 2004). Crucially, the resources in
the environment are not the same as the elements of the organisms (instructions from an
instruction set.) Avidan organisms are not fully embedded in their environment.

New organisms are created asexually by the parent first allocating memory for a child.
The parent’s read-head is placed at the beginning of its code, the write-head placed at
the start of the newly allocated memory and successive h-copy instructions copy the in-
struction from the read-head to the write-head and advance both. After all instructions
have been copied, h-divide splits the child from the parent (all instructions between read-
head and write-head go to the child) and start execution in both parent and child from
a clean state. Variation comes through mutations which can be introduced through ei-
ther h-copy (the write-head writes a random instruction rather than the instruction at the
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read-head) or in h-divide (a single random instruction may be deleted or added from
the child code). Both forms of mutation happen with a fixed probability set by the in-
ventor: COPY_MUT_PROB, INS_MUT_PROB, and DEL_MUT_PROB for h-copy, and DI-
VIDE_INS_PROB, DIVIDE_DEL_PROB for h-divide. However, there is a second, evolv-
able source of mutations during replication: the replication process itself is embedded in
the organism, as a set of instructions, and so changes to this algorithm during the copy
will persist in the child. The self-replication algorithm is initially defined in the ancestral
organism used to seed a run, and as documented in Ofria and Wilke (2004, A1.3) consists
of 15 instructions.

Avida is extremely configurable, but provides little guidance or theoretical justification
for any particular configuration. Indeed this variability allows it to function most usefully
as a general testbed for experiments, e.g. “in one experiment we wanted to study a popu-
lation that could not adapt, but that would nevertheless accumulate deleterious or neutral
mutations through drift” (Ofria and Wilke 2004).

Amoeba-II (Pargellis 2001) shares similar features to Tierra and Avida in that it is an
instruction-set based automata, but unlike in those systems, replication spontaneously
emerges in Amoeba-II. The replication process requires four steps: “register initiation,
memory allocation, copying of the parent’s instructions to the child (embryo), and divi-
sion where the child is initiated as a cell on its own” (Pargellis 2001, p.69). Two specific
instructions in the parent’s genome are required at a minimum. The MALL command
allocates memory, and a virtual CPU to the child, and DIVD performs the division. Regis-
ter initiation and copying of the parent’s instructions can be done in a variety of different
ways, and a good deal of the interest of the Amoeba-II system lies in the evolvability of
these mechanisms. Selection is by efficiency of replication, where faster and more efficient
replicators replace less efficient ones in the population (as Pargellis (2001) says, “Amoeba
has only one task: replication”) and so there is selective pressure from the least efficient,
but functioning, mechanisms in the direction of improved replication. To complement se-
lection and inheritance, variability is provided by the DIVD instruction, which introduces
a mix of instruction substitutions, deletions and insertions into the child’s program at a
fixed but low rate.

Inheritance in Amoeba-II is almost too effective. Fit organisms rapidly evolve into
extremely rapid reproducers and out-replicate all other entities, leaving a mono-culture
(Pargellis 2001).

StringMol and GraphMol

The related automata StringMol (Hickinbotham et al. 2011) and GraphMol (Nellis 2012; Nel-
lis and Stepney 2014) explore computational novelty through embodiment: “Our aim is
to improve novelty-generation algorithms by making their biological models richer.” No
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measure is proposed for novelty. The authors state that they’re not even sure it is possible,
but an informal definition is used that sees novelty as the outcome of increasing embodi-
ment (Nellis 2012, p.87).

A persistent theme in Alife attributes the differences in richness between biology and
Alife to the grounding of biology in the physical world, or in other words, embodiment.
Nellis (2012) examines a pre-existing definition of embodiment, concerning the relation-
ship that exists between a “system” and an external “environment”, before suggesting a
modification based on the specifics of biological genome-copying where the complexity
and subtleties of the copying derive directly from the embodiment of an abstract concept
(copying) in physical-world mechanisms. The modification suggested by Nellis (2012) is
to define embodiment in terms of a world, encompassing both environment and system,
in which mechanisms of interest exist (such as a template-copying replicase) that produce
abstract phenomenon (such as copying.)

The base elements in StringMol are single-character symbols, each representing a mi-
crocode instruction. These combine to form strings representing molecular microprograms
(the strings of the name). The general arrangement feels very similar to that in Avida or
Tierra, as seen for example in the various pointers, or indexes, into the code (instruction,
read, write, and flow for iterations).

GraphMol replaces the strings in StringMol by graphs: “[t]he world defined by Graph-
Mol contains chemicals (represented as graphs) that bind to each other via multiple bind-
ing sites, and then run simple computer programs (encoded in the graphs) that modify the
binding of these chemicals.”. No explicit rationale for graphs is presented, other than as
a natural extension from StringMol given the stated importance of a rich binding mecha-
nism.

An underlying principle in both systems is that the mechanism of evolution must be
itself evolvable; functions such as template copying must be embodied mechanisms in the
world so that they can be affected by evolution, and so evolved. Crucially both StringMol
and GraphMol have embodied template copying, where a “replicase” molecule can copy
another by an algorithm such as in alg. 1.

Although the algorithm itself is unremarkable, the underlying functions allow String-
Mol and GraphMol to explore various forms of embodiment. Each of the four functions
referenced in alg. 1 (start, at-end, char-copy and next) can be either “crisp” (i.e. perfect or
precise) or embodied (variable or fuzzy, and subject to evolution). As an example of an em-
bodied function, StringMol’s start function uses pattern-matching to determine the binding
region between the replicase and the other string where the replicase should begin copy-
ing. By changing the sub-sequences in either string the strength of bind can be varied,
with a corresponding shift to the beginning of the copy region even though the pattern-
matching algorithm itself does not change (it is a “level-0” component in the terminology

15



1.2. PREVIOUS WORK

of Banzhaf et al. (2016)). The same pattern-matching is used in StringMol’s at-end function
to determine the end of the region to be copied.

1 i← start(string B)
2 while i not at-end(string B) do
3 string A(i)← char-copy(string B(i)))
4 i← next i
5 end

Algorithm 1: The canonical algorithm for template copying used by StringMol and
GraphMol, from Nellis and Stepney (2014).

StringMol includes an embodied start and at-end, crisp next, and stochastic char-copy;
GraphMol has an embodied start, at-end and next, with a crisp char-copy. The primary dif-
ference between the two is opposite approaches to next (“in order to investigate a method
of embodying the copying process that would be completely different from Stringmol’s.”
(Nellis 2012, p.145))

These mechanism differences (the choices of which functions are crisp and which are
embodied) result in different outcomes for the overall system: “Stringmol exhibits macro-
mutation and two chemical copying; GraphMol exhibits two types of quasispecies, coop-
erative and parasitic. These two systems use the same domain (emergent evolution) and
metamodel (machines copying strings), but different computational models.” Other com-
binations would presumably show different behaviour again.

Despite the use of the term “embodied”, those functions that aren’t “crisp” are not in
fact fully self-referential as the pattern-matching algorithm itself remains unaffected by
evolution. There is also a disconnect between the properties of the targets of the matches
and the functioning of the algorithm. The algorithm matches on the symbol, and is com-
pletely unaffected by the meaning or properties of those symbols, the underlying mi-
crocode. In this it differs significantly from a completely endogenous system such as a
biological replicase, where the match or bind is actioned by the same chemical rules that
construct and maintain the replicase from component atoms.

1.2.6 Conclusions

Of the systems discussed in section 1.2 (summarised in table 1.1), the most successful and
influential approach to date has been through automata. In these systems, entity multi-
plication is by an algorithmic process where code within the parent, when executed, re-
peatedly copies the instructions from parent’s code to a child using a specific copy oper-
ator (e.g. h-copy in Avida.) Deliberate errors introduced during copying by the operator
(erroneous copying, see Zachar and Szathmáry (2010, p.16) for the biological equivalent)
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Table 1.1: Artificial chemistry replicators in selected previous works, categorized according to
Zachar and Szathmáry (2010). ODE-based models such as GARD and Vasas et al. (2012) are not
included as they are not constructive and hence incapable of unlimited evolution; RBN-World
(Faulconbridge et al. 2010) is not included as self-replication has not been reported.

Artificial replicator Model form Multiplication Variability Heredity

Squirm3 (Hutton 2002) Molecular Exogenous rules Exogenous (hand-crafted) Unknown—
depends on
rules

AlChemy (Fontana 1992) λ-calculus Endogenous (function com-
position)

Variable (functional equiva-
lence)

Holistic

StringMol (Hickinbotham et
al. 2012)

Automata,
encoded as
strings

Endogenous (algorithmic) Variable (functional equiva-
lence)

Endogenous

GraphMol (Nellis and Step-
ney 2014)

Automata,
encoded as
graphs

Endogenous (algorithmic) Variable (functional equiva-
lence)

Endogenous

Coreworld (Rasmussen et al.
1990)

Automata Endogenous (algorithmic) Variable (functional equiva-
lence)

Unknown

Tierra (Ray 1991) Automata Endogenous (algorithmic) Variable (functional equiva-
lence)

Endogenous

Avida (Ofria and Wilke 2004) Automata Endogenous (algorithmic) Variable (functional equiva-
lence)

Endogenous

Amoeba-II (Pargellis 2001) Automata Endogenous (algorithmic) Variable (functional equiva-
lence)

Endogenous

provide one source of variation; another comes from the potential for different instruction
sequences to be functionally equivalent, so providing variability as defined by Zachar and
Szathmáry.

The initial multiplication process in each of the reviewed automata copies all instruc-
tions from the parent; therefore the entity’s genotype is the same as its instruction set.
Heredity is thus holistic and in the notation of Zachar and Szathmáry, H = V (discussed
further in chapter 2). For example, in Tierra, the 80-instruction ancestral creature includes
code to determine its beginning and end in memory and then to copy everything between
the two to a child entity. However, this multiplication code is part of the entity and subject
to variation; it is itself evolvable and in principle at least capable of evolving towards a
model where only a proportion of the entity is copied.

1.3 Research questions

Of the forms of replicators defined by Zachar and Szathmáry (2010) and described in sec-
tion 1.2, only unlimited heredity informational replicators provide both the representa-
tional range and the evolutionary flexibility for open-ended evolution:

• Exact replicators lack heredity as they cannot pass on variability to their descendents.
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• Limited heredity replicators are capable of only a limited number of distinct states and
so suffer from a restricted representational range.

• Informational replicators based on replication “shortcuts” are in practice still limited as
their inheritance/heredity mechanism is not evolvable.

This thesis is therefore motivated by the following research questions:

RQ1: In what way does selective pressure drive changes in heredity in a population of evolving
replicators? This is driven by two considerations. First, existing work in evolutionary
theory (see chapter 2) has suggested that heritability is the result of selection and
variation under constant selective pressure. There is also a broad body of work in
biology exploring aspects of the connection between fitness (the counterpart to se-
lection) and environmental variability (for example, canalization). We are interested
in a model of heredity that incorporates environmental variability as variable envi-
ronments are the superset of fixed ones, and as a response to variability appears to be
a factor in shaping the inheritance mechanism in biology. We believe that the factors
underlying this relationship between heredity and variability also apply in artificial
systems. Second, the response of heredity to selection is clearly evolutionary, and
our hypothesis is that heredity can emerge through evolution in a molecular arti-
ficial chemistry. A coherent model would illuminate the mechanism by which this
may be achieved in practice in an artificial system. Therefore, we investigate a model
for the response of heredity to selective pressure in chapter 2.

RQ2: Can variable replicators emerge from a molecular artificial chemistry? Although replica-
tors have been studied extensively, previous models have provided, or assumed, the
provision of a replication mechanism rather than having the mechanism evolve. We
instead will test the position that replicators can in fact emerge from lower-level re-
actions between molecules in an artificial chemistry. We begin our examination of
this hypothesis with a review chapter to introduce artificial chemistries in chapter 3,
then in chapter 4 we introduce a molecular artificial chemistry, modularized for ex-
perimentation, and show that certain configurations are capable of reaction cycles.
We then investigate the emergence of multiplication, the simplest form of replica-
tion, from cycles in chapter 5, and conclude by examining variability in the sense of
Zachar and Szathmáry (2010) in chapter 6.

1.4 Methods

In this section we explain the methods used in the remainder of this work. For each re-
search question we follow a common process:
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1. Relevant previous work is used to identify areas where the research question is well
understood, and those areas where further work would be beneficial.

2. We construct a simulation model that attempts to capture our understanding of the
problem for the areas where further work is needed.

3. Based on the context formed by the research question and the previous work, we form
a hypothesis of how the simulation should function if our understanding is correct.

4. We then proceed to test this hypothesis by experiment using the simulation.

Each simulation model is parameterised. Parameters are elements in the simulation
model that can take different possible values, where the different values may (or may not)
lead to quite distinct behaviour of the simulation. The purpose is two-fold: first, to allow
for the investigation of a range of models simply by changing parameter values (rather
than changing entire models) so as to broaden the scope and hence the applicability of
the results, and second, to permit us to test the sensitivity of the simulation to different
parameters overall. The combination of these two allows us to robustly justify the scope
and strength of any claims that arise from the experiments.

As each parameter may take any of a range of values, and given that there will be a
number of parameters, we need a way to limit the size of the parameter space for experi-
mentation.

We do this by first testing the response of the model to each parameter and identifying
those that do not make a statistically significant difference; the set of these parameters,
those to which the model is insensitive, allows us to establish the scope over which all
claims will hold. Those to which the model is on the other hand sensitive, or responsive,
are tested separately in all later experiments; any claim must be made conditional on the
particular level of each of these parameters.

Second, we use statistical “design of experiments” (e.g. Montgomery 2009) methods to
simplify the number of separate experiments needed. There are many design of experi-
ments strategies, but they mostly fall into two standard groups.

The most common approach is via some form of factorial design, where each param-
eter of interest is represented by a factor taking some small number of discrete values, or
levels (two levels being most common) and the analysis model constructed from runs that
systematically work through a series of combinations of factors at different levels. The
emphasis here is on the response given particular factor (and hence parameter) values.

A variant of this is a fractional-factorial design, which takes a well-defined sample of
factor levels to further reduce the number of level combinations while still maintaining
an acceptable level of experimental strength. Latin square (and Graeco-Latin and Hyper-
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Graeco-Latin) designs are well-known forms 10 of fractional factorial design for the case of
a single factor of primary interest combined with one or more “nuisance” factors which are
of no interest to the experiment but have an effect on the result. However, in this work the
relatively small number of representative levels required, combined with the reasonable
speed of the simulation, is such that we can remain with a simpler full-factorial design.

Statistical analysis must be carefully considered in any multi-factorial experiment de-
sign as pair-wise tests of the mean such as Student’s t-test cannot be extended to multiple
groups (factors) without significant loss of accuracy. Instead we will use Analysis of Vari-
ance (ANOVA) when analysing the relative contribution of each factor, or combination of
factors, to the observed values of the response variables.

Note that there are some differences between the design of experiments in the physical
world and in simulations, with the most significant being the sources and understanding
of experimental errors. In simulation, experimental runs are exactly reproducible, absent
of any dependency on factors external to the simulation. Variation is explicitly introduced
usually through a random number generator, which can be seeded to produce the same
sequence of numbers again and again. This means that the practice in real-world experi-
ments of “blocking” to control external variation is not required in simulation experiments.
However, replicates where the same combination of factor values is run several times each
with a different random seed value, remain valuable, but in this case less to control for ex-
perimental error and more to record the variation across a series of runs and the sensitivity
of the model to parameter settings.

1.5 Contributions

This thesis makes the following novel contributions:

1. A model for the effect of selection pressure upon heritability, incorporating an exoge-
nous property for fitness suggested by Bourrat (2015).

2. A new and modular artificial chemistry, ToyWorld (chapter 4), developed to facilitate
experimental comparisons between artificial chemistry components, to a degree un-
usual in other experimental artificial chemistries (e.g. table 3.1).

3. An assessment of the influence on cycle formation, as a step towards replication, of var-
ious reaction and product selection strategies in a molecular artificial chemistry (chap-
ter 4.)

4. A demonstration of the emergence of simple replicator forms from a molecular artificial
chemistry (chapters 5 and 6.)

10For example, see discussion at http://www.itl.nist.gov/div898/handbook/pri/section3/pri3321.
htm
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5. An algorithm for reaction cycle detection based on sampling to generate a set of seed
molecules alg. 8.

6. An algorithm for the identification of exact multipliers from reaction cycles, based on
a specific definition for exact multipliers as two or more copies of the same reaction
cycle species, where the reaction cycle species has stoichiometry greater than one, and
where each cycle in the multiplier is connected to at least one other multiplier cycle by
a molecule that is a product of one cycle and a reactant in the other ()alg. 7.)

7. An algorithm for the identification of variable replicator candidates (without considera-
tion of selection) from reaction cycles, where we define variable replicators as multipli-
ers that can occupy any of a limited set of states without losing their underlying identity
(alg. 11.)

A version of section 4.7 was published as Young and Neshatian (2015), and material
from section 4.6 appears in Young and Neshatian (2013).

The source code for all software developed for use in this work is available on GitHub
under the GNU GPL v3 open source licence:

• For ToyWorld, the artificial chemistry from chapter 4, see Young 2013a.

• For the updated version, ToyWorld2, used in the experiments in chapters 5 and 6, see
Young 2013b.

• Finally, the model source from chapter 2 is available at http://github.com/th0mmeke/
thesis-models.
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2 Heritability, Heredity and Inheritance

This chapter attempts to establish an overall high-level framework for the evolution of
replicators; in the following chapters we shall test this framework through stepwise en-
hancements of a basic artificial chemistry along the way towards the long-term goal of a
full replicator.

In an earlier section, we described the model of Zachar and Szathmáry (2010) for heri-
tability and variation (in the sense of changes to which selection is blind.) Replicators are
classified by Zachar and Szathmáry by reference to the elements of this model—variable
replicators are those that can acquire variation during their lifetime, informational replica-
tors are those that can pass on these changes to their offspring—but the model does not
address causality.

Now, if variability is represented by V, and heritability by H, then an informational
replicator is ideal if H = V = 1 (all variation is heritable, and all changes are inherited)
and real if H ≤ V ≤ 1 (Zachar and Szathmáry 2010). Our working hypothesis is that a
theoretical replicator (rather than a specific actual one, which may be constrained by its
structure or evolutionary history), is not fixed ideal or fixed real, but instead lies at a point
between the two determined by selective pressure.

Therefore we have the following goal for the work in this chapter: can we describe
and model the relationship between heritability and selective pressure for a theoretical
replicator?

2.1 The relationship between heritability, heredity and inheritance

There is a subtle difference between heredity, heritability and inheritance; inheritance is
the process that results in heredity (for example, Lamarckism or ENS), while heredity is
the relationship between entities linked by inheritance and is measured at the population-
level by heritability. As noted by Griesemer (2005), “[o]ne must clearly distinguish between
heredity (a relation), heritability (a capacity), and inheritance (a process).”

Heredity describes the similarity of an offspring to its parent, and depending on the
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Vc V\H H

Hc
V

I

Figure 2.1: Reproduction of Figure 10 from Zachar and Szathmáry (2010). This diagram of the total
information content of a replicator (I) illustrates the relationship between heritable information
(H) and variable information (V). Areas Vc and Hc indicate regions which are fixed or conserved;
Vc because change would cause the entity to become either non-functional or to be treated
differently under selection, and Hc the portion of variability that is not heritable.)

context, can refer to either a single property or to a group of properties shared between
offspring and parent. Heredity is related to variation: low variation implies high heredity
and vice versa. For the single property (or in biology, trait) case, when the value for a
parent’s property and an offspring’s property are identical we say we have complete or
full inheritance and if this is the case for all entities in the population, then H = 1, where H
is the heritability for the trait or property. Conversely, if there is no relationship there is no
heritability (H = 0) and the entities are effectively unrelated. We can extend the measure to
a group of properties simply by averaging the degree of similarity for each property across
all properties.

2.2 Evolution by Natural Selection

As has been said before, “[w]e take it as given that biology instantiates ENS” (Watson 2012),
but that doesn’t mean that the algorithm of biology is in fact ENS. Adaptation in biology
appears to precede Natural Selection, reinforcing that adaptation is possible without ENS
(Watson et al. 2010), and other forms of evolution altogether have been proposed in artifi-
cial systems (e.g. the compositional evolution of Arthur (2009)), and on the boundaries of
ENS in the domain of living systems (e.g. composomal inheritance and Horizontal Gene
Transfer). These variants are examined later, but first we concentrate on canonical ENS.

Godfrey-Smith (2007) examined a number of summaries of ENS taken from the most
influential items in the literature. The purposes of the summaries varied, but have interest
for us “as attempts to capture some core principles of evolutionary theory in a highly con-
cise way.” Incidentally, as an illustration of the difficulty of definitions, although the usual
aim for a summary is to “give conditions that are sufficient ceteris paribus for a certain
kind of change occurring”, Godfrey-Smith (2007) notes that the scope of most summaries
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is somewhat ambiguous. They can be read as either being discriminatory—“this process is
ENS”—or alternatively in providing conditions that will result in ENS when it is assumed
that the meaning of ENS is clear. In other words, these are alternative constitutive or causal
readings.

The main examples selected by Godfrey-Smith (2007) are:

1. “Owing to this struggle for life, any variation, however slight and from whatever cause
proceeding, if it be in any degree profitable to an individual of any species, in its in-
finitely complex relations to other organic beings and to external nature, will tend to
the preservation of that individual, and will generally be inherited by its offspring. The
offspring, also, will thus have a better chance of surviving, for, of the many individu-
als of any species which are periodically born, but a small number can survive. I have
called this principle, by which each slight variation, if useful, is preserved, by the term
of Natural Selection, in order to mark its relation to man’s power of selection.” (Darwin
1859)

2. “If there is a population of entities with multiplication, variation and heredity, and if
some of the variations alter the probability of multiplying, then the population will
evolve. Further, it will evolve so that the entities come to have adaptations....” (Maynard-
Smith, in Griesemer (2001))

3. “Any entities in nature that have variation, reproduction and heritability may evolve”
(Lewontin 1970) and “1. Different individuals in a population have different morpholo-
gies, physiologies, and behaviors (phenotypic variation). 2. Different phenotypes have
different rates of survival and reproduction in different environments (differential fit-
ness). 3. There is a correlation between parents and offspring in the contribution of each
to future generations (fitness is heritable).” (Lewontin 1970)

4. “...evolution will occur whenever and wherever three conditions are met: replication,
variation (mutation), and differential fitness (competition)” (Ofria and Wilke 2004, quot-
ing Daniel Dennett)

Godfrey-Smith (2007) concludes that the core requirement for ENS is some “combi-
nation of variation, heredity, and fitness differences”, although he identifies a number of
differences between the summaries. For example, the most commonly cited summary is
Lewontin (1970), but unusually that formulation states that “fitness is heritable” whereas
typically phenotypic heredity (as appears in Lewontin’s later 1980 summary) is stated as
sufficient for a trait to evolve.

These differences are also discussed in Griesemer (2001), in particular with reference to
the variations between the concept of inheritance in Darwin which includes both heritabil-
ity (a capacity) and inheritance (a process carrying the capacity); Lewontin, which stresses
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the heritability while assuming inheritance, and Maynard Smith’s multiplication which is
actually about inheritance; his heredity is both (Griesemer 2001).

Quite apart from these differences in interpretation, the major theoretical difficulty in a
literal application of ENS to artificial systems is captured succinctly by Griesemer (2005):
“Darwin’s theory of evolution by natural selection is restricted in scope. One sense in
which it is restricted is that it refers to organisms.” Organisms are not defined, but the
context and scope is clearly biological.

Although ENS is usually only discussed within the context of modern day biology, as
we’ve seen when examining the definition of ENS there is nothing exclusively biological
about the standard formulations. By abstracting the concepts of variation, selection, and
in particular inheritance or heredity, a generalised form of ENS can be developed that goes
beyond the usual biological readings.

A specific example lies in the transition from non-living to living things. One of the
main problems (of several) in extending ENS to prebiotic entities is that the meaning of
the foundational elements—such as variation, selection, heredity, multiplication—are gen-
erally couched in biological terms. For example, heredity is often discussed in terms of
alleles, or traits, rather than in more general ways. However, there must have been some
point at which the prebiotic processes transitioned to ENS, and it is clear that this transition
did not happen abruptly in a population of fully-fledged modern organisms. The pathway
to ENS, the evolution of evolution itself, is one of the main open problems in origins-of-life
research, and it involves an extension of those foundational elements back into the prebi-
otic world.

This example of the transition to life is an example of extending ENS; two further exam-
ples are now presented that are alternatives to ENS: the evolution of technology, or evolu-
tion in an entirely non-living domain, and DaisyWorld, demonstrating regulation without
selection.

Arthur (2009) describes a mechanism for the evolution of technology, where evolution
is used in the sense of “all objects of some class are related by ties of common descent
from the collection of earlier objects”. Evolution in technology occurs by using earlier
technologies as building blocks in the composition of new technologies, and these new
technologies then become building blocks for use in later technologies, and so on. Arthur
calls this “combinatorial evolution.” But what is the starting point? How is this regression
grounded? Arthur proposes that the capture and harnessing of natural phenomena starts
each lineage and provides new raw components for inclusion in later technologies. Bour-
rat (2015) comments that distributive evolution (where only the distribution of elements
changes, as result of selection or drift) cannot result in novelties: Arthur anticipates this
objection by stating that novelty comes from this incorporation of new phenomena from
the source, the natural world.
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The first obstacle to a more general scope is the existence of innovations such as the
jet engine, laser, railroad locomotive, or QuickSort computer algorithm (to name Arthur’s
examples.) Innovations seem to appear without obvious parentage; they do not appear to
be the result of gradual changes or adaptations to earlier technologies. Arthur’s reply is to
look inside the innovation and to recognise that each is made up of recognisable compo-
nents or modules1; the key lies in the nature of heredity in technology. Technologies are
formed by combining modules of earlier technologies. These groupings start as loose as-
semblages to meet some new function, but over time become fixed into a standard unit (for
example, the change in DNA amplification mechanisms from assemblages of laboratory
equipment to standard off-the-shelf products.)

However, even Arthur in his rejection of “Darwinian evolution” describes a process
that is still ENS, relying on selection, variation and inheritance. This is not obviously the
case in our final example, DaisyWorld.

Lovelock and Margulis (2011) propose DaisyWorld as a example of an alternative to
selection for regulation, based on two feedback loops. Saunders (1994) explains how reg-
ulation can emerge in DaisyWorld without selection: the planet’s temperature is adjusted
to meet the conditions for maximum growth of the daisies without the daisies adapting to
the planet. “As a result, regulation, one of the most fundamental and necessary properties
of organisms, appears without being selected for. What is more, it appears as a property
not of the daisies, on which natural selection may have acted, but of the planet, on which,
as Dawkins rightly points out, it could not” (Saunders 1994).

The fundamental insight in DaisyWorld is that individuals modify environments (by
niche construction): the daisies adapt the planet (specifically the temperature for maxi-
mum growth) to suit themselves, rather than adapting themselves to the planet, and in fact
there’s little benefit to adaptation by the daisies to the planetary conditions. As Saunders
(1994) states, “the ability to withstand a greater variability is not the result of Darwinian
adaptation. On the contrary, it exists because of the absence of Darwinian adaptation.”

Daisyworld describes an alternative mechanism for adaptation, without invalidating
ENS as the usual or predominant model. ENS remains our best model for evolution overall,
while we recognise that in some specific environments or scenarios other mechanisms may
also be possible.

2.3 Previous work

Over the years a significant body of literature has accumulated on models of biological in-
heritance. While standard population genetics describes the dynamics over time of geno-
type frequencies, it remains deeply rooted in the biology of genotypes and alleles.

1Similar in many ways to composomes, or compositional replicators (Segré et al. 1998)–see section 6.1.
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Different forms of inheritance, such as acquired characteristics (Lamarckian inheri-
tance), have been compared and contrasted to the canonical non-acquired form in ENS
by a number of authors (including for example Jablonka et al. (1995), Paenke et al. (2007),
and Gaucherel and Jensen (2012)), going back to the competing models for inheritance of
Darwin and Lamarck.

Early hypotheses in the metabolism-first or replicator-first debate led to the recogni-
tion of the significance of error threshold rates for mutations during copying (Eigen (1971)
in biochemistry and Muller’s Ratchet (Muller 1964) in population genetics, compared in
Wagner and Krall (1993)), and later investigation of the interaction between inheritance (of
genotypes, when non-acquired), selection (on the phenotype), and development (linking
genotype to phenotype) inspired the theory of neutral landscapes (Kimura 1968).

By comparison, little explicit modelling of inheritance has been done in Alife. Most rel-
evant work has already been reviewed in section 1.2 where it generally forms one element
of a wider investigation into open-ended evolution. In relation to Evolutionary Algorithms
(EAs), many models for inheritance from variation and recombination have been proposed.
These however are less relevant to our needs as they rely on exogenous, or external, pre-
defined mechanisms rather than emerging from the properties of the genotypes.

Paixão et al. (2015) sought common principles between population genetics and evo-
lutionary computation with the goal of unifying the two fields, starting from a broad de-
scription of evolutionary processes as a “population undergoing changes over time based
on some set of transformations”. A transformation can be decomposed into a collection
of (stochastic) operators, with an operator representing a probability distribution of po-
tential outcomes; some operators act on phenotypes, others on genotypes. Various opera-
tors drawn from evolutionary computing are defined: for selection (uniform, proportional,
tournament, truncation, cut, replace); variation from mutation (uniform, single-point), and
variation from recombination (one-point crossover, k-point crossover, uniform crossover,
unbiased variation).

Evolution is then a trajectory through a space of distributions; it can therefore be seen
both as a sequence of population transformations and distribution transformations. When
considered as a series of distribution transformations, Paixão et al. (2015) sees a correspon-
dence with the Estimation Distribution Algorithms (EDA): “In an Estimation Distribution
Algorithm (EDA), the algorithm tries to determine the distribution of the solution features,
e.g. probability of having a 1-bit at a particular position, at the optimum. Some EDAs
can be regarded abstractions of evolutionary processes: instead of generating new solu-
tions through variation and then selecting from these, EDAs use a more direct approach to
refine the underlying probability distribution. The perspective of updating a probability
distribution is similar to the Wright-Fisher model.”

Paixão et al. (2015) concludes by demonstrating how existing “classical models in theo-
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retical population genetics and in the theory of evolutionary computation” can be mapped
into the framework of classified and categorised operators. Most of the various population
genetics models can be represented, with the exception of some topic-specific EA models,
while genetic programming models are omitted for reasons of balance between “simplicity
and inclusiveness.” However, Paixão et al. (2015) is of limited relevance for this work as it
is in effect a constitutive framework, providing a series of tests to classify existing models
based on a general meta-model of evolution, rather than a causative model which is where
our interest lies. Variation, in the form of reproduction and mutation, is only one element
of the framework, and Paixão et al. (2015) does not specifically address the emergence of
heredity from variation.

More specific models of inheritance and heredity can be found in three works compar-
ing the adaptive value of acquired and non-acquired characteristics. In the first two works,
Jablonka et al. (1995) and Paenke et al. (2007), the comparison is made with respect to an
environment that alternates between two states, E0 and E1. Each environment is associated
with a corresponding adapted phenotype P0 and P1, respectively. In both works variation
only affects the ratio of each phenotype in the population (directly in Jablonka et al. (1995),
indirectly via a “predisposition” or tendency in Paenke et al. (2007)); no new phenotypes
are created, and as inheritance is modelled only at a population level, that is without re-
production, we cannot use these models to investigate the emergence of heredity.

Inheritance however is modelled in Gaucherel and Jensen (2012), the third work, in
relationship to individuals. Two models are presented, the first and simplest describing
a non-spatial scenario conceptually similar to that in Jablonka et al. (1995) and Paenke et
al. (2007), while the second examines a spatial world based on DaisyWorld (Lovelock and
Margulis 2011). Focussing on the first and most relevant of the two models, reproduction
is the middle of three repeated stages: first “annihilation” where the population size is
adjusted to some practical level, then reproduction, and finally development.

In the second stage (reproduction), individuals, represented by a single trait, or pheno-
type, value, are chosen for reproduction with some probability (based on the trait value),
and, to model mutation, the child given a trait value that slightly varies from the parent’s
value: traitchild = traitparent + δ, where δ is described as taken from a uniform distribution
of given range around the parent’s trait value. 2)

The most relevant previous work is that of Bourrat (2015) who, in the course of examin-
ing the difference between evolution, natural selection and ENS, models the emergence of
heredity in unchanging environments. Bourrat (2015) demonstrates that imperfect inheri-
tance is not compatible with ENS using an argument by contradiction (Bourrat 2015, p.96):
he lists the three conditions for a population to evolve solely by ENS, and then continues
on to show that at least one of those conditions is incompatible with imperfect inheritance

2although this appears to be an error; δ should instead be centred on 0.
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(as it happens, no production of new variants). The context is unequivocally related to
biology; his examples involve genes, traits, phenotypes and drift.

2.3.1 Bourrat’s model of biased inheritance

The six applicable models in Bourrat (2015, chap.3) are designed to explore the implica-
tions of bias on inheritance, where unbiased means a trait is uncorrelated between child
and parent, in practice it means that trait is taken as a random choice between some lower
and upper bounds (Bourrat 2015, p.153). Biased inheritance is naturally the opposite: there
is some correlation between parent and child values for a trait, and so some prediction
of traits is possible—a parent can “pass it on”. Note that Bourrat (2015, p.173) expressly
notes that his “biased inheritance” is not the “transmission bias” of the second term in the
Price equation: “The bias in ‘biased inheritance’ is in reference to the type of the parent(s)
(biased toward the type of the parent), while the bias in ‘transmission bias’ refers to a de-
parture from an event of perfect transmission.” Bourrat unfortunately doesn’t formalise
his model descriptions; instead there is a reference (Bourrat 2015, p.129) to a NETLOGO
5.02 implementation, and textual narrative descriptions of each model and the results.

Model 1 begins with a population of 5000 “persistors” (that is, entities without the abil-
ity to reproduce), each of which has a survival rate (viability or the likelihood of surviving
at each time step) between 0 and 0.99. Unsurprisingly, all eventually die. Model 2 intro-
duces a single “procreator”, capable of reproduction with both survival and fertility rates
(offspring per unit time), into the population of persistors. The traits of the offspring of the
procreator are uncorrelated (that is, unbiased inheritance) to those of the procreator, and
the model now consists of selection→ reproduction→ check-for-overcrowding (Bourrat 2015,
p.141) at each timestep. Again, all entities eventually die.

Model 3 begins to get interesting: Bourrat (2015) replaces the procreator by a “mini-
mal reproducer” which differs from a procreator in that the ability to procreate is itself a
heritable trait, although as “minimal” it is an unbiased trait. As such, the offspring of the
minimal reproducer may be either minimal reproducers or persistors without the ability
to reproduce. Now the population size drops then increases to maximum size with about
10% of the population being minimal reproducers. However, the proportion of high fitness
(that is, high viability) entities doesn’t increase beyond about 0.05, so there is no cumulative
adaptation.

Biased (in fact, perfect) inheritance of viability is introduced in Model 4; the offspring
inherit the viability of their parent. The proportion of high fitness entities rapidly ap-
proaches the upper limit of 1.0, as expected as high viability entities live longer and so
produce more offspring while low viability entities die sooner and so produce less. Fertil-
ity is random, but viability is heritable.

The most significant model is Model 5 which adds a variable ability to procreate to
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Model 4, while viability remains inherited with perfect fidelity from the parent. The vari-
ation is provided by the addition of a mutation stage so that the model now consists of
these stages at each timestep: mutation→ selection→ reproduction→ check-for-overcrowding
(Bourrat 2015, p.153). At each mutation stage, there can be an increase or decrease in both
the ability to transmit the ability to procreate, and in the degree of bias (that is, the relation-
ship to the parent’s ability) in the ability to procreate. The first defines the proportion of
offspring of the parent who are themselves able to procreate; a low trait value for the par-
ent means a low proportion of siblings can procreate, while bias represents the correlation
between the parent and offspring’s abilities to transmit procreation: low bias means the
offspring’s ability is only weakly correlated with the parents ability. The initial population
contains entities with viability in the full range [0, 1), an ability to procreate in [0, 0.2) and
initial bias of 0. Both the ability to procreate and the bias increase over time in the popu-
lation towards the upper limit of 1.0. The model is asymmetric with respect to the change
of inheritance of ability to procreate: reductions lead to extinction of a line, while increases
lead to increased population. Bourrat’s conclusion is that an initial population of unreli-
able reproducers (a low proportion of procreating offspring, no bias) will evolve into one
of reliable reproducers that is, inheritance can emerge.

This is extended in the final Model 6, where Bourrat demonstrates the combination of
inheritance of procreation with that of another trait, viability. The model begins with a
population produced by the end of Model 5 - a set of entities that can reliably transmit the
ability to procreate to their offspring. Using the same structure for trait inheritance as in
Model 5, Model 6 shows that inheritance of viability or fitness can also emerge. In total
then, the entities at the conclusion of Model 6 have full inheritance of multiple traits.

2.3.2 Limitations to the model presented by Bourrat

There are some limitations however to these otherwise insightful models. First, heredity
and fitness (viability) are treated as independent traits. But the mechanism for heredity is
the thing that copies the information that generates an offspring’s traits, so in practice they
are not independent.

Second, while Model 5 has perfect inheritance on viability and demonstrates emergent
inheritance on procreation, Model 6 shows emergent inheritance on viability while begin-
ning with perfect inheritance on procreation (as it begins with a shortcut population of
entities assumed to have been produced by Model 5.) Thus Bourrat does not show in ei-
ther model the simultaneous emergence of inheritance of both procreation and viability.

Finally, the model assumes that the problem learnt by evolution is amenable to perfect
understanding, and that there is one and only one optimal solution. This is a corollary
of the model design where fitness is absolute and unchanging. As fitness represents an
implicit relationship between an entity and its environment, then in Bourrat’s model this
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relationship is also fixed and unchanging. Evolution is omniscient with full visibility into
the world. However, in the real world and in the artificial domains of interest, the rela-
tionship between entity and environment is less sure. The environment itself may either
change, or be uncertain. Under these conditions it is unlikely that values of 1.0 would be
possible, or indeed helpful, as a perfect bias value effectively is removing any source of
variation from the population. This is unexplored by Bourrat.

The work of Bourrat (2015) therefore has the following limitations:

• Heredity and fitness are unconnected in the model.

• The simultaneous emergence of inheritance of procreation and viability is not addressed.

• Most importantly, the effect of changing environments on inheritance is unaddressed.

2.4 Hypothesis

Bourrat (2015) argues that heredity may in fact be a product of evolution rather than a
precursor, and that the process of inheritance emerges from the action of selection and
variation upon a population (section 2.3.) In other words, variation and selection are sufficient
for inheritance.

The degree of variation between generations is important; if there is no correlation it
effectively means evolution is operating as an unguided, random, search while complete
correlation means that each generation is a copy of the previous one, and there are no
novelties.

Our intuition is that the average heritability of the population will be inversely related
to the degree of environmental change. More specifically, if we consider evolution to be
a means by which a population learns how to adapt to an environment, the degree of
environmental change can be described as the degree to which it’s possible to learn the
environment. We intuit that this is related to predictability, and also to complexity.

This seems a reasonable supposition. Adami (2002) recasts population fitness in terms
of complexity, specifically his physical complexity measure: “It is probably more appropri-
ate to say that evolution increases the amount of information a population harbours about
its niche (and therefore, its physical complexity)” (Adami 2002). Prokopenko, Boschetti,
and Ryan (2009) discusses the information-theoretic view of the benefits of complexity.

The initial hypothesis of Bourrat (2015) assumes a perfectly predictable environment
that can be exactly “learned” by an evolutionary algorithm. If we assume that learnabil-
ity is related to predictability, then we can restate and expand the hypothesis in terms of
predictability:

Hypothesis 2.1. Variation and selection are sufficient for inheritance, where the degree and vari-
ance of inheritance is proportional to the predictability of the environment.

32



2.5. EVOLUTIONARY MODEL RELATING VARIATION AND INHERITANCE

The conceptual basis for the experiments in this chapter is outlined in fig. 2.2.

2.5 Evolutionary model relating variation and inheritance

We now introduce a general model of the relationship between Variation, Selection and In-
heritance in a population of evolving abstract entities (alg. 2) where the key elements, heri-
tability and fitness, are represented as explicit parameters:

• Heritability is the likelihood that a child’s value for a property will resemble that of its
parent. The range is [0, 1], where a value of 0 means that the value for a child’s property
has no inherent relationship to its parent’s value, while heritability = 1 means the child’s
value will be identical to the parent’s. This is a slight modification of the classic definition
of heritability, which is concerned with the population-level attribution of the sources
of variation, but co-option, rather than inventing new terminology, seems appropriate
given both have to do with the source of heritable variation.

• Fitness represents the probability that an entity will survive and possibly also reproduce,
and has the usual range for a probability of [0, 1].

This strategy of making otherwise derived variables explicit is also followed by Bour-
rat, who describes it as “explaining variables which have previously been taken for granted
in a model (such as reproduction and inheritance), by reference to other, more fundamen-
tal variables present in the model” (Bourrat 2015, p.129). Our model owes a direct debt to
Bourrat in the representation of heritability as an explicit parameter (related to the two pa-
rameters “heredity of the ability to procreate” and ”transmission of the ability to procreate”
in Bourrat (2015)).

In other respects, however, it resembles a standard EA. The model consists of a pop-
ulation of abstract entities, and two simple functions—Selection and Variation—that each
transform the population. Each run consists of a fixed number of time steps (generations),
where at each step these two functions are applied in sequence to the current population
to form a replacement population as documented in alg. 2.

1 for Generation ∈ [1 . . . number of generations] do
2 Population← Selection(Population)
3 Population← Population ∪ Variation(Population)

4 if |Population| < MINIMUMSIZE then break
5 end

Algorithm 2: Algorithm for the inheritance and variation model.

Other elements of the model are as follows:
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Evolutionary
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Figure 2.2: Conceptual model for experiments incorporating environmental change. The
environmental model provides an extrinsic source of selective pressure, described as a time-series
applied to some target within the base evolutionary model. The metrics from the environmental
model describe the shape of the time-series; the metrics from the evolutionary model summarize
the evolutionary outcomes.
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1 Function Selection(Population):
2 Populationnew ← ∅
3 for Entity ∈ Population do
4 with probability pselection:
5 Populationnew ← Populationnew∪Entity
6 end
7 end
8 return Populationnew

9 Function Variation(Population):
10 Populationnew ← ∅
11 for Entity with Fitness and Heritability in Population do

12 with probability preproduction:
13 for some number of Children ∈ U [0, nchildren] do
14 Child← Reproduce(Entity)
15 Populationnew ← Populationnew∪ Child
16 end
17 end
18 end
19 return Populationnew

Algorithm 3: Definitions for the functions Selection and Variation.

• The population consists of n entities, where |n| ≥ 0.

• Each entity is fully described by two properties—fitness and heritability.

• Selection forms a new population by choosing entities from the current population, as
defined in alg. 3. The probability of an element being included in the new population
(pselection in the algorithm) may be either a fixed value, or equal to its fitness.

• The new population created by Variation consists of a number of new entities (“chil-
dren”) for each entity (“parent”) in the current population (see alg. 3). Each entity has
children with probability preproduction, and if it does, the number of children it has is
some random number between 0 and nchildren. The properties of each child are related to
the properties of its parent by a mapping, represented in the algorithm by the function
Reproduce, which maps the parent value to a value in a range with an expected value
equal to the parent’s value and some degree of correlation captured by the value of the
function Range.

The model is parameterised to make it easy to describe different specific models within
this general structure; these parameters are defined in table 2.1.
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Table 2.1: Definitions for all parameters of the model.

Parameter Value Description

preproduction [0, 1] Probability of reproduction

pselection [0, 1] Probability of selection

nchildren nchildren ∈ Z≥0 Maximum number of children per parent

Reproduce entity 7→ entity Function to create a new entity based on an existing one

Table 2.2: Factors mapped to model parameters, plus factor levels, for the initial investigation into
model sensitivity to parameter settings.

Factor Model parameter Number of Levels Levels

preproduction preproduction 2 0.66 or f itness

pselection pselection 2 0.66 or f itness

nchildren nchildren 2 2 or 5

2.6 Hypothesis test under stable environment

Returning to the overall goals for these experiments, section 2.4 allows us to make two
predictions for stable environments:

1. Average inheritance will tend towards perfect inheritance.

2. The population variance of inheritance will decrease more than would be expected by
chance alone.

The first test therefore is to examine if inheritance emerges from low-heritability and
low-fitness initial conditions, and then the second test is whether the population variance
for inheritance decreases as predicted. Remember that as discussed earlier, inheritance
is the outcome of the relationship between parent and child traits, as represented by the
measure of heritability, and that heritability ranges between 0, for no correlation between
parent and child, and 1.0 for perfect correlation.

2.6.1 Experiment design

The factors and levels along with their mapping to model parameters are given in table 2.2.

Each combination of factor levels has 10 replicates, to give a total of 2× 2× 2× 10 or
80 experiment runs. The initial population for each run consists of 5,000 entities, each with
heritability and fitness chosen independently and with uniform probability from the range
[0,0.3]. Each run contains 500 generations.
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2.6.2 Sensitivity of the model to parameter values

In the absence of any restrictions on population size there is nothing to prevent a growing
population eventually exceeding the capacity of the simulation system. This is unfortu-
nately an unavoidable difficulty in experiments with exponential growth systems rather
than a limitation of the theoretical model.

The size of the population is determined by how population entities are introduced and
removed. In standard Evolutionary Computation (e.g. De Jong (2006, p. 50)) the choice of
strategy is important to the performance and outcomes of the algorithm. New entities can
be straight replacements, like-for-like, of their parent, or be placed in competition against
entities in the parent population, or completely replace the parent population. Elements
may be removed as a result of selection, or through fitness-independent sampling to main-
tain a particular population size, or through some end-of-life calculation. The population
size limit may act as both upper and lower bound on population size to maintain a specific
size, or solely as upper bound.

In Gaucherel and Jensen (2012) the approach is to remove individuals from the popu-
lation stochastically, with probability related to e to the negative power of the population
size multiplied by a configurable parameter, µ. In the “canonical” Evolutionary Compu-
tation algorithm, a population limit results from selection where a set number of entities
are extracted from the original population, chosen by one of a wide range of selection algo-
rithms (among many sources, see overviews in De Jong (2006, sect. 4.3.1) and Vose (1999,
sect. 4.2).) Here though we separate the selection function from the population size limit in
order to qualify the effect of the specific limiting mechanism used. To constrain population
size without introducing an associated selection bias, in the experiments in this chapter at
each generation we remove with uniform probability the exact number of entities (without
regard for fitness) to maintain a fixed population size of 5,000 entities.

Translating model parameters into factors in the experiment design results in the first
column of table 2.2. As is usual with exploratory experiments with a number of parame-
ters, where each run of the model has some cost in time or other resources, the key problem
is to understand the relationship between parameters and response variables at an accept-
able cost. In this case, our main cost is time - each run of an evolutionary model is cheap
in resources but takes a little time. Exhaustively sampling the entire parameter space is
unrealistic. Therefore, we first reduce the search space by limiting the number of values
that each parameter can take. By choosing these values appropriately, we can construct an
analysis model from the results that is sufficiently accurate for our exploratory purposes at
a greatly reduced cost in time.

From the results of earlier parameter selection experiments, we discovered that the
model response is sensitive to the values of preproduction and pselection, but has little sensi-
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tivity to nchildren.

2.6.3 Does average inheritance approach perfect inheritance?

From the hypothesis the main property of interest is heritability, or the correlation between
parent and child property values. Fidelity therefore is our response variable. Specifically
we require heritabilitystart and heritabilityend, or the mean value for heritability (across all
replicates) at the beginning and end of each run.

Our null and alternative hypotheses therefore are as follows:

H0: heritability does not approach 1.0 during a run, irrespective of factor values, or
|heritabilityend − heritabilitystart| = 0

H1: heritability increases to near 1.0 during a run, for some factor values, or
heritabilityend − heritabilitystart > 0 and 1.0− heritabilityend < δ for some δ and for some
factor values.

Of the 80 experiment runs, all reached the experiment limit of 500 generations.

As we are primarily interested in the final values for heritability, the data in the follow-
ing analysis is from the final generation of each run, unless otherwise noted.

The first hypothesis prediction is that average heritability will tend towards exact inher-
itance, or 1.0. The reasoning is as follows: heredity describes the correlation along a lineage,
so a high fitness entity with high heredity is likely to have more high fitness descendants
than low fitness descendents. Higher fitness entities will survive longer and reproduce
more, and so high fitness/high heredity entities will slowly invade the population.

A simple visual inspection of the results in fig. 2.3 reveals that the heritability measure
has a strong peak as predicted at 1.0, with final mean heritability greater than approxi-
mately 0.96 for all remaining runs. Fitness is bimodal, with distinct groups around final
mean fitness values of approximately 0.45–0.55 and 1.0. From figs. 2.4 and 2.5 it seems that
the lower group (where final mean fitness does not approach 1.0) is associated with a par-
ticular subset of factor-levels. Closer examination shows that these runs, and only these
runs, have the level 0.66 for both factors preproduction and pselection. This supports the earlier
observation in section 2.6.2 concerning the importance of the distinction between absolute
and relative (e.g. fitness-based) values for these two factors.

From inspection it seems clear that heritability does approach 1.0 as predicted by the
hypothesis. In conclusion, H0 can be rejected, and H1 accepted. Inheritance increases re-
gardless of the model design.
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Figure 2.3: Summary results, showing on the left-hand side an overview for the final mean
heritability (heritabilityend) for each run and a density plot showing the distribution of
heritabilityend. The right-hand side shows the corresponding plots for final mean fitness
( f itnessend)
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Figure 2.4: Summary results, this time averaged across all replicates of each unique combination of
factor levels (that is, grouped by factor level). Dark-coloured points represent values at end of run;
light-coloured points in a horizontal line are for initial values, reflecting averaged initial
conditions.
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Figure 2.5: Ranges by generation of the mean heritability (top) and mean fitness (bottom) for all
levels of all factors. Runs where final mean fitness does not approach 1.0 result from the factor
combination preproduction = 0.66 and pselection = 0.66 (see text.)
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2.6.4 Does the standard deviation of inheritance decrease over time in the population?

The second prediction of the hypothesis is that the population variance for inheritance
(σheritability) should decrease over time towards a limit of 0 in fixed environments.

H0: σheritabilityend − σheritabilitystart >= 0, for all factor values.

H1: σheritabilityend − σheritabilitystart < 0, for some factor values.

Once again, the main property of interest, and so our response variable, is heritability. From
the hypothesis we require σheritabilityend and σheritabilitystart , the standard deviation of heritabil-
ity at the beginning of each run, and at the end.

Data is all generations for all 80 fixed-environment runs that reached completion at
generation 500.

In a similar fashion to the procedure in section 2.6.3, by visual inspection of fig. 2.6, the
variance (square of the standard deviation) does decrease towards zero in all cases. Once
again, the runs appear to fall into two distinct groups based on the speed of convergence
towards zero, as seen in fig. 2.6. The upper group is exclusively associated with runs where
both factors preproduction and pselection are set to 0.66; these levels are also responsible for the
uppermost band of final standard deviation of fitness in the lower section of fig. 2.6, where
the standard deviation of fitness remains essentially unchanged throughout the run.

In conclusion, from visual inspection, the variance of heritability does approach 0, for
all combinations of factor levels except where both preproduction and pselection are set to 0.66.
Therefore H0 is rejected and H1 accepted.

2.7 Hypothesis test under changing environments

In this section we describe an appropriate experimental design and model to describe envi-
ronmental changes; test the predictions of section 2.4 using the model; and finally discuss
the results of the experiment.

2.7.1 Environmental model

Alongside the evolutionary model from section 2.5 we now add an environmental model
to describe the changing fitness relationship between entities and the environment at each
step of the evolutionary model. This relationship is simply modelled by constructing the
entity fitness at timestep t + 1 as the entity’s fitness at timestep t plus the environmental
contribution at timestep t, bound to the range for fitness of [0, 1].

Statistical techniques are commonplace for time-series predictions (Brockwell and Davis
2002), where a time series is a set of observations xi, each one being recorded at a specific
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Figure 2.6: Ranges by generation of the standard deviation of heritability on the top row, and
standard deviation of fitness below. Runs where standard deviation of fitness remains essentially
unchanged (upper band in lower plot) result from the factor combination preproduction = 0.66 and
pselection = 0.66 (see text.)
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time t where an observation xi ∈ some set {X}, assumed to be R (Brockwell and Davis
2002).

Although time-series modelling provides techniques for describing time-series data in
terms of an underlying model, the process can also be reversed to produce a time-series
from the model; in other words, if the variety of environmental change required to test our
hypothesis can be described by a standard time-series model, the parameters that deter-
mine that model can also serve as our headline measure for environmental change.

There are various forms of standard time-series models. ARMA models, combining
autoregressive (AR) and moving average (MA) components, are often used for stationary
series, that is time-series whose joint probability distribution (and hence whose statistical
properties such as mean and variance) do not change over time. This is equivalent to saying
the series does not demonstrate concept drift. By contrast, ARIMA models apply for non-
stationary series where the difference between two sequential values of the original series
can be shown to produce a stationary series—the I or “Integrated” component of the model
provides the differencing.

Our environmental model provides an enhanced AR(1) or first-order autoregressive
time-series, with each timestep corresponding to one evolutionary generation. Specifi-
cally, we describe the evolutionary change at each timestep as a function of the previous
timestep:

xt = Θxt−1 + et + δ

where xt is the change at timestep t, Θ is the AR coefficient, et is a random, normally
distributed, error component around a mean of 0, where et

iid∼ N(0, σ2
e ), and δ is a fixed bias

value.

This series allows us to represent a broad range of environmental changes:

• Each time-series is completely specified by three parameters, Θ, σe and δ.

• Θ in an autoregressive time-series can be interpreted as specifying stability or smooth-
ness, while δ is a fixed change. We use δ to model a fitness trend - environments with
a positive δ will see the fitness of each entity improved at each generation, with the op-
posite of course true of negative δ. Note that with this formulation we can model linear
trends in fitness from a fixed bias in the environment produced by the δ term. This is not
the same as a ARI model where the deltas of the environment time-series itself would
follow a trend.

• An AR time-series has the property of stationarity, with the implication that the mean of
the series is constant through time. However, as we apply the series values as deltas to
element fitness, fitness can be non-stationary, and so may show a long term trend. This
allows a simple non-differencing time-series to describe a steady change in fitness.
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• As a corollary of stationarity, the range of the series is determined by the initial param-
eters. This is a useful property as it means that with appropriate parameter choices no
scaling of the range is required.

• The time-series is defined by three independent elements, two predictable (driven by
Θ and δ) and the other (σe) random and unlearnable. By changing the ratio between
the predictable and unpredictable we can examine the performance of the evolutionary
algorithm on some continuum of predictability.

2.7.2 Experiment design

Section 2.4 allows us to make two specific predictions for changing environments:

1. Heritability is proportional to the predictability of the environment, that is at a minimum
in conditions of maximum unpredictability, and at a maximum in stable conditions.

2. Variation in heritability, σheritability, is proportional to the degree of environmental vari-
ability.. As a corollary, σheritability under changing conditions will be greater than that
under stable conditions.

As all three independent variables for our experiment, Θ, σe and δ, are continuous in
R, and as we wish to test the specific relationship of heritability across a range of these
variables without being restricted to the initial choice of fixed levels, we shift from the
fixed-effect factorial designs used earlier to a random effects model (Montgomery 2009,
chap.13). The independent variables in each run are the parameters to the environmental
model, with values taken from a uniform random sample from their range. Or in other
words, a series of random samples with uniform probability from a cube formed by a
parameter on each of the three axes (see fig. 2.11.)

We create a set of independent datasets by sampling from four different parameter sets,
as defined in table 2.3. The extremes of the ranges see a lower proportion of the runs (repre-
senting more significant environmental changes or more rapid changes) reach completion
than was seen in the centre (where the environment was stable.) The range of each variable
is adjusted from dataset to dataset to balance an adequate density of coverage across the
overall range against the total run time.

The population consists of 5,000 entities, each with fitness and heritability chosen in-
dependently and with uniform probability from the range [0,0.3], and each run is for 500
generations. The other factors and levels along with their mapping to model parameters,
are shown below:

• preproduction = fitness.
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Table 2.3: Range of independent variables Θ, σe and δ.

Dataset Θ σe δ

Dataset no.1 [−0.4, 0.4] [0, 0.2] [−0.1, 0.1]

Dataset no.2 [−0.2, 0.2] [0, 0.1] [−0.05, 0.05]

Dataset no.3 [−0.2, 0.2] [0, 0.1] [−0.05, 0.05]

Dataset no.4 [−0.4, 0.4] [0, 0.4] [−0.04, 0.04]

Table 2.4: Summary of results for changing environments.

Dataset n (total runs) Completed runs

Dataset no.1 1000 700

Dataset no.2 400 399

Dataset no.3 2000 1972

Dataset no.4 400 151

• pselection = fitness.

• nchildren = 2.

Finally, the dependent or response variables, driven by the hypothesis predictions, are
mean population heritability and mean population fitness.

2.7.3 Results

A summary of the results from each of the four datasets is given in table 2.4, and a visu-
alisation of all four datasets combined given in fig. 2.12. Note that the difference in the
proportion of completed runs to total runs reflects the varying ranges of the independent
variables in each dataset (as seen in table 2.3), shown graphically in fig. 2.13.

2.7.4 Is heritability proportional to the predictability of the environment?

Our null and alternate hypotheses are:

H0: heritabilityi = heritabilityj∀i, j.

H1: heritabilityi 6= heritabilityj for some i, j.

Remembering that a function of Θ, σe and δ provides a measure of environmental pre-
dictability, and because only Θ and δ are predictable, and hence learnable, we would not
expect σe to be significant in determining predictability.
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By visual inspection of fig. 2.12, heritabilityend is related to f (δ); this is partially sup-
ported by the results of an ANOVA analysis, which finds both δ and Θ to be highly sig-
nificant (p<0.001). Therefore heritabilityend is proportional to either f (δ) or f (Θ, δ) (and
incidentally meets our expectation that σe is not a potential parameter to f () as it is not
learnable by an evolutionary system.)

Table 2.5: ANOVA analysis for H1: heritabilityend is proportional to f (Θ, σe, δ).

Df Sum Sq Mean Sq F value Pr(>F)

sigma 1 0.00 0.00 0.00 0.9614

delta 1 16.83 16.83 5379.78 0.0000

theta 1 0.05 0.05 16.30 0.0001

Residuals 3214 10.05 0.00

As a result, we can reject H0 and accept H1: heritability is proportional to the pre-
dictability of the environment (as measured by some function f (Θ, δ).)

2.7.5 Does the standard deviation of heritability vary in proportion to the variability
in the environment?

H0: σheritabilityend is not proportional to f (Θ, σe, δ) for all functions f ().

H1: σheritabilityend is proportional to f (Θ, σe, δ) for some function f ().

An ANOVA model evaluating a linear relationship between the standard deviation of
heritability, and the parameters δ, σe and Θ to the environmental model suggests that all
three parameters have some effect on the σheritability, with the influence of δ and Θ being
highly significant (p<0.001) and that of σe significant (p<0.01). Unlike in the previous sec-
tion, here we are interested in the variability, or unpredictability, of the environment. As σe

is fundamentally unpredictable, it is not unexpected that it contributes to the relationship
between the unpredictability of the environment and the variance of heritability.

Table 2.6: ANOVA analysis for H1: σheritabilityend
is proportional to f (Θ, σe, δ).

Df Sum Sq Mean Sq F value Pr(>F)

sigma 1 0.02 0.02 6.64 0.0100

delta 1 21.60 21.60 7963.79 0.0000

theta 1 0.06 0.06 20.49 0.0000

Residuals 3214 8.72 0.00

The corollary of this prediction is that σheritability will be greater in unpredictable envi-
ronments than in stable environments (when all three parameters are near zero). As a first
approach, we note that in section 2.6.4 we showed that in stable environments the variance
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of inheritance tended towards zero. As σe is by definition unpredictable (see section 2.7.1)
we can provide some support for the corollary if we can show that variance remains above
zero for all σe > 0 (incorporating all necessary uncertainties):

H0: σheritabilityend is close to 0, for all clearly non-zero combinations of Θ,δ and σe.

H1: σheritabilityend is not close to 0, for some clearly non-zero combinations of Θ,δ and σe.

From a visual inspection of fig. 2.14 we can reject H0 in favour of H1: σheritabilityend is
greater under unpredictable conditions than it is under stable environmental conditions.

2.8 Conclusions

In this chapter we have shown by experiment that, as predicted, in stable environments:

• Heritability increases towards an upper limit of 1.0, or perfect inheritance.

• The variance of heritability decreases towards a lower limit of 0.

This is encouraging, and the first point confirms the main result from the exploration
by Bourrat (2015). However, from the viewpoint of a creative open-ended evolutionary
process, this is not in fact what is desired: perfect inheritance means an absence of novelty.

In section 2.7 we tested the hypothesis predictions from section 2.4 for changing envi-
ronments. First we defined what we mean by environmental change. Our key assumption
is that this change may be modelled as a timeseries, specifically one that is autoregressive
(AR). In section 2.7.1 we described an environmental model based on a AR(1) timeseries
defined by three independent parameters, Θ, δ and σe. Specifically, the change in fitness at
each timestep t is given by the function Θxt−1 + et + δ, where et is an error term related to
σe by et

iid∼ N(0, σ2
e ). From this description it is clear that of these three parameters, two—Θ

and δ—are more discoverable by an evolutionary learner than the other, σe.

We assume that all entities experience the same relationship to the environment: envi-
ronmental changes, through the proxy of fitness changes, apply to all equally. Although
we experimented with modelling fitness change by lineage—the chain of entities that trace
ancestry back to some shared ancestor—the assumption that lineages are homogeneous
seems as arbitrary as the assumption that all entities respond alike.

Our model is equally blind to co-evolution, as the only relationship an entity has is with
the environment, and not directly with other entities. As co-evolutionary phenomenon in
biology though are primarily inter-species, and our model is effectively single-species, co-
evolution is outside the current model’s scope.

Section 2.4 made these predictions:
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1. Heritability is proportional to the predictability of the environment: at a minimum in
conditions of maximum unpredictability, and at a maximum in stable conditions.

2. Variation in heritability, σheritability, is proportional to the degree of environmental vari-
ability. As a corollary, the σheritability under changing conditions will be greater than that
under stable conditions.

In section 2.7.4 we constructed a random-effects factorial experiment where the simu-
lation model from section 2.5 was combined with the environmental model to confirm the
first prediction: heritability in changing environments is indeed related to environmental
predictability. However, this conclusion would be strengthened by an ordering based on
Θ, δ and σe, as adopted for in the experiments in chapter 6.

The second prediction was also confirmed in similar fashion in section 2.7.5, with a
similar caveat. Although we can show a clear difference between stable and changing
environments, without an absolute ordering over Θ, δ and σe it is difficult to show a pro-
portional relationship. Furthermore, our model is primarily concerned with the connection
between predictability and heredity, and is essentially silent on unpredictable change such
as experienced during times of evolutionary transitions. However, to go from limited repli-
cation to unlimited heredity replicators, it is our belief that we require novelty, rather than
steady improvement. Modelling the unpredictable is however beyond the scope of the ab-
stract model described in this chapter, and is better explored by the full simulation model
described in later chapters.

Within these bounds though this chapter provides support for our initial working hy-
pothesis from RQ1 that an effective inheritance mechanism can not only emerge from a
low-heredity environment through evolution, but that it can be tuned and optimised by
evolution. Environmental variation plays a key role, and this insight forms the basis for
the work described in the remainder of this thesis.
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Figure 2.7: Visualisation of the fitness changes at each time interval (top facet) and cumulative
fitness change (bottom facet) that result from our environmental model for delta=0 with two
values of sigma (left and right), and three values of theta (each facet row.)
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Figure 2.8: Visualisation of the fitness changes at each time interval (top facet) and cumulative
fitness change (bottom facet) for theta=0 with three values of delta (columns), and two values of
sigma (each facet row.)
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Figure 2.9: Example time-series produced by our environmental model for a sample of theta,
sigma and delta values. These are incremental fitness changes, rather than cumulative ones.
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Figure 2.10: Cumulative time-series examples for samples of theta, sigma and delta.
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Figure 2.11: The parameter space formed by the ranges of the three parameters to the
environmental model, Θ, σe and δ.
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Figure 2.12: Final mean heritability against the environmental model’s sigma parameter (top),
delta parameter (middle) and theta parameter (bottom) for all experimental runs.
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Figure 2.13: Distribution of maximum generation reached for all runs for dataset no.1 (top)
through dataset no.4 (bottom). Axes are to the same scale. Runs (along the x-axis) are ordered by
final generation reached.
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Figure 2.14: Final standard deviation of heritability against the environmental model’s sigma
parameter (top), delta parameter (middle) and theta parameter (bottom) for all experimental runs.
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3 Introduction to Artificial Chemistries

At this point we have essentially completed the investigation of our first research question,
and now move on to the second: the emergence of replicators in an artificial chemistry from
the interaction of molecules through reactions. Artificial Chemistries provide an interesting
testbed for investigating various evolutionary phenomena. This review chapter provides
background material to aid in understanding how artificial chemistries are almost uniquely
suited to the exploration of our research questions.

Fundamentally, artificial chemistries provide a tunable system, capable of highly com-
plex behaviour, built around familiar metaphors (in many cases real-world chemistry, and
potentially biology). In a molecular artificial chemistry, a set of rules describing how atoms
interact gives rise to emergent forms: molecules. At a higher level, these molecules, under
the same interaction rules, also interact in patterns (reactions.)

Still higher emergent levels emerge under favourable conditions. Reactions may form
cycles, where a sequence of reactions eventually returns to an earlier state. Cycles in partic-
ular are interesting as many biological processes are cyclical1. Replication, resulting in an
exact copy of an entity, is a macro-example of a cycle; metabolism is another. Building on
the apparent correspondence between higher emergent levels in artificial chemistry evolu-
tion and biology, we believe like others (e.g. Steel, Hordijk, and Smith (2013)) that cycles,
of some form, are a necessary building-block for more complicated structures in artificial
chemistries.

Artificial chemistries are regularly employed in three application areas: real-world
chemistry simulators; tools for the exploration of artificial life, and models to test vari-
ous hypotheses of the origin of life. Chemistry emulators and origins-of-life tools aim for
fidelity with real-world chemistry, unlike most artificial life models. Real-world fidelity
requires either the use of a library of predefined reactions, which conflicts with our goal
of unlimited extension, or a chemically plausible method of constructing reactions from
first principles. Because of the complexities of real-world chemistry this later method ap-

1In the broadest sense life can be seen as an autocatalytic process where an entity catalyses the production
of one or more descendant entities.
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3.1. AN INTRODUCTION TO REAL-WORLD CHEMISTRY

pears to be quite difficult, and the goal of a realistic, computationally practical, artificial
chemistry remains open.

However, the more limited objective of a less realistic, but still unbounded chemistry,
has been achieved (see section 3.2 for examples.) One advantage of semi-realistic artificial
chemistries, as pointed out by Funes (2001, p. 5), is that it is easier to evaluate solutions in
a domain close to the real world as opposed to a purely symbolic or abstract domain such
as a lambda-calculus, or a programmatic environment like Tierra. When contemplating
difficult problems such as complexity our intuition can be helpful, but only in situations
close enough to our normal experience for it to be relevant. Artificial chemistries are a
particular type of model, familiar from real world chemistry, for the simulation of reaction-
based systems.

A mathematical treatment of artificial chemistries can be found in Benkö et al. (2009).
Dittrich, Ziegler, and Banzhaf (2001) and Suzuki and Dittrich (2008) provide excellent re-
views of the field, while an influential taxonomy is given in Dittrich, Ziegler, and Banzhaf
(2001), described in section 3.2. Every artificial chemistry defines a set of constitutive ele-
ments (molecules), a set of transformation rules (reactions) and a mechanism for choosing
and ordering the sequence of reactions (a reactor algorithm) (Dittrich, Ziegler, and Banzhaf
2001). These components and taxonomies are described in more detail in the next section,
but first we digress to provide a short review of chemistry in the real, rather than artificial,
world.

3.1 An introduction to real-world chemistry

Artificial chemistries are not necessarily models of real-world physical chemistry but most
artificial chemistries borrow, at least, from the language of real-world chemistry. An un-
derstanding of the key concepts in physical chemistry is therefore useful in appreciating
artificial chemistries.

The richness of the physical world is built on a substantial foundation of chemical com-
plexity. A reaction transforms reactants into products, and is often described by the quantities
(or stoichiometry) of the reactants and resulting product molecules. The reaction can also
be characterised by a description of the dynamics, or kinetics, of the reaction to explain how
the reaction proceeds in response to temperature changes or to varying concentrations of
reactants. Reactions often require an input of energy, such as from molecular collisions, to
proceed; the energy required is called the reaction’s activation energy (Ea), and is specific
to the particular reaction. In general there is no accurate mechanism to predict reaction
dynamics without experiment.

The reaction rate is the change in concentration of a substance over time: −d[A]
dt = k[A][B]

(where [X] means the concentration of X, and k is the reaction rate constant) leading to
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3.1. AN INTRODUCTION TO REAL-WORLD CHEMISTRY

Arrenhius’ description of the relationship between the activation energy (Ea), the temper-
ature (T) and the rate constant (k): k = AeEa/RT (R is the universal gas constant.) The
reaction order describes how the reaction rate changes with the concentration of the reac-
tants, usually captured as a first-, second-, or third-degree polynomial expression deter-
mined empirically. For example, the reaction rate equation for 2NO + Cl2 → 2NOCl is
rate = k[NO]2[Cl2] (experimentally determined), and is second-order with respect to NO,
first-order with Cl2 and overall (the sum of terms), third-order (example taken from Kotz,
Treichel, and Weaver (2006).)

Reactions can generally be decomposed to a chain of elementary steps, with each step
resulting in a single change, such as bond formation or cleavage, to the reacting molecules.
Elementary steps are somewhat predictable, practical reactions somewhat less so. Gener-
ally in experimental chemistry we know the reactants and products and can sometimes
deduce the sequence of elementary steps.

In modelling, we can either represent reactions exactly as an atomic transformation
from reactants to products with characteristics that can only be determined experimentally,
or we can attempt to construct the reaction from a sequence of elementary steps with the
properties of the reaction derived from the properties of the steps involved. This later
approach is the only practical one when the reaction is novel, or when we lack experimental
data. Several alternate sequences of steps, or reaction pathways, may be possible between
reactants and products. Each pathway will have a different activation energy, and hence
reaction rate.

The kinetics of elementary steps are defined by the stoichiometry. In theory you might
expect to be able to predict the overall reactions kinetics from the composition of these
elementary steps. In practice, the results are close, but not exact, when compared to ex-
periment. However they form a useful abstraction for analysis. The reaction rate of an
elementary step is defined by the stoichiometry, where the rate equation is the product of
the reactant concentrations and the rate constant. Therefore a step with one reactant has
order 1, a bimolecular step (A+ B) has order 2 and so on. The step 2A+ B has rate equation
k[A][A][B] = k[A]2[B] and is of order 3.

Elementary steps are an abstraction, an aid to analysis, of the underlying molecular
dynamics. At the molecular level, reactions can be modelled as a series of collisions be-
tween molecules. The reaction rate is then determined by the percentage of collisions (or
in other words, the concentration) that are energetic enough to overcome the inherent sta-
bility of the interacting molecules and cause a change in molecular structure or shape (in
other words, the activation energy).

For an entity to emerge from a network of reactions, the core problem is how to priv-
ilege the reactions that are useful in producing products (ones that can enter into other
necessary reactions), over the ones that are not. Given a collection of molecules, the set
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3.1. AN INTRODUCTION TO REAL-WORLD CHEMISTRY

of all possible reactions is determined by the chemistry that governs how molecules in-
teract to form other molecules. The reactions that actually take place though are driven
by molecular concentrations and kinetics. Molecules increase in concentration as they are
produced in reactions, and become scarcer as they are consumed as reactants. More com-
mon molecules are more likely to be chosen as reactants, and less common ones less likely.
This can also affect the direction of a reaction: for reactions which may run in either direc-
tion, the relative concentrations of molecules on one side of the reaction versus those on
the other side determines the direction in which the reaction is most likely to run.

Recall that the rate of a reaction is a function of concentration (at the gross level) or
collision rate (at the molecular level) and the activation energy for the reaction, which at
the molecular level is directly related to the energy required to overcome the stability of the
reactants. There are therefore two clear mechanisms to alter the rate for a reaction: either
reduce activation energy, or increase concentrations. A catalyst does precisely the first, and
autocatalysis is one method for the second.

A catalyst is anything that isn’t consumed by the reaction and that affects the rate (or
the kinetic equation for the reaction) without affecting the reaction’s equilibrium constant.
Catalysts allow the reaction to proceed by an alternate, lower activation energy, pathway.
The reaction equation remains the same, but the dynamics are changed. In the case of
biological enzymes the rate can be increased by several orders of magnitude over the un-
catalysed reaction, enabling reactions fundamental to life that would be effectively impos-
sible in an uncatalysed form. At the molecular level catalysts often function by provid-
ing a substrate that preferentially attacks the bonds critical to the reaction. The platinum
within an automotive catalytic converter is a well-known example of a catalytic substrate.
Catalysts are often show above the reaction arrow in standard chemical reaction notation,

e.g. A
catalyst−−−−→ B.

In autocatalysis, introduced by Ostwald (1890), rather than reducing the required acti-
vation energy, autocatalysis increases the reactant concentrations: autocatalysis reactions
form feedback loops where a compound is both a reactant and a product. In the standard
definition, an autocatalytic reaction is one that is catalysed by its own products, resulting
in a characteristic rate acceleration over time given by the differential equation

dxi

dt
= k(X) · xn

i + f (X)

where n is the order of the reaction, and f (X) the contribution from all other elements of
the system (Plasson et al. 2010). As an example, in the indirect network autocatalysis of
glycolysis where the pattern is ATP→ n.ATP.

Autocatalysis may be realised by 1. either a single reaction e.g. Σxi + A → Σyj + ΣBk

(where n of the B0, B1...Bk products are equivalent to A) or a linear chain of reactions
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3.2. CLASSIFICATION OF ARTIFICIAL CHEMISTRIES

through intermediate products, called template autocatalysis, branching chain reactions
or autocatalytic sets (King 1978), or 2. by a reaction network. Networks may be indirect
through a series of intermediary products, or collective where there is no connection be-
tween the component cycles other than through catalysis, as seen for example in the repli-
cation of viroids where each RNA strand can catalyse the production of the other.

However, in all cases, the reactions reduce to the defining A → A0...An pattern de-
scribed by Ostwald’s differential equation (Plasson et al. 2010).

3.2 Classification of Artificial Chemistries

A straightforward scheme for classifying artificial chemistries is given in Faulconbridge
(2011), based on the relationship between a molecule’s representation and its properties:

• Symbolic. Symbols/molecules have no inherent meaning, so no “implicit reactions”, only
preprogrammed ones.

• Structured. One or more atoms arranged in a structure (such as a string, tree, or graph)
with bonds within atoms to form molecules. This results in unlimited capability, but is
computationally expensive.

• Sub-symbolic. Emergence of properties from lower-levels (e.g. real chemistry, also neural
networks). The symbols (for example, atoms) have an internal structure which deter-
mines the macro-properties of the chemistry.

Another system was presented by Nellis (2012, p.132) with artificial chemistries cate-
gorised according to a quite different set of three factors:

• World. Physical elements such as molecules and atoms.

• Chemistry. The interactions between the elements.

• Constraints. Restrictions on how the world and chemistry interact. Nellis gives as an ex-
ample a binding model that describes which interactions are possible between elements.

However, there is an earlier, and more influential, categorisation by Dittrich, Ziegler,
and Banzhaf (2001) which also coincidentally categorises artificial chemistries against three
factors, and which is commonly used in the literature (e.g. Lenaerts and Bersini (2009) and
Gardiner, Harland, and Hamilton (2007)). This taxonomy is described in more detail in the
section below.
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3.3 <S,R,A> classification scheme of Dittrich et al.

In Dittrich, Ziegler, and Banzhaf (2001), a broad variety of artificial chemistries are classi-
fied according to the tuple <S,R,A> where S describes the form of the component molecules
in the artificial chemistry, R the rules for the interactions between the molecules, or reaction
rules, and A the mechanism used to select molecules for reactions2.

3.3.1 Set of molecules (<S>)

This element describes how:

• Molecules are represented in the artificial chemistry, perhaps as labelled graphs (Faulcon-
bridge 2011) or binary strings (Banzhaf 1994), and

• How any implicit properties of molecules may be derived, such as bond energy calcula-
tions by Extended Huckel Theory (EHT) (e.g. Benkö, Flamm, and Stadler (2003).)

3.3.2 Reaction rules (<R>)

Reaction rules in an artificial chemistry describe how reactants are transformed to reac-
tion products. Reactions may be pre-defined (often the case when simulating real-world
chemistry where exact pathways are important) or dynamically determined using molec-
ular properties. In artificial chemistries enforcing conservation of energy, elements are nei-
ther created or destroyed so reactions can be represented solely by rearrangements or bond
changes. Tominaga et al. (2007) showed for a particular artificial chemistry, that it is compu-
tationally universal with only uni-molecular and bimolecular reactions; the reaction rules
in most artificial chemistries therefore only describe these forms of reaction.

Constructive chemistries

The action of the reaction rules are constructive (Fontana, Wagner, and Buss 1994) if new
components may be generated through the action of other components—a form of emer-
gence, explicitly linked to the production of novelties: “construction: to understand how
the organizations upon which the process of natural selection is based arise, and to under-
stand how mutation can give rise to organizational, that is: phenotypic, novelty.”(Fontana,
Wagner, and Buss 1994)

A strongly constructive system is one which maintains closure3, and in which there

2An alternative <S,I> form is also described, where I combines the R and A components, but is less descrip-
tive and less commonly used in the literature.

3Or as stated by Fontana, Wagner, and Buss (1994, p. 217),“A strongly constructive system that contains
agent A must cope with the network of its implications. But, then, it also must cope with the implications of
the implications. And so on.”
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is self-consistency and some form of logical structure. Both implicit laws and implicit
molecule definitions are required for constructive chemistries:

• Implicit reaction laws are molecular structure-based, while explicit laws are independent
of molecular structure.

• Implicit molecule definitions provide a description for a molecule’s construction, while
explicit molecule definitions are taken from an fixed set of symbols.

Strongly constructive chemistries provide a mechanism for exploration in the EA sense:
new products can be generated, and new products can participate in reactions. A weakly
constructive approach might be to pre-specify all possible reactions; the strongly construc-
tive approach is to generate reactions “on-the-fly” from the structures of the interacting
molecules.

Pre-specification is well suited to simulating real chemistry as it allows properties of
reactions observed in chemical experiments to be attached to their simulated equivalents.
However, it does not allow for arbitrary reactions, and it requires reaction properties to be
predetermined—rather difficult for novel or artificial reactions. Clearly, although construc-
tive, this is not strongly constructive (in the sense of Fontana, Wagner, and Buss (1994) and
Dittrich, Ziegler, and Banzhaf (2001)) as it is not open-ended. However, Hartenfeller et al.
(2011) suggests that it is still useful for applications such as drug discovery.

An artificial chemistry with the ability to create reactions “on-the-fly” given a set of pos-
sible reactants may discover more than one possible reaction pathway between the same
reactants and products. The method used to choose one reaction pathway from the alter-
natives is an important component of the artificial chemistry, and the mechanism may be
tuned or tailored to privilege or preferentially chose particular types of pathways inde-
pendent to other factors such as temperature or concentration. In Chemistry the choice of
reaction pathway is fundamentally linked to those other properties and cannot be treated
independently.

3.3.3 Reactor algorithm (<A>)

The reactor algorithm provides the mechanism to select (in effect, to order) reactions, or in
the words of Faulconbridge (2011, sect. 4.1.3), the “...algorithm which describes the order
of and intervals between reactions, starting from an initial collection of molecules...”

If the reaction rules are analogous to chemistry, the reactor algorithm is analogous to
physics: the way molecules move and collide in the reaction vessel determines which re-
actions are possible (for example, by providing enough kinetic energy to overcome a reac-
tion’s activation energy), and the order in which the reactions occur.

Faulconbridge (2011) identifies three basic types of mixing method or reactor algorithm:
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1. Well-mixed/aspatial. Either discrete time (uniform probability distribution for selecting
reactions) or continuous time (Gillespie 1976) assuming the reactions are known in ad-
vance (which of course is not possible for a strongly constructive artificial chemistry.)

2. N-dimensional. A grid with reactions in adjacent cells, or a continuous space where
molecules have position and velocity. The main advantage is the ability to simulate
spatial affects; the primary disadvantage is performance.

3. Mixed scale. Hierarchical spaces, such as aspatial cells within bigger grid, mostly for
simulating biology (e.g. Jeschke et al. (2008)). One possible advantage is the potential
for parallelisation.

3.4 Applications in real-world chemistry

Artificial chemistries may be applied to backward-chain from a set of desired products
to identify a set of currently-available initial molecules, for example in drug discovery
(e.g. Hartenfeller et al. (2011)). A second use is in reaction network discovery, where the
goal is to describe a closed set of reactions and reactants from some initial reactants and
reactions (e.g. Faulon and Sault (2001)). Finally, artificial chemistries can be used in the
modelling of biological phenomenon such as enzyme function (e.g. Flamm et al. (2010).)

The primary requirement in these cases is fidelity with real-world chemistry, which
requires either a library of empirically derived reaction definitions and rates, or a model
capable of accurately simulating quantum-mechanical processes. The latter approach has
been taken by a family of Artificial Chemistries, beginning with Benkö, Flamm, and Stadler
(2003), built on Extended Hückel Theory with parameters taken directly from chemical
experiments and later extended (for example in Benkö, Flamm, and Stadler (2005)) to a
general purpose model with parameters derived from theoretical chemistry. The model
was used in Högerl (2010) for the study of the behaviour and topology of chemical reaction
networks, specifically Diels-Alder and Formose reaction networks, and in a series of papers
(e.g. Flamm et al. (2010) and Ullrich et al. (2010)) for the examination of the evolution of
metabolic networks in early organisms using a simple model of RNA coding for catalysts.

The core problem in drug-discovery is the selection of a set of reactions to generate a
given product. The CASREACT Chemical Reaction database 4 references more than 80.5
million known reactions in published work; clearly it is impractical in a laboratory setting
to simply apply each of these in turn to a set of initial molecules in the hope that the goal
compound will emerge. Hartenfeller et al. (2012) used simulations in reaction-SMARTS
and RDKit (Landrum 2013) to conclude that a much smaller set of 58 reactions, acting on
a set of 10,000 to 50,000 “building block” molecules, might instead meet the requirements

4https://www.cas.org/content/reactions
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for de novo drug discovery. Of the 58 nominated reactions, 29 were ring-forming; the sug-
gestion is that as so many interesting compounds involve molecular rings, the lack of ring
forming reactions was a deficiency of previous approaches. With this small reaction set,
chosen for the practicality of transferral to the laboratory benchtop, the combinatorics are
such that a search mechanism is needed to identify the most promising pathways from the
initial molecule set to the destination compound.

Finally, Artificial chemistries have been used as tools to explore the role of function
prediction, for example in the interesting, but necessarily simplified, approach taken by
Flamm et al. (2010) and Ullrich et al. (2010). Determining the shape, and hence the function,
of an enzyme from its RNA transcript is perhaps the most important problem in current
molecular biology: the three-dimensional structure of a molecule—the arrangement of the
elements in space—drives many of even the simplest chemical reactions. For example,
acid-base reactions result from the shift of charge from one region of a molecule to another,
revealing one region while shielding another from activity. Some of the most complex
reactions are shape-driven: the function of many enzymes (biological catalysts) derives
from their shape, and furthermore this shape is often under regulatory control. Flamm
et al. (2010) and Ullrich et al. (2010) attach a catalytic function to a molecule based on its
secondary structure (shape) and then investigates the influence of these functions upon the
evolution of early metabolic networks.

3.5 Origins of life modelling with artificial chemistries

Real-world chemical processes are also important to modelling scenarios for the origin
of life or other related areas such as the formation of metabolic networks in the earliest
protocells. In most cases though the specific focus is less on the bottom up model con-
structed from the most basic elements (although Kauffman’s autocatalytic protein sets,
and Kaneko’s protocell toy mode are counter-examples,) and more on task-based mod-
els of processes where the particular base level is predetermined by the researcher, such as
Ganti’s chemoton (Gánti 2003).

Farmer, Kauffman, and Packard (1986) describe an ODE model of polymers where bidi-
rectional reactions connect each polymer condensate c from monomer or polymer con-
stituents a and b, catalysed by some enzyme e, in the presence of water h. All reactions are
catalysed (by some randomly chosen polymer), principally to reduce computational com-
plexity; this is justified by the order of magnitude difference in the reaction rates between
catalysed and uncatalysed reactions. The model commences with a food set or initial pop-
ulation of monomers and simple polymers in a well-mixed chemostat, no perturbations,
and ends when no further new polymers are generated.

Some other examples of artificial chemistries for the investigation of the origin of life
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include:

• Lattice artificial chemistry (Madina, Ono, and Ikegami 2003; Ono and Ikegami 2000). Mem-
brane formation and cell division, assumeing five different types of particles (some hy-
drophilic and some hydrophobic) that together form an autocatalytic cycle similar to
those observed in biological cells.

• SCL. Three types of particle are employed by the Substrate-Catalyst-Link (or SCL) chem-
istry of Varela, Maturana, and Uribe (1974) and Suzuki and Ikegami (2008): the epony-
mous Substrate (S), Link (L) and Catalyst (C). Cells are formed from links around a
catalyst, with a single predefined reaction rule S + S C−→ L and some straightforward
constraints on movement of the particles in the matrix (for example, bonded Link parti-
cles cannot cross each other.)

• Flamm et al. (2010) and Ullrich et al. (2010). The evolution of metabolic networks in early
organisms using a simple model of RNA coding for catalysts

• Högerl (2010). The simulation of chemical reaction networks characteristic of the transi-
tion to life, specifically the Diels-Alder and Formose reaction networks.

• Dorin and Korb (2006). Concerned, almost uniquely, with a chemical ecosystem, based on
a set of atoms interacting in pre-specified ways to represent biological photosynthesis,
respiration and biosynthesis (or growth). The goal is to explore the interactions in an
ecosystem made up of a set of organisms pre-built to perform various defined roles.

• Gardiner, Harland, and Hamilton (2007). A string-based chemistry to investigate protein
metabolism evolution under genetic control. Three types of molecule—protein, gene
and service molecule—react in ways determined by the types of interacting molecules.
The type and pattern of molecules define the type of interaction.

• Fernando and Rowe (2008) and Fernando and Rowe (2007). A flow-reactor for the evolution
of metabolism in lipid aggregates based on predefined molecular types and reactions.

3.6 Artificial chemistries and Alife

Artificial Chemistries have also been used in the exploration of open-ended or creative
evolution (e.g. table 3.1). Squirm3 (Hutton 2002; Hutton 2009) adopts fixed molecule types,
and pre-defined reactions for replication and gene-sequence transcription, and so although
capable of interesting behaviour is not capable of unlimited extension. StringMol (Hick-
inbotham et al. 2011), a bacterial inspired microprogram chemistry, demonstrates a rich
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Table 3.1: A sample of Artificial Chemistries for open-ended evolution. Constructive chemistries
are capable of ongoing extension.

Chemistry Constructive? (see section 3.3.2)

Ducharme, Egli, and Legault (2012) Yes

StringMol (Hickinbotham et al. 2012) Yes

RBN-World (Faulconbridge 2011) Yes

Lenaerts and Bersini (2009) Yes—molecular interactions

NAC (Suzuki 2006) Yes

GGL/ToyChem (Benkö, Flamm, and Stadler 2005) Yes

Substrate-Catalyst-Link (SCL) (Varela, Maturana, and Uribe
1974; Suzuki and Ikegami 2008)

Unknown

Fernando and Rowe (2008) and Fernando and Rowe (2007) No—atomic reactions

Gardiner, Harland, and Hamilton (2007) No—atomic reactions

Lattice artificial chemistry (Ono and Ikegami 2000; Madina,
Ono, and Ikegami 2003)

No

GGL/ToyChem (Benkö, Flamm, and Stadler 2003) No—pre-defined reactions only

Squirm3 (Hutton 2002; Lucht 2012) No

ZChem (Tominaga 2004) No—reactions are atomic with wildcards

inheritance mechanism using string-matching as a model for molecular binding, and RBN-
World (Faulconbridge 2011) shows that a form of Random Boolean Network, with the ad-
dition of a bonding mechanisms to allow for composition and decomposition of RBNs, can
be used to build a chemistry capable of almost limitless extension out of non-traditional
components.

3.7 Conclusion

In this chapter, we have:

• Introduced the basic elements of artificial chemistries.

• Established those elements within a commonly-used classification scheme (Dittrich, Ziegler,
and Banzhaf 2001) which uses the three factors—S describing the form of the component
molecules, R the rules for the interactions between the molecules, and A the mechanism
used to select molecules for reactions—to classify artificial chemistries.

• Provided a reminder of the requirement for constructive reaction rules in open-ended
chemical systems.

• Reviewed the three dominant areas for the use of artificial chemistries: real-world chem-
ical modeling, artificial life, and the origin of life.
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• Suggested, by providing examples of other artificial chemistries in the exploration of
Alife and the origin of life, the suitability of an artificial chemistry for addressing our
research questions.

From the brief review in section 3.5 of artificial chemistries in the exploration of the ori-
gin of life it is clear that there is little consensus around the form of the preferred artificial
chemistry to adopt. In the next chapter, we shall move from the general description of ar-
tificial chemistries to the introduction of a new and specific artificial chemistry, ToyWorld.
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The work in an earlier chapter established that heritability increases under selective pres-
sure until either ideal replication is achieved, or, when the selective pressure is varying,
replication is real. In both cases however heritability increases and the variability of selec-
tive pressure causes a tuning or adaptation of the heredity mechanism to the environmen-
tal conditions. In intuitive terms, heritability fixes at the maximum where risk is low, and
adapts to the level of risk otherwise. Entities within the model were described by only two
parameters: fitness (implying selection) and heritability (implying multiplication).

The key question that motivates the remaining work in this thesis is: can we replace the
simple abstract entities with realized entities with associated and emergent (endogenous
rather than exogenous) fitness and heritability? More specifically, are we able to create
realized entities that are equivalent to the abstract entities in the model, and does the model
from chapter 2 still hold with realized entities?

The approach taken in the following chapters is to begin with a simple molecular artifi-
cial chemistry and demonstrate one-by-one the required elements for the realized entities,
beginning in this chapter with foundational elements (reactions and cycles), then multipli-
cation (required for heritability) and finally variability, all under various forms of selection.

We begin by introducing a new molecular artificial chemistry. There is no shortage
of existing artificial chemistries so it is natural to ask why we introduce yet another. The
primary reasons are lack of access to existing code; specific requirements of the artificial
chemistry imposed by the planned series of experiments; an easy ability to modify and ex-
tend the chemistry to include specific functions, and finally from an engineering viewpoint,
the understanding that comes from designing and building a system from the beginning.

The experimental requirements are however the primary driver. Our need is for a
chemistry that is parameterised in all important aspects, so that experimental factors may
be easily transformed into model parameters.

Other types of chemistry are likely equally suitable. But there are pragmatic reasons
driving us towards a semi-realistic chemistry:

1. We can leverage existing chemical concepts–reactions, bonds, energy transformations–
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without needing to invent and justify a new model.

2. The most relevant previous work is from the related field of origins of life research, and
this of course assumes real world chemistry. It is more likely we shall be successful
in using this material to influence and inform if we adopt a closely aligned chemistry
rather than something tangential.

3. The overall argument for self-evolving evolutionary systems is postulated on emergence
from low-level elements; a clear pathway exists to real-world chemistry from physics,
and by analogy we can carry this correspondence through into our artificial chemistry.
For example, reactants may be chosen based upon physical locations; possible reactions
are driven by the energy of molecular collisions. These aspects follow naturally if we
adopt a semi-realistic chemistry.

The potential complexity of a semi-realistic chemistry however introduces a difficulty. No
artificial chemistry can accurately model all aspects of real-world chemistry, emergent as
that is from the quantum world; therefore, all semi-realistic artificial chemistry face de-
cisions as to which elements of real-world chemistry are to be modelled and which left
aside. Increasing fidelity in most cases comes at a price in performance (for example, if a
quantum-physics simulator is employed to model atomic interactions) but this fidelity to
real-world chemistry may in fact be unnecessary for the purposes of the artificial chem-
istry. And with choices comes the risk of arbitrariness–if bonds require energy to break
and form, then exactly how much energy is required in each specific case? And how is this
choice justified?

Therefore, our principle is that only the “core” elements of real-world chemistry are
incorporated into our artificial chemistry–atoms, molecules, reactions. Further complexi-
ties, such as in the introduction of an energy model for the transformation between bonds
and kinetic energy, are included as an optional element, controlled by a model parameter.
The risk of arbitrariness is mitigated by adopting as closely as is possible real-world values,
such as for bond energies. This strategy not only provides consistency, but is somewhat jus-
tifiable on the grounds of maximising where possible the correspondence with real-world
chemistry.

4.1 The ToyWorld artificial chemistry

ToyWorld, our artificial chemistry for the exploration of emergent replicators, was first in-
troduced in Young and Neshatian (2013). The main elements of the model–Atoms, Molecules,
Reactions, a Reaction Vessel–are recognisable from real-world chemistry, but in highly sim-
plified forms. The most pertinent divergence is that we do not model catalytic reactions–
remember that our thesis is that autocatalytic sets based on stoichiometry alone can give
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rise to variable replicators.
The ToyWorld model has many degrees-of-freedom, and these must be constrained by

parameter choice before the model can be used in simulation. Some values are important to
our thesis, and so are considered true independent variables in our investigation. These are
examined fully. The remainder however are those to which the simulation is insensitive,
but still must be specified. For these we prefer real-world values rather than arbitrary arti-
ficial values. In short, where we consider something important, we investigate. Where we
think it less important, we use a consistent set of pre-existing values–real-world chemistry.

The name has been chosen as both an acknowledgement of ToyChem (Benkö, Flamm,
and Stadler 2003), and as a hint at the simulation’s purpose: creating an artificial world for
exploration. That world, the ToyWorld model, consists of:

• Analogues of physical elements such as atoms and molecules;

• An overall energy model that describes the transformations that can occur between po-
tential, kinetic and internal energy;

• A physics model to describe how molecules interact within the reaction vessel; and

• A chemical model that details the bond changes that can occur when two molecules
collide.

All atoms, and therefore molecules and reactions, are contained within a reaction ves-
sel. ToyWorld provides a basic energy model, where molecules have kinetic energy and
bond breaking requires energy input and bond formation releases energy. The reaction
vessel, which provides the strategies by which reaction reactants (or input molecules) and
products (output molecules) are determined, is described in detail in the following sections.

In our model, all reactions emerge solely from the properties of the reacting molecules.
For each reaction between two molecules we generate a list of reaction alternatives by enu-
merating all possible bond additions, bond subtractions, and changes in bond type be-
tween the reactants. For example, the reactants H2 and O2 generate three reaction alterna-
tives: breaking of the H-H bond, breaking of the O=O double bond, and a transformation
of the O=O double bond to a single bond. The reactants H+ and OH- give two alternative
reactions: breaking of the O-H bond (giving H+H++O-) and formation of a single bond
between H+ and O to give H2O.

The ToyWorld “main loop” is described at a high-level in alg. 4: in outline, the se-
quence is to choose reactants from the molecules in the reactor (later described as reactant
selection, or Sreactant), generate a set of possible reaction products from those reactants and
select one set of products from those alternatives (product selection, or Sproduct) and then
finally replace the reactants in the reactor by the selected products. One time through this
sequence constitutes a iteration.
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ToyWorld is custom Python code that uses third-party packages and libraries for certain
functions. The most significant chunks of external functionality come from RDKit, an open-
source toolkit for ChemInformatics, and PyMunk, a physics toolkit. Additionally, we use
the NetworkX package for Python for network graph manipulations (mainly in the code
that searches for cycles in the reaction graphs), and we use arrays from the Numpy package
for Python to record the molecular populations.

RDKit provides a number of convenient functions to the ToyWorld Chemical Model:

1. Format conversions between RDKit molecules and SMILES (Daylight Chemical Infor-
mation Systems 2011), a standard language for molecular representation in chemistry,
and conversions from the representation of a molecule into a canonical form.

2. Reference information: for example, the mass of an atom, and the number of outer elec-
trons for an atom.

3. Molecular structure manipulation: iteration over the atoms or bonds in a molecule, and
the addition, modification and deletions of bonds and atoms.

4. Utility functions: combining two representations, each of one molecule, into one rep-
resentation of two molecules, and vice versa, and sanitising the representation of a
molecule by checking for molecular validity.

PyMunk is used extensively in ToyWorld for 2D physics calculations, including:

1. Calculating the future position of a molecule inside a reaction vessel based on the molecules
velocity and current position.

2. Collision detection between two (or more) molecules.

3. Summing the forces acting on a molecule and adjusting the molecule’s acceleration.

4. Simple visualisations of the molecules within the reaction vessel as shapes on a 2D
plane.

4.2 Atoms and molecules

Molecules are modelled as an extension of standard RDKit Mol objects, constructed from
RDKit Atoms connected with Bonds. Standard Lewis dot structures built on the inherited
atomic properties are used to identify possible bonds, and a formal charge model is used to
record the charge changes associated with modifications to the molecular structure caused
by reactions.
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1 while t ≤ number of iterations do

// Selection of reactants
2 Reactants← outcome of the Reactant selection strategy

// Construction of reaction
3 Reactions← enumerate all possible reaction options
4 Reaction← choose from Reactions according to the Product selection strategy

// Execute reaction in the reactor
5 Update the reactor with the results of carrying out the Reaction
6 end

Algorithm 4: The main simulation loop in ToyWorld.

The lowest level component in the ToyWorld model is the atom, and atoms can be
joined by bonds to form molecules. Reactions between molecules are the only mechanism
to modify molecules provided by the model; a reaction is simply the addition or subtraction
of a single bond between any two atoms in two molecules.

ToyWorld provides a strongly constructive chemistry (Fontana, Wagner, and Buss 1994)
where completely new forms of molecules may be generated by reactions, and where the
new molecules may in turn take part in further reactions: the chemistry emerges from the
lower level atomic properties.

Some examples of molecules created by ToyWorld are shown in fig. 4.1.

4.3 Mass/energy model and energy transformations in ToyWorld

Energy within ToyWorld is modeled in three forms–kinetic, internal and potential.

• Kinetic energy is the energy associated with the motion of a molecule, and equals 1
2 mv2

where m is the mass of a molecule and v its velocity.

• Internal energy is an abstraction of vibrational energy or heat energy within a molecule.
Internal energy, while incidentally consistent with real-world chemical models, is ac-
tually included in ToyWorld as a major mechanism to introduce stochasticity in reac-
tions. Without internal energy, all excess energy following a reaction must be allocated
to kinetic energy (following energy conservation), and so there is an iso-map between
reaction and product kinetic energies. With internal energy, we can divert an arbitrary
proportion into internal energy and therefore we have a stochastic multi-map.

• Potential energy is the energy associated with the bonds between atoms in a molecule.
Creating a bond reduces the potential energy of a molecule; breaking a bond increases
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Figure 4.1: Example molecules generated by ToyWorld, rendered as 3-D objects from the original
SMILES notation by MolView (http://molview.org/) -
[H][C]N(O[N])OOC([H])(O[H])ON([O])[N][N]N(O[O])OOO[H] (top left),
[H]OON(O[N+]([O-])[N+]([O])[O-])N([H])O[O] (top right), [H]OOON([H])ON([H])O[H] (bottom
left) and [O]C(=O)OOOON=[C]N([O])[O] (bottom right).

it. The potential energy of a molecule is the sum of the potential energy of each bond in
the molecule. The state without bonds is defined as having zero potential energy, and so
molecules with bonds have negative potential energy. The specific value of each bond
is absolutely determined by the atomic number of the two atoms at either end of the
bond, and the type of bond itself–single, double or triple. ToyWorld provides a table of
relative bond values in table 4.2, taken from real-world chemistry 1. Unspecified bonds
are given the average energy of specified bonds of the same bond type. Examples of
molecules with associated potential energies are given in table 4.1.

As the model enforces conservation of mass, reactions can be represented solely by
bond changes. This follows the approach taken in graph-based chemistries such as GGL/-

1Original source: Average Bond Dissociation Enthalpies http://www.cem.msu.edu/~reusch/OrgPage/
bndenrgy.htm
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Table 4.1: Example potential energies calculated by the default Chemistry module using simplified
bond energies.

Molecule SMILES Potential Energy

H2O [H]O[H] -222.0

H2 [H][H] -104.2

O2 O=O -119.0

N2O4 [O-][N+](=O)[N+]([O-])=O -434.4

NO2 N(=O)[O] -198.0

ToyChem (Benkö, Flamm, and Stadler 2003; Benkö, Flamm, and Stadler 2005) where reac-
tions are modelled as a series of changes to graph edges, or bonds, only.

4.3.1 Energy transformations

The only energy transformations that occur in ToyWorld are those that occur during reac-
tions. The energy at the beginning of the reaction is fully bound in the potential, internal
and kinetic energies of the reactants. At the moment of collision, that portion of the kinetic
energy due to the collision (kinetic energies of reactants less kinetic energy of centre of
mass) is transformed into internal energy in the combined reactants. If a bond forms in this
phase the freed potential energy is added into this pool of internal energy; any bond that
breaks transforms internal energy into increased potential energy. Post-collision, a portion
of the pool of remaining internal energy is transformed back into kinetic energy. The divi-
sion may be all to kinetic energy, or all to internal, or anywhere in between; as a result, we
can model any collision type from fully elastic to fully inelastic collisions.

Reactions are modelled as head-on elastic collisions between two reactants with changes
to kinetic energy equalling the increase or decrease in molecular potential energy associ-
ated with the creation, destruction or change of order of bonds. Creation of a bond results
in a reduction of molecular potential energy and an increase to kinetic energy; destruction
results in the reverse. A change in bond type is modelled as the sum of a bond creation and
of a bond destruction. Total energy in the system is always constant, and equal to the sum
of the initial kinetic energy of all molecules plus the sum of their potential energies.

Reactions conserve energy, and hence the total energy in the reaction vessel should be
constant. However, energy can be explicitly added to and removed from the system from
outside. Either case is modelled as a uniform change in all molecular internal energies
(heat and vibration). This changes the size of the pool from which the kinetic energies of
the product molecules are determined after a collision or reaction. Adding energy to the
system increases each molecule’s internal energy, which increases the size of the pool of
merged internal and kinetic energies on collision or reaction, which increases the likely
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Table 4.2: Relative energies required to break and/or form a bond. Creating a bond between Atom
1 and Atom 2 releases molecular potential energy in the form of kinetic energy while breaking a
bond does the opposite. The values in this table correspond to the -1 level for the EBonds factor in
the experiments of section 4.8.

Bond Type Atom 1 Atom 2 Energy of both break and forma-
tion (in simulation units)

Single H H 104.2

Single C C 83

Single N N 38.4

Single O O 35

Single H C 99

Single H N 93

Single H O 111

Single C N 73

Single C O 85.5

Single N O 55

Double C O 185

Double C C 146

Double N N 149

Double O O 119

Double C N 147

Double N O 143

Triple C O 258

Triple C C 200

Triple N N 226

Triple C N 213

Quadruple C C 200
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PE

IE KE

Figure 4.2: Energy transformations in ToyWorld.

kinetic energies of the product molecules. Removing energy from the system has of course
the opposite affect, down to the point where effectively all motion and hence all reaction
activity ceases.

A reaction may be seen as two stages in sequence: first, the choice of reactants from a
population of possible reactant molecules (the Reactant selection strategy, denoted here by
SReactant), and second, the determination of products given that set of reactants (Product
selection strategy, denoted SProduct). The total energy (that is, potential + kinetic + internal)
of the system is maintained, as is the total momentum of the molecules.

In the taxonomy of Dittrich, Ziegler, and Banzhaf (2001), introduced in section 3.3, ar-
tificial chemistries are classified along three axis: molecules, reaction rules, and the reactor
algorithm. Our terminology, used in the remainder of this work, substitutes Reactant selec-
tion strategy (SReactant) for the Reactor Algorithm of Dittrich, Ziegler, and Banzhaf (2001),
and Product selection strategy (SProduct) for Reaction rules.

4.4 Reactant selection strategies: selecting reactants for a reaction

Faulconbridge (2011) describes two generic strategies for the selection of reactants–spatial
and aspatial–where the primary difference is whether molecular position is a factor in re-
actant selection. It is possible to further generalise this scheme by considering other dif-
ferentiating factors. Analogous with real-world chemistry, a cumulative scheme presents
itself starting with the pure aspatial, or uniform probability strategy, and then proceeding
through a spatial strategy, based on molecular kinetics, to strategies built on kinetics plus
intra-molecular and external forces such as electromagnetism.

These strategies are based on a sequence of increasing derivatives of position or location
in the reaction vessel; from no position (uniform selection), through fixed position (unin-
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teresting as we cannot have a sequence of reactions without motion) to the first derivative
(velocity or kinetic selection) and finally to the second derivative (acceleration, or force
selection.)

4.4.1 Uniform selection

In a uniform selection strategy (SReactant = Uniform), reactants are chosen at random with
equal (uniform) probability from the population: no property of a molecule has an effect
on the selection. Conceptually we have a well-stirred reaction container with no intra-
molecular forces.

4.4.2 Kinetic selection.

By contrast, in a kinetic selection strategy (SReactant = Kinetic) molecules have spatial posi-
tion (and implicitly, velocity) within some assumed reaction vessel, and selection is deter-
mined by molecular position–molecules which are spatially co-located (that is, in collision)
form a reactant set. Molecules move at constant velocity until they collide with something
else (either another molecule or possibly a boundary of an explicit reaction vessel) and then
either react, or bounce. Currently in our work we assume that all molecules have a fixed
and common size and shape (circular in two-dimensions), irrespective of molecular for-
mula. The algorithm for this strategy is given in alg. 5. At every step the molecules in the
reaction vessel move ∆t units along their velocity vectors, bouncing with no loss of energy
off the reaction vessel sidewalls. All molecules that collide during this step are added to
the tail of the ReactantList.

4.4.3 Intra-molecular selection and external force selection

For completeness, although not considered in the experiments that follow, more compli-
cated forms, where molecular velocities are not constant, can be generated by the introduc-
tion of some combination of intra-molecular forces (such as electromagnetism) or external
forces (such as gravity or heat.)

4.5 Product selection strategies: determining the products of a reaction

In the ToyWorld chemical model, all reactions arise solely from the properties of the re-
acting molecules: it therefore defines a strongly constructive chemistry in the sense defined
earlier. As ToyWorld enforces conservation of mass, reactions can be represented solely
by bond changes. This is closely related conceptually to graph-based chemistries such as
GGL/ToyChem (Benkö, Flamm, and Stadler 2003), RBN-World (Faulconbridge 2011) or
NAC (Suzuki 2006) where reactions are modelled as a series of changes to graph edges.
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1 Function KineticReactantSelection(Population):
2 if |Population| < 2 then
3 return ∅

// Step simulation until have a pool of colliding molecules
4 while ReactantList= ∅ do
5 Advance the position of all molecules by ∆t
6 ReactantList← ReactantList ∪ colliding molecules

// Adjust ∆t to maintain pool size
7 if |ReactantList|=0 then
8 Increase ∆t
9 else if |ReactantList|>10 then

10 Reduce ∆t

11 end
// Construct reactant portion of reaction

12 while ReactantList 6= ∅ do
13 Reactants←pop first pair of molecules from ReactantList
14 InitialKE← ∑ KEi, ∀i ∈ Reactants
15 ReactionEnergy←InitialKE - KE of the Centre of Mass of the Reactants
16 return Reaction between Reactants with energy=ReactionEnergy
17 end
18 return ∅

Algorithm 5: KineticReactantSelection. Reactant selection strategy where colliding
molecules are returned as reactants.
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However, in ToyWorld, the graph is implicit rather than explicit as it is in a graph-based
chemistry.

For each interaction between two molecules we generate a list of reaction alternatives
by enumerating all possible single bond additions, bond subtractions, and changes in bond
type between the reactants. Each alternative is the result of a single one of these changes.
For example, the reactants H2 and O2 generate three reaction alternatives: breaking of the
H-H bond, breaking of the O=O double bond, and a transformation of the O=O double
bond to a single bond. The reactants H+ and OH- give two alternative reactions: breaking
of the O-H bond (giving H+H++O-) and formation of a single bond between H+ and O to
give H2O.

We restrict the options to those that can be generated by a single change to the bond
structure of the reactants. This does though mean that long-chain construction by real-
world polymerization is not possible in ToyWorld as the modification of a double bond to
a single bond (e.g. C=C to CC) in each monomer must occur simultaneously with the for-
mation of the replacement CC bond between the two monomers. Long-chain molecules can
be constructed from simpler components however in the equivalent to strict polymeriza-
tion; therefore although this limitation prevents ToyWorld from being used in real-world
domains, it is not significant in our domain.

Each reaction alternative can be completely described by the pair of the products of the
reaction (that result from the single bond addition, subtraction or change) and the associ-
ated change in overall potential energy, which of course will be the same as the potential
energy change of the single bond alteration.

Creation of a bond results in a reduction of molecular potential energy, while bond
destruction results in an increase. A change in bond type is equivalent to a creation and
then a destruction. The magnitude of the change in potential energy, measured in arbitrary
energy units, is taken from a table of bond energies for each combination of atoms and
bond type (see table 4.2). The standard table is based upon a simplification of real-world
chemical bond energies. For example, the creation of a H-H bond releases 104.2 units; the
breaking of a C=O double bond takes 185 energy units. The potential energies for a set of
example molecules is provided in table 4.1.

How should we choose between alternative sets of possible products for the same re-
actants? Various product strategies appear plausible: the random choice of an alternative;
the most complex alternative; least complex; rarest; most common, and so on, but each
strategy requires effort to develop and evaluate.

4.5.1 Least Energy Strategy

When following a Least Energy strategy (SProduct = LeastEnergy) we select a reaction by
choosing with uniform probability from a distribution of reaction alternatives weighted
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by the total of the energy changes associated with the bond changes. This biases selection
towards the Least Energy alternative; the strength of the bias is determined by the degree
of the weighting. Examples of the shift in products that occurs as a result as the overall
quantity of energy in the system changes can be seen in a later figure (fig. 4.5.)

Let Ei denote the energy required for the bond change in the reaction option i. If Ei > 0
the reaction is exothermic, or releases energy; otherwise it is endothermic, requiring energy
to proceed.

We calculate a weighted value, ei, based on the combination of Ei and the available
energy for the reaction, Eavail > 0, as follows:

ei =


|Ei|, (1) if Ei < 0;

0, (2) if Eavail < Ei;

Eavail −−Ei, (3) otherwise.

Then, for reaction option i of n options, pi = ei/
n
∑

i=1
ei, where pi is the probability of

option i being selected. A number is chosen from the uniform distribution U [0, 1] and the
selected reaction is found from the inverse of the CDF given by pi for all i by searching for
the reaction at that point in the CDF. This method has the property that the probability of
a reaction being selected is proportional to its weight.

As a result, for exothermic reactions, highly exothermic reactions are preferred to slightly
exothermic ones. For endothermic reactions, the available energy must exceed the energy
required by the reaction, and the reaction is preferred according to the degree of the sur-
plus. Note that an option where the energy required exceeds that available (Eavail < Ei)
will have pi = 0, and hence can not be selected. This behaviour is illustrated in fig. 4.3.

4.5.2 Uniform Strategy

We also consider a strategy with minimal bias: a Uniform selection strategy (SProduct =

Uniform), where every alternative product set has equal probability of selection.

4.5.3 Energy transformations during a reaction

Molecules have kinetic energy; when they collide the form of the interaction follows from
the energy transformations between kinetic and internal and potential energy that are pre-
ferred under the chemical model; and finally, the trajectory taken by the resulting products
of the interaction is given by their final post-collision kinetic energy.

First, we determine the kinetic energy of the centre of mass of the reactants. The avail-
able energy to drive the reaction is the total kinetic energy of the reactants plus the internal
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Figure 4.3: Weighting calculation for reaction selection under a Least Energy Strategy. Numerical
labels refer to cases in section 4.5.1.

energy of the reactants less the kinetic energy of the centre of mass.

Consider the case where two particles of equal mass but opposite velocity collide. The
KE of the centre of mass will be zero (as it is motionless) and the energy liberated by the
collision will be the sum of the kinetic and internal energies of the particles.

At the other extreme, consider two equal mass particles, travelling with the same veloc-
ities. Intuitively, it is obvious that the only energy released by their infinitesimally gentle
collision is from their internal energies, and this is confirmed by the calculation where the
kinetic energy of the centre of mass will equal the combined kinetic energies of the reac-
tants, leaving only the combined internal energies.

The available energy for bond modifications is calculated as the sum of the kinetic en-
ergies of the reactants less the energy of their centre of mass, plus any energies internal to
the reactants. The final kinetic energies of the products equals the sum of the initial kinetic
energies of reactants less the change in molecular potential energy from bond changes and
the change in internal energies. Total energy in the system is always constant, and equal to
the sum of the initial kinetic energy of all molecules plus the sum of their potential energies
and internal energies.

The Reactor Algorithm selects one of the reaction alternatives by choosing from a dis-
tribution of reaction alternatives weighted by associated energy changes (as discussed in
section 4.5.)
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4.5.4 Setting product velocities and internal energies

The final step in the reaction mechanism is to determine the velocities and internal en-
ergies of the reaction products following the reaction. Although the method is standard
physics, there are two complications: the number of products may or may not be the same
as the number of reactants, and the pre-reaction energy and post-reaction energy vary as
the reaction itself either consumes or liberates energy.

The only constraints are that velocities of the product molecules must conserve mo-
mentum and total energy within the reacting system. We recognise that within the frame
of reference of the centre of momentum of the reacting system, the vector sum of the mo-
mentum of the products must equal zero. Therefore one possible solution to the product
velocities is to arrange their vector momentums according to simple geometry: for two
products, we arrange their momentums in a line (line 14 in alg. 6), and for three products,
an equilateral triangle (line 18). Further extension beyond three products is not required in
ToyWorld as, given two reactants, at most three products can result from the single-bond
additions, changes or subtractions of the chemical model.

Following a standard method, we first transfer the molecules from the frame of refer-
ence of the reaction vessel into the centre of mass (CoM) reference frame by subtracting the
velocity of the CoM from each particle (line 3). Correspondingly, we also adjust the energy
of the collision by subtracting the KE of the CoM. We recognise that in the CoM frame the
vector sum of the momentums will be zero; working in this frame reduces the number of
vectors we must sum by one (the momentum of the CoM itself.)

We then choose, from a uniform distribution, the proportion of total available energy
to allocate to the product kinetic energies and assign the remainder to internal energy (line
6.) From the kinetic energy allocation we can determine the total scalar momentum of
the products using KE = 0.5× velocity×momentum, and arrange the vector momentums
according to the geometry described earlier.

Finally, we convert from the CoM reference frame to the initial frame by adding back
the velocity of the CoM (line 27). This method satisfies our requirements of conservation of
momentum and energy for arbitrary numbers of reactants and products while being com-
putationally straightforward. The limitation is that product vectors are arranged in regular
and consistent, although reasonably realistic, configurations. An improvement would be
to perturb the geometry of the vectors in the CoM frame to remove the regularity.

The outcomes for each reaction alternative from an example collision are shown in
fig. 4.4.
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1 kinetic energy of CoM← 1
2 (sum of reactant masses)(velocity of CoM)2

2 collision energy← sum of reactant kinetic energies +
sum of reactant internal energies− kinetic energy of CoM

3 for i← 1 to |Products| do // Transform into CoM frame
4 v′i ← vi −CoM velocity
5 end

6 if |Products|=1 then // Conservation of momentum implies all excess energy
must go into internal energy

7 Internal energy of Products← collision energy
8 else
9 KE← random([0, 1])

10 Internal energy of Products← collision energy−KE

11 switch |Products| do // Find a set of momentum vectors that sum to zero...
12 case 1 do // One product
13 mv′ ← (0, 0, 0)
14 case 2 do // Two products

15 mv← 2KE
n
∏
i=1

massi/
n
∑

i=1
massi

16 mv′1 ← (v′iθ +
π
2 , v′iρ +

π
2 , mv)

17 mv′2 ← (v′iθ +
3π
2 , v′iρ +

3π
2 , mv)

18 case 3 do // Three products

19 mv← 2KE
n
∏
i=1

massi/
n
∑

i=1
massi

20 mv′1 ← (v′iθ +
π
3 , 0, mv)

21 mv′2 ← (v′iθ − π
3 , 0, mv)

22 mv′3 ← (v′iθ − π, 0, mv)
23 end

24 for i← 1 to |Products| do // Convert momentums to velocities...
25 v′i ← mv′i/massi
26 end

27 for i← 1 to |Products| do // Transform back to standard frame
28 vi ← v′i + CoM velocity
29 end

Algorithm 6: Algorithm to set post-collision velocities and internal energies for reactions
resulting in one to three products. Extension to more than three products possible by
following the same pattern, although this is not necessary in ToyWorld (see text.)
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Figure 4.4: Reaction alternatives generated by ToyWorld from a collision between O=C=O and C
molecules. Each alternative generates a unique set of products, with corresponding velocities
calculated by alg. 6 so as to preserve energy and momentum.
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4.6 Validation of the energy model

The energy-model presented in this chapter leads to some particular expectations for the
behaviour of ToyWorld:

1. Given two reactants, changing the reaction energy should result in different sets of reac-
tion products.

2. Molecular quantities should reach equilibrium–that is, the set of interacting molecules is
constant, with fluctuations expected in quantities. We expect molecular concentrations
to stabilise at non-extreme values (equilibrium rather than driven to an extreme) after
some transition period from the initial conditions.

3. The equilibrium point should depend on the energy of the system. Our energy model
preferentially forms bonds at low energies, and breaks bonds at high. We expect the
average length of molecules in the artificial chemistry to be greater at low energies than
at high energies.

These predictions were tested by two experiments: first, we examined the reaction
products produced at a range of reaction energies for four sets of reactants. Second, for
a given set of reactants, we ran the simulation for 10,000 iterations at four successive initial
average kinetic energy levels–0, 67, 133, and 200 units per molecule.

The experiment was run first with a reactant set containing 100xN2O4 and 100x2NO2,
and then with a reactant set of 100xH2, 100xO2 and 100xH2O.

4.6.1 Results and discussion

Beyond the initial transition period, both reactant sets showed results essentially consis-
tent with equilibrium. Population variability was high in both cases, but more so for the
N2O4 and 2NO2 reactant set (see fig. 4.5) where some molecules never reached a relatively
constant population level (gradient of a best-fit population line remained significantly non-
zero.) The fluctuations in the quantities of the other molecules are expected according to
our criteria, and result from the inherent variability in reaction selection which causes the
quantities to oscillate around a norm.

With both reactant sets the model produced a significant number of molecules which
would be considered unstable in real-world chemistry (such as O- and O.) This is likely an
artifact of the method we use to generate reaction options, where a bond-break plus bond-
formation reaction–moving through an intermediate unstable ion–occurs in our model as
two separate reactions. As all molecules currently react with equal likelihood, significant
time can elapse before the intermediate product reacts to form a stable product.
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Figure 4.5: Molecular quantities over time for initial population of N2O4 and 2NO2 (top two rows)
and 100xH2, 100xO2 and 100xH2O (bottom two rows) with initial average KE ranging from 0 to
200 units (only molecules with significant quantities are labelled; remainder appear as light-grey
lines). Molecules represented in SMILES notation.
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There were clear differences in population composition between the four initial kinetic
energy levels in both reactant sets. In the H2, O2 and H2O reactant set, no reactions oc-
curred at the zero energy level. This is expected from our energy model as only bond-
formations are possible without free kinetic energy. With reactants of H2, O2 and H2O no
bond formations are possible, confirmed by examining the bond options returned by the
model for the six possible combinations of initial reactants. By contrast, the reactant set
N2O4 and 2NO2 at energy zero contains one possible bond formation reaction (in SMILES,
[O]N=O.[O]N=O to O=N[O][O]N=O) which can proceed without free kinetic energy. This
then releases a product which can also react, and so on, thus explaining the different results
between the reaction sets.

The energy and reaction models produce results consistent with our predictions for the
system’s behaviour (with the exception of achieving equilibrium with the N2O4 and 2NO2

reactant set). An aspatial approach does however come with restrictions. Most obviously,
as there is no concept of proximity, there can be no boundaries or membranes or even ba-
sic distinctions between inside and outside. This is critical in biology but it is unclear at
this point if this is equally important in non-biological systems. An experimental compar-
ison between the aspatial and spatial approaches in the experiments described in the next
section will help to clarify this.

4.7 Response of the model to reactant and product strategies

We now return to the goal of this chapter: to establish the effect of reactant and product
selection strategies on cycle formation. Cycles are of fundamental importance in our work
as they are the mechanism by which autocatalysis is achieved, and therefore they are them-
selves candidate replicators.

In this section we explore the following questions:

1. Is there a quantitative difference between different reactant and product selection strate-
gies?

2. Is there a combination of reactant and product selection strategies that leads to the ap-
pearance of an increased number of cycles?

3. Is the number of cycles significantly affected by the values of other parameters of an
artificial chemistry, such as initial kinetic energy or bond energies?

To the best of our knowledge, this is the first time that reaction and product selection
strategies in artificial chemistries have been experimentally compared.

Instead, the general approach of previous work, where there has been a quantitative
evaluation, has been to propose a particular strategy, build, and evaluate against the initial
goals, rather than against alternatives.
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Table 4.3: Factors, or independent variables.

Factor -1 value +1 value Description

SReactant Uniform Kinetic See Section section 4.4

SProduct Uniform LeastEnergy See Section section 4.5

EVessel 100 300 Initial kinetic energy of each molecule in the
reaction vessel

EBonds Simplified real-world chemistry.
Average values for Single=77.7,
Double=148.2, and Triple=224.3
(see table 4.2)

Single=50,
Double=100,
Triple=200

Energy required to break a bond of the given
type

4.8 Experiment design

The experiments follow a full factorial design over four factors (SReactant, SProduct, EVessel

and EBonds), each at two levels, run in a randomised order, with three (3) replicates of each
combination of factors executed in sequence before beginning the next combination. The
first replicate of each combination starts with a predefined random seed incremented by
one for each successive replicate of the same combination. The factor levels used are given
in table 4.3.

Each replicate used the same initial population of 800 molecules, made up of 100 molecules
each of [H][H], O=O, [O-][N+](=O)[N+]([O-])=O, and N(=O)[O] and 200 molecules each of
O and O=C=O (all represented in SMILES (Daylight Chemical Information Systems 2011).)
This initial population is somewhat arbitrary, although reasonable; given that ToyWorld
is a strongly constructive chemistry, we would expect that any differences between initial
populations would reduce as the simulation proceeds.

4.8.1 Factors

Our two primary factors, or independent variables, are SReactant and SProduct. We also intro-
duce two secondary factors, initial reaction vessel kinetic energy (EVessel) and bond energy
(EBonds), to assess the sensitivity of the simulation to other parameters.

For simplicity of analysis, all of our factors are two-level, meaning they take one of
two possible levels, or values, in each run. The parameter values chosen for each level of
EVessel and EBonds were chosen as representative from a set of alternatives used in initial
exploratory experiments; in each case they allowed the simulation to run for an extended
period without running out of possible reactions (from lack of energy for example.)
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4.8.2 Response variables

A reaction cycle is formed by a sequence of reactions where one or more of the products
of the final reaction in the cycle are of the same species as the same number of reactants in
first reaction in the cycle. That is, reaction cycles are partially-closed (as not every molecule
must be both reactant and product in the cycle) and capable of autocatalysis.

We concentrate on three related response, or dependent, variables—Number of reaction
cycles, Length of longest cycle, and Count of most common cycle. All three are derived
from a reconstruction of the network of reactions that occur during each experiment run,
where every edge represents a specific reaction connecting a particular set of reactants with
a particular set of products. Note that the nodes in the constructed network capture specific
molecules, rather than molecular types or species that share the same chemical formula (as
would be more usual in the construction of a Reaction Network for real-world chemistry.)

We exclude all unique cycles, and all cycles with three or fewer elements (for example,
where a molecule loses, then regains, an atom repeatedly). Unique cycles by nature are
unlikely to be representative; very short cycles on the other hand are so common as to
dominate other more interesting cycles in any analysis.

4.9 Results

The overall sequence of experiments to run was defined by the experiment design. The
experiments were run in the order they were defined, with all replicates of an experiment
being completed before moving to the replicates of the next experiment in the sequence. All
replicates of an experiment were run with the same set of parameters with the exception
of a random seed which varied between replicates in a predictable way. The reactions in
the replicate were grouped into fixed-size blocks and run in sequence with results saved
incrementally between each block.

All replicates completed a set of 20,000 reactions; given the initial population size of 800
molecules, and from the summary of results below, we believe that this captures a repre-
sentative set of reactions. This also simplifies the analysis as we can assume a balanced set
of treatments in the statistical sense (that is, the sample sizes for all treatments are equal).

A view of the results is given in table 4.4: reaction networks built from the full dataset
of 20,000 reactions can be too large for easy analysis. Instead, we choose to partition the
reaction data into four equally spaced blocks of 250 reactions each and analyse each block
independently.
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4.9. RESULTS

Table 4.4: Summary of results.

Statistic Number of cycles Length of longest cycle Count of most common cycle

Reactions 4750 to 5000

Min. 0.00 0.00 0.00

1st Quartile 0.00 0.00 0.00

Median 1.50 3.50 2.50

Mean 219.06 5.04 215.80

3rd Quartile 91.25 7.75 96.00

Max. 5704.00 20.00 2728.00

Reactions 9750 to 10000

Min. 0.00 0.00 0.00

1st Quartile 0.00 0.00 0.00

Median 6.00 4.00 6.00

Mean 62.10 4.65 169.21

3rd Quartile 68.75 8.25 27.75

Max. 526.00 13.00 6684.00

Reactions 14750 to 15000

Min. 0.00 0.00 0.00

1st Quartile 1.00 3.00 2.00

Median 5.00 4.50 5.00

Mean 27.17 4.79 42.27

3rd Quartile 34.50 7.00 16.25

Max. 237.00 12.00 862.00

Reactions 19750 to 20000

Min. 0.00 0.00 0.00

1st Quartile 0.00 0.00 0.00

Median 3.50 4.00 4.00

Mean 20.04 3.90 14.62

3rd Quartile 20.25 6.00 13.25

Max. 199.00 12.00 216.00
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Figure 4.6: Cycles by reaction partition (starting reaction number for each partition along x-axis,
y-axis scales vary)
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4.10 Analysis and discussion

Figure 4.6 suggests that the first partition, representing the vessel a quarter of the way into
its lifespan, is quantitatively different from the other three partitions, with a significantly
greater range for all three response variables. Intuitively this corresponds with an initial
period where the diversity in the reaction vessel rapidly increases from the limited starting
set of molecules, as seen in some (e.g. fig. 4.7) but not necessarily all of the replicates. Diver-
sity here is measured by (average molecular quantity)−1. All following sections therefore
exclude data from the first partition of reaction numbers from 4750 to 5000.

4.10.1 Is there a quantitative difference between the different reactant and product se-
lection strategies?

From visual inspection of fig. 4.9, the number and length of cycles produced by Kinetic
reactant selection seems to show a significant increase compared to those produced by
Uniform reactant selection. Similarly, from fig. 4.8, there is very little apparent difference
between the two product strategies, Uniform selection and Least Energy selection.

We use ANOVA to further examine the relationship of SReactant and SProduct to the re-
sponse variables using a two-factor with two-levels (2x2) model with interaction effects.
There is a highly significant difference (p<0.001) between the Uniform and Kinetic reactant
selection strategies when comparing the number of cycles (f-value=40.442) and length of
cycles (f-value=361.891) (confirming the impression given by fig. 4.9), although again with-
out difference for the count of the most common cycle. The effect of SProduct on cycle num-
ber and length is also significant (f-value=4.050 and 5.705 respectively, p<0.05) and there is
a first-order interaction between SReactant and SProduct for number of cycles (f-value=4.011,
p<0.05).

4.10.2 Is there a combination of reactant and product selection strategies that leads to
the appearance of an increased number of cycles?

From fig. 4.11 it is clear that there is no significant relationship between strategy and the
number of occurrence of the most common cycle. However, it seems that such a relation-
ship does exist for the number and length of cycles, with the strongest effect as a result of
SReactant, and a lesser effect from the choice of SProduct.

We conclude that the greatest levels of emergence are likely to be seen with the combi-
nation of SReactant = Kinetic and SProduct = LeastEnergy.
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4.10.3 Is the number of cycles significantly affected by the values of other parameters
of an artificial chemistry, such as initial kinetic energy or bond energies?

We construct a two-factor with two-levels (2x2) ANOVA model (degrees of freedom=1)
with interaction effects to examine the relationship of the independent variables EVessel and
EBonds to the response variables, and applied it to our dataset (summarised in table 4.4).
EBonds is significant (f-value=4.221, p<0.05) to number of cycles (see fig. 4.10). No other
significant relationships exist.

4.11 Conclusions

In this chapter we have introduced the ToyWorld artificial chemistry, a modular molecu-
lar artificial chemistry, and explored the effect of four possible combinations of Reactant
(SReactant) and Product (SProduct) selection strategies on cycle formation.

By experiment we have shown that the choice of SReactant is critical to the behaviour of
this artificial chemistry; SProduct on the other hand appears to have a lesser effect on the
emergence of cycles in our experiments. Furthermore, SReactant = Kinetic is more effective
for cycle emergence than SReactant = Uniform. The number of cycles, and length of longest
cycle, are both maximized with the combination of a Kinetic Reactant selection strategy
and a LeastEnergy Product selection strategy.

The conventional distinction between physics and chemistry is often helpful but not
necessarily clear cut in nature. But in our model, the distinction appears both helpful and
meaningful. The selection of reactants naturally follows from the spatial relationship of
entities in the simulated world. Reaction products are generated by rules based on an
artificial chemistry. To be clear, these distinctions aren’t the result of the model, as they
are in fact choices made in its development, but they do seem to reflect a natural division
between domains.

Some theories of life state that it is built on dissipative structures maintained “far from
equilibrium" (originating with Prigogine in the 1970s, and as discussed for example in
McShea (1998)). Our reaction vessels are closed and so, overall, in equilibrium. Spatial
models are not evenly distributed: subareas can be out of thermodynamic equilibrium.
On the other hand, the Uniform selection models reflect the global equilibrium, and the
differences observed between the two might be explained by this distinction.

Other parameters to the model, such as the initial kinetic energy of the molecular pop-
ulation, and Ebonds, the bonding model, had lesser effects on cycle formation, with the only
significant relationship being that of Ebonds on the number of cycles produced.

The value for EVessel was not as significant as initially expected, as it only represents the
initial energy input, and over time the vessel trends to equilibrium. Models with added
energy (modelled by added KE on collision with reaction vessel walls) were trialled but
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it proved exceedingly difficult to prevent a runaway effect: the individual molecule KEs
generally spiraled out of range.

On the other hand, the bonding model was likely not significant because the alternative
factors differed in degree not in kind. Simpler, less real-world chemistry-based, models for
bonding are certainly possible however; it would be interesting to compare a variety of
bond models in more detail.

However, this leads to an unavoidable limitation of our approach: we must pick a
specific instance of the model for experimentation. As we employ simulation, we lack the
means to generate a model to produce some desired effect–the relationship between model
and effect is, as far as is known, irreversible. This has some interesting implications. Fairly
obviously, our results depend on the parameter and model choices made. The corollary, as
our models are independent, is that it is difficult to extrapolate our results to other models.
This makes it difficult to support broad claims, although we mitigate by attempting to keep
the underlying model form itself as general as possible.

Finally, with current technologies it is not possible, even if assumed desirable, to repre-
sent the full complexity of the physical world in our models. Abstraction is necessary, but
it is still an open question if complexity on the order of real world physics and chemistry
is necessary for other forms of life, artificial or biological, or if that just happens to be the
case for life on Earth. There is certainly an argument that if life is algorithmic, then any
Turing-complete system should be sufficient.
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Figure 4.7: Diversity (average molecular quantity−1) for Replicates 12-0 (top) and 16-1 (bottom).
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5 The Emergence of Multipliers

We now move on to the question of multiplication in artificial chemistries. In section 2.2,
we saw that the ability to multiply or increase in number is fundamental to all common
formulations for evolution. In Zachar and Szathmáry (2010), multiplication is the first
of the main discriminators beyond embodiment, or the state of being, (see fig. 1.2) and
so in this chapter we continue our investigation of evolutionary emergence in artificial
chemistries by identifying multiplying entities.

From the earlier definition of replication (section 1.2.2), given by the autocatalytic re-
action Σxi + A → Σyj + ΣBk, A is a multiplying entity if A and some n < k of the Bk are
equivalent under selection (Zachar and Szathmáry 2010).

As a secondary goal, we are also interested to learn if our assumption from chapter 4,
that simple measures of cycle formation in a chemistry can predict the subsequent emer-
gence of replicators, holds at this next level of investigation.

5.1 Choice of entity

As we are concerned with reaction networks, reaction cycles are a plausible candidate for
an entity formed from reactions. In section 4.7 we introduced these cycles as a partially-
closed sequence of reactions capable of autocatalysis.

Although most works influenced by origins-of-life objectives both require and assume
catalysis as the mechanism by which molecules can rapidly increase in concentration, as
has been pointed out before (King 1978 and recently Virgo and Ikegami 2013) if the goal
is increased concentrations then simple stoichiometry (reaction dynamics) can also suffice.
The major advantage of stoichiometry over catalysis for artificial evolution is that no ad-
ditional mechanism is required other than existing reaction dynamics; catalytic systems
however must somehow determine the catalytic effect of a molecule upon a particular re-
action, and without a full quantum chemical model this is inherently prone to assumptions.
For these reasons we shall not base our entity definition upon catalysis, but instead on the
stoichiometry of sequences of reactions.
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A reaction cycle is not defined by the sequence of individual molecules linked by re-
actions, as individual molecules are unique and transitory and so cannot form cycles, but
rather by a sequence of molecular species. Molecular species define disjoint groups to
which individual molecules of the same chemical composition belong: for example, the
’OH’ species that includes all individual ’OH’ molecules. In this way the cycle itself may
be quite long-lived even though constituent molecules are produced and consumed.

Other candidate entities are available though, such as molecular species, or interrelated
groups (or sets) of reaction cycles. Why then should we choose reaction cycles instead
of any of these other alternative levels of entity? The definition of multiplication (given
above) is of little direct assistance: multiplying entities may be of any form.

But if we consider the context of multipliers within evolutionary systems (from sec-
tion 2.2), entities that evolve are multipliers that can vary under selection. This establishes
a useful lower bound on the level of any candidate type of entity. For example, our en-
tity must be capable of variation without changing its inherent nature. This is necessarily
less definite for chemical elements, but it seems clear that molecules at least are not capa-
ble of variation without becoming a different type of molecule (adding a carbon atom to a
molecule does not go unnoticed.)

At the other extreme, requiring multipliers to be full informational replicators is clearly
overly restrictive. Holistic replicators are not informational replicators, yet no one disputes
that they are multipliers.

For our purposes, the most useful or valuable class of entity when investigating mul-
tiplication will be the simplest type that possesses the capacity for variation and selection:
single reaction cycles.

5.2 Measures

For exact multiplication, we seek reaction cycles where a cycle results in two or more cycles
of the same species. Although one product cycle would be sufficient for replacement, as
has been argued elsewhere (e.g. Zachar and Szathmáry (2010)), replacement alone without
excess production exposes an entity to depletion from side-reactions and other forms of
degradation.

For template autocatalysis (section 3.1) of cycles, where the autocatalysis results from
stoichiometry, the connecting molecules must also have a stoichiometry n > 1. For exact
multiplication we can derive the cycle stoichiometry (k) for exact multiplication by substi-
tuting A for B in the above autocatalytic expression to obtain Σxi + A → Σyj + ΣAk. Now
as molecules are unique, each connecting molecule will appear once as product of one A
cycle and once as a reactant of one other A cycle. Therefore k = n and as k > 1 for template
autocatalysis, n > 1.
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What exactly is meant though by this stoichiometric relationship? When discussing
non-physical replicators, such as memes, this relationship must also necessarily be non-
physical and hence the general definition of replication cannot be restricted to a physical
linkage between left- and right-hand sides of the relationship arrow. Our molecules and
reaction cycles are simulations, not embodied in the real-world, but we can assume a sim-
ulated physical linkage between parent and offspring entities: we require that they are
connected by one or more shared molecules (individual molecules, not species.)

Combining these two elements allows us to define an exact multiplier. An exact multi-
plier consists of:

• Two or more copies of the same reaction cycle species, where

• The reaction cycle species has stoichiometry greater than one, and

• Where each cycle in the multiplier is connected to at least one other multiplier cycle by a
molecule that is a product of one cycle and a reactant in the other.

The algorithm for detecting these multipliers is given in alg. 7. The functions Identi f yCycles,
to detect cycles where at least one product molecule is produced in excess quantities (n > 1
from above), and Identi f yClusters, for clustering cycles of the same form that are intercon-
nected by shared molecules, are defined in alg. 8 and alg. 10 respectively.

5.3 Cycle detection in a reaction network

Choosing single reaction-cycles as entities in the hypothesis means that cycle detection
is central to our analysis. The time complexity of standard cycle detection algorithms is
generally a factor of the number of nodes and the number of edges. For example, Johnson’s
algorithm for elementary circuits has time complexity O((n+e)(c+1)) for n nodes, e edges
and c elementary circuits (Johnson 1975). This is problematic when applied to each of
our reaction graphs, where n = 100, 000, e = 200, 000, and a typical value for c might
be somewhere between 10,000 and 60,000 (as a molecule can be part of multiple cycles.)
Detecting all cycles is not only slow, but generates very large files. Tests against some
representative reaction networks results in lists of cycles that are larger than a workstation
can hold in memory without swapping; this has a commensurate effect on analysis times.

An algorithm to detect all cycles (where the sampling proportion is 1.0 in alg. 8) is
expensive, and analysis of datasets containing 50,000 or more runs can take one or more
days using this algorithm on a modern workstation. Furthermore, standard cycle detection
algorithms require adaptation as our cycles are completed not by returning to the same
node, but by visiting any node of the same species as a cycle consists of molecule species
while the graph is by molecule instances and therefore (by definition) acyclic. The approach
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we take instead is to relax the requirement to identify all cycles in favour of a sampling or
lower-bounds approach, suggested by an analogous strategy in Hordijk, Smith, and Steel
(2015, p.7). We sample a proportion of all reactant molecules and search the reaction graph
only for cycles incorporating one or more of the sampled molecules.

There is a significant implication to this approach. Because we are sampling “seed”
molecules, the cycles identified will be clustered around the seed molecules in the reaction
graph, while intervening sections of the reaction graph will remain unexplored; any chains
of cycles may be broken at these unexplored regions. This can be mitigated, although not
prevented, by careful consideration of the sample size. Additionally, as the number of cy-
cles detected is a factor of the proportion of seed/non-seed molecules, if that proportion
is constant between graphs then the relative numbers of cycles detected in each graph will
also be constant (as shown on the left-hand of fig. 5.1.) This means that relative compar-
isons will hold true regardless of sampling proportion.

When it comes to the number of multiplier species detected by our sampling algorithm,
the sampling proportion p has a non-intuitive effect (right-hand of fig. 5.1.) As the propor-
tion increases beyond approximately 0.75 (from the plot) the number of species detected
drops, instead of continuing to increase as expected. The reason for this lies in the inclu-
sion of stoichiometry in the definition of a multiplier—multipliers must stochiometrically
increase, or in other words, the number of component cycles that produce an excess num-
ber of products must exceed the number that do not. As most of the multiplier species
detected consist of a low number of component cycles, the detection by sampling of even
a single additional cycle to the multiplier can change the stoichiometry of the overall col-
lection of cycles in the multiplier. This is biased towards changing the stoichiometry from
increasing to neutral or decreasing simply because of the possible combinations of cycles
in the multiplier, where the multiplier consists of a small number of cycles. This explains
the drop in fig. 5.1.

The experiments in this chapter all use a sampling proportion p = 0.2, as a balance
between performance and predictability (as very small values for p produce noisy results)
although this will likely undercount the true number of multipliers due to the sampling
effect previously mentioned.

5.4 Experiment design

We can now state the working hypothesis of this chapter as:

Hypothesis 5.1. Exact multipliers, in the form of entities composed of a repeated reaction cycle,
can emerge in an artificial chemistry.

Multipliers are structures that, in our context of artificial chemistries, emerge from the
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Figure 5.1: Comparison of number of cycles (left) and number of multipliers (right) for different
sampling rates (p, in text). Note the highly linear relationship between sampling rate and number
of cycles. Values are grouped by source dataset; two datasets (1489554358 and 1489565574) result
in two grouped sets of data in each plot. Three replicates chosen with uniform probability for
analysis. See text for discussion of drop in multiplier species at high p.
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1 Function DiscoverMultipliers(Reactions):
2 Multipliers← ∅
3 MolecularCycles← IdentifyCycles(Reactions)
4 MolecularCyclesBySpecies←MolecularCycles grouped by cycle species

5 for CyclesForSpecies in MolecularCyclesBySpecies do
6 Clusters←IdentifyClusters(CyclesForSpecies)
7 for Cluster in Clusters do
8 AllProducts← ⋃

x∈Cluster Products(x)\Reactants(x)
9 AllReactants← ⋃

x∈Cluster Reactants(x)\Products(x)
10 LinkingMolecules←AllProducts ∩ AllReactants
11 if LinkingMolecules 6= ∅ then
12 ProductCycles← {x∈Cluster | Products(x) ∩ LinkingMolecules 6= ∅}
13 ReactantCycles← {x∈Cluster | Reactants(x) ∩ LinkingMolecules 6= ∅}

// Check overall stoichiometry is greater than 1.0
14 if |ReactantCycles| > |ProductCycles| then
15 for Cycle in Cluster do
16 if (products of cycle ∩ LinkingMolecules 6= ∅) ∨ (reactants of cycle

∩ LinkingMolecules 6= ∅) then
17 Multipliers←Multipliers ∪ Cycle
18 end
19 end
20 end
21 end
22 end
23 return Multipliers

Algorithm 7: DiscoverMultipliers. Detect multiplying exact replicators within a reaction
network.
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1 Function IdentifyCycles(Reactions):
// Construct reaction graph from a list of Reactions

2 for Reaction in Reactions do
3 Add a node for the reactant side of Reaction
4 Add a node for the product side of Reaction
5 Add an edge from reactant node to product node
6 for Reactant in Reaction do
7 Add node for Reactant and edge from Reactant to node for reactant side

of Reaction
8 Reactants← Reactants ∪ Reactant
9 end

10 for Product in Reaction do
11 Add node for Product, and edge from Product to node for product side of

Reaction
12 end
13 end

// Find all cycles for a sample of reactants in the graph
14 Cycles← ∅
15 Seeds← sample with uniform probability some proportion p of Reactants
16 for Seed in Seeds do
17 ShortestPaths← FindCyclesFromNode(Seed)
18 for Path in ShortestPaths do
19 if the stoichiometry for Seed in the cycle given by this Path≥ 2 then
20 Cycles← Cycles ∪ Path
21 end
22 end
23 return Cycles

Algorithm 8: IdentifyCycles. Sampling algorithm to identify autocatalytic cycles of
molecules within a reaction network. A cycle is a sequence of reactions where at least
one product molecule in the final reaction is of the same species as a reactant molecule
in the first reaction of the cycle. The cycle is considered autocatalytic for a given product
molecule if the stoichiometry for the molecule is greater than one, or in other words, if
the cycle produces more of the product than is consumed. The sampling proportion p
determines the proportion of the total set of reactants to be used as seeds when searching
for cycles.
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1 Function FindCyclesFromNode(Source):
2 Target← species of Source
3 Stack← [(Source, [Source])]
4 while Stack do
5 (Vertex, Path)← Stack.pop()
6 for NextNode in predecessors(vertex)\path do
7 if NextNode is a molecule ∧ species of NextNode = Target then
8 Yield reversed(Path + [NextNode])
9 end

10 else
11 if |Path| < MAXDEPTH then
12 Stack.append((NextNode, Path + [NextNode]))
13 end
14 end
15 end
16 end

Algorithm 9: FindCyclesFromNode. Recursive breadth-first algorithm to identify all short-
est paths (and hence cycles) from Source to any predecessor molecule of the same molec-
ular species as Source in the directed reaction graph.MAXDEPTH is a constant to bound
the cost of finding cycles.

reactions in a reaction network; given the nature of emergence, to determine if an artificial
chemistry can result in multipliers, we turn to experiment. The hypothesis test is as follows:

H0: No multiplying single reaction-cycle entities exist in any reaction network generated
by an artificial chemistry.

H1: Multiplying single reaction-cycle entities exist in an artificial chemistry reaction net-
work.

We again use the ToyWorld parameterized evolutionary model introduced in chapter 4.
The experiments follow a full factorial design although with only a single factor (SProduct)
at two levels (Uniform and LeastEnergy), while SReactant is set to Kinetic (alg. 5). The exper-
iments run in a randomised order, with two (2) replicates of each combination of factors
executed in sequence before beginning the next combination. The factors and levels used
are given in table 5.1.

Each replicate runs for 100,000 iterations. The initial population for each replicate con-
tains 10×[H][H] molecules, 10×FO, 20×O, 10×[O-][N+](=O)[N+]([O-])=O, 10×N(=O)[O],
and 20×O=C=O (all in SMILES notation), and the initial reactor kinetic energy (EVessel) is
set to 100 units.
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1 Function IdentifyClusters(MolecularCyclesForSpecies):
2 Clusters← ∅
3 Unclustereds← ∅
4 for CycleMolecules in MolecularCyclesForSpecies do
5 CanCluster←False

// First check if part of any existing cluster
6 for Cluster in Clusters do
7 if Cluster ∩ CycleMolecules then
8 Cluster←Cluster ∪ CycleMolecules
9 CanCluster←True

10 break
11 end

// Otherwise see if can form a new cluster with a previously
unclustered cycle

12 if ¬CanCluster then
13 for Unclustered in Unclustereds do
14 if Unclustered ∩ CycleMolecules then
15 Clusters←Clusters ∪ new cluster of [Unclustered ∪ Cycle]
16 Unclustereds←Unclustereds\Unclustered
17 CanCluster←True
18 end

// If still can’t cluster, then add to Unclustereds
19 if ¬CanCluster then
20 Unclustereds←Unclustereds ∪ Cycle
21 end
22 return Clusters

Algorithm 10: IdentifyClusters. Identification of clusters: reaction cycles of the same form
interconnected by shared molecules where each such molecule is produced in one cycle in
the cluster, and consumed in another. The parameter MolecularCyclesForSpecies contains
all cycles of the same cycle species, that is, all cycles that consist of the same sequence of
reactions when written in SMILES (species) form.

Table 5.1: Factors, or independent variables, for experiments in chapter 5.

Factor -1 value +1 value Description

SProduct Uniform LeastEnergy See section 4.5
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5.5 Results and discussion

Table 5.2: Summary results for numbers of multipliers measured by alg. 7 in reaction networks
generated by LeastEnergy and Uniform SProduct strategies, under stable environments (no external
selective pressure). Sampling proportion p in alg. 8 shown in column labels.

D
at

as
et

Ex
pe

ri
m

en
t

En
vi

ro
nm

en
t

R
ep

lic
at

e

S_
Pr

od
uc

t

N
o.

of
Sp

ec
ie

s
(p

=0
.0

5)

M
ul

ti
pl

ie
rs

(p
=0

.0
5)

A
ve

ra
ge

M
ul

ti
pl

ie
r

Si
ze

.x

N
o.

of
Sp

ec
ie

s
(p

=0
.2

)

M
ul

ti
pl

ie
rs

(p
=0

.2
)

A
ve

ra
ge

M
ul

ti
pl

ie
r

Si
ze

.y

1489554358 0 0 0 LeastEnergy 0 0 0.00 2 2 3.00

1489554358 0 0 1 LeastEnergy 0 0 0.00 0 0 0.00

1489554358 1 0 0 LeastEnergy 0 0 0.00 1 1 3.00

1489554358 1 0 1 LeastEnergy 0 0 0.00 0 0 0.00

1489554358 2 0 0 LeastEnergy 0 0 0.00 1 1 3.00

1489554358 2 0 1 LeastEnergy 0 0 0.00 0 0 0.00

1489554358 3 0 0 LeastEnergy 0 0 0.00 0 0 0.00

1489554358 3 0 1 LeastEnergy 0 0 0.00 0 0 0.00

1489565574 0 0 0 Uniform 0 0 0.00 1 1 3.00

1489565574 0 0 1 Uniform 0 0 0.00 2 2 3.00

1489565574 1 0 0 Uniform 0 0 0.00 1 1 3.00

1489565574 1 0 1 Uniform 0 0 0.00 1 1 3.00

1489565574 2 0 0 Uniform 0 0 0.00 0 0 0.00

1489565574 2 0 1 Uniform 0 0 0.00 0 0 0.00

1489565574 3 0 0 Uniform 0 0 0.00 1 1 3.00

1489565574 3 0 1 Uniform 0 0 0.00 1 1 3.00

Identification of cycles within the reaction network (our hypothesised reaction-cycle
entities) is by alg. 8, with a sampling proportion p = 0.20 (p = 0.05 also shown for com-
parison), and alg. 7 applied to identify any multipliers within those cycles.

From table 5.2 we can see that exact multipliers arise in approximately half of the ex-
periment runs. Most of those runs produced only one type (species) of multiplier; the
remaining runs with multipliers produced two types. Each type existed only once in a run
(so the number of multiplier entities equals the number of species), and the number of cy-
cles in each multiplier was again quite low: 3 cycles only. One of the resulting multipliers
is shown in fig. 5.2, constructed from three instances of the same cycle species (’Y’, see ta-
ble A.3 for other species descriptions.) Exact multipliers do occur, but infrequently, and
they are not long-lived.
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[H+]

[H][O]+[H+]→[H+]+[O-]+[H+]
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[H+]+[O-]→[H][O]
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[H+]+[O-]→[H][O]

[H][O]

[H+]+[H][O]→[H+]+[H+]+[O-]

[H+]

Reaction Cycle (Species ’Y’) Reaction Cycle (Species ’Y’) Reaction Cycle (Species ’Y’)

Multiplying Replicator (Species ’YYY’)

Figure 5.2: Example multiplier from experimental results (of type or species ’YYY’, see table A.3).
A multiplier is formed from two or more of the same species of reaction cycle, connected by shared
molecules. For clarity, the only molecules shown are those that form part of the multiplier cycle
(all others can be easily discovered from the reaction equations.)

5.5.1 Do multipliers arise simply by chance?

Perhaps multiplier emergence is simply a product of chance, and that given enough it-
erations, probabilities will favour two or more of the cycles that form being linked by
molecules in a way that meets our definition of a multiplier. In this view, multipliers are
inevitable in an artificial chemistry because the definition is not sufficiently stringent to
exclude unsurprising events.

This alternative explanation is not incompatible with our results. The average multi-
plier size—the number of cycles in each instance of a multiplier—is quite low at 3 cycles
per lineage. That would suggest that the multipliers are not particularly stable; that they
form, and then after a short period, dissipate.

This can be tested by comparing the number of replicators in these experiments with
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those generated by a control experiment with a neutral bias.
The control uses the Uniform SProduct and SReactant strategies to chose reaction products

and reactants (respectively) with uniform probability, and hence any multipliers will be
those that result from chance alone. The statistical hypothesis is as follows:

H0: xi = xj∀i, j, where x indicates the presence of multipliers: xi = |multipliersi| > 0.

H1: xi 6= xj for some i, j.

Table 5.3: Numbers of multipliers from 10 replicates of control experiment. Multipliers identified
by alg. 7, in reaction networks generated by Uniform SReactant and SProduct strategies, under stable
environments (no external selective pressure). Sampling proportion p in alg. 8 set to 0.2.

D
at

as
et

Ex
pe

ri
m

en
t

En
vi

ro
nm

en
t

R
ep

lic
at

e

S_
Pr

od
uc

t

N
o.

of
Sp

ec
ie

s

Li
ne

ag
es

A
ve

ra
ge

M
ul

ti
pl

ie
r

Si
ze

1489951262 0 0 0 Uniform 0 0 0.00

1489951262 0 0 1 Uniform 0 0 0.00

1489951262 0 0 2 Uniform 0 0 0.00

1489951262 0 0 3 Uniform 0 0 0.00

1489951262 0 0 4 Uniform 0 0 0.00

1489951262 0 0 5 Uniform 0 0 0.00

1489951262 0 0 6 Uniform 0 0 0.00

1489951262 0 0 7 Uniform 0 0 0.00

1489951262 0 0 8 Uniform 0 0 0.00

1489951262 0 0 9 Uniform 0 0 0.00

The results are shown in table 5.3; no replicate of the control experiments generated
multipliers. Testing the statistical hypothesis with a two-sample, two-tailed, Student’s
t-test gives a t-statistic of 7.3508989 with p = 9.1293962 × 10−11, and so we reject H0

(multipliers result from chance alone) in favour of the original hypothesis, that multipli-
ers emerge from biases in the artificial chemistry. Although the sampling proportion p
undoubtedly affects the total number of multipliers identified in each experiment, the rel-
ative numbers between experiments are maintained and hence we do not believe that this
result is solely an artifact of sampling.

5.5.2 Is the number of reaction cycles a good predictor for the number of multipliers?

Returning to the underlying assumption of chapter 4, is there a relationship between the
number of cycles and the number of exact multipliers? If there is, then the parameters for
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an artificial chemistry designed to investigate replicators (of which exact multipliers are the
simplest form) could be established based simply on a count of cycles calculated from some
calibration runs. If not, then cycle counts cannot be used as a guide for parameter choices,
and in the absence of any other predictor, all parameter combinations must be considered
in any replicator experiment.

The test hypothesis is as follows:

H0: |Multipliers| ∝∼ |Cycles| for all parameter combinations.

H1: |Multipliers| cannot be predicted from |Cycles|.

A scatterplot of the relationship (fig. 5.3) shows only a weak relationship between cy-
cles and multipliers. The association between the two variables is positive, and the form
appears to be essentially linear. However, the correspondence with the simple linear re-
gression is poor, and the predictive value of cycles appears weak.

We examine this further by testing the predictive value of the relationship for two spe-
cific datasets.

From the previous section we have the example of a dataset (1489951262) in which the
number of multipliers is zero in all runs, and the number of cycles is non-zero (4.17165×
105.) However, in another dataset (1489554358) both the number of multipliers (4.7027027)
and the number of cycles (2.5188076× 106) are non-zero.

We reject H0 as the relationship between cycles and multipliers in these two datasets
is complex, and conclude that the number of multipliers cannot easily be predicted from
the number of cycles. Our original supposition, that we could use a simple count of cycles
to select the parameters, and parameter values, for an artificial chemistry to investigate
replication is not supported by these results.

5.6 Conclusions

We began this chapter with an examination of the most appropriate form of entity for an ex-
amination into multiplication in artificial chemistries. The same reaction network contains
a variety of candidate entities arranged in a compositional hierarchy. At the base level
of the artificial chemistry are atoms, formed by reactions into molecules. Reactions and
molecules can be grouped into various other forms: reaction cycles, where the products
of the final reaction in the cycle go on to become reactants in the first reaction of the next
iteration of the cycle, and the various forms of reaction sets, such as the autocatalytic sets
introduced earlier in this work. And of course groups of reactions and molecules can likely
form higher level entities in turn. We selected reaction cycles as the appropriate entity form
as the simplest of the candidate forms capable of both variation and selection.
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Figure 5.3: Relationship between the number of cycles and the number of multipliers for a sample
of replicates from datasets 1489951262 (horizontal line at bottom-left), 1489554358 and 1489565574
including linear regression line and 95% confidence region.
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Next we considered the definition of exact multiplication, and concluded that an exact
multiplier consisting of reaction cycles must meet three conditions:

1. The multiplier must consist of two or more copies of the same reaction cycle species.

2. The reaction cycle species must have stoichiometry greater than one.

3. Each cycle in the multiplier must be connected to at least one other multiplier cycle by a
molecule that is a product of one cycle and a reactant in the other.

However, to identify multipliers using this definition we must first identify reaction
cycles in the reaction graph and exhaustive enumeration of these cycles is impractical. In-
stead we introduced a sampling algorithm that discovers cycles by searching from a subset
of “seed” molecules, chosen with uniform probability from the full set of reactant and prod-
uct molecules in the reaction graph. The sampling algorithm discovers cycle numbers in
rough proportion to the sampling proportion p, and we showed that this is sufficient for
multiplier discovery.

Finally, we tested the hypothesis that multipliers of the form described can arise in an
artificial chemistry by experiment using the ToyWorld artificial chemistry from chapter 4.
In summary, exact multipliers do arise in the ToyWorld artificial chemistry, but not in any
great numbers, and when they do, they do not persist for long. We have shown though that
they do occur as the result of a non-neutral combination of Product and Reactant selection
strategies, and not purely by chance. It is also apparent that our earlier supposition, that the
number of reaction cycles would be a good proxy or predictor for multiplier or replicator
activity, is not supported by the evidence.

117





6 From Multiplication to Variability

Having shown the existence of exact multipliers in the previous chapter, we now move
on to considering the implications of selective pressure and variability on multiplication.
First, we replace the stable environment of the previous chapter by varying selective pres-
sure and examine the effect that that has upon the emergence of multipliers. Second, we
investigate the emergence of variable replicators.

A variable replicator is a multiplier that can change its structure while remaining the
same under selection (Zachar and Szathmáry 2010). The selection requirement provides
an objective way of discriminating between changes that maintain continuity between dif-
ferent forms or states of the same fundamental entity from those changes that result in
something intrinsically different. Although there is no obvious limit to the number of pos-
sible states that a variable replicator may take, for pre-template replicators the maximum
number is constrained by the ability of the entity to sustain non-interfering chemical net-
works (see introduction in section 1.2.3.) In other words, pre-template variable replicators
are multipliers that can occupy any of a limited set of states without losing their underlying
identity.

For the studies in this chapter we require some extensions to our earlier models and
algorithms. Given the association between variable replicators and explicit selection, we
need to adopt or develop a model for environmental change. We also need to extend our
method for detecting multipliers to detect variable replicators in the reactions generated
by our evolutionary model. These two extensions are covered in section 6.2 and section 6.5
respectively. The conceptual basis for these studies is the same as introduced in fig. 2.2: a
base evolutionary model under extrinsic selective pressure provided by an environmental
model.

Finally, we conduct experimental investigations of multipliers under varying selective
pressure, and then variable replicators in our artificial chemistry. A common experiment
design is introduced in section 6.3, followed by separate result and discussion sections for
each study.
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6.1. PREVIOUS WORK

6.1 Previous work

Perturbations are applied to a well-mixed reaction vessel by Fontana and Buss (1994) with
objects taken from λ-calculus. Organisations (entities, hypercycles) in all cases are observed
to be self-maintaining but not self-reproducing (excluding cases that included an explicit
replication expression.) The model is without locality or spatial effects; perturbations take
the form of adding a small number of copies (10 or 50) of a random object every 30,000
or 50,000 collisions. The purpose of the perturbations however is simply to assess the
sensitivity of the model.

A series of successively enhanced models—Polymer-GARD (P-GARD) (Shenhav et al.
2005), Environment Exchange Polymer-GARD (EE-GARD) (Shenhav, Oz, and Lancet 2007),
and Universe-GARD, proposed in Markovitch et al. (2012)—address extending the range
of composomal inheritance. P-GARD lacks a mechanism for environmental variation, al-
though EE-GARD, which builds upon P-GARD, moves towards such a mechanism by re-
turning half of the products of composome split or fission events to the environment. This
return mechanism is the main justification for the claim in Shenhav, Oz, and Lancet (2007,
p1819) that the composomes and environment co-evolve. Universe-GARD further extends
the importance of variation of environment; the population of the main GARD environ-
ment is continually exchanged with that of an enveloping “universe” that contains signif-
icantly more molecular species. No results have yet been reported however to the best of
our knowledge as Markovitch et al. (2012) describes the model only.

Regular perturbations are at the core of the liposome model of Fernando and Rowe
(2007), where periodic “avalanches” of novel side-reactions spawn new and rare reaction
products to inject variation into the simulation, either by making new reactions possible,
or by shifting the balance between competing reactions, or by perhaps altering the reaction
rates through changes to catalysis. Avalanches are described as an exploration mechanism,
extending the range of the simulation into otherwise unlikely regions, although no exper-
imental assessment of their effectiveness was performed. The focus of the work primarily
lies in the hypothesis that liposomes (significantly more complex than our reaction cycles)
form a plausible candidate for early forms of life, kick-started towards the evolution of
novelty by chemical avalanches.

6.2 Sources of selection pressure

Although selective pressure can be purely intrinsic, for example in the competition be-
tween reaction cycles for molecules (Eigen 1971), this is inherently more difficult to model
and to control than explicit selective pressure, supplied by an external agency. In these
experiments we concentrate solely on explicit selective pressure generated by a changing
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6.2. SOURCES OF SELECTION PRESSURE

environment.

A changing environment is one in which the relative phenotypical fitness is time-dependent,
while, conversely, a stable environment is one where the relative fitness of a phenotype
with respect to the environment is independent of time1. In the models in this chapter,
environmental change only occurs between generations, and the phenotype of an entity re-
mains constant over its lifespan. All fitness changes are caused by environmental changes;
we do not consider fitness changes that are the result of processes that operate on a sub-
generational timescale such as learning or development.

Any model of changing environments must capture two particular dimensions of change:
the target of the change, and the shape of the change. The target of change refers to the as-
pect of the evolutionary model that is affected by the change. Any model parameter or
combination of parameters might be a target. For example, in the evolutionary model in
chapter 6, any or all of the parameters SReactant, SProduct, EVessel and EBonds could be targets
of environmental change. The shape of change describes the way change varies over time,
as a series of δ at timestep t, where δt ∈ R.

In previous work, Jablonka et al. (1995) and Paenke et al. (2007) share a simple model for
environmental change, with instantaneous switches between two defined environments
according to some schedule. Gaucherel and Jensen (2012) also describes a single model for
environmental change—a repeated module of a period of “smooth” change (either accord-
ing to a form of sine curve or unchanging) followed by an abrupt change—with variation
in the length and degree of each period. By contrast, Schuster (2011, p. 79), when describ-
ing the relationship between fitness landscapes and error thresholds, details five distinct
models of change: “(i) the single-peak landscape corresponding to a mean field approxi-
mation, (ii) the hyperbolic landscape, (iii) the step-linear landscape, (iv) the multiplicative
landscape, and (v) the additive or linear landscape.”

Although the shape of change can clearly take an infinite number of different forms, we
concentrate on two representative shapes, one adopted from Jablonka et al., and one novel:

• Bistate selective pressure, where the shape of change follows a pattern that switches
between two alternate states at regular intervals.

• AR-timeseries, a new approach adopting the environmental model introduced in sec-
tion 2.7.1 and described by three parameters Θ, σe and δ. Θ is the AR coefficient, et

is a random, normally distributed, error component around a mean of 0, where et
iid∼

N(0, σ2
e ), and δ is a fixed bias value. An AR-timeseries combines a regular component

(described by Θ and δ) and an unpredictable component (σe.) Unlike the bistate case, the
AR-timeseries is neither constant nor completely regular.

1This is similar to statistical stationarity: the phenotype’s fitness is independent of when it is measured.
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Table 6.1: Factors mapped to model parameters, plus factor levels, for all experiments in chapter 6.

Factor Model -1 value +1 value Description

SProduct Evolutionary Uniform LeastEnergy See section 4.5

EShape Environmental Bistate (alternate every
10,000 iterations between
-20 and +20 values.)

AR-timeseries (applied ev-
ery 1000 iterations.)

See section 6.2

ETarget Environmental KE Population See section 6.2

As for the target of change, we begin with two defined alternatives:

• KE, where each molecule’s kinetic energy is increased by the change value of δ: KEnew =

KE + δ. As seen in chapter 4, the population composition is influenced by the kinetic
energy available for reactions. Changing the KE of the reaction vessel should indirectly
result in a change in reactor population, and hence influence the types of reactions and
reaction cycles that develop.

• Population, in which the δ value is used to adjust the population size. If δ is negative,
then |δ| molecules chosen with uniform probability are removed from the population;
if δ is positive, then δ molecules chosen again with uniform probability from the initial
population are added to the current population. In summary, environmental changes
will directly affect the composition of the reactor population, once again influencing the
relative proportions of reaction cycle species.

6.3 Experiment design

The experiment design for all experiments in this chapter is the same as the design used in
chapter 5, with the addition of factors for the environmental model. All factors and levels
are given in table 6.1. Environmental changes are applied according to the schedule in the
same table.

6.4 Exact multipliers under varying selective pressure

First we explore the nature of any relationship between simple multiplication and selective
pressure. We start by extending our investigation of exact multipliers in stable environ-
ments into the effects of selective pressure from varying environments, using the number
of multipliers as our response variable for the effect.

We use two proxy metrics calculated from EShape as our measure of selective pressure:
DFA and Sample Entropy. DFA is the calculated Hurst parameter (H) using Detrended
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Fluctuation Analysis, while sample entropy is assessed by the method provided in Rich-
man and Moorman (2000). Both are calculated from the timeseries as applied to the target,
with changes at intervals of 1000 iterations for the AR-timeseries, and every 10,000 itera-
tions for the bistate case. As a result the sample entropy in particular is significantly lower
than the sample entropy of the source timeseries.

Our hypothesis test is:

H0: There is no difference in the number of exact multipliers between different values of
selective pressure.

H1: The number of exact multipliers depends on the degree of external selective pressure.

6.4.1 Results and discussion

Raw results are given in table 6.2. Approximately 38% of runs produced multipliers (34
of 90 runs.) Almost all runs with multipliers contained 1, 2 or rarely 3 species, with the
notable outliers of one run with 6 species and another with 13 (with the only parameter in
common being ETarget=KE.)

If these two outliers are excluded, then the distribution of the number of exact mul-
tipliers against extrinsic pressure (DFA and Sample Entropy) is shown in fig. 6.1. From
this it seems unlikely that a simple relationship between multiplication and selective pres-
sure exists, confirmed by the results of an attempted linear regression. For the relationship
between the number of multipliers and Sample Entropy the F-statistic=2.0001963 and the
p-value=0.1608072; the fit is no better for DFA with the F-statistic=1.5314888 and the p-
value=0.2195091.

From this we conclude that we cannot reject H0.

Table 6.2: Multipliers measured by alg. 7 in reaction networks generated by LeastEnergy and
Uniform SProduct strategies under forms of environmental change given by the columns Target and
Shape. Sampling proportion p in alg. 8 set to 0.2. Sample Entropy scaled by a factor of 1000 (see
section 6.3).
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1489554358 0 0 0 LeastEnergy KE BISTATE 0.00 0.00 2 2 3.00

1489554358 0 0 1 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 1 0 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 1 1 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

Continued on next page
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1489554358 0 2 0 LeastEnergy KE BISTATE 0.00 0.00 1 1 3.00

1489554358 0 2 1 LeastEnergy KE BISTATE 0.00 0.00 3 3 3.00

1489554358 0 3 0 LeastEnergy KE BISTATE 0.00 0.00 3 3 3.00

1489554358 0 3 1 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 4 0 LeastEnergy KE BISTATE 0.00 0.00 1 1 3.00

1489554358 0 4 1 LeastEnergy KE BISTATE 0.00 0.00 2 2 3.00

1489554358 1 0 0 LeastEnergy KE AR 0.00 1 1 3.00

1489554358 1 0 1 LeastEnergy KE AR 0.00 0 0 0.00

1489554358 1 1 0 LeastEnergy KE AR 1.92 1.69 2 2 3.00

1489554358 1 1 1 LeastEnergy KE AR 1.92 1.69 0 0 0.00

1489554358 1 2 0 LeastEnergy KE AR 1.90 1.67 2 2 5.00

1489554358 1 2 1 LeastEnergy KE AR 1.90 1.67 1 1 3.00

1489554358 1 3 0 LeastEnergy KE AR 1.91 1.60 6 6 3.00

1489554358 1 3 1 LeastEnergy KE AR 1.91 1.60 1 1 3.00

1489554358 1 4 0 LeastEnergy KE AR 1.92 1.70 0 0 0.00

1489554358 1 4 1 LeastEnergy KE AR 1.92 1.70 1 1 3.00

1489554358 2 0 0 LeastEnergy POPULATION BISTATE 0.00 0.00 1 1 3.00

1489554358 2 0 1 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 1 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 1 1 LeastEnergy POPULATION BISTATE 0.00 0.00 2 2 3.00

1489554358 2 2 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 2 1 LeastEnergy POPULATION BISTATE 0.00 0.00 1 1 3.00

1489554358 2 3 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 3 1 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 4 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 4 1 LeastEnergy POPULATION BISTATE 0.00 0.00 2 2 3.00

1489554358 3 0 0 LeastEnergy POPULATION AR 0.00 0 0 0.00

1489554358 3 0 1 LeastEnergy POPULATION AR 0.00 0 0 0.00

1489554358 3 1 0 LeastEnergy POPULATION AR 1.92 1.66 0 0 0.00

1489554358 3 1 1 LeastEnergy POPULATION AR 1.92 1.66 0 0 0.00

1489554358 3 2 0 LeastEnergy POPULATION AR 1.90 1.85 0 0 0.00

1489554358 3 2 1 LeastEnergy POPULATION AR 1.90 1.85 0 0 0.00

1489554358 3 3 0 LeastEnergy POPULATION AR 1.90 1.79 0 0 0.00

1489554358 3 3 1 LeastEnergy POPULATION AR 1.90 1.79 0 0 0.00

1489554358 3 4 0 LeastEnergy POPULATION AR 1.94 1.44 0 0 0.00

Continued on next page
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1489554358 3 4 1 LeastEnergy POPULATION AR 1.94 1.44 0 0 0.00

1489565574 0 0 0 Uniform KE BISTATE 0.00 0.00 1 1 3.00

1489565574 0 0 1 Uniform KE BISTATE 0.00 0.00 2 2 3.00

1489565574 0 1 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 1 1 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 2 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 2 1 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 3 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 3 1 Uniform KE BISTATE 0.00 0.00 3 3 3.00

1489565574 0 4 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 4 1 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 1 0 0 Uniform KE AR 0.00 1 1 3.00

1489565574 1 0 1 Uniform KE AR 0.00 1 1 3.00

1489565574 1 1 0 Uniform KE AR 1.94 1.20 1 1 3.00

1489565574 1 1 1 Uniform KE AR 1.94 1.20 0 0 0.00

1489565574 1 2 0 Uniform KE AR 1.90 1.72 0 0 0.00

1489565574 1 2 1 Uniform KE AR 1.90 1.72 2 2 3.00

1489565574 1 3 0 Uniform KE AR 1.93 1.71 0 0 0.00

1489565574 1 3 1 Uniform KE AR 1.93 1.71 0 0 0.00

1489565574 1 4 0 Uniform KE AR 1.93 1.67 0 0 0.00

1489565574 1 4 1 Uniform KE AR 1.93 1.67 13 13 3.00

1489565574 2 0 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 0 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 1 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 1 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 2 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 2 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 3 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 3 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 4 0 Uniform POPULATION BISTATE 0.00 0.00 3 3 3.00

1489565574 2 4 1 Uniform POPULATION BISTATE 0.00 0.00 2 2 3.00

1489565574 3 0 0 Uniform POPULATION AR 0.00 1 1 3.00

1489565574 3 0 1 Uniform POPULATION AR 0.00 1 1 3.00

1489565574 3 1 0 Uniform POPULATION AR 1.94 1.28 0 0 0.00

1489565574 3 1 1 Uniform POPULATION AR 1.94 1.28 0 0 0.00

Continued on next page
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1489565574 3 2 0 Uniform POPULATION AR 1.93 1.12 1 1 3.00

1489565574 3 2 1 Uniform POPULATION AR 1.93 1.12 0 0 0.00

1489565574 3 3 0 Uniform POPULATION AR 1.93 1.45 1 1 3.00

1489565574 3 3 1 Uniform POPULATION AR 1.93 1.45 1 1 3.00

1489565574 3 4 0 Uniform POPULATION AR 1.91 1.65 1 1 3.00

1489565574 3 4 1 Uniform POPULATION AR 1.91 1.65 1 1 3.00

6.5 The emergence of variable replicators

We now move on to the question of the emergence of variable replicators. From the in-
troduction to this chapter, our working definition of a variable replicator is “a multiplier
that can change its structure while remaining the same under selection.” In alg. 11 we
present an algorithm for the first part of that definition—a multiplier that can change its
structure—based on the earlier algorithm for the identification of multipliers.

The second part of the definition, that the candidate remains the same under selection,
is equivalent to the statement that changes to the entity are neutral with respect to selection,
or in other words, selection and the changes of entity state are independent. From this we
can construct a hypothesis test:

H0: The sequence of state changes of any candidate variable replicator is only in response
to external selective pressure.

H1: The sequence of state changes of all candidate variable replicators is independent of
external selective pressure.

6.5.1 Results and discussion

As might be expected, because the reaction cycles that make up a variable replicator do
not have to be identical (unlike those in an exact multiplier), the number of lineages and
the average length of lineages for candidate variable replicators in table 6.3 significantly
exceed those seen for exact multipliers.

Now, we can develop a notation for replicator species by denoting each species of re-
action cycle by a single digit or character; a replicator composed of a particular sequence
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Figure 6.1: Number of exact multipliers against measures of extrinsic selective pressure Sample
Entropy (left) and DFA (right.) The two outliers mentioned in the text have been excluded from
each graph.

127



6.5. THE EMERGENCE OF VARIABLE REPLICATORS

1 Function DiscoverVariableMultipliers(MultipliersBySpecies):
2 Candidates← ∅

3 AllProducts← ⋃
∀x∈MultipliersBySpecies Products(x)\Reactants(x)

4 AllReactants← ⋃
∀x∈MultipliersBySpecies Reactants(x)\Products(x)

5 LinkingMolecules←AllProducts ∩ AllReactants
6 if LinkingMolecules then
7 for Cycle in Cluster do
8 if (Products(cycle) ∩ LinkingMolecules 6= ∅) ∨ (Reactants(cycle) ∩

LinkingMolecules 6= ∅) then
9 MultipliersInSpecies←MultipliersInSpecies ∪ Cycle

10 end
11 end
12 return Candidates

Algorithm 11: DiscoverVariableMultipliers. Detect candidate variable replicators within
a reaction network, where a candidate is a continuous sequence of multipliers linked
by shared molecules. The algorithm is similar to that for detecting multipliers (alg. 7)
without the need to check stoichiometry.

of cycles can then be categorized as belonging to the replicator species represented by the
set of single digit or character cycle species. The sequence of cycle states for the replicators
identified in this experiment is shown in table 6.4.

Our null hypothesis is that changes in variable replicator state only arise as the result
of external selection. That is, that replicator states behave differently under selection. This
can be tested by comparing the sequence of states of the same replicator across a variety of
environments, each providing a different selective pressure.

Note though that only four cycle species (’M’, ’G’, ’P’ and ’i’) appear in more than one
run, with the great majority of species endemic to a single run. As a result, only three
candidate replicators (’MMM’, ’GGG’ and ’iii’) appear in more than one run in our results,
and as these are all single-state replicators none can be considered variable by definition.
The cycle ’P’ appears in two candidate replicators, but as in one instance it appears with
’Q’ and in the other by itself, these also cannot be considered as instances of the same
replicator as the two candidates have a different number of states. Unfortunately therefore
we cannot test the hypothesis by examining the behaviour of the same replicator across
different environments.

Furthermore, if the states in a variable replicator are more or less equally likely, as
seems a reasonable approximation, then we would expect a replicator to revisit states over
time. However, none of our identified replicators do this; they either occupy only one
state (in which case they cannot be claimed as a variable replicator), or move through a
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6.5. THE EMERGENCE OF VARIABLE REPLICATORS

non-repeating sequence of unique states.
In summary, we lack unequivocal evidence of variable replication, and so cannot reject

H0: we conclude that there is no evidence for variable replication in the ToyWorld artificial
chemistry under the experimental conditions described.

Table 6.3: Variable replicators measured by alg. 11 in reaction networks generated by LeastEnergy
and Uniform SProduct strategies under forms of environmental change given by the columns Target
and Shape. Sampling proportion p in alg. 8 set to 0.2. Sample Entropy scaled by a factor of 1000
(see section 6.3).
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1489554358 0 0 0 LeastEnergy KE BISTATE 0.00 0.00 1 6 11.00

1489554358 0 0 1 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 1 0 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 1 1 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 2 0 LeastEnergy KE BISTATE 0.00 0.00 1 3 13.00

1489554358 0 2 1 LeastEnergy KE BISTATE 0.00 0.00 1 9 19.00

1489554358 0 3 0 LeastEnergy KE BISTATE 0.00 0.00 3 9 11.00

1489554358 0 3 1 LeastEnergy KE BISTATE 0.00 0.00 0 0 0.00

1489554358 0 4 0 LeastEnergy KE BISTATE 0.00 0.00 1 3 10.00

1489554358 0 4 1 LeastEnergy KE BISTATE 0.00 0.00 1 6 11.00

1489554358 1 0 0 LeastEnergy KE AR 0.00 1 3 10.00

1489554358 1 0 1 LeastEnergy KE AR 0.00 0 0 0.00

1489554358 1 1 0 LeastEnergy KE AR 1.92 1.69 1 6 11.00

1489554358 1 1 1 LeastEnergy KE AR 1.92 1.69 0 0 0.00

1489554358 1 2 0 LeastEnergy KE AR 1.90 1.67 1 10 11.00

1489554358 1 2 1 LeastEnergy KE AR 1.90 1.67 1 3 10.00

1489554358 1 3 0 LeastEnergy KE AR 1.91 1.60 3 18 11.00

1489554358 1 3 1 LeastEnergy KE AR 1.91 1.60 1 3 13.00

1489554358 1 4 0 LeastEnergy KE AR 1.92 1.70 0 0 0.00

1489554358 1 4 1 LeastEnergy KE AR 1.92 1.70 1 3 10.00

1489554358 2 0 0 LeastEnergy POPULATION BISTATE 0.00 0.00 1 3 10.00

1489554358 2 0 1 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 1 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 1 1 LeastEnergy POPULATION BISTATE 0.00 0.00 1 6 11.00

1489554358 2 2 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 2 1 LeastEnergy POPULATION BISTATE 0.00 0.00 1 3 10.00

1489554358 2 3 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 3 1 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

Continued on next page
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1489554358 2 4 0 LeastEnergy POPULATION BISTATE 0.00 0.00 0 0 0.00

1489554358 2 4 1 LeastEnergy POPULATION BISTATE 0.00 0.00 1 6 11.00

1489554358 3 0 0 LeastEnergy POPULATION AR 0.00 0 0 0.00

1489554358 3 0 1 LeastEnergy POPULATION AR 0.00 0 0 0.00

1489554358 3 1 0 LeastEnergy POPULATION AR 1.92 1.66 0 0 0.00

1489554358 3 1 1 LeastEnergy POPULATION AR 1.92 1.66 0 0 0.00

1489554358 3 2 0 LeastEnergy POPULATION AR 1.90 1.85 0 0 0.00

1489554358 3 2 1 LeastEnergy POPULATION AR 1.90 1.85 0 0 0.00

1489554358 3 3 0 LeastEnergy POPULATION AR 1.90 1.79 0 0 0.00

1489554358 3 3 1 LeastEnergy POPULATION AR 1.90 1.79 0 0 0.00

1489554358 3 4 0 LeastEnergy POPULATION AR 1.94 1.44 0 0 0.00

1489554358 3 4 1 LeastEnergy POPULATION AR 1.94 1.44 0 0 0.00

1489565574 0 0 0 Uniform KE BISTATE 0.00 0.00 1 3 10.00

1489565574 0 0 1 Uniform KE BISTATE 0.00 0.00 1 6 11.00

1489565574 0 1 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 1 1 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 2 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 2 1 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 3 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 3 1 Uniform KE BISTATE 0.00 0.00 3 9 10.00

1489565574 0 4 0 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 0 4 1 Uniform KE BISTATE 0.00 0.00 0 0 0.00

1489565574 1 0 0 Uniform KE AR 0.00 1 3 10.00

1489565574 1 0 1 Uniform KE AR 0.00 1 3 10.00

1489565574 1 1 0 Uniform KE AR 1.94 1.20 1 3 10.00

1489565574 1 1 1 Uniform KE AR 1.94 1.20 0 0 0.00

1489565574 1 2 0 Uniform KE AR 1.90 1.72 0 0 0.00

1489565574 1 2 1 Uniform KE AR 1.90 1.72 1 6 11.00

1489565574 1 3 0 Uniform KE AR 1.93 1.71 0 0 0.00

1489565574 1 3 1 Uniform KE AR 1.93 1.71 0 0 0.00

1489565574 1 4 0 Uniform KE AR 1.93 1.67 0 0 0.00

1489565574 1 4 1 Uniform KE AR 1.93 1.67 1 39 23.00

1489565574 2 0 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 0 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 1 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

Continued on next page
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1489565574 2 1 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 2 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 2 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 3 0 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 3 1 Uniform POPULATION BISTATE 0.00 0.00 0 0 0.00

1489565574 2 4 0 Uniform POPULATION BISTATE 0.00 0.00 1 9 13.00

1489565574 2 4 1 Uniform POPULATION BISTATE 0.00 0.00 2 6 10.00

1489565574 3 0 0 Uniform POPULATION AR 0.00 1 3 10.00

1489565574 3 0 1 Uniform POPULATION AR 0.00 1 3 13.00

1489565574 3 1 0 Uniform POPULATION AR 1.94 1.28 0 0 0.00

1489565574 3 1 1 Uniform POPULATION AR 1.94 1.28 0 0 0.00

1489565574 3 2 0 Uniform POPULATION AR 1.93 1.12 1 3 10.00

1489565574 3 2 1 Uniform POPULATION AR 1.93 1.12 0 0 0.00

1489565574 3 3 0 Uniform POPULATION AR 1.93 1.45 1 3 10.00

1489565574 3 3 1 Uniform POPULATION AR 1.93 1.45 1 3 10.00

1489565574 3 4 0 Uniform POPULATION AR 1.91 1.65 1 3 10.00

1489565574 3 4 1 Uniform POPULATION AR 1.91 1.65 1 3 10.00

6.6 Conclusions

This concludes our investigation into replication in an artificial chemistry. The previous
chapter introduced exact multipliers in stable environments; in this chapter we introduced
a changing environment and examined the effect of varying external selective pressure
upon multiplication. The effects of selection were also fundamental to the final portion of
the chapter: a search for variable replicators, or replicators that can take several states, each
state equivalent under selection.

The chapter began by constructing a model for environmental change, made up of two
dimensions: shape of change, and the target of change. The target of change defines the
area of the evolutionary model to be affected by change, while the shape of change (essen-
tially a time-series) captures the magnitude of the change to be applied at each time-step
to the target. For the experiments described in the chapter 6, each of shape and target is
associated with two alternative forms or types.
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Shape in our experiments follows either a straightforward alternation between two sta-
ble values (“bistate”), or a more complex form described by an AR-timeseries. In order
that the forms may be simply described, we summarize each time-series by two metrics:
DFA, a type of Hurst parameter, and Sample Entropy, a measure of complexity. The two
targets of change addressed in this chapter are kinetic energy (the overall kinetic energy of
the molecules within the reactor population) and the reactor population itself.

Our experiment results were inconclusive. Although the artificial chemistry produced
exact multipliers in approximately one-third of all runs, a relationship between environ-
mental variability and the numbers of multipliers was unproven. This is primarily a con-
sequence of the low number of multipliers observed. So what then might be the cause of
the low numbers? First, it is important to remember that this is not unexpected, as the
lack of successful previous work attests. Even in biology, where we benefit from having an
existence proof, we lack a complete and compelling description for the equivalent series of
steps from molecular chemistry to replication, although there are several competing narra-
tives. It is clear though that in artificial domains, in the absence of a shortcut mechanism
(such as described in section 1.2.4), the evolution of multipliers, based on autocatalytic sets,
is quite unlikely. As observed by Faulconbridge (2011, p173), when discussing the choice
of metric for evaluating fitness in RBN-World, “As with hypercycles, however, autocat-
alytic sets are too rare to be useful...”. Although the context is as a fitness function for a
genetic algorithm, the point remains valid that autocatalytic cycles, and hence multipliers,
are unusual. This is likely exacerbated by our adoption of a sampling algorithm for detect-
ing multipliers; as noted in section 5.3 this undercounts multipliers, but is necessary for
analysis times that are measured in days rather than weeks per experimental run.

Similarly, although the artificial chemistry generated a number of variable replicator
candidates—limited sets of repeated reaction cycles—none of the candidates were other
than endemic to a single run. As the condition for a full variable replicator is that each state
should be equivalent under selection, the lack of alternative forms in other runs prevents
us from properly testing this condition. However, we would have expected a variable
replicator to oscillate between a set of states while our candidates never repeated the same
state. On balance we feel that the results cannot be other than inconclusive.

Biology gives us many examples of functional replicators, but provides little guidance
on alternative approaches; we don’t wish to bias our simulation model in a direction which
may very well be wrong. Unfortunately, although we have no prior knowledge to estimate
probabilities, it is clear that even without the constraint of attempting to replicate the pro-
cess by which replication evolved on Earth, replication is very unlikely.

The critical step appears to be the shift from a limited heredity replicator to an unlim-
ited one. At that point, the necessary leap in information that must be maintained and
managed by the entity’s genome seems to require a quite different mechanism for infor-
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mation storage—a shift from an analog genome to a digital (for example, templated) one,
associated with a process to map between genome and phenome. The outcome of this
change is a capacity for increased expressiveness, and an increased ability to respond to
complexity in the environment.
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Table 6.4: Cycle sequences for each multiplier and variable replicator identified in the reaction
graph. All cycles of same species (see text) replaced by the same single character or digit (see
table A.3.)
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1489554358 0 0 0 A A A B B B

1489554358 0 2 0 C C C

1489554358 0 2 1 D D D E E E F F F

1489554358 0 3 0 G G G

1489554358 0 3 0 H H H

1489554358 0 3 0 I I I

1489554358 0 4 0 J J J

1489554358 0 4 1 K K K L L L

1489554358 1 0 0 M M M

1489554358 1 1 0 N N N O O O

1489554358 1 2 0 P P P P P Q Q Q Q Q

1489554358 1 2 1 P P P

1489554358 1 3 0 R R R S S S

1489554358 1 3 0 T T T U U U

1489554358 1 3 0 V V V W W W

1489554358 1 3 1 X X X

1489554358 1 4 1 Y Y Y

1489554358 2 0 0 M M M

1489554358 2 1 1 Z Z Z a a a

1489554358 2 2 1 M M M

1489554358 2 4 1 G G G b b b

1489565574 0 0 0 c c c

1489565574 0 0 1 d d d e e e

1489565574 0 3 1 f f f

1489565574 0 3 1 g g g

1489565574 0 3 1 h h h

1489565574 1 0 0 i i i

1489565574 1 0 1 j j j

1489565574 1 1 0 k k k

1489565574 1 2 1 l l l m m m

1489565574 1 4 1 n n n o o o p p p q q q r r r s s s t t t u u u v v v w w w x x x y y y z z z

1489565574 2 4 0 0 0 0 1 1 1 2 2 2

1489565574 2 4 1 3 3 3

1489565574 2 4 1 4 4 4

1489565574 3 0 0 5 5 5

1489565574 3 0 1 6 6 6

1489565574 3 2 0 i i i

1489565574 3 3 0 G G G

1489565574 3 3 1 Y Y Y

1489565574 3 4 0 7 7 7

1489565574 3 4 1 8 8 8
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7 Conclusions

This thesis has explored two related topics in the emergence of evolutionary replicators
from artificial chemistries: first, how environmental variability affects heritability in a sim-
ple evolutionary model, and second, how the reactions in an artificial chemistry can result
in simple replicating entities. The combination of these two topics suggests a pathway to-
wards the formation of full informational replicators in artificial chemistries purely through
evolutionary bootstrapping.

We shall now return to our research questions from section 1.3, and for each question
summarize the major results and findings. Then, in order to qualify the scope of the results,
we critique some aspects of the work in section 7.3, which naturally leads in to our final
section, a consideration of future work in section 7.4.

7.1 RQ1: In what way does selective pressure drive changes in heredity in a
population of evolving replicators?

This research question served as the primary motivation behind the work documented in
chapter 2, and in particular for the model relating heritability and fitness described in that
chapter. By making the usually implicit measures of heritability and fitness explicit for
each entity, the model allows us to measure them directly as the population of an other-
wise standard evolutionary system evolves. Our first experiment tested the evolution of
heritability in a stable environment (without external selective pressure), before we intro-
duced an explicit model of environmental change for the second and final experiment in
the chapter.

The changing environmental model incorporates a novel application of an AR-timeseries,
combining a regular component and an unpredictable component. At each generation of
the evolutionary model, the corresponding value from the timeseries is added to the fit-
ness value of each entity in the population, so efficiently simulating the effects of external
environmental change.
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7.2. RQ2: CAN VARIABLE REPLICATORS EMERGE FROM A MOLECULAR ARTIFICIAL CHEMISTRY?

7.1.1 Main findings

In summary, the main findings related to RQ1 are:

1. Heritability is proportional to the predictability of the environment, and is at a minimum
in conditions of maximum unpredictability, and at a maximum in stable conditions.

2. The variation in heritability, σheritability, is proportional to the degree of environmental
variability. As a corollary, the σheritability under changing conditions is greater than that
under stable conditions.

These results align with an intuitive understanding of the effects of environmental
change: in varying environments, a reservoir of variation provides flexibility, whereas per-
fect inheritance restricts the variation in a population, and limits the population’s ability to
respond to change.

7.2 RQ2: Can variable replicators emerge from a molecular artificial chemistry?

Our approach to this research question is based upon the exploration of a hierarchy of
replication proposed by Zachar and Szathmáry (2010). We began in chapter 4 by describ-
ing a modularized artificial chemistry for experimentation, ToyWorld, and conjectured that
a count of reaction cycles might serve as a proxy for the number of higher level replicators.
We showed that the strategies used to select reactants and products in the artificial chem-
istry affected the higher level entities (such as reaction cycles) observed in the resulting
reaction networks.

The next two chapters used the ToyWorld artificial chemistry to search for first mul-
tipliers and then variable replicators in the reaction graphs that result from a selection of
reactant and product selection strategies. We also extended the environmental model from
chapter 2 from one to two dimensions, to include not only the shape or form of the time-
series, but the element of the evolutionary model to receive the change (the target).

To the single shape of an AR-timeseries from chapter 2, we also added a second shape in
the form of a bistate series that switches between two alternate values at regular intervals.

For the target of change, we defined two alternatives, one being kinetic energy (where
each molecule’s kinetic energy is increased or decreased by the change value) and the other
directly modifying the population by adding or removing the number of molecules speci-
fied by the change value.

Finally, to detect replicators within the reaction networks, we defined three novel algo-
rithms:

1. Reaction cycle detection from a set of seed molecules selected by sampling from the
molecules in the reaction graph (alg. 8.)
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2. Identification of exact multipliers from reaction cycles, based on a specific definition
for exact multipliers as two or more copies of the same reaction cycle species, where
the reaction cycle species has stoichiometry greater than one, and where each cycle in
the multiplier is connected to at least one other multiplier cycle by a molecule that is a
product of one cycle and a reactant in the other (alg. 7.)

3. Identification of variable replicator candidates (that is, without consideration of selec-
tion) from reaction cycles, where we define variable replicators as multipliers that can
occupy any of a limited set of states without losing their underlying identity (alg. 11.)

7.2.1 Main findings

The main findings for RQ2 are summarized below.

1. Exact multipliers do arise in the ToyWorld artificial chemistry (in approximately one-
third of all runs), but not in any large number, and when they do, they do not persist for
long.

2. Multipliers occur as the result of a non-neutral combination of Product and Reactant
selection strategies, and not purely by chance.

3. The hypothesised relationship between environmental variability and the numbers of
multipliers remains unproven.

4. Although ToyWorld produces a number of variable replicator candidates (sequences of
repeated reaction cycles), none were observed that meet all of our criteria for variable
replication. Specifically, although we observe exact multipliers, and variable replicator
candidates, we do not observe candidates that only occupy a restricted or limited set of
states, or that exist in multiple runs (see discussion in section 7.3)

5. The choice of SReactant has a significant effect on the emergence of reaction cycles in
ToyWorld; SProduct is of lesser effect.

6. A Kinetic Reactant selection strategy is more effective for cycle emergence than a Uni-
form one. The number of cycles, and length of longest cycle, are maximized under the
combination of a Kinetic Reactant selection strategy and a LeastEnergy Product selection
strategy.

7. Other parameters to the ToyWorld model have lesser effects on cycle formation; only
the relationship of Ebonds to the number of cycles produced has any significance.
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7.3 Limitations

Identifying cycles in a reaction network by searching from a sampled set of seed molecules
dramatically improves the performance of the cycle detection algorithm, and as shown in
chapters 5 and 6, produces sufficient density of cycles to establish the presence of multipli-
ers and variable replicators. However, a significant limitation is that sampling influences
the likelihood of detecting all cycles in a multiplier or variable replicator and so the length
of a replicator is likely to be under-reported. If a cycle in the middle of sequence of cycles is
not detected through sampling, the algorithms will identify two shorter replicators instead
of one longer one.

The next topics are closely linked. First, it seems clear from both the experiments in
this work, and from our knowledge of early life, that the probability of complex replicators
arising within 100,000 generations (around the current limit of practicality for analysis) un-
der the conditions described is extremely low. Some combination of a significant increase
in generations and a change of conditions will be required to increase the likelihood of ob-
serving a significant step such as the emergence of an informational replicator. At present,
the only approach is to conduct many extremely long-duration trials and so leverage prob-
abilities. This is clearly unsatisfactory.

Second, the current work does not provide any guidance as to how that step from a
variable to an template-based informational replicator might arise, and yet it is essential if
complex replicators are to form.

Third, our current algorithms rely upon network analysis at the reaction cycle level,
and cannot inherently detect any higher-level structure. The distinction between genotype
and phenotype in an informational replicator occurs at a different conceptual level to the
component reactions, and our level of interest and investigation needs to change accord-
ingly. We need an approach that adapts to different levels of emergence, from cycles to
elements built from cycles, to yet more complex elements, and so on.

Finally, the current approach of graph analysis of complete reaction networks, even
dynamic analysis, cannot scale to the network sizes needed. It seems clear that either the
performance of the current algorithms must be dramatically improved, perhaps by rewrit-
ing in a lower-level higher-performance computer language, or more profitably, the ap-
proach to analysing the generated data must change if larger networks are mandated. The
graph structure we generate at present forms a single connected component in which ev-
ery molecule and reaction are contained (with the exception of those molecules that never
take part in a reaction). The lack of obvious substructures within this single graph makes
it difficult to naturally subset the graph to improve the speed of the analysis.
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7.4 Future work

The previous section has identified issues primarily with the scope of the present work. In
this section, we concentrate on those improvements that could be made within the current
scope.

Although the AR-timeseries generator described in section 2.7.1 produces a time series
for environmental change with the property of stationarity, the δ term makes the evolu-
tionary model of fitness non-stationary. However, any change still remains steady and
gradual. An extension would be to co-opt the idea of concept drift from time series analy-
sis to induce an abrupt change with probability p at each generation. Each change would
therefore form a new ‘concept‘. Instead of the environment changing in a predictable and
describable way from one generation to another, the change could not be predictable from
the earlier history.

There are some obvious extensions of the model from section 2.5 that have been left for
future work. First, the model currently assumes only single-parent inheritance, whereas
many biological species have two parents. Extending to two parents would be a useful
enhancement to increase the model’s scope. Second, the model does not include any influ-
ence from development (the production of the phenome from the genome). However, it is
unclear at this stage what effect development would have on the model as its effects are
bundled into the overall fitness parameter. Finally, although outside of the overall scope
of this work in evolutionary systems, the effect of acquired characteristics would be in-
teresting to explore. Others (e.g. Gaucherel and Jensen (2012), Paenke et al. (2007), and
Sasaki and Tokoro (2000)) have studied the differences between general models based on
acquired and non-acquired characteristics, finding a difference between models in chang-
ing environments. This could be another area of exploration for the future.

A limitation of the experiment design in chapter 4 is that the values chosen for the
high and low values of EBonds make it impossible to determine the cause of the difference
observed in section 4.10.3. There are two alternative explanations: first, the energy required
to make or break bonds is simply different between the two factor levels; second, in the low
factor level, based on real-world values, the bond make and break energies for even a single
bond vary depending on the atoms involved, while in the high factor level these values are
consistent for all bonds of the same degree. To distinguish between the two explanations,
the average levels at each degree should be the same for each factor; this is a suggestion for
a future experiment.

As mentioned in section 7.3, the sampling algorithm for cycles means that the sizes
of replicators may be underestimated. The sampling proportion p could certainly be in-
creased, but this is currently impractical for large reaction graphs. Alternatively, repeating
the cycle detection with a new set of seed molecules could eliminate any sampling gaps.
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After identifying an initial set of replicators, the seed molecules for the repeated cycle de-
tection should include the product and reactant molecules from the replicator cycles that
are not consumed or produced, respectively, by the replicator.

In chapter 6 we have assumed that each environmental change affected all entities
equally; however, this isn’t necessarily the only option. We can identify three levels of
scope, or the proportion of entities in the population to receive a particular set of changes,
from most homogeneous to least:

1. The group of all entities. All entities receive the same set of changes.

2. A group for each set of “related” entities, where the most natural and obvious relation
is that between parent and child; this is unambiguous and straightforward in our model
where each entity has only one parent. We refer to a group of entities related by inheri-
tance as a lineage. A separate set of changes is provided for each lineage.

3. A single-member group for each entity. Each entity receives a unique set of changes.

The first level is the simplest application of environmental change, and the one adopted
throughout this work, while the second represents the common scenario where we expect
similar entities to react in similar ways to change, and where similarity is a result of descent:
entities that share a common ancestor are more similar to each other than they are to other
lineages.

The third scope level implies that each entity has an independent response to environ-
mental changes. This seems problematic; environmental response is a function of pheno-
types, and we would expect related entities to have related phenotypes1. Thus instead of
single-member groups we would expect lineage-related groups.

7.5 Personal reflection

The work in this thesis has been driven by a belief that the most effective approach to
replication was likely to be one in which replicators could emerge from a simpler artificial
chemical system without explicit external design or direction. The experiments described
in this work have therefore followed a “big data” approach, but given limited resources,
they have been only to an exploratory scale. Given the probabilities involved, it is clear
that ideally we would greatly increase the number of trials, or reactions simulated.

This could be done by rearchitecting the current implementation to use cloud-based
computing resources in parallel. Running multiple experiments in parallel, with cycle,
multiplier and variable replicator detection happening in real-time from streamed results

1In general, although in biology there can be significant phenotypic differences between related entities.
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would effectively remove the current limits on the number of reactions that can be mod-
elled and analysed.
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A Experiment datasets and procedures

Table A.1: Summary of parameters for each set of replicates in the experiments. The columns
dataset, experiment and environment define each experiment, with parameters given by columns
reactant strategy, product strategy, and environmental change target and shape. The two final
columns, DFA and sample entropy, provide two alternative measures for the variability of the
environmental model for the experiment: DFA is the calculated Hurst parameter (H) using
detrended fluctuation analysis, while sample entropy is assessed by Richman and Moorman
(2000). Sample Entropy scaled by a factor of 1000 (see section 6.3).
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1489554358 0 0 KineticReactantSelection LeastEnergy KE BISTATE 0.00 0.00

1489554358 0 1 KineticReactantSelection LeastEnergy KE BISTATE 0.00 0.00

1489554358 0 2 KineticReactantSelection LeastEnergy KE BISTATE 0.00 0.00

1489554358 0 3 KineticReactantSelection LeastEnergy KE BISTATE 0.00 0.00

1489554358 0 4 KineticReactantSelection LeastEnergy KE BISTATE 0.00 0.00

1489554358 1 0 KineticReactantSelection LeastEnergy KE AR 0.00

1489554358 1 1 KineticReactantSelection LeastEnergy KE AR 1.92 1.69

1489554358 1 2 KineticReactantSelection LeastEnergy KE AR 1.90 1.67

1489554358 1 3 KineticReactantSelection LeastEnergy KE AR 1.91 1.60

1489554358 1 4 KineticReactantSelection LeastEnergy KE AR 1.92 1.70

1489554358 2 0 KineticReactantSelection LeastEnergy POPULATION BISTATE 0.00 0.00

1489554358 2 1 KineticReactantSelection LeastEnergy POPULATION BISTATE 0.00 0.00

1489554358 2 2 KineticReactantSelection LeastEnergy POPULATION BISTATE 0.00 0.00

1489554358 2 3 KineticReactantSelection LeastEnergy POPULATION BISTATE 0.00 0.00

1489554358 2 4 KineticReactantSelection LeastEnergy POPULATION BISTATE 0.00 0.00

1489554358 3 0 KineticReactantSelection LeastEnergy POPULATION AR 0.00

1489554358 3 1 KineticReactantSelection LeastEnergy POPULATION AR 1.92 1.66

1489554358 3 2 KineticReactantSelection LeastEnergy POPULATION AR 1.90 1.85

1489554358 3 3 KineticReactantSelection LeastEnergy POPULATION AR 1.90 1.79

Continued on next page
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1489554358 3 4 KineticReactantSelection LeastEnergy POPULATION AR 1.94 1.44

1489565574 0 0 KineticReactantSelection Uniform KE BISTATE 0.00 0.00

1489565574 0 1 KineticReactantSelection Uniform KE BISTATE 0.00 0.00

1489565574 0 2 KineticReactantSelection Uniform KE BISTATE 0.00 0.00

1489565574 0 3 KineticReactantSelection Uniform KE BISTATE 0.00 0.00

1489565574 0 4 KineticReactantSelection Uniform KE BISTATE 0.00 0.00

1489565574 1 0 KineticReactantSelection Uniform KE AR 0.00

1489565574 1 1 KineticReactantSelection Uniform KE AR 1.94 1.20

1489565574 1 2 KineticReactantSelection Uniform KE AR 1.90 1.72

1489565574 1 3 KineticReactantSelection Uniform KE AR 1.93 1.71

1489565574 1 4 KineticReactantSelection Uniform KE AR 1.93 1.67

1489565574 2 0 KineticReactantSelection Uniform POPULATION BISTATE 0.00 0.00

1489565574 2 1 KineticReactantSelection Uniform POPULATION BISTATE 0.00 0.00

1489565574 2 2 KineticReactantSelection Uniform POPULATION BISTATE 0.00 0.00

1489565574 2 3 KineticReactantSelection Uniform POPULATION BISTATE 0.00 0.00

1489565574 2 4 KineticReactantSelection Uniform POPULATION BISTATE 0.00 0.00

1489565574 3 0 KineticReactantSelection Uniform POPULATION AR 0.00

1489565574 3 1 KineticReactantSelection Uniform POPULATION AR 1.94 1.28

1489565574 3 2 KineticReactantSelection Uniform POPULATION AR 1.93 1.12

1489565574 3 3 KineticReactantSelection Uniform POPULATION AR 1.93 1.45

1489565574 3 4 KineticReactantSelection Uniform POPULATION AR 1.91 1.65

1489951262 0 0 UniformReactantSelection Uniform POPULATION BISTATE 0.00 0.00

Table A.2: Pipelines used in this work to transform input data of one form, such as raw reaction
data or cycle data into another form for analysis.

Input Algorithm Output

Reaction network alg. 8 Cycles by molecule

Cycles by molecule alg. 7 All multipliers

Multipliers alg. 11 All variable replicators
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Glossary

Alife Artificial Life.

ANOVA Analysis of Variance.

Artificial Chemistry The computational abstraction of biomolecular processes.

Constructive An artificial chemistry is constructive if it is closed under all reactions. That
is, if the products of a reaction may become reactants in turn..

DFA Detrended Fluctuation Analysis.

EA Evolutionary Algorithm.

ENS Evolution by Natural Selection.

Heredity The passing on of traits from parent to offspring.

Heritability The proportion of the total variation between individuals in a given popula-
tion due to genetic variation, or the degree to which environment or genetics influences
the phenotype. (see https://www.ncbi.nlm.nih.gov/books/NBK22001/).

Horizontal Gene Transfer “The transfer of genetic material between reproductively iso-
lated species” (Pace et al. 2008).

Hypercycle An organisation of self-replicating molecules connected in an autocatalytic cy-
cle (Eigen 1971)..

IDA Initial Darwinian Ancestor.

LUCA Last Universal Common Ancestor.

ODE Ordinary Differential Equation.
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Glossary

Open-Ended Evolution “the ability to continuously produce novelty and/or complexity”
(Banzhaf et al. 2016).

RAF Reflexively autocatalytic and F-generated.

RBN Random Boolean Network.

Replicate “. . . an independent repeat of each factor combination.” (Montgomery 2009).

Run “. . . when an apparatus has been set up and allowed for function under a specific set
of experimental conditions.” (Box, Hunter, and Hunter 2005) Essentially a synonym for
replicate, but without the sense of membership in a series under the same conditions.
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