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Abstract

A new approach for modelling discrete cracks in meshfree particle methods in three
dimensions is described. The cracks can be arbitrarily oriented, but their growth
is represented discretely by activation of crack surfaces at individual particles, so
no representation of the crack’s topology is needed. The crack is modelled by a
local enrichment of the test and trial functions with a sign function (a variant of
the Heaviside step function), so that the discontinuities are along the direction of
the crack. The discontinuity consists of cylindrical planes centered at the particles.
The method is formulated for large deformations and arbitrary nonlinear and rate-
dependent materials; cohesive laws govern the traction-crack opening relations. To
reduce computational cost and since more accuracy around the crack tip is needed
to obtain adequate results, h-adaptivity is incorporated in the method. The model
is applied to several three dimensional problems, some of which are compared to
experimental data.
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1 INTRODUCTION

A recent paper [36] proposed a ’cracking particle’ method for modelling arbi-
trary crack propagation in two dimensions. The essential idea of this meshfree
method is to introduce discontinuities at particles around the surface of the
crack. A continuous crack is thus represented by a contiguous set of cracked
particles. There is consequently no need to construct a representation of the
crack surface, which leads to a method of compelling simplicity.
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The complexity of the method is even less than that of the interelement sep-
aration models and it is significantly less complex than the extended finite
element method (XFEM). In the former, the cracks can be modelled only
along element interfaces in the mesh, see Xu and Needleman [48], Camacho
and Ortiz [14], Ortiz and Pandolfi [34] and Zhou and Molinari [50]. Further-
more, the interelement crack method can result in an overestimate of the
fracture energy when the actual crack paths are not coincident with element
edges and the results of interelement crack methods depend significantly on
mesh refinement, see Falk et al. [21]. This difficulty has been alleviated by
adding randomness to the strength, as in Zhou and Molinari [50], though such
corrections are not yet understood. In contrast to interelement methods, the
proposed method can treat arbitrary crack paths, but whereas in interelement
crack methods the crack path is continuous, for the proposed method the
cracks are discontinuous.

In the extended finite element method, (which has been applied to static
problems in two and three dimensions, [22, 30, 31] and to dynamic problems,
Belytschko et al. [4]), an explicit representation of the crack surface is needed.
This is provided by level sets in Gravouil et al. [22] and Belytschko et al.
[4]. Although level set methods are very powerful for tracking surfaces, they
introduce some complexity; for example in the treatment of crack branching,
another level set needs to be introduced whenever a crack branches.

Previous meshfree methods for the modelling of cracks (Belytschko and Tab-
bara [11], Lu et al. [29], Belytschko and Lu [8], Belytschko et al. [9] and
Krysl and Belytschko [25]) also used explicit representations of the crack. In
the three-dimensional method in [25], surface models were constructed from
3-node triangular facets.

The embedded discontinuity methods (Belytschko et al. [5], Armero and Garikipati
[1], Samaniego et al. [42]) do not require a surface representation. However,
their effectiveness in crack dynamics has still not been verified and these meth-
ods require the crack to propagate one element at a time.

In this paper, we study the applicability of the method proposed in [36] to
brittle fracture in three dimensions. We use an adaptive meshfree method in a
structured (Cartesian) arrangement of particles. Although this appears at first
to be dissonant with the philosophy of meshfree methods, we take advantage
of the versatility of meshfree methods in modelling discontinuities (i.e. cracks)
and in implementing h-adaptivity; we show the latter is quite important in
obtaining accurate solutions by this method.

We also introduce in this paper a method for transitioning from Lagrangian
to Eulerian kernels. Belytschko et al. [6] have shown previously that Eulerian
kernels tend to exhibit spurious instabilities in stretching. For a hyperelastic
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material in two-dimensional deformation with any positive principal strain, a
particle method is unstable in tension; this has been verified for other materi-
als. This behavior was first noted in one dimension by Swegle and Hicks [44].
This behavior of the Eulerian kernel leads to spurious fracture when these
particle methods are applied to solids. In Rabczuk and Belytschko [36], it was
shown that a Lagrangian kernel eliminates this spurious instability.

Therefore, we use a Lagrangian kernel for the initial stages of our simulations.
However, for large deformations and contact-impact, Lagrangian kernels are
not effective. Therefore, we have devised a method for switching to an Eulerian
kernel at the nodes that are cracked.

The article is arranged as follows: The governing equations are given in section
2. Then, the method for representing cracks is reviewed in section 3. Within
this section we will focus on modelling material fracture using Lagrangian
kernels combined with Eulerian kernels. An adaptive scheme is proposed af-
terwards. The constitutive and cohesive models used are explained in section
4 as well as criteria for switching from a continuum to a discontinuum. We will
address the issue of crack closure and cyclic loading in this section. In section 5
we describe the application of the method to several static and dynamic prob-
lems: a mode I crack problem with analytic solution, a penny-shaped crack
problem, a notched concrete beam under four-point-bending, a notched con-
crete beam under four-point-bending with non-planar crack growth, failure of
a reinforced concrete beam, 3D crack branching problem, impact problems and
concrete slabs under explosive loading. In the latter two examples penetration
as well as perforation occurs. The results are compared to experimental data
or other results from the literature.

2 GOVERNING EQUATIONS

We consider a body Ω in <3 with boundary Γ; their images in the initial state
are the open set Ω0 and the boundary Γ0, respectively. Γ0 is the boundary
with Γ0 = Γc

0

⋃
Γt

0

⋃
Γu

0 and Γc
0

⋂
Γt

0

⋂
Γu

0 = Ø where Γc
0 is the crack surface,

Γt
0 the prescribed traction surface and Γu

0 the prescribed displacement surface.
The initial state will also serve as the reference state. The strong form of the
linear momentum equation in a total Lagrangian description is:

∇0 · P + %0 b = %0 ü in Ω0 \ Γc
0 (1)

and the boundary conditions are

n0 · P = t̄0 on Γt
0 (2)
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u = ū on Γu
0 (3)

n0 · P
− = n0 · P

+ = tc0 on Γc
0 (4)

where P is the nominal stress (note that P is the transpose of the first Piola-
Kirchhoff tensor), ∇0 is the divergence in the material coordinate system, %0

is the initial density, b are the body forces, u and ü are the displacements
and accelerations (a superimposed dot denotes a material time derivative or
a time derivative depending on the context), respectively; n0 is the normal
to the boundary in the initial configuration, ū and t̄ denote the prescribed
displacements and tractions, respectively and tc0 are the cohesive forces across
the crack.

We will also use the strong form of the linear momentum equation in the
updated Lagrangian description

∇ · σ + % b = % ü in Ω \ Γc (5)

where the boundary conditions are

n · σ = t̄ on Γt (6)

u = ū on Γu (7)

n · σ− = n · σ+ = tc on Γc (8)

where σ is the Cauchy stress, % is the current density and n is the normal to
the relevant surface in the current configuration. In the following sections we
will give the discrete equations in the total Lagrangian description, but some
terms are evaluated in updated Lagrangian format when convenient.

3 THE EFG-P METHOD

3.1 Displacement field

Consider a displacement field which is continuous in the entire domain except
at the cracks where a discontinuity occurs in the displacements. To describe
this discontinuity, the displacement is decomposed into continuous and dis-
continuous parts as in [3, 19, 30]:

u(X, t) = ucont(X, t) + uenr(X, t) (9)

where X are the material coordinates, t is the time, ucont denotes the contin-
uous displacement and uenr the discontinuous part, which is also called the
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enrichment.

a) (b)

Fig. 1. Schematic of the crack model for two and three dimensions

The crack is modelled by a set of discrete cracks as shown in figure 1. These
discrete cracks are restricted to be centered on the particles, i.e. each crack
plane always passes through a particle. Since the crack geometry is described
by the set of cracked particles, we do not have to provide a representation for
the geometry of the crack.

Let N be the total set of nodes in the model and Nc the set of cracked
nodes. To model the discontinuous part of the displacement, the test and trial
functions are enriched with sign functions which are parametrized by δqI and
qI , respectively. Only cracked nodes are enriched. We will describe the criteria
for ”cracking” the particles subsequently.

The test and trial functions are

uh(X, t) =
∑

I∈N

Φ̂I(X) uI(t) +
∑

I∈Nc

ΨI(X) S(fI(X)) qI(t) (10)

δuh(X) =
∑

I∈N

ΦI(X) δuI +
∑

I∈Nc

ΨI(X) S(fI(X)) δqI (11)

where fI(X) is given by

fI(X) = n0 · (X − XI) (12)

where n0 is the normal to the crack in the reference configuration and uI are
the particle displacements. The normal in the initial configuration n0 is found
by n from Nanson’s law

n0 = J−1n(tcr) · F(XI , tcr) (13)
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where tcr is the time at which the particle cracks. The current normal can
then be found from n0 by a rearrangement of the above equation.

The sign function S(ξ) is defined as:

S(ξ) =







1 ∀ξ > 0

−1 ∀ξ < 0
(14)

In general, different shape functions can be used for the continuous part,
ΦI(X), and discontinuous part, ΨI(X), see eq. (11) and (10). Here, we will
employ the same shape functions. Note that we will use a Petrov-Galerkin
method, so the test and trial functions differ. The support of the cracked
particle is equal to the support size of the other shape functions. If the dis-
cretization is refined, they are both decreased in size so that the number of
initial neighbors are the same for all discretizations.

The gradient of the test functions with respect to the material coordinates is
given by

∇0δu(X) =
∑

I∈N

∇0ΦI(X) ⊗ δuI +
∑

I∈Nc

∇0ΨI(X) S(fI(X)) ⊗ δqI

+
∑

I∈Nc

ΨI(X) ∇0S(fI(X)) ⊗ δqI (15)

The last term on the RHS of eq. (15) is dropped since Ω0 is treated as an open
set with the crack as part of the boundary and ∇0S(fI(X)) is nonzero only
on Γ0

c . The trial functions have an identical structure.

3.2 Weak form and discretization

We make the approximation that the crack surface can be represented by a
set of disconnected surfaces Γc

0I so that

Γc
0 =

∑

I∈Nc

Γc
0I (16)

where Γc
0I is the crack surface for cracked particle I; it denotes a single surface

in the reference configuration but in the current configuration Γc
0I become two

surfaces. While Γu
0 and Γt

0 are time invariant, Γc
0 changes with time as the

cracks grow.
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Ω0
Nc Γc

0

ni

Γt
0

⋃
Γu

0

Fig. 2. Domain with a single cracked particle

The weak form of the momentum equation is the standard principle of virtual
work (see e.g. Belytschko et al. [7]): find u ∈ V such that

δW = δWint − δWext + δWkin = 0 ∀δu ∈ V0 (17)

where

V =
{

u(·, t)|u(·, t) ∈ H1, u(·, t) discontinuous on Γc
0 u(·, t) = ū(t) on Γu

0

}

V0 = {δu|δu ∈ V, δu = 0 on Γu} (18)

δWint =
∫

Ω0\Γc
0

(∇0 ⊗ δu)T : P dΩ0 (19)

δWext =
∫

Ω0\Γc
0

%0 b · δu dΩ0 +
∫

Γt
0

t̄0 · δu dΓ0 +
∫

Γc

tc · [[δu]] dΓ (20)

δWkin =
∫

Ω0\Γc
0

%0 δu · ü dΩ0 (21)

where the prefix δ denotes the test function and Wext is the external energy,
Wint the internal energy and Wkin the kinetic energy. The current normal for
each crack segment is obtained by Nanson’s law.

A Petrov-Galerkin method (see also Rabczuk et al. [38]) with linear complete
MLS shape functions as test functions is used; the trial functions are Shepard
functions but their gradients are obtained by the Krongauz and Belytschko
[24] correction since they do not satisfy the reproducing conditions for linear
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polynomials, which is essential for convergence (the Randles-Libersky correc-
tion [40] is similar, see also Bonet and Kulasegaram [12], Bonet and Lok [13]
and Vila [46]).

The trial functions are constructed as usual for moving least square approxi-
mations by minimizing:

e(a) =
∑

J∈S

w(X − XJ)
(

pT (XI) a(X, t) − uI(t)
)

(22)

where w is a weight function of compact support, p(X) is a polynomial basis
(we used a linear basis, so pT = [1 X Y Z]), a are unknown parameters and
uI are the nodal values of the function to be approximated. We used the cubic
spline as weight function.

Finally, the discrete equations are

MIJ · üJ = f ext
I − f int

I (23)

(see e.g. Belytschko et al. [7]). In the above, MIJ is the mass matrix given
in Rabczuk and Belytschko [36]. The mass matrix MIJ was diagonalized by
a row-sum technique on the uncracked particles, but the full consistent mass
was used on the cracked particles.

The vector f ext
I is the external nodal force vector and given by

fext
I =







f
u,ext
I

f
q,ext
I







(24)

f
u,ext
I =

∫

Ω0\Γc
0

%0b ΦI(X) dΩ0 +
∫

Γt
0

t̄0 ΦI(X) dΓ0

f
q,ext
I =

∫

Γc

(tcΨI(X) [[S(fI(X))]] + α ΨI(X) [[S(fI(X))]]u̇) dΓ

+
∫

Ω0\Γc
0

%0b ΨI(X) S(fI(X)) dΩ0 +
∫

Γt
0

t̄0 ΨI(X) S(fI(X)) dΓ0 (25)

The vector f int
I is the internal nodal force vector and given by
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fint
I =







f
u,int
I

f
q,int
I







(26)

f
u,int
I =

∫

Ω0\Γc
0

∇0ΦI(X) · P(X) dΩ0

f
q,int
I =

∫

Ω0\Γc
0

∇0ΨI(X) · P(X) S(fI(X)) dΩ0 (27)

3.3 Eulerian and Lagrangian kernel for modelling material fracture

In most SPH procedures (see eg. Randles and Libersky [40, 41], Dilts [17, 18]),
an Eulerian kernel is used:

wJ(x) = w(x − xJ(t), h(x, t)). (28)

The Eulerian kernel is expressed in terms of spatial coordinates. The radius h
of the support depends on the spatial coordinates and can vary in time.

Belytschko et al. [6] have shown that particle discretizations of solids with an
Eulerian kernel lead to a distortion of the stable domain of the material in
stress space; the tensile instability first identified in Swegle and Hicks [44] is
one manifestion of this distortion.

The Lagrangian kernel is expressed in terms of material coordinates, so:

wJ(X) = w(X − XJ , h0). (29)

For Lagrangian kernels, the neighbors do not change during the course of the
simulation, but the domain of influence in the current configuration becomes
distorted with time. A Lagrangian kernel provides a more consistent procedure
when simulating material fracture because instabilities will not occur due to
numerical artifacts. Hence, in [36], we used a Lagrangian kernel to simulate
material fracture. However, this limits the magnitude of the distortions that
can be treated since in the current configuration the domain of influence of a
Lagrangian kernel can become extremely distorted after a body cracks. There-
fore, we here use a method that combines Lagrangian and Eulerian kernels.
This is essential when modelling fracture and fragmentation as in some of the
examples reported here, see e.g. section 5.8.
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In calculations with large deformations, we start with a Lagrangian kernel.
After introducing a discontinuity, we switch to an Eulerian kernel when the
particles have separated or if the cohesive tractions have decayed to zero. At
this point, the enrichment is removed and the particle is split into two particles.
Kinematic values such as velocity are assigned to the corresponding particle
according to the jump in the velocity fileld. By using initially a Lagrangian
kernel, we ensure that material fracture occurs physically and not due to
numerical artifacts. For very large deformations, the Eulerian kernel ensures
that the solution is stable and allows large separations.

In the blending domain between Lagrangian and Eulerian kernels, we proceed
as follows: The kernels that are not cracked are kept Lagrangian but exclude
particles on the opposite side of the crack from the domain of influence. In
other words, we check if the opposite cracked particles are not in the domain
of influence in the current configuration of the blended particles. If they do,
they are removed from the domain of influence of the blended particles. This
is a straightforward check since all neighbors and connectivities are known.
This way we ensure stable results in the blending region. We will show that
this approach gives stable results while results obtained by computations with
pure Lagrangian or Eulerian kernels are unstable.

3.4 Integration and particle masses and volumes

The integrals in (25) and (27) are evaluated by stress point integration similar
to Rabczuk and Belytschko [36]. The particle masses and volumes are obtained
via a Voronoi tesselation.

In the 3D procedure, we use a structured particle arrangement: 8 particles are
arranged so they form a cuboid. A stress point is placed in the middle of the
cuboid as shown in figure 3a. The cuboid is then subdivided into 12 tetrahedra
for computation of the volumes.

Once the coordinates of the particles and stress points are known, the tetra-
hedral volumes can easily be computed. The volumes are distributed equally
between the particles and stress points. An excellent overview on triangula-
tion and Voronoi procedures with algorithmic details can be found in Loehner
[27] and Carey [15]. Note, that the particle masses and volumes have to be
calculated only once at the beginning of the computation for particles that
do not crack; i.e. as long as the kernels are Lagrangian. Any integral, such as
(25) or (27) is then calculated by

∫

Ω0

ΦI(X)g(X)dΩ0 =
∑

J∈NI

ΦI(XJ)g(XJ)V 0
J (30)

10



where V 0
J is the Voronoi volume of node J and NI is the set of nodes in the

support of ΦI(X).

particle
stress point

A B

C

D

Fig. 3. Stress point arrangements in 3D using a structured particle arrangement

3.5 Adaptivity

In some 3D applications, the EFG-P method needs many particles to obtain
acceptable results. Therefore, we have introduced an adaptive scheme that
allows us to start with a coarse discretization and only those parts of the
structure where cracking occurs are refined. 2D adaptive schemes for particle
methods with stress points or nodal integration have been presented by You
et al. [49], Lu and Chen [28].

We based our adaptive scheme on an adaptive scheme for structured particle
arrangements, see Rabczuk and Belytschko [37]. The criterion for adding par-
ticles adaptively is based on an estimate of the approximation error. Particles
are added where large strain gradients occur, which generally indicates where
the crack will be. For further details on the error estimation procedure, see
[37].

One difficulty of adaptive schemes in particle methods with stress points is
the reconstruction of the Voronoi cells and the recomputation of the particle
and stress point masses. Since construction of the Voronoi cells is computa-
tionally expensive, reconstruction of the Voronoi cells in the entire domain
should be avoided. Reconstruction of the Voronoi cells is only needed in the
neighborhood of refinement.

Similar to finite elements, connectivity arrays exist between the cuboids (and
their sub-geometries) and the particles. Therefore, efficient data structures
(such as N-trees instead of linked lists) are preferable. Details about such data
structures and effective programming can be found in Loehner [27] and Carey
[15].
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We applied the Devloo and Oden rule [16] to assure a smooth transition be-
tween the coarse and fine discretizations. A new support size h has to be
assigned for particles in the refined and transition region. A smooth transition
is created by averaging the support size for particles in the transition surface
by hK = 0.5 (hI + hJ), where the subscript K denote transition particles, I
denote particles in the refined domain and J are the particles in their neighbor
region. The new data has to be mapped on the adaptively added particles and
stress points. This is done by an MLS interpolation. Further details are given
in Rabczuk and Belytschko [37].

3.6 Contact

In some of the examples contact occurs. In particle methods based on Eulerian
kernels, contact of two bodies can be handled quite easily; contact conditions
are enforced naturally if particles of two different bodies fall in their mutual
domain of influence. Care has to be taken that only compressive forces and no
tensile forces are transmitted. In special cases (e.g. in contact detonations),
contact can be modelled via the kernel function even with Lagrangian kernels.
However, in general, contact detection algorithms are necessary if Lagrangian
kernels are used. A simple and robust contact algorithm is the pinball algo-
rithm, see Belytschko and Neal [10].

4 CONSTITUTIVE AND COHESIVE MODELS

The constitutive/cohesive model consists of three ingredients. The starting
point of the constitutive model is a continuum constitutive equation. We used
a model described in Rabczuk and Eibl [39] which is suitable for concrete. We
also used the Lemaitre model [26] and Rankine models. The models will be
briefly reviewed in the following section.

The second ingredient is a criterion for when to introduce the discontinuity.
A discrete crack is introduced whenever a criterion for loss of continuity is
met at a particle; the traction across the crack is then governed by the third
ingredient, a traction-crack opening law, often called a cohesive law. Several
criteria for loss of continuity were studied which will be described subsequently.
The cohesive models will be described in section 4.3.
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Adaptive refinement

(a)

(b)

Fig. 4. Adaptivity in 3D showing initial mesh and partially refined mesh
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4.1 Continuum models

4.1.1 The Lemaitre model

The Lemaitre model [26] was developed for brittle materials such as concrete
and is an elastic model with isotropic damage. The stress-strain relation is
given by

σ = (1 − D) C ε (31)

where D is a damage variable which increases from 0 to a maximum of 1. The
damage evolution depends on the effective strain ε̄:

D(ε̄) = 1 − (1 − A) εD0 ε̄−1 − A e−B(ε̄−εD0
) (32)

with

ε̄ =

√
√
√
√

3∑

i=1

ε2
i H(εi) (33)

where εi are the principal strains and with

H(x) = 1 if x > 0

H(x) = 0 if x < 0 (34)

A, B and εD0 are material parameters. We mainly used the loss of hyperbolicity
criterion for introducing a discrete crack when applying the Lemaitre model.

4.1.2 Viscous damage model

A strain rate dependent damage-plasticity model for concrete proposed by
Rabczuk and Eibl [39] is used for concrete. For small elastic strains, the stress-
strain relation is given by

σ = (1 − (Dst − Ddyn)) γ Cs εe (35)

where Dst is the static damage which is decayed by a dynamic damage Ddyn,
γ is a function which takes high hydrostatic stress states into account and εe

is the elastic strain tensor. The damage surface is given in the strain space by

Fd = c1 Je
2 + κd

(

c2

√

Je
2 + c3 ε(α)

e,max + c4 Ie
1

)

− κ2
d = 0 (36)
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where c1 to c4 are parameters of the damage surface, Ie
1 is the first invariant

of the elastic strain tensor, Je
2 is the second invariant of dev εe and ε(α)

e,max the
maximum α− th characteristic value of εe. We used the same damage surface
in tension and compression.

The damage evolution is given by

D̂(κd) = 1 − e
−

(
κd−e0

ed

)gd

κd ≥ e0 and D̂(κd) = 0 κd < e0 (37)

where e0, gd and ed are material parameters.

The dynamic damage evolution is introduced to take strain rate effects into
account and is given by

D̂dyn =

t∫

τ=0

∂D̂

∂τ
H(t − τ) dτ (38)

where the history function H(t − τ) is given by

H(t − τ) = e
−

(
t−τ

ϑ(κ̇∗

d
)

)gh

(39)

with gh as material parameter. H decays monotonously from 1 to 0. The
relaxation time is defined by an empirical function of the equivalent elastic
strain rate κ̇∗

d related to a reference value κ̇0

ϑ(κ̇∗
d) = ϑ0 · κ̇

∗ct1ln κ̇∗

d
−ct2

d ∧ κ̇∗
d =

κ̇d(τ)

κ̇0

κ̇0 = 1s−1 (40)

with ct1 and ct2 as material parameters. With this Maxwell type relaxation
the dynamic strength increase can be approximated in a wide range of strain
rates. Note, that the model is implemented in rate form so that it is applicable
to large deformations. More details can be found in [39].

4.2 Cracking criteria

4.2.1 Loss of material stability criterion

In many of the computations, we use as a criterion for cracking the onset of a
material instability. Material stability is checked by conditions on the acoustic
tensor Q = n·A·n where A = Ct+σ⊗δ where Ct is the tangent stiffness and n

15



is the direction of polarization, see Belytschko et al. [7]. For a rate independent
material, the momentum equation stays hyperbolic as long as the minimum
eigenvalue of Q is nonnegative, i.e. min eig(Q) > 0. In a rate-dependent
material, the PDE usually does not change type and only undergoes a material
instability. Since the normal n = (cosα cosϕ, cosα sinϕ, sinα) depends on two
angles, the procedure of finding the minimum eigenvalue of Q can become
computationally expensive. A way to compute the eigenvalues of the acoustic
tensor is given by Ortiz et al. [33].

One difficulty is that four angles (only two of them are relevant, since the other
two are in the same direction but of opposite sense) are obtained from this
localization analysis. We choose the direction of the maximum displacement
gradient in the localization direction by maximizing

g = max
︸ ︷︷ ︸

l

(

nT
l · (∇u · hl)

)

(41)

where the normals nl correspond to the minimum eigenvalues of Q.

4.2.2 Rankine criterion

For a Rankine material, a crack is introduced when the principal tensile stress
reaches the uniaxial tensile strength at a particle. The crack is initiated per-
pendicular to the direction of the principal tensile stress.

4.2.3 Other failure criteria

As mentioned in section 4.2.1, the PDE does not lose hyperbolicity if viscous
constitutive models are employed. One can question why to switch to a discon-
tinuum if the PDEs are regularized. One advantage of a discontinuous model
is that the anisotropy of the material after cracking is modelled quite easily
because of the introduction of the jump in the displacement field. Also the
resolution of the crack is modelled in a more accurate manner. Viscous dam-
age laws often produce a very smeared, rather wide domains of damage. By
switching to a cohesive model, more realistic crack patterns can be resolved as
will be shown for several examples in section 5. We note that Etse and Willam
[20] have shown that after discretization, even with a viscoplastic constitutive
model, hyperbolicity can be lost if a critical time step is exceeded.

Other criteria that can be used to initiate a crack can be based on state
variables, e.g. damage, effective plastic strain. The difficulty is then to give
the orientation of the crack. For a mode I crack, the direction chosen is parallel
to the principal tensile stress.
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4.3 The cohesive model

When the cracking criterion is met at a particle, a discrete crack is introduced
by adding the enrichment (9) as illustrated in figure 1 and eq. (10). Once a
particle is cracked, the tractions across the discontinuity depend on the relative
displacements of the adjacent crack surfaces, i.e. the jump or magnitude of the
discontinuity in the displacement across the crack surface Γc

0. We consider the
cohesive traction to be a function of the jumps in the normal displacements
and tangential displacements.

4.3.1 Computation of the jump in the displacement

The jump in the displacement across the crack depends only on the discon-
tinuous part of the displacement field uenr(X) and hence the enrichment pa-
rameters qI . It can be shown from (10) that

[[u(X)]] = 2
∑

I∈Nc

ΨI(X) qI (42)

Let δn be the normal component of the displacement jump across the crack
and δτ be the tangential displacement jump. Then, the relative displacements
can be computed as

δn = [[u(X)]]n =n · [[u(X)]] (43)

δτ = [[u(X)]]τ = ‖[[u(X)]] − ([[u(X)]] · n) n‖ (44)

where [[u(X)]]n is the projection of [[u(X)]] on the normal n and [[u(X)]]τ is the
projection of [[u(X)]] on the plane which is perpendicular to n.

4.3.2 The cohesive law

We employ linear, bilinear and exponential relationships between the traction
and crack opening as shown in figure 5, similar to Ortiz and Pandolfi [34].
Unloading is linear elastic; at the transition to compression, we switch back to
the continuum model, meaning we remove the additional degrees of freedom
and apply the continuum constitutive model. Note that the maximum cohesive
traction has to be stored to guarantee the correct fracture energy at crack
reopening. Another possibility to avoid interpenetration would be the penalty
method.
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Fig. 5. Cohesive models: a) Linear models, b) Bilinear models, c) Exponential models

The area under the cohesive curve, figure 5, corresponds to the fracture energy
Gf . For quasi static loading conditions, the fracture energy is well documented
for many materials. Experiments by e.g. Schuler [43] have shown that the frac-
ture energy increases under dynamic loading conditions. In our dynamic com-
putations, we take this increased fracture energy into account by increasing
the dynamic fracture energy proportionally to the dynamic failure strength.
Accordingly, the area under the cohesive curve is increased. A general expres-
sion of the fracture energy with respect to the strain rate is desirable but due
to lack of experimental data difficult to derive.

5 RESULTS

5.1 Mode I crack

J

Fig. 6. The mode I crack problem

Consider the mode I crack problem illustrated in figure 6. Plane strain condi-
tions and linear elastic material behavior are assumed. Convergence is studied
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in terms of the relative error in the energy:

‖err‖energy =
‖uh − uanalytic‖energy

‖uanalytic‖energy

(45)

with

‖u‖energy =






∫

Ω0

ET (u) : C : E(u) dΩ0






1/2

(46)

where E is the Green strain.

The stress intensity factor KI is computed using a domain around the crack
tip. The cohesive tractions are set to zero and we proceed as explained in
section 3.3. We tested this approach for linear basis polynomials. Figure 7a
shows the error in the energy norm. Figure 7b shows the computed stress
intensity factor compared to the analytical solution. Considering the simplicity
of the method, the results are adequate. We would like to mention that we
don’t get convergence (or at least very slow convergence) if we don’t exlcude
particles in the blending domain from the domain of influence across the crack
as suggested in section 3.3.

a) b)

Fig. 7. Convergence for mode I crack problem a) convergence in energy norm (45);
b) convergence in KI (integration order is order of Gauss quadrature in cells)

5.2 Penny crack in a finite tube under uniaxial tension

Consider a cube of side length a at the center of which a penny-shaped
crack of radius r is embedded. The cube is subjected to uniaxial tension
σc = 1mN/mm2. For an infinite plate, the analytical solution for the stress

intensity factor is given by KI = 2σc

√

r/π. For a = 50r, the error in the
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Fig. 8. Typical discretization of the penny crack problem; 2D topview

Table 1
Stress intensity factors for the penny-shaped crack problem

Relative error on KI 30 × 30 × 30 60 × 60 × 60 120 × 120 × 120

average (%) 5.2342 3.24 2.004

maximum (%) 12.635 7.74 4.33

stress intensity factor is computed for different refinements with different par-
ticle spacings (30× 30× 30, 60× 60× 60 and 120× 120× 120); note that the
mesh is finer around the crack, see figure 8 in a 2D topview. The average error
as well as the maximum error is given in the table 1. Note that even if no
remeshing is necessary, a certain degree of refinement across the crack front is
needed to compute accurate stress intensity factors. Adaptivity as proposed
in this article is ideally suited to improve the results, but was not used in this
problem.
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Fig. 9. The tensile/shear beam from Arrea and Ingraffea [2]

5.3 The notched concrete beam of Arrea and Ingraffea

The next example is the notched concrete beam of Arrea and Ingraffea [2]. The
beam is loaded at points A and B, see figure 9. The initial elastic modulus is
28,000 MPa. The beam fails due to a mixed tensile/shear failure. This problem
can be solved quite accurately in 2D. We will use this example to compare our
3D results with 2D results obtained in [36] with the same constitutive model.

Fig. 10. Crack pattern in the Arrea and Ingraffea [2] beam obtained by the 3D
computation using 270,000 particles

We have used the Lemaitre model for the continuum law. Loss of hyperbol-
icity was used to initiate cracking. For the cohesive traction law, we used a
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linear decay as explained in Belytschko et al. [4]. Two models were used with
approximately 270,000 and 2,100,000 particles, respectively.

The 3D crack pattern for the 270,000 particle simulation at the end of the
simulation is shown in figure 10. The curvature of the crack is similar to
the one observed in the experiment. Above the left support, a straight crack
occurs which also appeared in our 2D computations; this was not observed in
the experiment, so evidently our support conditions lead to excessive strain
concentrations. Note that some cracked particles appear at a small distance
from the main crack; this type of behavior is observed quite often with this
method. The load displacement curve (right of the notch) is shown in figure
11 and is similar to the two dimensional one.

Displacement right of the notch [m]

R
ea

ct
io

n
F

o
rc

e
[M

N
]

0 0.05 0.1 0.15
0

0.05

0.1

0.15

Experiment

2D (30,200 particles)

3D (2,100,00 particles)
3D (270,00 particles)

Fig. 11. Load-displacement curve (to the right of the notch) of the Arrea and Ingraf-
fea [2] beam; experimental results are compared to a 2D and to 3D computations

5.4 Non-planar crack growth

A more complicated example involves non-planar crack growth. This example
was studied with the extended finite element method by Gravouil et al. [22].
A beam is notched at an angle α of 45 degrees with the x-axis (see figure 12)
and loaded in bending by a moment at the ends as shown in figure 12. The
beam dimensions are h = 0.02m, l = 0.1m and d = 0.01m and the length of
the notch is a = 0.01m.

In Gravouil et al. [22], the crack surface tended to become normal to the x-
axis as it grew downwards. Computations with up to approximately 170,000
particles did not give acceptable results; the crack did not curve and went
straight down. For a slightly higher numbers of particles, the crack curved
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Fig. 12. Side and top views of the beam with an initial crack for the non-planar
crack growth

slightly but did not reach the correct final position, which is perpendicular
to the x-axis. With 570,000 particles, the results become independent of the
discretization and the end of the crack is approximately 0.002m above the
bottom of the beam. The crack for 570,000 (301 × 31 × 61) and 4,400,000
(601×61×121) particles (and 540,000 and 4,300,000 stress points, respectively)
is shown in figure 13 and is in good agreement with the results obtained in
Gravouil et al. [22].

a) b)

Fig. 13. Non-planar crack for a) 4,400,000 particles and b) 570,000 particles; a cutout
near the crack is shown

We applied also our adaptive scheme to this problem, starting with discretiza-
tions of 23,000 particles (101×11×21)and 75,000 particles (151×16×31). The
cracks for these two computations are presented in figure 14 and are almost
identical and also to the results obtained with the 570,000 particle simulation
without adaptivity. At the end of the simulation, the number of particles was
around 65,000 and 210,000 particles for the 23,000 and 75,000 adaptive parti-
cle discretizations, respectively. The adaptive computations were around ten
times faster.
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a) b)

Fig. 14. Crack pattern of the adaptive method for an initial particle number of c)
23,000 particles and d) 75,000 particles; a cutout near the crack is shown

5.5 Failure of a reinforced concrete beam

F

20

100
10

[cm]

Fig. 15. Reinforced concrete beam, model description

Consider a reinforced concrete beam in three-point-bending as shown in figure
15. The concrete is reinforced with one bar at the bottom and the beam is of
rectangular cross section. We consider bond effects between the concrete and
the reinforcement with the rheological model illustrated in figure 16. Typical
bond curves depending on the confinement (tensile) stress are shown in figure
17. The wider the crack opens, the smaller are the bond stresses. A more
detailed description of the bond model is given in Rabczuk and Belytschko
[35].

We employed the Rankine criterion in tension and linear elastic material be-
havior in compression. Young’s modulus for concrete is 36,000 MPa, Poisson’s
ratio is 0.22 and the cutoff stress is 3.0 MPa. Beam elements are used for
the discretization of the reinforcement. An elasto-plastic model with isotropic
hardening is used for the steel. Young’s modulus of the reinforcement is 210,000
MPa, Poisson’s ratio is 0.3 and the yield stress is 510 MPa.
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Fig. 17. a) Bond stress slip curve depending on the crack width w, b) Normal
(contact) stress slip curve

The crack pattern at failure is shown in figure 18. No experimental data is
available but the crack pattern looks reasonable. The cracks closer to the
supports are flatter and become steeper with decreasing distance to the applied
load. The cracks appear at a characteristic spacing that is reproduced very well
independent of refinement after a certain point. At the end of the computation
the concrete around the bar is completed cracked. The load displacement curve
is shown in figure 19 for two different particle discretizations. A sudden drop
in the load displacement curve can be observed at a displacement of 0.5 cm.
The beam fails in bending.
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a) b)

Fig. 18. Crack pattern of the reinforced concrete beam at failure from two different
viewing points

Fig. 19. Load deflection curve of the three-point-reinforced concrete beam

5.6 Crack Branching

Consider a rectangular prenotched specimen as shown in figure 20. The length
of the specimen is 0.1 m, width 0.04 m and thickness 0.004 m. Tensile trac-
tions of 1 MPa are applied on the top and bottom edges, see figure 20. This
example was recently studied by Rabczuk and Belytschko [36] in 2D under
plane strain assumptions. Computations in 2D have also been reported by Xu
and Needleman [47] and Falk et al. [21] using interelement methods and Be-
lytschko et al. [4] using the extended finite element method. We use here the
Lemaitre damage model [26] and loss of hyperbolicity to transition to a dis-
continuity. The material parameters can be found in Rabczuk and Belytschko
[36].

We will show results for a 368,000 particle model. Similar results were obtained
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Fig. 20. Plate with an edge crack

Table 2
Material parameters of the constitutive model for concrete

E0 = 58, 000MPa e0 = 1.0 · 10−4 ep2 = 0.4

ν = 0.22 ed = 3.0 · 10−4 % = 2.77 · 10−3

c1 = 0.0123424 gd = 2.2 ndam = 70

c2 = 0.025166 rt = 1.2 av = 0.7

c3 = 0.782058 rc = 20 bv = 3.5

c4 = 0.346384 cp = 0.9 ev = 0.02

cc = 0.08 ep1 = 1.1 · 10−3 ev,th = 0.008

with finer refinements. In addition, we have carried out computations with
adaptivity.

The crack pattern at different time steps for the 368,000 particle arrangement
is shown in figure 21a-c. In figure 21d-f, the crack pattern for an adaptive
simulation is shown. We started with approximately 40,000 particles and set
an upper limit of 400,000 particles. The crack pattern is smoother than for
the 368,000 particle non-adaptive computation. We also ran adaptive compu-
tations with different upper bounds for the number of particles and different
initial numbers of particles (about 40,000 particles). The results were very
similar and the crack paths were quite smooth for these calculations.

A good measure for the quality of such computations is the energy balance
check. For this problem, the error in the energy balance is less than 1%.

5.7 Concrete impact

Unosson and Nilsson [45] performed a series of impact experiments on cylin-
drical concrete and reinforced concrete slabs. In the experiments, a steel pro-
jectile of 6.3kg impacted cylindrical reinforced concrete structures of different
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a) 0.03 ms d) 0.03 ms

b) 0.046 ms e) 0.046 ms

c) 0.06 ms f) 0.06 ms

Fig. 21. Three-dimensional crack branching at different time steps, a)-c)
non-adaptive, d)-f) adaptive

thicknesses. The total length of the projectile is 225 mm and its diameter 75
mm. The ogival nose radius of the projectile is 127 mm. We consider a series
of impacts on two concrete targets. The first concrete slab has a diameter of
1.4 m and a thickness of 0.4 m. The second concrete slab has also a diameter
of 1.4 m but the thickness is 0.8 m.

Unosson and Nilsson [45] measured the residual velocity of the projectile.
For the 0.4m thick concrete slab, perforation of the concrete specimen was
observed while for the structures of 0.8m thickness, the projectile was stopped
in the middle of the concrete slab. The experimental results are shown in table
3.

We discretized the concrete structures with a structured particle arrangement.
The constitutive model described in section 4.1.2 is employed. For the steel
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Table 3
Impact experiments on concrete slabs by Unosson and Nilsson [45]

Target Impact Velocity [m/s] Penetration depth [m] Residual projectile velocity [m/s]

1:1 613 - 276

1:2 616 - 303

1:3 621 - 293

2:1 623 0.45 -

2:2 618 0.54 -

2:3 622 0.51 -

projectile, an elasto-plastic material law with isotropic hardening is applied.
In the experiments, the deformation of the projectiles was small as confirmed
by the simulations. The material parameters for the concrete are given in table
2. Loss of material stability is used for crack initiation. For the steel projectile,
Young’s modulus is 210,000 MPa, Poisson’s ratio 0.3, density 0.008 g/mm3,
yield strength 2400 MPa and the hardening modulus is 20,000 MPa.

We will focus first on experiments 1:1 to 1:3. We used two different refinements,
630, 000 particles (and 595,000 stress points) and approximately 5, 200, 000
particles (and 5,050,000 stress points). A plot of the impactor penetrating
the concrete slab at the beginning of the computation is shown in figure 22a.
The deformed concrete slab at different times and for different refinements is
shown in figure 22a to d. The results do not exhibit much mesh dependence.
The final deformation of the concrete slab is shown in figure 23 and matches
quite well with the experimental crack pattern (see Unosson and Nilsson [45])
though the crater diameter is slightly underestimated by the numerical com-
putation; however the scatter in such impact experiments can be quite large.
The residual velocity of the projectile can be reproduced by the numerical
computation quite well and is independent of the discretization for the ones
considered. The impactor perforates the concrete slab at approximately 0.5 ms
after first contact with the concrete slab which matches well the experimental
perforation time measured in [45]. The numerical results are summarized in
table 4.

The error of the energy in time for this problem is shown in figure 24 for two
discretizations and does not exceed 10%. For the finer discretization the error
in the energy is 5%. For the penetration problem (experiment 2:1 to 2:3) that
is discussed next, the error in the energy is also around 5%.

Experiments 2:1 to 2:3 are also discretized with different refinements. We will
show the results for our finest discretization with more than 9.800,000 parti-
cles. The other results are similar. The material parameters for the concrete
slab and the steel projectile are the same as before and can be found above

29



a) 0.1 ms b) 0.9 ms

c) 3.5 ms d) 0.55 ms

Fig. 22. Simulation of experiment 1:1 to 1:3; a), b) and c) for the 630,000 particle
discretization and d) for the 5,200,000 particle discretization

Table 4
Numerical results of the impact experiments on concrete slabs by Unosson and
Nilsson [45]

Number of Target Impact Velocity Penetration depth Residual projectile

particles [m/s] [m] velocity [m/s]

630,000 1:1 to 1:3 616 - 278.0

5,200,000 1:1 to 1:3 616 - 283.0

9,800,000 2:1 to 2:3 617 0.55 -

and in table 2.

Figure 25a shows the crack pattern of the concrete structure at 0.8 ms. Only
every second particle is plotted. It is similar to the crack pattern of the thin
slab but crack branching at the top surface occurs early in the simulation and
the crater dimensions are smaller. Also the round shape of the crater obtained
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a) simulation b) experiment

Fig. 23. Crack pattern of the simulation (630,000 particles) compared to the exper-
imental crack pattern by Unosson and Nilsson [45]; experiment 1:1 to 1:3

Fig. 24. Error in the energy for the perforated Unosson impact problem

for the experiment 1:1 to 1:3 changed.

Figure 25b shows the crack pattern through a cross-section of the structure. It
can be seen that the penetration depth is approximately 0.55 m which matches
well with the experimental results. A high damage zone around the projectile
can be observed. The damage of the slab is larger at the top and of the bottom
of the structure. Spalling at the bottom can be identified. The middle of the
structure is less damaged. Note that a cut in another plane of the structure

31



could look quite different (compare to the crack pattern of the full structure,
figure 25a). We carried out this computation until approximately 0.8 ms. This
is not sufficient to study the fragmentation or spalling of the structure but it
is sufficient to capture the penetration depth. The projectile reaches its final
position at around 0.55 ms.

a) simulation b) cross-section

Fig. 25. Crack pattern of the simulation of experiments 2:1 to 2:3, a) surface view,
b) cross section

5.8 Concrete under contact detonation

These computations are compared with tests of concrete slabs with different
thicknesses and strengths performed by Hermann [23] and Ockert [32]. The
numerical results are compared with the data from two experiments (slab O1
and H1). The schematic of the test setup is illustrated in figure 26a; a typical
discretization of the slab is shown in figure 26b. The yellow cone shows the
explosive and the concrete slab is in blue.

The concrete slab O1 has a thickness of 25cm and an area of 100cm× 100cm.
The compressive strength of the concrete is 48 MPa. The slab H1 has a thick-
ness of 50cm and an area of 100cm × 100cm and the compressive strength is
also 48MPa. The two slabs were loaded with a plane wave generator which
consists of an outer cone of Composition B and an inner cone of TNT. The
cone has a diameter of 10.3cm and its height is 7.5cm for both experiments.
At the middle of the slab H1 directly under the plane wave generator, hydro-
static pressures were measured. The measured pressures are compared with
those obtained by our simulations. Slab O1 was completely perforated in the
experiment while slab H1 was only penetrated because of its larger thickness.

We tried different numbers of particles for the simulations. For slab H1, we
used between 380,000 and 4,000,000 particles. We will show the results for
these two cases. Calculations with intermediate numbers of particles gave
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a) b)

Fig. 26. a) Schematic of the test set up of the explosive experiments, b) Discretiza-
tion of the concrete slab

Table 5
Material parameters of the constitutive model for concrete

E0 = 36, 000MPa e0 = 2.5 · 10−5 ep2 = 0.4

ν = 0.22 ed = 2.2 · 10−4 % = 2.4 · 10−3

c1 = 0.0123424 gd = 1.5 ndam = 70

c2 = 0.025166 rt = 1.2 av = 0.7

c3 = 0.782058 rc = 20 bv = 3.5

c4 = 0.346384 cp = 0.9 ev = 0.02

cc = 0.08 ep1 = 1.1 · 10−3 ev,th = 0.008

Table 6
Material parameters of the explosive

%0 Pmax cD Em0 A B C R1 R2 ω

[g/mm3] [MPa] [m/s] [MPa] [MPa] [MPa] [MPa]

TNT 0.00163 21,000 6930 70,000 37,120 3231 1045 4.15 0.95 0.3

Comp. B 0.001717 29,500 7980 85,000 52,420 7678 1082 4.2 1.1 0.34

similar results. For slab O1, we used approximately 265,000 and 2,120,000
particles. The viscous damage model and the corresponding cohesive model
as explained in section 4.1.2 are used. Loss of material stability is used for
crack initiation. The parameters for the constitutive law are listed in table 5.
The explosive is simulated by a John-Wilkonson-Lee (JWL) equation of state
(EOS):

p = A

(

1 −
ω %

R1 %0

)−R1
%0
%

+ B

(

1 −
ω %

R2 %0

)−R2
%0
%

+
ω %2

%0

Em0 (47)
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The material parameters for the EOS are listed in table 6.

The deformation of the concrete slab O1 and the explosive at the beginning of
the computation are shown in figure 27. Extremely large deformation, espe-
cially for the explosive can be observed. An Eulerian kernel is used to simulate
the explosive.

Fig. 27. Concrete slab O1 with explosive near the beginning of the calculation; in
red: cracked particles, in blue: uncracked particles, in green: explosive

Figure 28 shows a bottom and top point of view at different time steps of the
concrete slab O1 using 265,000 particles. As can be seen, the cracking process is
completed at 0.5ms. Afterwards, the slab only fragments. Multiple cracks and
crack branching can be observed. The latter occurs when the cracks approach
the edge of the slab. It should be mentioned that 265,000 particle is a rather
coarse discretization for a 3D simulation. In the vertical plane, we have only
2, 626 particles while in the horizontal projection we have 10, 201 particles.
In the 2D crack branching problem described in [36], approximately 12,000
particles were necessary to obtain acceptable results in the crack patterns.

The crack pattern and deformation for the 2,120,000 particle simulation is
shown in figure 29 and is very similar to the crack pattern with the coarse
discretization. More cracks can be observed which propagate radially from
the crater. Also more crack branching occurs especially at the bottom of the
structure. The time at which cracking is completed coincides well with the
results from the coarse simulation (0.5 ms). We performed the computation
up to 5 ms. The deformed concrete structure at 2.5 ms is shown in figure 30.
No instabilities are observed. Some cracked particles which formed the crack
at the bottom side peeled away from the structure.
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(a) 0.2 ms (b) 0.2 ms

(c) 0.4 ms (d) 0.4 ms

(e) 1.65 ms
(f) 1.65 ms

Fig. 28. Concrete slab O1 under explosive loading using approximately 265,000
particles, in red: cracked particles, in blue: uncracked particles

The crater dimensions are approximately the same in both simulations. The
perforation is reproduced well in both computations. A picture of the exper-
imentally observed slab O1 is shown in figure 32 and agrees very well with
the crack pattern and the perforation crater of the simulation. Note that only
every second particle is shown in the deformation plots in figure 29 due to
postprocessing problems if all particles are shown.
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(a) 0.3 ms
(b) 0.3 ms

(c) 0.4 ms
(d) 0.4 ms

(e) 0.5 ms
(f) 0.5 ms

Fig. 29. Concrete slab O1 under explosive loading using approximately 2,100,000
particles, in red: cracked particles, in blue: uncracked particles

The time history of the overall dissipated energy is shown in figure 31. In ad-
dition, we have performed a computation with approximately 1,000,000 par-
ticles. The results appear to converge with increasing numbers of particles.

In figure 33, results obtained for a computation using only an Eulerian kernel
and without cracking particles as in standard SPH methods are presented.
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(e) 0.6 ms
(f) 0.6 ms

(a) 2.6 ms
(b) 2.6 ms

Fig. 30. Concrete slab O1 under explosive loading using approximately 2,100,000
particles, in red: cracked particles, in blue: uncracked particles

Numerical instabilities can be observed. These are manifested by excessively
wide crack openings in combination with increasing damage of the entire struc-
ture when the computation proceeded further. The wavelike deformation of
the concrete slab is also rather unrealistic for such a brittle material such as
concrete. Computations with a purely Lagrangian kernel also became unsta-
ble later in the computation because of their inability to deal with the large
deformations. With the present approach, we did not observe any evidence of
numerical instabilities. Cracking stops at approximately 0.5 ms independent
of the discretization and without further (artificial) damage evolution. Note,
that the wide crack openings observed in the experiment, figure 32, occur at
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Fig. 31. Time history in the dissipated energy of the slab O1

Fig. 32. Damage of the slab O1 after the experiment a) top view, b) bottom view

about 1 second and the simulation is stopped after a few miliseconds.

Next, we will focus on slab H1. The deformation of the slab at different time
steps and for different numbers of particles is shown in figure 34. Note that
due to postprocessing problems only every second particle is plotted for the
4,000,000 particle simulation. For a better illustration, the slab is cut in half,
so that the crack pattern and the crater diameter can be seen. After 0.5 ms,
the cracking process is completed and the slab starts to fragment. It can also
be seen that under the crater and at the lower part of the slab, considerable
damage occurs. Also the rest of the experimental crack pattern is reproduced
well by the simulation. Note that the damage at the bottom and under the
crater is internal damage.

The final deformation of slab H1 is shown in figure 35 exemplarily for the
380,000 particle simulation. The crater diameter and the penetration depth is
reproduced well. The results of the computation with the other models with
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Fig. 33. Crack pattern of the concrete slab O1 using an Eulerian kernel

Table 7
Hydrostatic pressures in the concrete at different positions

Distance of the pressure Experiment 380,000 particle 4.000,000 particle

gauges to the loaded surface simulation simulation

2 cm 18,516 MPa 18,670 MPa 18,900 MPa

7 cm 1674 MPa 1890 MPa 1924 MPa

17 cm 74.4 MPa 95.5 MPa 98 MPa

19.7 cm 21.8 MPa 40.5 MPa 43 MPa

different numbers of particles are very similar.

In table 7, the maximum hydrostatic pressure at different positions in the
concrete structure are given in terms of the distance from the midpoint of
the explosive cone at the contact surface. The computed pressures match the
experiment well. The influence of the refinement is not high for the range we
used.
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(a) 0.5 ms
(b) 0.5 ms

(c) 6.5 ms

(d) 6.5 ms

Fig. 34. Concrete slab H1 under explosive loading using at different time steps for:
a) and c) approximately 380,000 particles; b) and d) 4.000.000 particles, in red:
cracked particles, in blue: uncracked particles

6 CONCLUSIONS

A new method for treating crack growth by particle methods in three dimen-
sions has been proposed. In this method, the crack is treated as a collection
of cracked particles. At each cracked particle, a discontinuity along a plane is
introduced normal to the failure direction. The method is applicable to large
deformations. Different cracking criteria have been employed as rate depen-
dent and rate independent constitutive and cohesive models.

The cracking criterion is checked independently at each particle. For a rate
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(a) 380,000 particles
(b) Experiment

Fig. 35. Final crack pattern of concrete slab H1 compared to the experiment

independent material, we used loss of hyperbolicity while loss of material sta-
bility is used for a rate dependent constitutive law. Note, that loss of hy-
perbolicity and loss of material stability is checked by the same procedure.
The method is able to treat the nucleation of cracks and complex patterns
involving crack branching and crossing. This makes the methodology simpler
than methods based on level sets or other explicit crack representations for
complex patterns of fracture. Of course, this also limits the accuracy of the
method somewhat.

An alternative to this method is the use of the visibility criterion with a set
of planes centered at particles as in this method (see Belytschko and Tabbara
[11]). The visibility criterion does not require extra degrees of freedom for
cracked particles, which is an advantage over this method. However, checking
the visibility criterion for a large number of cracked particles would be quite
burdensome, even if the discrete cracks are circular discs in 3D.

In contrast to Rabczuk and Belytschko [36], the present method is based
on a mixed Lagrangian-Eulerian kernel formulation. The Lagrangian kernel
guarantees that material fracture occurs due to physical conditions. The switch
to the Eulerian kernel around the fracture at a later stage guarantees that the
method is stable also for extremly large deformations. We demonstrated this
for two examples, sections 5.8 and 5.7.

We incorporated an h-adaptive approach that is useful for problems with a
moderate number of cracks. A better resolution of the crack paths is achieved
and computational cost is reduced. This is shown for two examples, section
5.4 and 5.6. The crack branching problem in section 5.6 was already solved in
[36] in two dimensions. The corresponding 3D computation agrees very well
with the two dimensional crack pattern. With the adaptive 3D computation,
it is shown that the crack can be resolved much better with better resolved
crack branches. For the non-planar crack propagation problem in section 5.4,
we have shown that only adaptive computations lead to adequate solutions in
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an acceptable amount of time.

We also studied the method for two examples where an analytical solution is
available, a 2D mode I-crack problem and a cube with a centered penny-shaped
crack under uniaxial tension. We obtained global and local convergence where
the relative error and the convergence rate is similar to the one obtained by
the visibility method. It was also shown that a certain refinement around the
crack front is necessary to obtain adequate results in terms of the local relative
error.

The method performed quite well for several static and dynamic problems
for which experimental results are available. Experimental crack patterns and
damage were predicted quite accurately. Results compared well to experimen-
tal data, including highly dynamic events with extremely large deformations
and strain rate effects such as concrete impact and contact detonations. Thus,
in spite of the simplicity of the method, it appears to be extremely effective.
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