METHODOLOGY OF PRE-FEASIBILITY STUDY FOR A BINARY GEOTHERMAL POWER PLANT UTILIZING MODERATE-TEMPERATURE HEAT SOURCES

Denny Budisulistyo¹, Richard Wijnincx² and Susan Krumdieck¹
¹University of Canterbury, Private Bag 4800, Christchurch, 8140 New Zealand
denny.budisulistyo@pg.canterbury.ac.nz
susan.krumdieck@canterbury.ac.nz

Keywords: Organic Rankine cycle, pre-feasibility study, potential geothermal wells and binary geothermal power plant.

ABSTRACT

The exploitation of medium-low temperature geothermal reservoirs is a potential resource that does not yet have mature commercial technology solutions. This study describes a methodology of pre-feasibility study for a binary geothermal power plant utilizing moderate temperature heat sources. This pre-feasibility study can be a useful tool for decision making processes in the preliminary study.

The methodology is applied to an existing geothermal well located in the Taupo Geothermal Zone (TGZ) in New Zealand. Three common working fluids, n-pentane, R245fa and R134a are analyzed. The cycle designs considered are standard (Std) and recuperative (Rec) cycles. The results of the analyses indicate that the Std designs using n-pentane and R245fa are feasible for the geothermal well. The Std design using R245fa is more economical than the design using n-pentane, however the design using R245fa has lower Energy Return on Investment (EROI) than the design using n-pentane. The present methodology can be utilized to estimate pre-feasibility of geothermal wells in the initial stage, reducing risk and indicating potential for further engineering investigations.

1. INTRODUCTION

There are about 260 low temperature geothermal (LTG) energy sites in New Zealand associated with faults and tectonic features. There are also about 170 other thermal sites such as disused coal mines, abandoned oil and gas wells and water wells (Gazo, Lind, & Science, 2010). These resources are widely spread across North and South Islands, with some associated with areas of young volcanism and structural settings.

LTG heat sources have a large potential as a low-carbon energy resource (Tester et al., 2006) for base load power generation and combined heat and power. Three major types of geothermal power plant are dry-steam, flash-steam and binary-cycle (Yari, 2010). The most common technology for utilizing low-to-medium enthalpy geothermal energy resources is Organic Rankine Cycle (ORC) technology.

This feasibility study is an important first step in the development investigation. Some studies have discussed the feasibility study in several ORC system applications. Husband and Beyene (2008) discussed the feasibility of a low-grade heat-driven Rankine cycle for solar power generation. Jahngboran Esfahani and Yoo (2014) studied a systematic approach combining an steam injection gas turbine (SIGT) and multi effect thermal vapor compression (METVC) in the desalination system. Some researchers (H. C. Jung, S. Krumdieck, & T. Vranjes, 2014; Khattita, Ahmed, Ashour, & Ismail, 2014; Macián, Serrano, Dolz, & Sánchez, 2013) investigated the feasibility of ORC plants utilizing industrial waste heat. Uris, Linares, and Arenas (2014) conducted a technical and economic analysis of the ORC system on a cogeneration biomass plant in Spain. These researchers reported that ORC is feasible for their specific areas.

Several researchers (Kopuničová, 2009; Kose, 2007; MFGI, 2012; Nazif, 2011; New-Zealand-Geothermal-Association, 2013; Preißlinger, Heberle, & Brüggemann, 2013) present feasibility studies for geothermal power plants. They focused on a particular case study and the typical geothermal resources for their own purposes. None of them focuses on development of a binary geothermal plant considering optimal design of the plant and economical aspects for feasibility analysis.

Moreover some researchers investigated optimal design of the ORC systems from different heat sources. Franco et al. (Franco & Villani, 2009) proposed an optimization procedure for the design of binary geothermal power plants. Other researchers (Khennich and Galanis (2012), Madhawa Hettiarachchi, Golubovic, Worek, and Ikegami (2007), Shengjun, Huaixin, and Tao (2011) and Wang, Wang, and Ge (2012)) investigated the optimization of ORC designs for low-temperature heat sources with the optimization of some performance parameters as their objective function. They analyzed ORC systems by a multi-criteria approach. However, a thermodynamic approach combined with an economic and biophysical approach (Dale, Krumdieck, Bodger (2010)) has not been reported in the literature for geothermal project feasibility analysis. This methodology is important at the beginning of the potential investment projects for development and management decision support.

The main objective of the study is to develop a methodology for the pre-feasibility study for a new binary geothermal power plant utilizing moderate temperature heat resources. The methodology incorporates technical, thermodynamic, EROI and economic analyses for the energy conversion plant. The methodology does not include the uncertainty or costs of the geothermal resource development.

2. METHODOLOGY

The pre-feasibility study is a critical early step in the design of a system because decisions made here can affect up to 80% of the total capital cost of a project (Bejan & Moran, 1996). In this section, a methodology is proposed to simplify the assessment of a geothermal resource for generating electricity using binary energy conversion technology. Figure 1 gives a flow-chart of the methodology outlined in the following steps.

1. Specification of main parameters:
 - the main parameters that should be specified are geothermal fluid temperature (Tgeo), geothermal rejection temperature (Tj), geothermal fluid pressure (Pgeo), mass flow of geothermal (mgeo), ambient temperature (Ta) and ambient pressure (P0).
2. Synthesis is concerned with combining separated elements into a thermodynamic cycle. The step consists of four system elements that should be conducted simultaneously.

a. Selection of working fluid: the selection of the most appropriate working fluid has great implications for the performance of a binary plant (DiPippo, 2008). The criteria used for the selection of the working fluid are good physical and thermodynamic characteristics providing high thermodynamic performance and high exploitation of the available heat source. Moreover, the selected working fluid should be environmentally friendly indicating by low toxicity and characteristics of low-zero in-flammability. In order to have good availability and low cost, several common working fluids in commercial binary geothermal power plants are considered.

b. Selection of cycle design: another key aspect affecting the ORC system performance is the thermodynamic cycle design (Branchini, De Pascale, & Peretto, 2013). A basic binary geothermal power plant is designed by standard (Std) cycle (DiPippo, 2008). A recuperative (Rec) cycle is used when T_{inj} has any temperature limitation. The design is able to increase the T_{inj} and thermal efficiency, because the addition of a recuperator increases heat absorbed from geothermal fluid. However, the design is less economical than Std design and the regenerator will not increase the produced power (Valdimarsson, 2011). The schematic diagram of both cycle designs is shown in Figure 3.

c. Selection of component types: the type of four basic main components of the binary plant (turbine, evaporator, condenser and pump) should be selected for further analysis in the following steps. The selection depends on operating conditions and the size of the plant. The two turbine types used for a binary power plant are axial turbines and radial inflow turbine (DiPippo, 2008). The shell-and-tube heat exchanger with brine on tube side and working fluid on shell side is the most commonly type used for the binary plants. DiPippo (2008) et al. mentioned that preheater can also use horizontal cylinder and corrugated plate type. Moreover, they stated that evaporator/superheater can use horizontal cylinder or kettle-type boiler. Dry cooling system uses air-cooled condenser. The centrifugal pumps are widely used for industrial applications (Bejan & Moran, 1996) and the type is also used in the geothermal areas. The material of the main components should be selected to calculate the costs of main components in the further analysis.

d. Determination of cycle parameters: the assumption parameters are required to create a thermodynamic cycle of the binary plant. Table 1 shows the parameter values that are usually used by various ORC research groups. The few degrees of superheat is required to avoid liquid droplets at the inlet of the turbine although the superheated vapour condition gives penalties in the term of power and costs (Toffolo, Lazzaretto, Manente, & Paci, 2014). The superheat value in the table 1 may be changed for the optimization purpose.

3. Analysis involves thermal analysis in system and component levels and sizing of heat exchangers.

a. Thermal analysis generally entails solving mass and energy balances in overall thermodynamic cycle and in each component of the cycle. The thermal analysis here is implemented based on the strategy proposed by Franco and Villani (2009) et al. The strategies divide the binary cycle into three subsystems (thermodynamics cycle, evaporator and condenser) and two hierarchical levels with sequentially defining system level (thermodynamic cycle) and component level (evaporator and condenser). Figure 2 shows hierarchical organization proposed by Franco et al. In the system level, the thermal problems (mass and energy balances) are solved by thermodynamic variables matching between binary cycle and geothermal resource. In the component level, the convergent results from the system optimization level produce the input data for the detail design of component level (evaporator and condenser). The results of the optimum component design (pressure losses (ΔP), pumping power (W_p) and fan power W_f).
(\(W_{\text{net}}\)) are iterated in the system level. Thus, results of the component level optimization can affect the results of the first level optimization particularly in the design of the dry cooling system.

![Diagram](Image)

Figure 2: Hierarchical organization for the thermal analysis in the design of binary plants

b. **Sizing of heat exchangers.** The dimensions of the various sections of the heat exchangers (pre-heater, evaporator, superheater and condenser) is calculated by considering the required heat transfer, the allowed pressure drop and the minimum allowed temperature difference.

4. **Optimization:**
Optimization involves two general optimization forms: parameter optimization and structural optimization. In parameter optimization, four decision variables are utilized to evaluate all remaining dependent quantities of the system: cycle maximum pressure (\(P_{\text{max}}\)); (2) mass flow of the working fluid (\(m_{\text{sys}}\)); (3) degree of superheating (sh), measured from the specific entropy of the point on saturated vapour curve for subcritical cycles; (4) condensation pressure (\(P_{\text{cond}}\)) (Toffolo et al., 2014). The objective function is to maximize net electrical power output (\(W_{\text{net}}\)). This factor is crucial due to economical aspect of geothermal power plants. The power output is even more crucial than exergy efficiency (Preilinger et al., 2013). In structural optimization, the optimization occurs when the re-selection of system elements is required to achieve an acceptable objective function. Structural optimization is indicated in Figure 2 by returning the arrow linked to synthesis step. The structural optimization generally consists of the re-selection of the working fluid and the cycle design.

5. **Purchased equipment costs (PEC):**
The first step for any detailed cost estimation is to evaluate the PEC. The type of equipment and its size, and the construction materials have been determined from previous flow chart steps. The best source for estimating the cost can be obtained directly from vendors’ quotations. In the preliminary stage, some literatures provide the cost estimation from various estimating charts and software packages.

6. **Total plant costs (TPC):**
The TPC includes the plant capital costs and steam gathering system costs that are required for the geothermal plants. The plant capital costs accumulate four factors affecting the capital costs of the plants: direct costs, indirect costs, contingency and fee and auxiliary facilities. According to Turton, Bailie, Whiting, and Shaeiwitz (2008) et al., the plant capital cost can be evaluated by grassroots cost (\(C_{GR}\)):

\[
C_{GR} = 1.18 \sum_{i=1}^{n} C_{BM,i} + 0.50 \sum_{i=1}^{n} C_{BM,i}^2
\]

(1)

where \(n\) represents the total number of pieces of main equipment, \(C_{BM}\) is the sum of the direct and indirect costs, and \(C_{BM}^2\) is the bare module cost evaluated at based conditions. The value of 15% and 3% of the bare module cost are assumed for contingency costs and fees, respectively. The value of 50% is assumed for auxiliary facility costs because the binary power plant is assumed to be built on an underdeveloped land. The steam gathering system cost is the costs for the networking of pipes connecting the plant with all production and injection wells. For binary systems, only the hot brine line and the cooler brine injection lines are required. Entingh and McLarty (1997) et al. proposed the system cost of 95 USD per kW for binary power systems. NGGPP (1996) et al. suggested the lower cost of the steam gathering system cost at 30 USD per kW.

7. **Geothermal development analysis**

a. **Costs**
The costs represent the drilling cost. The higher uncertainty is associated with the cost of drilling, because the cost is affected by resource characteristics that influences both the cost of individual wells and the total number of wells that must be drilled (Hance, 2005). Stefansson (2002) suggested the drilling costs based on the analysis result of the drilling in 31 geothermal fields with capacities in the range 20-60 MW in the world. The drilling cost was calculated according to correlation between the total investment cost and surface equipment cost (the plant itself and the steam-gathering system). In order to bring this cost from 2002 to the end of 2014, the producer cost index for drilling of oil and gas wells was used (The data is from Bureau of Labour Statistics, U.S. Department of Labour). The producer cost index is 115.6 and 450.7 in 2002 and December 2014, respectively. Table 2 summarizes the drilling costs of geothermal power plants in 2014.

<table>
<thead>
<tr>
<th></th>
<th>Drilling cost</th>
<th>Expectation value</th>
<th>Range within a standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(USD/kW)</td>
<td>(USD/kW)</td>
<td>(USD/kW)</td>
</tr>
<tr>
<td>In a known field</td>
<td>1170</td>
<td>1130-1949</td>
<td></td>
</tr>
<tr>
<td>In an unknown field</td>
<td>1805</td>
<td>1403-3119</td>
<td></td>
</tr>
</tbody>
</table>

b. **Project duration**
According to geothermal energy association, a new geothermal power plant project takes a minimum of 3 to 5 years to starting producing the electricity. Moreover, Stefansson (2002) mentioned that a typical time schedule for a stepwise development of a geothermal field is about 6 years consisting of 3 years for reconnaissance, surface exploration and exploration drilling and 3 years for production drilling and power plant.

8. **Total capital investment (TCI)** is the accumulation cost between TPC and drilling cost.

9. **Profitability analysis:**
Evaluate the expected profit from the investment by implementing a method of profitability analysis such as
3. APPLICATION OF THE METHODOLOGY FOR A CASE STUDY

3.1 Problem specification

A case study was used to illustrate the implementation of the methodology. Table 3 shows the actual data of a geothermal well and cooling air from a location in the Taupo Geothermal Zone (TGZ) in New Zealand.

Table 3: Data of a geothermal well and cooling air

<table>
<thead>
<tr>
<th>Data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{geo} ($^\circ$C)</td>
<td>131</td>
</tr>
<tr>
<td>T_{1} ($^\circ$C)</td>
<td>92</td>
</tr>
<tr>
<td>P_{geo} (bar)</td>
<td>9</td>
</tr>
<tr>
<td>m_{geo} (kg/s)</td>
<td>520</td>
</tr>
<tr>
<td>T_{2} ($^\circ$C)</td>
<td>20</td>
</tr>
<tr>
<td>P_{2} (bar)</td>
<td>1.53</td>
</tr>
</tbody>
</table>

3.2 Synthesis

3.2.1 Selection of working fluid

The working fluid selection criteria of this work focuses on the three common working fluids used in the commercial ORC power plants, which are n-pentane, R245fa and R134a.

3.2.2 Selection of cycle design

This work considers two types of the cycle design: Std and Rec cycles. The schematic diagram of both cycles is shown in Figure 3a and 3b. The Std design consists of a pump, an evaporator powered by geothermal fluid, a turbine and a condenser. The evaporator here represents preheater and evaporator. The generated high pressure vapor flows through the turbine and its heat energy is converted to work. The turbine drives simultaneously the generator and evaporator. The generated electrical energy is produced. The exhaust vapor exits the turbine and is lead to the condenser where it is condensed into working fluid. The working fluid with low boiling point is pumped to the evaporator, where it is heated and vaporized into high pressure vapor. The pressure vapor flows back to turbine and a new cycle starts again. The Rec design of ORC has a recuperator that can be installed as a liquid preheater between the pump outlet and the turbine inlet as illustrated in Figure 3b. This allows reducing the amount of heat needed to vaporize the fluid in the evaporator.

3.2.3 Selection of component types

A single radial turbine is considered in this work. The shell-and-tube type is used for evaporator and recuperator. Air-cooled condenser must be selected because there is no water supply in the geothermal resource site. The centrifugal pump is selected for the feed pump. In addition, carbon steel (CS) is used as the material for cost calculation of the main plant components.

Table 4: Properties of working fluids and list of ORC manufacturers (Quoilin, Van Den Broek, Declaye, Dewallef, & Lemort, 2013)

<table>
<thead>
<tr>
<th>Working fluid</th>
<th>T_{c} ($^\circ$C)</th>
<th>P_{c} (bar)</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-pentane</td>
<td>196.5</td>
<td>33.6</td>
<td>ORMAT (US)</td>
</tr>
<tr>
<td>R245fa</td>
<td>154.0</td>
<td>35.7</td>
<td>Bosch (Germany), Turboden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pureCycle (US), GE CleanCycle (US), Cryostar (France), Electratherm (US)</td>
</tr>
<tr>
<td>R134a</td>
<td>101.1</td>
<td>40.6</td>
<td>Cryostar (France)</td>
</tr>
</tbody>
</table>

Figure 3: Schematic diagram of ORC: (a) Std cycle and (b) Rec cycle

3.3 Analysis

The authors used aspen plus version 8.6 environment (AspenTech, 2014) to carry out the thermal analyses and calculations for the case study. The thermodynamic properties of the working fluids were calculated using the cubic Peng-Robinson equation of state (EOS) (Peng & Robinson, 1976) that has been adopted to calculated the thermodynamic and thermo physical characteristics. The heat exchanger models are constructed by integration between Aspen plus and Aspen EDR (Exchanger Design & Rating) software from Aspen Technology, Inc (AspenTech, 2014).

3.4 Optimization

3.4.1 Objective function

The objective function is to maximize the W_{net}. The W_{net} is defined as turbine power deducted by pump and fan powers:

$$W_{net} = W_T - W_P - W_{fans}$$

(2)

The specific power consumed by the fans of the air cooled condenser is assumed to be 0.15 kW per kg/s of air flow (Toffolo et al., 2014).

3.4.2 Thermodynamic optimal design parameters

The optimal design parameters using three working fluid and two cycle designs are summarized in Table 5. The recuperative cycle uses only n-pentane, because the positive impact of a recuperator is higher for dry working fluids such as n-pentane than wet working fluids.

The W_{net} of optimal designs with n-pentane and R245fa is comparable around 11 MW, but the W_{net} of design with R134a is significantly lower than others at 6,979.9 kW. It occurs because the maximum pressure of the system is significantly higher than others at 40.5 bar and the R134a design has the highest mass flow rate of working fluid.
Therefore, the comparable turbine power of R134a design is deduced with the highest pump power at 4,240.8 kW. The std design with R134a has already been eliminated as not being feasible for this resource.

Table 5: Optimum design parameters of the alternative designs

<table>
<thead>
<tr>
<th>Fluid</th>
<th>n-pentane</th>
<th>n-pentane</th>
<th>R245fa</th>
<th>R134a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle std</td>
<td>rec</td>
<td>rec</td>
<td>std</td>
<td>std</td>
</tr>
<tr>
<td>T_{inj} (°C)</td>
<td>92</td>
<td>96.5</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>m_{in} (kg/s)</td>
<td>184</td>
<td>184</td>
<td>366.2</td>
<td>420.6</td>
</tr>
<tr>
<td>P_{max} (bar)</td>
<td>7</td>
<td>7</td>
<td>16.1</td>
<td>40.5</td>
</tr>
<tr>
<td>T_{inj} (°C)</td>
<td>113</td>
<td>113</td>
<td>116</td>
<td>121</td>
</tr>
<tr>
<td>m_{in} ACC (kg/s)</td>
<td>0.82</td>
<td>0.82</td>
<td>1.79</td>
<td>7.7</td>
</tr>
<tr>
<td>W_{T} (kW)</td>
<td>12,600.4</td>
<td>12,600.4</td>
<td>12,858.9</td>
<td>12,480.7</td>
</tr>
<tr>
<td>W_{P} (kW)</td>
<td>253.9</td>
<td>253.9</td>
<td>543.3</td>
<td>4,240.8</td>
</tr>
<tr>
<td>W_{max} (kW)</td>
<td>1,117.5</td>
<td>1,115.5</td>
<td>1,170</td>
<td>1,260</td>
</tr>
<tr>
<td>W_{net} (kW)</td>
<td>11,229</td>
<td>11,191.5</td>
<td>11,145.6</td>
<td>6,979.9</td>
</tr>
</tbody>
</table>

3.5 Economic evaluation

3.5.1 PEC

The PEC of pumps and turbines are estimated using a correlation from Turton et al. (Turton, 1998). The purchased equipment cost evaluated for base conditions (PEC) is expressed by:

\[\log_{10} PEC = K_1 + K_2 \times \log_{10} Y + K_3 \times (\log_{10} Y)^2 \]

where K values are given in Table 6 and Y is the output power in kW. The number of pumps is calculated, so that the maximum Y is less than or equal to 300 kW. The single radial turbine is considered in this work and the cost equation is used beyond its maximum value at 1500 kW.

Table 6: Parameters for the calculation of purchased equipment costs in equation (3)

<table>
<thead>
<tr>
<th>Component</th>
<th>Y</th>
<th>K_1</th>
<th>K_2</th>
<th>K_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps</td>
<td>Power [kW]</td>
<td>3.3892</td>
<td>0.0536</td>
<td>0.1538</td>
</tr>
<tr>
<td>Radial turbines</td>
<td>Power [kW]</td>
<td>2.2476</td>
<td>1.4965</td>
<td>-0.1618</td>
</tr>
</tbody>
</table>

Deviation from the base conditions (base case of material: carbon steel and operating at near ambient pressure) are handled using pressure factor (F_p) and material factor (F_m) that depend on the equipment type, the system pressure and material construction. The F_p is calculated by the following general form:

\[\log_{10} F_p = C_1 + C_2 \log_{10}(p) + C_3 (\log_{10}(p))^2 \]

where p is the system pressure and C_1, C_2 and C_3 are coefficients given in Table 7. The equation 4 is valid for pressure range of the pumps between 10 and 100 barg. But the maximum pressure of designs with pentane is 7 bar that is out of the equation range, therefore the F_p is assumed to be 1.

Table 7: Parameters for the calculation of pressure factor and bare module factor in equation (4) and (8)

<table>
<thead>
<tr>
<th>Component</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>F_m</th>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed pump</td>
<td>-0.3935</td>
<td>0.357</td>
<td>-0.00226</td>
<td>1.5</td>
<td>1.89</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Thus, the actual purchased equipment cost (PEC) is expressed by:

\[PEC = PEC^0 \times F_p \times F_m \]

where PEC^0 and F_p are calculated by equation 3 and 4, respectively and F_m is given in Table 7.

The equation for updating PEC due to changing economic conditions and inflation (Turton et al., 2008) is:

\[C_{new} = C_{old} \left(\frac{base}{total} \right) \]

where C and I are cost (referring to PEC) and cost index, respectively. Subscripts old and new refer to base time when cost is known and to time when cost is desired, respectively. The data of cost index is taken from info share of New Zealand statistics (StatisticsNewZealand, 2014) in Table 8.

Table 8: Capital goods price index for the calculation of updated PEC prices in equation (6)

<table>
<thead>
<tr>
<th>Component</th>
<th>Year</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>2001</td>
<td>2014</td>
</tr>
<tr>
<td>Radial turbine</td>
<td>2001</td>
<td>2014</td>
</tr>
</tbody>
</table>

The cost calculation of heat exchangers is performed by Aspen EDR version 8.4 (Exchanger Design & Rating) software. The cost of heat exchanger is estimated by the software once all the geometry of each component part of the heat exchanger has been calculated. The calculations of the costs have considered the values of F_p and F_m.

Figure 4 shows the results of PEC calculation in three alternative designs. The PEC of the Std designs with n-pentane and R245fa is comparable at 25,606 and 22,994 million USD. However, the PEC of Rec design with n-pentane has significantly higher PEC. This occurs because of an additional recuperator cost and because the smaller temperature difference in evaporator and condenser causes higher heat transfer requirement, particularly in condenser.

The PEC of the Rec design is 1.76 times the PEC of Std design with the same working fluid, which is n-pentane. Therefore, the Rec design with n-pentane has to be eliminated for the consideration as not being feasible for further investigation.

Figure 4: Total purchased equipment cost estimated in 2014 USD

3.5.2 TPC

The TPC consists of two main cost categories: the plant capital costs and steam gathering system costs. The estimation of the plant capital costs is performed based on the module costing technique (MCT) (Turton et al., 2008) and the steam gathering system costs are assumed at 30 USD per kW according to NGGPP in 1996. The update of the cost used capital good price index with asset type: other fabricated metal products from info share of New Zealand statistics (StatisticsNewZealand, 2014). The price index
over a period of time: of the present values of incoming and outgoing cash flows Bejan and Moran (1996) are used to evaluate profitability of the

3.5.4 plant availability factor, which for commercial geothermal expected value is taken from Table 2 at 1170. The drilling cost is assumed in a known field where the Geothermal Zone (TGZ) in New Zealand where

3.5.3 costs

Table 9: Total plant costs (TPC) and specific investment costs (SIC) of the three optimal ORC designs. The estimation of plant lifetime is about 30 years (Sullivan, Clark, Han, & Wang, 2010). The electricity revenue price is about 0.083 USD/kWh with 3% of electrical price increment per year over the plant lifetime (H. Jung et al., 2014). According to geothermal energy association (Hance, 2005), the total operation and maintenance (O&M) costs is expected to average 0.024 USD/kW/h where the cost includes operation cost: 7 USD/MWh, power plant maintenance: 9 USD/MWh and steam fied manteinance & make-up drilling costs: 8 USD/MWh. The value of inflation rate was taken from New Zealand Consumer Price Index (CPI) where the inflation rate has averaged around 2.7% since 2000 (Zealand). The financial model used the assumptions that 20% of TIC is expensed in the first two years for exploration and confirmation of resources and the remaining 80% is invested in the third year.

Table 10: Assumptions for calculating NPV and DPB

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant lifetime</td>
<td>30 yrs</td>
</tr>
<tr>
<td>Plant availability</td>
<td>90%</td>
</tr>
<tr>
<td>Electricity revenue unit price</td>
<td>USD $0.083/kWh</td>
</tr>
<tr>
<td>O&M cost</td>
<td>USD $0.024/kWh</td>
</tr>
<tr>
<td>Annual electricity price escalation</td>
<td>3.0%</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>2.7%</td>
</tr>
<tr>
<td>Discount rate</td>
<td>10%</td>
</tr>
</tbody>
</table>

3.5.4.2 Calculation results

Table 11 shows the profitability factors for the two candidate designs. Both designs have almost the same values of TCI, NPV and DPB, where the design using R245fa has better economic performance than design with n-pentane. The NPV of the designs with n-pentane and R245fa is USD 34,296,419 and USD 37,059,060 respectively. The DPB of both designs is consistent between 15 years and 16 years. The total cost of investment ranges from USD 58,824,956 to USD 54,759,837.

Table 11: The results of NPV and DPB for two alternative designs

<table>
<thead>
<tr>
<th>Cycle Design</th>
<th>TCI (USD)</th>
<th>NPV (USD)</th>
<th>DPB (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-pentane Std</td>
<td>58,824,956</td>
<td>34,296,419</td>
<td>15.96</td>
</tr>
<tr>
<td>R245fa Std</td>
<td>54,759,837</td>
<td>37,059,060</td>
<td>15.00</td>
</tr>
</tbody>
</table>

3.5.5 EROI analysis

3.5.5.1 Calculation methodology

The energy return on investment is given by general form (King & Hall, 2011):

\[EROI = \frac{E_{\text{out}}}{E_{\text{in}}} \]

(10)

where \(E_{\text{out}}\) is the summation all energy produced for a given timeframe and \(E_{\text{in}}\) is the sum of direct and indirect energy costs. The \(EROI\) of an energy production project is defined as (Murphy, Hall, Dale, & Cleveland, 2011):

\[EROI = \frac{E_{c}}{E_{s} + E_{o} + E_{d}} \]

(11)

where \(E_{c}\) is energy produced once the project starts producing energy over the lifetime, \(E_{o}\) is total construction energy, \(E_{in}\) is energy required to operate and maintain the
project and E_d is energy required for decommission of the plant. The E_d in this work is neglected.

The energy intensity value is often used to convert dollars to energy units, because the availability of energy data is limited for high level energy analysis. The average energy intensity for the U.S. economy in 2005 was 8.3 MJ/USD (Murphy et al., 2011). They recommended to use consumer price index to deliver that value for another nearby year. The consumer price index from Bureau of Labor Statistics, U.S. Department of Labor was used. The conversion result of the average energy intensity in 2014 was 6.85 MJ/USD.

3.5.5.2 Calculation results

The E_p for thirty years is calculated to be 10,729 TJ and 10,949 TJ for Std n-pentane and Std R245fa, respectively. The E_c is calculated to be 403 TJ and 375 TJ for Std n-pentane and Std R245fa, respectively, while the E_{op} is calculated to be 1,604 TJ and 1,892 TJ for Std n-pentane and R245fa, respectively. The EROI for Std n-pentane and Std R245fa is 5.35 and 4.83, respectively. Table 12 shows these results. The EROI of Std n-pentane is higher than EROI of R245fa, because the design has higher system pressure and mass flow rate impacting to a higher pump power, therefore it has a high value of E_{op}.

The study of EROI calculation results with EROI literature reveals that the results of some researchers are fairly close to the EROI calculated in this paper. Frick, Kaltschmitt, and Schröder (2010) used current data from European geothermal plants to calculate an average EROI of about 4.5 for low temperature binary geothermal plants. Southon and Krumdieck (2013) calculated that EROI of small geothermal power plants had an EROI of 3.2 and 2.4 for the Waikite system and the Chena power plant, respectively. Icerman (1976) calculated that the EROI of a flashed steam geothermal plant between 7.0 and 11.3. The flash steam geothermal plants have a higher EROI than binary geothermal power plants.

Table 12: The results of EROI calculation for two alternative designs

<table>
<thead>
<tr>
<th>Item</th>
<th>Std n-pentane</th>
<th>Std R245fa</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p</td>
<td>10,729</td>
<td>10,949</td>
<td>TJ</td>
</tr>
<tr>
<td>E_c</td>
<td>403</td>
<td>375</td>
<td>TJ</td>
</tr>
<tr>
<td>E_{op}</td>
<td>1,604</td>
<td>1,892</td>
<td>TJ</td>
</tr>
<tr>
<td>EROI</td>
<td>5.35</td>
<td>4.83</td>
<td>-</td>
</tr>
</tbody>
</table>

4. CONCLUSION

The main objective of this work was to propose a methodology of pre-feasibility study for a new binary geothermal power plant utilizing moderate temperature while considering technical, thermodynamic and economic approaches. This work still deals with uncertainty cost analysis, because the scope of cost breakdown included in the capital cost is quite variable and unclear in the preliminary study. Moreover, the drilling cost has higher uncertainty due to resource-specific characteristics. Analyzing geothermal investment costs are a long and difficult process. The change of assumptions in further analyses will impact the change of profitability and EROI results. However, this methodology has included a typical cost breakdown of geothermal power plant projects.

The methodology is applied to the existing geothermal well located in the Taupo Geothermal Zone (TGZ) in New Zealand. Three common working fluids n-pentane, R245fa and R134a and two cycle designs Std and Rec cycles are analyzed. The results of analyses indicate that the design using R134a has the lowest net electrical power output (W_{net}) at 6,980 kW. The PEC of the Rec design is significantly expensive. The total PEC of Rec design is about 1.76 times PEC of Std design with the same working fluid. Therefore, both designs are not considered for further analyses. Furthermore, the Std designs with n-pentane and R245fa are feasible to be implemented in the geothermal resource. The profitability analysis reveals that the Std design with R245fa is more economical than the Std design with n-pentane, but the different NPV and DPB of both designs are very small at 8% and 6.4%, respectively. The EROI comparison of both designs shows that the EROI of Std design with n-pentane is higher than the EROI of Std design with R245fa at 5.35 and 4.83, respectively. Considering good availability and low cost of the working fluid, the design with n-pentane appears to be the better design because the working fluid costs less and is easier to be obtained in the market. R245fa is a manufactured compound, whereas n-pentane is refined from petroleum.

ACKNOWLEDGEMENTS

The research work was partly funded by a scholarship under MBIE contract HERX1201 and by the Department of Mechanical Engineering Doctoral Scholarship.

REFERENCES

Proceedings 37th New Zealand Geothermal Workshop
18 - 20 November 2015
Taupo, New Zealand
NOMENCLATURE

ACC Air Cooled Condenser
C Cost
DPB Discounted payback
E_i Energy for construction
E_{dc} Energy for decommission
E_p Energy produced
E_{op} Energy required for operation and maintenance
EDR Exchanger Design & Rating
EROI Energy return on investment
F Factor
I Cost index
In Input
IRR Internal rate of return
Old Base time
Out Output
ORC Organic Rankine Cycle
\dot{m} Mass flow rate
New Time when the cost is desired
N Equipment lifespan
NPV Net present value
P Pressure
Δp Pressure drop
PEC Purchase Equipment Cost
q Interest rate
R Annual income
Rec Recuperative
Std Standard
sh Superheating
T Temperature
TCI Total capital investment
TPC Total plant cost
W_{fan} Net power of fans
W_{net} Net electrical power output
W_p Net power of pump
W_t Net power of turbine
Y The power of pump or radial turbine

Subscripts

BM Bare module
C Critical
cond Condenser
ex Exit
geo Geothermal
GR Grassroots
In Inlet
m Material
max Maximum
n number of main components
o Ambient condition
p Pressure
P Pump
rej Rejection
T Turbine
wf Working fluid

8

Proceedings 37th New Zealand Geothermal Workshop
18 – 20 November 2015
Taupo, New Zealand

Sullivan, J., Clark, C., Han, J., & Wang, M. (2010). Life-cycle analysis results of geothermal systems in comparison to other power systems: Argonne National Laboratory (ANL).

