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ABSTRACT

Aciphylla species (wild spaniard/speargrass) are an iconic component of the Australasian

high country flora, but their reproductive system is enigmatic. They are insect-pollinated

dioecious mast seeders (synchronous highly variable seed production), which seems

maladaptive. The resource supply to pollinators is highly variable, yet dioecious plants are

dependent on pollinators, and dioecious masting requires male and female plants to flower

synchronously. Floral display in Aciphylla is relatively large, with tall inflorescences

bearing thousands of flowers, suggesting that plants would not have the resources to

produce such large stalks every year. But why do they have such huge inflorescences in the

first place? I tested whether pollinator attraction is providing an economy of scale which

favours intermittent production of very large inflorescences, by manipulating floral display

size during a high-flowering year and measuring insect visitation rates and seed set (female

reproductive success). Using space-for-time substitution and selective removal of male

inflorescences, I also tested whether female seed set was affected by distance to flowering

male plants (i.e. changes in local pollen availability) to see if flowering asynchrony would

reduce pollination success. Bags were used to exclude pollination by insects and test for

wind pollination, and hand pollination was done to test for pollen limitation. Insect surveys

suggest that Aciphylla has a generalist pollination system (to avoid satiating a specialist

pollinator during ‘mast’ years’). Male inflorescences received significantly more visits than

females, and some seeds were set inside bags (although only 20-30%), suggesting wind

pollination may occur at low levels. Seed set rate was higher for taller inflorescences with

greater flowering length in A. aurea but tall inflorescences with excess flowers led to a

decrease in seed set rates in A. scott-thomsonii. Hand pollination significantly increased

seed set rates although these effects were not as large as expected (e.g. 10% increases from

natural to hand-pollinated inflorescences were typical). There was no evidence for resource

limitation in any species. Female plants in dense flowering populations had higher seed set

rates, and individual floral display size in females was particularly important when females

were ‘isolated’ from males. Insect visitation rates were generally higher on inflorescences

with a larger floral display, suggesting that display size is important for pollinator

attraction. Overall, these results suggest that the pollinator-attraction benefits of such a

large floral display (at both the plant and population level) are possibly providing an

economy of scale, although the relative effects are small.
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“Few plants are more spectacular than a large
speargrass in flower.

A tussocky hillside where hundreds stand like
great golden candles is a sight not easily

forgotten”.

Moore and Irwin, 1978
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Chapter 1 - INTRODUCTION

1.1 Introduction to the genus Aciphylla

Aciphylla is a long-lived herbaceous genus in the carrot family Apiaceae, (subfamily

Apioideae). There are over 40 species of Aciphylla endemic to New Zealand (Allan, 1982)

and three endemic to Australia (Pickering & Hill, 2002). Their distribution spans from

coastal to mostly montane and sub-alpine. Aciphylla is one of the more speciose genera of

New Zealand flowering plants (Dawson & Le Comte, 1978). They are an iconic component

of the New Zealand high country grassland/shrubland partly because when in flower, the

inflorescences stand out like “great golden candles” in the tussocky hillsides (Moore &

Irwin, 1978).

1.1.2 Aciphylla – a unique genus in the family Apiaceae

Wardle, (2002) describes Aciphylla as being “the most bizarre plants of mountain

grasslands and herbfields”. Not only is Aciphylla a unique component of the New Zealand

alpine flora, but they are also unusual among the New Zealand (and global) Apiaceae

family. This is because many species have rigid leaf- and bract-segments tipped by needle-

sharp spines, and an unusually large number of reduced compound umbels aggregated into

narrow elongate inflorescences (Dawson, 1971). Also atypical of the family is that they are

dioecious (separate sexes on different plants) (Webb, 1981) and mast-seeding (highly

variable and synchronous reproduction) (Mark, 1970), however, resembling most other

Apiaceae genera, they are pollinated by insects.

Aciphylla has rosettes of rigid spine-tipped leaves and hence are commonly known as ‘wild

spaniard’ or ‘speargrass’ (Mitchell et al., 1998), or in maori, ‘taramea’, literally translated

to mean “sharp leaves”.  Because of this, Leonard Cockayne in 1910, dubbed one of the

larger species Aciphylla colensoi,  “a most formidable plant with bayonet-like leaves a yard

long” and quoted “early explorers understandably regarded these as enemies, a solid

phalanx of speargrass constituting well-armed opponents, impassable for man or beast”

(Moore & Irwin, 1978). All species have at least one rosette of spiny leaves radiating from

a crown or rootstock with a deeply descending taproot. Leaves are usually all basal, mostly
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compound, and with close-set imbricated sheaths (Allan, 1982), with the lower part of the

fleshy sheath often buried beneath the soil surface (possibly a way for this nutrient-rich

resource to escape this being eaten by moas, kea, takahe (Atkinson & Greenwood, 1989)

and kakapo (Powlesland et al., 2006)). The genus is exceptional because 16 of the species

have leaves modified to form groups of rigid needle-sharp spines 0.4-1.5 m in length. The

spines are dense and evenly spaced to form a hemispherical tussock-like form (Fig. 1.1).

The leaves are tough and fibrous and also have spiny stipules which together form a collar

of spines around the base of the leaf rosette (Atkinson & Greenwood, 1989). They have one

or more inflorescences of compound, bracted umbels. Bracts have a long sheath with

pinnae and are also extremely spiny. Anyone who has ever been tramping or hunting in the

high country will know all about the injurious consequences that follow walking into an

Aciphylla plant (see below).

Fig. 1.1 A rosette of Aciphylla aurea (Golden spaniard) showing compound

leaves with spiny tips and a young, developing inflorescence with sharp bracts

in the centre of the rosette.
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1.2 Historical background

Aciphylla is common in open mountain grasslands, and particularly following fire they can

be abundant (Mark, 1970). Pollen and charcoal analysis from south-central South Island

Holocene age deposits indicate that Aciphylla repeatedly increased its distribution and

abundance in southern dryland areas such as the Mackenzie Basin throughout the

Holocene. The genus is an important recolonising species in response to drought and local

fires which naturally occurred during this time (McGlone & Moar, 1998). Around the

period from 800 years BP to 1860 AD, burnt-out Nothofagus forests and Halocarpus scrub

were replaced by Aciphylla-rich tussock grassland, however, from 1860 onwards, Aciphylla

began disappearing, while grasses and Rumex acetosella continually increased with

European pastoralism (McGlone & Moar, 1998). Additionally, European settlers burnt

large areas of Aciphylla to travel through some mountain passes (Moore & Irwin, 1978).

The current distribution of Aciphylla populations in the dryland valleys such as the

Mackenzie Basin is likely to be influenced by a combination of fires and droughts of the

late Holocene, farming and both pastoral grazing and grazing by introduced mammalian

pests.

1.3 Taxonomy

There have been a number of attempts at dividing the genus into groups based on various

aspects of their morphology, size, and growth habit, amongst other features (e.g. Oliver,

1956; Dawson & Le Comte, 1978). Most recently, D. Glenny (pers. comm. 2005) has been

undertaking an extensive, detailed taxonomic revision of the entire genus and has come up

with at least ten groups based on various morphological, physiological and evolutionary

criteria. Although most authors quote the genus Aciphylla as having over 40 species, D.

Glenny’s revision suggests that there are more likely to be approximately 27 species with a

number of varieties. Most groups consist of the smaller and higher-altitude species

(previously Paniculatae – (Oliver, 1956), referring to inflorescences of “compound umbels

on approximate spreading peduncles at the stem apex”). The remaining few groups

constitute the larger and more evolutionarily recent varieties (previously Elongatae –

inflorescences of compound, spiny-bracted umbels arranged along an elongate extension of

the central stem (Oliver, 1956)). The research in this thesis focuses on three of the larger
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varieties of Aciphylla (within Elongatae), with elongated inflorescences. Hereafter, when

commenting on features and characteristics generally portrayed by the larger, lower-

altitudinal (or montane) species, for simplicity, the term Aciphylla will be used (although it

is uncertain how specific features mentioned apply to the genus as a whole).

1.4 Why study the reproductive ecology of Aciphylla?

Aciphylla has a unique reproductive system in that they are dioecious, insect-pollinated and

mast seeding. This is not a set of components that are usually found associated together

within one particular breeding system (Proctor et al., 1996). As well as this, they are

sexually dimorphic and have been reported to have a male-biased sex ratio (Webb & Lloyd,

1980). Despite having a fascinating ecological background, little is known about

Aciphylla’s breeding system, hence the need for further investigation into their interesting

and bizarre reproductive ecology. The sections below break down each of the

aforementioned components of the breeding system and introduce some of the details about

their biological significance. The final section will thread these individual components

together in relation to Aciphylla in order to explain why this reproductive system is

interesting and unique.

1.5 Dioecy and sexual dimorphism

Dioecy, in which separate individuals perform male and female functions, is a relatively

rare breeding system among the angiosperms (Vamosi & Vamosi, 2004). Dioecy occurs in

about 10% of the world’s flora and is especially common in isolated island floras of New

Zealand and Hawaii (Webb & Kelly, 1993) and amongst tree species in the tropics (Bawa,

1974). The causes of this high frequency of dioecism in the flora of New Zealand (and

islands in general) are not clear. Webb & Kelly, (1993) suggested that the unspecialized

pollinating fauna may have encouraged unisexuality as a means of preventing selfing. (See

Sakai & Weller, (1999) for an in-depth review on the evolution and maintenance of

dioecy). Most dioecious species are insect-pollinated and have on average, smaller flowers

than hermaphrodites that are often green or white and inconspicuous with unspecialized

pollinators (Proctor et al., 1996). Aciphylla fits this description (Pickering, 2000).
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Many dioecious species, particularly those in largely hermaphrodite families, have vestigial

organs of the others sex present in the flower and the sterile anthers in the females may be

part of the attractant in female flowers; some provide sterile pollen, although normally

nectar is the attractant as most female flowers do not produce pollen (Proctor et al., 1996).

It should be noted that ‘leakage’ in sexuality (“leaky dioecism”) has been reported for some

Aciphylla species. In these cases, female inflorescences may have a small number of

terminal male umbels (D. Glenny, pers. comm. 2005) although it is uncertain as to whether

these are functional and whether this can lead to geitonogamous selfing (Newstrom &

Robertson, 2005). It must be pointed out that this variation in sexuality was not commonly

encountered throughout this research.

Male flowers of dioecious species are often larger and showier than female flowers,

produced in greater quantity, and in larger inflorescences (Bawa, 1980), and therefore

exhibit sexual dimorphism in sex characters (Webb & Lloyd, 1980; Delph, 1999). This

often means that male flowers are more likely to attract the attention of insect pollinators

from a distance so that insects may visit them before the females (Proctor et al., 1996)

(essential for successful pollination). Some Aciphylla species have also been shown to

exhibit these traits (e.g. in Australia: Aciphylla glacialis (Pickering, 2001), and in New

Zealand: A. aurea, A. monroi, A. poppelwellii, and A. scott-thomsonii (Webb & Lloyd,

1980)). While dioecy almost completely eliminates selfing in plants, it also increases the

plant’s reliance on animal (or wind) movements of pollen between individuals of both

sexes for successful reproduction (Bawa, 1980).

The New Zealand flora generally possesses a high number of sexually dimorphic taxa

compared with global levels (Webb & Kelly, 1993). There have also been numerous

reports of dimorphism in terms of male-biased sex ratios in New Zealand alpine plant

species, particularly for Aciphylla (e.g. Lloyd & Webb, 1977; Webb & Lloyd, 1980). This

departure from equality may arise from gender differences in life histories such as costs of

reproduction, and male versus female function (i.e. pollen and ovule production

respectively) (Delph, 1999).
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1.6 Insect pollination

Pollination is the transfer of pollen from an anther to a stigma. The movement of pollen

between plants by insects (entomophily) is by far the most common pollination system in

the world (Proctor et al., 1996). In many hermaphrodite plants (which make up 80% of all

flowering plant species) this can happen within the same flower or on the same plant, but in

dioecious species, it is fundamental for pollen to be moved between plants, from male to

female. The plant-insect pollination system is a mutualism (DeAngelis & Holland, 2006),

where the insects rely on the flowers for food (pollen and/or nectar), while the plant relies

on the insect to move its pollen between plants in order for successful outcrossing to occur

(Bronstein, 2004). (Note: an insect may be in a mutualistic relationship with a plant in

some ecological circumstances, while it could be parasitic in others, (see Thomson, 2003

and Holland et al., 2004). So, plants provide floral rewards that entice insects to visit their

flowers in order for them to carry pollen away or inwards for successful fertilisation. If the

plant has a specialist pollinator, it needs to provide a reliable food resource through time in

order for the plant-pollinator mutualism to be maintained, and the plant can be susceptible

to pollen limitation if the pollinator becomes rare in the environment (Ladley et al., 1997).

A generalist pollinator system (see Newstrom & Robertson, 2005), however, may allow the

plant to get away with providing more variable rewards in space and time, as the insect

pollinators are not necessarily dependent on it as a food source, although there is the

additional problem of plants competing with each other for generalist pollinators, which

can lead to pollen limitation in some cases (Robertson, 1895; Waser, 1978; Campbell,

1985; Feinsinger & Tiebout (III), 1991).

1.6.1 Insect pollination and the importance of floral display

Visual and olfactory cues are used by plants to signal and attract insect pollinators (Proctor

et al., 1996). For plants with individual flowers which are grouped together in

inflorescences such as Aciphylla, it is the inflorescence rather than the individual flower

that is the effective functional unit for pollinators, enhancing the floral display to attract

pollinators (Proctor et al., 1996). A large floral display attracts insects from a distance,

particularly unspecialised insects which are characteristic as pollinators of dioecious
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species. The importance of the plant’s floral display for pollinator attraction has been

reported numerous times in the literature (e.g. Willson & Price, 1977; Robertson, 1992;

Johnson et al., 1995; Andersson, 1996; Armstrong, 1997; Kawarasaki & Hori, 1999; Lortie

& Aarsen, 1999; Pickering, 2000; Irwin et al., 2004; Mitchell et al., 2004; Kudo & Harder,

2005; Orellana et al., 2005; Brunet & Sweet, 2006; Buide, 2006). Floral display not only

attracts pollinators at the plant level, but has also been shown to attract pollinators at the

population-level (e.g. Augspurger, 1980; Kato & Hiura, 1990; Jennerston, 1993; Bosch &

Waser, 1999; Lofgren, 2002; Forsyth, 2003; Kirchner et al., 2005). This is commonly

achieved through reproductive synchrony (Crone & Lesica, 2004), and the resulting

economies of scale (Norton & Kelly, 1988; Crone & Lesica, 2004).

1.7 Mast seeding

An important aspect of the reproductive ecology of Aciphylla is that they are mast-seeding,

(also referred to as mast flowering, supra-annual flowering, mass-fruiting or masting

(Kelly, 1994)). Masting has been generally defined as the synchronous highly variable

seed/flower production among years by a population of plants (Kelly, 1994). Masting is a

population phenomenon that results when individual plants within a population synchronise

their reproductive activity (Haase, 1986) by concentrating reproductive effort into a large

floral display during “mast” years at the expense of little or no flowering during “non-

mast” years (Crone et al., 2005).

This masting phenomenon has been witnessed for centuries because of phenomena such as

the mass over-production of acorns some years - a massive food crop affecting mice, birds

and other wildlife, and the virtual absence of these crops in other years, effectively starving

these animals (Koenig & Knops, 2005). These events were not hard for people to miss and

were especially important for farmers who fed acorns to their livestock. Records for this

phenomenon go as far back as the mid-17th century (Koenig & Knops, 2005). The term

“mast” comes from the German word, mǽst, for nuts/acorns of forest trees that have

accumulated on the ground, especially for those used as food for fattening swine (Janzen,

1971; Kelly & Sork, 2002). This German word for “fat” was then incorporated into the Old

English language (Bodsworth, 2003) and took on a similar meaning. It was Janzen, (1971,

1976) however, who was among the first to draw detailed scientific attention to mast
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seeding (but see also Salisbury, 1942 and Silvertown, 1980), and defined it as the

“synchronous production of seed at long intervals by a population of plants”. He suggested

masting served to reduce levels of loss to seed predators (see section 1.8.3.1). His

definition suggests that there are just two types of years: seeding (mast) years and non-

seeding years - a concept referred to as ‘strict masting’ (Kelly, 1994). However, most

polycarpic plants do not display this bimodal pattern of strict masting, instead falling along

a continuum of variability levels (Herrera, 1998a; Kerkoff & Ballantyne (IV), 2003) from

‘strict’ to ‘normal’ masting (see Kelly, 1994). Hence, in this study, mast-seeding will be

considered in the light of Kelly’s (1994) more general definition: “the synchronous highly

variable seed production among years by a population of plants” because technically most

plant species are not known to be strictly masting (Herrera, 1998a).

Masting occurs most frequently in long-lived plants which are less affected by the costs of

not reproducing in some years (Kelly, 1994). It is a worldwide phenomenon and is found in

plants from many different taxonomic groups and from most parts of the world (Isagi et al.,

1997). Mast-seeding seems to be common in temperate forest trees (Silvertown, 1980) and

herbs (Mark, 1970; Campbell, 1981; Brockie, 1986; Webb & Kelly, 1993; Kelly et al.,

2001) and present in some tropical forest trees (Janzen, 1971). It also appears to be

especially prevalent in the New Zealand flora (Webb & Kelly, 1993; Kelly, 1994). The

ultimate reasons for the high masting frequency in New Zealand are mysterious, but

Schauber et al. (2002) note that “New Zealand’s long history before humans and

mammalian herbivores arrived may have enabled even herbs and grasses to evolve long life

spans, which are necessary for masting to be a viable strategy”. Masting is a marked feature

in several New Zealand alpine plant genera (e.g. Aciphylla, Celmisia, and Chionochloa)

(Mark, 1970; Mark & Adams, 1973; Campbell, 1981) and is more pronounced at higher

altitudes (Webb & Kelly, 1993). The snow tussock Chionochloa (a co-inhabitant with

Aciphylla in New Zealand alpine grasslands) is one of the best-studied examples of a mast-

seeding species, gaining large selective benefits from masting through predator satiation

(see Kelly & Sullivan, 1997; Kelly et al., 2000; Rees et al., 2002).

Masting in itself is paradoxical phenomenon (Kelly & Sullivan, 1997; Koenig et al., 2003)

and the evolution of masting is puzzling because it imposes a number of clear selective

disadvantages (Kelly et al., 2000) including lost opportunities for reproduction (Waller,

1979) and more severe density-dependent mortality among seedlings produced in mast
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years (Hett, 1971; Augspurger, 1981; Kelly et al., 2001). Masting affects the timing of

flowering and fruiting as well as critical aspects of the plant’s life cycle such as pollination

and dispersal (Tisch, 1996). Therefore, masting has important consequences for the

community and ecosystem, because animals that rely on pulsed resources (such that

masting plants provide) for a food source such as pollen, nectar or seeds, will face an

unreliable food supply (Curran & Leighton, 2000; Ostfeld & Keesing, 2000; Schauber et

al., 2002). Thus it is important to understand plant reproductive patterns in order to

understand the dynamics of a whole system.

1.8 Why do some plant species mast when such high costs are involved?

1.8.1 Proximate versus ultimate reasons for masting

It is important to differentiate between proximate and ultimate causes of masting.

Proximate causes refer to those factors governing the synchrony in flowering/fruiting

between individual plants, and the magnitude and timing of masting events (Sork &

Bramble, 1993; Isagi et al., 1997). It essentially considers the question: how do plants

mast? Factors such as weather and resources for example, are likely to be proximate causes

for masting (Kelly & Sork, 2002). Proximate causes therefore do not drive the selection for

masting, but may provide the initial variation on which selection can act (Waller, 1993).

Proximate reasons for masting, such as spatial synchrony and cues for flowering are not the

focus of this study, but should be an important consideration for future research in this area

because of the likely effects of global warming on flowering variability and its inter-trophic

consequences (see McKone et al., 1998). Ultimate explanations for masting deal with the

question: why mast? There are two general categories that attempt to answer this question.

The first involves a non-evolved response, while the second involves evolutionary

hypotheses to explain this phenomenon.

1.8.2 Non-evolved hypothesis to explain mast-seeding

One of the earliest explanations for mast-seeding was that the plants had no choice i.e. that

masting was a non-evolved response to a naturally variable environment (Busgen &
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Munch, 1929). This is now known as the resource matching hypothesis of mast seeding

(Kelly, 1994; Kelly & Sork, 2002), which implies that mast years are simply good years for

all aspects of the plant, and hence growth and reproduction are expected to be positively

correlated with each other (Kelly & Sork, 2002). This hypothesis has largely been ruled out

by the fact that variability in reproductive output is considerably greater than the variability

in environmental factors in many mast- seeding systems (Koenig & Knops, 2000) and by

the switching of resources from growth to reproduction during mast years, (Norton &

Kelly, 1988; Kelly & Sork, 2002; Monks & Kelly, 2006). Also at many sites, masting

species grow side-by-side with species which have relatively constant seed output from

year to year (Campbell, 1981; Webb & Kelly, 1993), indicating that the environment alone

is not responsible for masting behaviour. Therefore, because masting could not merely be a

side effect of resources that vary from year to year, mast seeding appears to be

predominantly an evolved strategy in which there are some overall lifetime reproductive

benefits to the plant of focusing reproduction in some years at the expense of not

reproducing in others (Norton & Kelly, 1988; Koenig & Knops, 2000; Kelly & Sork,

2002), but see Kerkoff (2004).

1.8.3 Evolutionary hypotheses to explain mast-seeding

The alternative ultimate explanations for masting consider the evolutionary selective

pressures that may have led a particular plant species to exhibit masting behaviour. There

are a number of hypotheses that have been put forward as selective forces for plants

producing variable, synchronous seed crops. For all the hypotheses, the common element is

that the selective advantage occurs through an economy of scale (Janzen, 1971; Norton &

Kelly, 1988) whereby large reproductive efforts are more efficient than smaller ones, so

plants reproducing in step with mast years will have higher fitness (Kelly & Sork, 2002).

The benefits of these large synchronous reproductive events accrue by overcoming some

environmental constraint such as pollen limitation or seed predation (Kerkoff, 2004).

Among the many hypotheses for masting, there are two which have by far received the

most support: the predator satiation and the wind-pollination hypotheses. Below I briefly

review six of the most common evolutionary-based hypotheses which have been suggested

as favouring mast seeding, but it is the final two that are of most significance to this study.
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1.8.3.1 Predator satiation

The predator satiation hypothesis states that large, intermittent seed crops reduce losses to

seed predators (Janzen, 1971, 1978; Silvertown, 1980). Seed consumers are effectively

starved during intermast intervals and swamped during mast events, driving large

fluctuations in consumer abundance and increasing the potential fitness benefit of masting

(Curran & Leighton, 2000; Schauber et al., 2002). Studies show that predator satiation has

been found to occur in a range of plants such as Chionochloa (snow tussocks), (Kelly &

Sullivan, 1997; McKone et al., 1998; Kelly et al., 2000; Rees et al., 2002), oaks, and

beeches (Janzen, 1971) by a variety of animals from insects to mammals (Kelly & Sork,

2002). These, among many other examples, show evidence for a lower seed predation rate

in high-seed years.

1.8.3.2 Wind-pollination

The wind-pollination hypothesis states that masting should be strongly selected in species

that can achieve greater pollination efficiency through synchronised above-average

flowering effort (Nilsson & Wastljung, 1987; Smith et al., 1990; Kelly & Sork, 2002).

Plants that synchronously produce masses of flowers and pollen once every few years, are

likely to experience higher pollination rates and fruit set than plants that produce average

amounts of flowers and pollen each year (Koenig & Knops, 2005). Masting plants showing

improved reproductive success from wind-pollination are many, and include Lodgepole

pine (Pinus contorta) (Smith et al., 1990), rimu (Dacrydium cupressinum) (Norton &

Kelly, 1988), and the beeches (Fagus (Nilsson & Wastljung, 1987) and Nothofagus (Kelly

et al., 2001)). Theoretical models by Satake & Iwasa (2002) suggest that pollen limitation

could be a crucial driving force behind highly variable and synchronous seed production

that is so characteristic of wind-pollinated masting species (but this remains to be

empirically supported (Sork et al., 2002; Koenig & Ashley, 2003)).
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1.8.3.3 Animal fruit dispersal and large seed size

The following two hypotheses involve selection at the fruit level, where firstly, large fruit

crops could result in wider dispersal by generalist animal dispersers or scatterhoarders

(Christensen & Whitam, 1991) and secondly, larger fruit size could increase variability in

seed number between years (although this does not require synchrony among individuals)

(Kelly, 1994). So far there exists little or no empirical or theoretical support for these

hypotheses and they will not be examined in this study.

1.8.3.4 Accessory costs of reproduction

This hypothesis proposes that small reproductive efforts are energetically inefficient

because of high accessory costs (Kelly, 1994). It is based upon the idea that relatively

indirect costs associated with reproduction decrease (per seed produced) with an increasing

size of the reproductive effort, thus it is energetically more efficient to reproduce less often

but at a higher level (at the individual plant level). High accessory costs could lead to

individual plants producing occasional large reproductive efforts being favoured. This

hypothesis does not require synchrony at the population level, thus accessory costs may

help select for masting in association with more direct selection forces, but cannot explain

masting at the population level (Kelly, 1994).

1.8.3.5 The animal pollination hypothesis

The animal pollination hypothesis suggests that when the majority of individual plants

flower synchronously, they are likely to attract more pollinators than they could

individually and in this way encourage pollination. For wind-pollinated species, it has been

frequently shown that percent fruit set is higher when flowering density is higher (see Kelly

& Sork, 2002). Researchers thus suggest that mast flowering is more likely to evolve in

wind-pollinated species because increased pollen availability enhances pollination success,

while in animal-pollinated species, increasing flowering may saturate the pollinators

(Norton & Kelly, 1988; Smith et al., 1990). This was supported by Herrera (1998) and

Kelly & Sork (2002) who surveyed hundreds of masting datasets and showed that wind-
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pollinated species were significantly more variable in seed output (higher mean CV’s (co-

efficient of variation)) than animal-pollinated species. Therefore, to date there is almost no

convincing evidence of pollination economies of scale for masting, animal-pollinated

species because the general school of thought is that animals are more likely to be satiated

by large crops (Koenig & Knops, 2005) providing diseconomies of scales (Herrera et al.,

1998b; Kelly & Sork, 2002).

Despite this, if animals are attracted by a large floral display, masting could improve

pollination (Norton & Kelly, 1988; Kelly, 1994). However, if the system involved a

specialised plant-insect pollination mutualism, how would the sole pollinator species

overcome the variability in flowering between years? One would expect that a specialised

plant-pollinator system would be highly co-evolved, as the pollinator would require timing

its reproductive cycle with that of the plant (like specialised seed/flower predators of

Chionochloa spp. which undergo prolonged diapause, see McKone (2001)). A specialist

pollinator is likely to be more affected by variable reproduction of its food source in terms

of satiation during high flowering years and starvation during others. Another possibility

however, is if the plant has a specialist pollinator with a very short generation time that is

able to breed up during a mast event, as seems to happen with thrips-pollinated

Dipterocarps in Southeast Asia (Ashton et al., 1988). On the other hand, if the plant is

pollinated by a suite of generalist animals (common for insect-pollinated plants (Proctor et

al., 1996)), masting and animal pollination would be more likely to work, particularly if

pollinators are attracted to large floral displays. For insect pollination economies of scale to

occur would require a generalist fauna that favour large floral displays and would not

become satiated.

1.9 The bizarre reproductive ecology of Aciphylla

Little is known about the reproductive ecology of Aciphylla, although they are a ubiquitous

and well-known component of the high country (high alpine to lower montane) grassland

flora. What is known, is that they exhibit mast seeding; are insect-pollinated and dioecious

and together this presents a paradoxical situation. Firstly, insect-pollinated plants should

not provide an inconstant resource supply as this could lead to either a break-down of the

mutualism between the pollinator and the plant, caused by pollinator satiation during
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“mast” events and subsequent starvation during years of little or no flowering. Dioecy

requires synchrony because male and female plants to flower at the same time in order to

achieve successful pollination. This synchrony could either be achieved through constant

average reproduction each year, (which is typical of most insect-pollinated dioecious

systems), or by occasional synchronous large floral displays (i.e. masting) if there exist

other selective forces encouraging the plant to have significantly large floral display size,

such that it can’t be produced every year. The latter is seen in Aciphylla, and it is

hypothesised that in order to avoid pollinator satiation, Aciphylla must overcome this

paradox by having a generalist pollinator fauna, and that pollinator economies of scale

could be one of the important selective forces behind the large floral display size in the first

place.

1.10 Research Aims

This study aims to test the hypothesis that pollinator economies of scale are an important

selective force for the large population-level flowering effort in Aciphylla and that the high

costs of reproduction that come with floral investment explain the reasons for masting in

this genus. This can be tested at two scales: at the individual plant level it is hypothesised

that a larger floral display size will have increased reproductive success due to enhanced

attractiveness to insect pollinators; while at the population level, masting synchrony leads

to more inflorescences (increased population-level reproductive effort), and improved

pollination success due to pollinator economies of scale. Specifically, the outline of this

thesis is as follows:

1) Chapter 2 aims to test the hypothesis that pollinator economies of scale are an

important selective force for the large floral display size in Aciphylla. This chapter

will be separated into two sections: Part (A) tests whether variation in plant-level

floral display size affects seed set rate in female Aciphylla inflorescences using both

natural variation in floral display size and manipulative space-for-time substitution

experiments, and simultaneously tests for pollen and resource limitation. Part (B)

investigates whether variation in population-level flowering effort affects female

seed set, again employing both natural and manipulative experimental approaches.
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2) Chapter 3 applies the hypotheses outlined above to test whether variation in (A)

plant-level floral display size and (B) population-level flowering effort affect

pollinator visitation rates to female Aciphylla inflorescences, and whether this

relates to seed set rates (Chapter 2). Furthermore, it explores whether pollinators are

more attracted to inflorescences of male or females. Additionally, I provide the first

comprehensive description of the insects associated with flowers of Aciphylla

species.

3) Chapter 4 investigates aspects of sexual dimorphism in the dioecious Aciphylla. I

test whether there is evidence for sexual dimorphism in terms of a male-biased sex

ratio, among other morphological and phenological characteristics in flowering

Aciphylla to determine whether these differences relate to sex-specific pollination

success (Chapter 3).

4) Chapter 5 discusses the implications associated with each of the above chapters and

how they relate, in the context of Aciphylla and in the wider ecological framework.
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Chapter 2- Does floral display size affect reproductive success in Aciphylla?

2.1 INTRODUCTION

As outlined in Chapter 1, large-leaved, montane Aciphylla species including A. aurea and

A. scott-thomsonii, among others, are long-lived, dioecious (male and females are

individual plants), mast-seeding (Mark, 1970; Campbell, 1981) herbaceous plants, that

have tall showy inflorescences with thousands of flowers. Aciphylla are thought to be

primarily pollinated by insects and wind (Dawson, 1971; Webb, 1986) although the relative

importance of these agents as effective pollen vectors has rarely been tested experimentally

in Aciphylla (but see Brookes & Jesson, 2006). In many genera worldwide, numerous

studies link pollination success to floral display size at both the individual plant- (e.g.

Vaughton & Ramsey, 1998; Orellana et al., 2005; Buide, 2006) and population- (Kato &

Hiura, 1990; Kirchner et al., 2005; Kindlmann & Jersakova, 2006) levels, in both wind-

(e.g. Smith et al., 1990; Kelly & Sullivan, 1997; Kelly et al., 2001) and insect- (e.g. Davila

& Wardle, 2002; Grindeland et al., 2005) pollinated systems. In many flowering plants,

reproductive success depends on the ability to attract animal pollinators (Vaughton &

Ramsey, 1998) and this is frequently achieved through having a large floral display (Kudo

& Harder, 2005). In Aciphylla, biological and/or environmental pressures over time appear

to have selected for large floral display size and synchronous variable reproduction i.e.

masting, (Kelly, 1994). This suggests that the lifetime benefits gained by having a large

floral display and reproducing only some years must outweigh the costs of forfeiting

reproduction during others (Janzen, 1971; Silvertown, 1980) and also must be more

effective than having a constant, but reduced, floral display size each year (Norton & Kelly,

1988; Koenig et al., 2003).

2.1.1 The importance of floral display size at multiple levels in Aciphylla

Floral display in large-leaved, montane Aciphylla species is interesting at multiple levels,

including the inflorescence, plant and population scales. Firstly, inflorescences are

particularly tall with thousands of flowers (e.g. up to 15,300 flowers for a female

inflorescence, and averaging 9,746 flowers for an average size female inflorescence of 1.9

metres for A. scott-thomsonii, see Appendix 1). Within an inflorescence, there is natural
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variation in the proportion of the inflorescence with flowers present relative to the entire

height of the stalk (Fig. 2.1). There is also variation in inflorescence height with a

continuum of short to tall inflorescences present within a population. On the individual

inflorescence, there are also other structures that may be important for floral display such

as the spiky floral bracts. The role that bracts play during flowering is not certain, but there

is some possibility that they could be influential in pollinator attraction and/or seed

production in some way. Secondly, at the plant level, inflorescence number varies between

plants. Plants have one to many rosettes and each rosette can make a single inflorescence.

One to three inflorescences is common for a female plant during a flowering year, and 1-4

for males, but in some cases there can be up to 10 inflorescences per plant. Thus variation

in plant-level floral display also exists within a population.

Figure 2.1 Aciphylla glaucescens (Cow Creek, Waihopai Valley, Marlborough) provides a clear example of

the variation in floral display size within an inflorescence during a high-flowering year. All inflorescences

here are relatively tall, but on some stalks, flowers are not presented until quite a distance up the rachis (e.g.

front-right), while on others, flowers begin just above the leaves (e.g. centre-left). Photo courtesy of Barry

Hope.
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Finally, floral display varies prominently from year-to-year in large montane Aciphylla

species. In plants generally, not all species are highly variable in seed production (i.e.

‘mast’ years with most individuals flowering, interspersed with ‘non-mast’ years with little

or no flowering), but instead plant species tend to fall along a continuum of variability

levels (Webb & Kelly, 1993; Kelly, 1994; Herrera, 1998a) from ‘strict masting’ to ‘normal

masting’, i.e. highly variable to nearly constant (Kelly, 1994). This variability in the timing

and effort of flowering differs between populations of Aciphylla depending on species,

altitude, latitude and resource availability (Pickering & Hill, 2002). Therefore, floral

display in terms of population effort also varies between years and different populations at

different sites. Floral display can be examined at these multiple levels simultaneously to

assess the relative importance that the variation in floral display at each level has on

reproductive success in Aciphylla. First however, we must consider the evolutionary and

ecological significance of floral display size and its importance in reproductive success in

plants, particularly in mast-seeding, dioecious, entomophilous breeding systems.

2.1.2 Measuring floral display at the inflorescence and plant level

Animal-pollinated plants are expected to evolve strategies that maximise the efficiency of

pollen transfer to and from the plant. Plants have evolved a number of mechanisms that

increase the probability that visitors will move pollen among plants to ensure outcrossing

(Marr et al., 2000). The evolution of dioecy has probably been the most successful of these

(Lloyd, 1975; Charlesworth & Charlesworth, 1978; Sakai & Weller, 1999), however, this

still requires the plant to employ mechanisms for successful pollinator attraction.  One such

strategy may be to develop large showy floral displays that attract more pollinators (Proctor

et al., 1996; Grindeland et al., 2005). There is a wealth of literature providing evidence that

floral display size plays an important role in the reproductive success of many plant species

worldwide, (e.g. Andersson, 1996; Le Corff et al., 1998; Kawarasaki & Hori, 1999). In

particular, many studies have reported a positive relationship between visitation rates of

pollinators and floral display size at the level of the individual plant (e.g. Kato & Hiura,

1990; Grindeland et al., 2005; Kudo & Harder, 2005; Brunet & Sweet, 2006). There is also

evidence for this among species in the Apiaceae family (e.g. Pickering, 2001; Davila &

Wardle, 2002).
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The timing of pollen availability (Harder & Wilson, 1994) and nectar production (Marden,

1984) as well as the amount of reward offered by a plant can determine both the rate of

visitation and the subsequent behaviour of flower visitors and therefore have consequences

for pollen transfer (Robertson et al., 1999).

Floral display can be measured in a number of ways, including flower number (Robertson

et al., 1999), flower or inflorescence display size (Abe, 2000), or showiness (Ashman et al.,

2004). The notion that large floral displays exist to attract pollinators is referred to as the

pollinator attraction hypothesis (Sutherland, 1987). This is analogous to the animal-

pollinator hypothesis of masting (Kelly, 1994) (see Chapter 1). Pollinator attraction is

critical to the reproductive success of the majority of flowering plants (Kearns et al., 1998)

however, the payment for attracting pollinators can be costly, both in the amount of

resource invested (Pyke, 1991) and by attracting nectar robbers (Irwin et al., 2004).

If a larger floral display can attract more visitors, does this actually lead to an increase in

seed set? Some researchers hypothesise that seed-set on female plants is a direct indicator

of insect attraction (Ortiz-Perez et al., 2004). In reality however, factors such as pollinator

efficiency, pollen carryover and resource availability must also be taken into account.

While larger floral displays may attract more insect pollinators, in self-compatible

hermaphrodite or monoecious plants, a large proportion of visits made by pollinators is

likely to occur between flowers on the same plant, resulting in geitonogamous self-

pollinations rather than cross-pollinations (Robertson, 1992; Mitchell et al., 2004).

Therefore, in bisexual plants, the effect of increased geitonogamy with increased floral

display may be considered an unavoidable detrimental effect of large displays (Hessing,

1988). Given that Aciphylla is completely dioecious (Webb, 1979) the detrimental effects

of geitonogamy from a larger floral display will not be seen. Nevertheless, dioecious

species with showy floral displays do not necessarily escape from pressures that may be

detrimental to their overall reproductive success. Dioecious species often have sexually

dimorphic floral displays, with a common pattern of males being larger and/or showier than

females (Delph, 1996; Eckhart, 1999) (see Chapter 4). If insects are more attracted to

showier floral displays and better floral rewards, and visitation rates are disproportionally

higher on males than females as many studies have shown (e.g. Le Corff et al., 1998;

Vaughton & Ramsey, 1998; Pickering, 2000; Voight et al., 2005), this reduces the chance

of females being pollinated (Bawa, 1980). This could be detrimental for female seed set
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particularly when pollinator abundance is low (Vamosi & Otto, 2002) due to increased

competition for pollinators. In Aciphylla, male inflorescences are generally showier than

females (Pickering, 2000), therefore this species is an ideal candidate to additionally test

whether inter-sexual competition for pollinators exists and whether this has consequences

for female reproductive success (tested in Chapter 3). Furthermore, in dioecious plants

generally, investment in reproduction is usually considerably higher for females than males

(Webb & Lloyd, 1980; Pickering, 2000; Pickering & Arthur, 2003; Wheelwright & Logan,

2004). This has also been shown for Aciphylla species (Hogan et al., 1998) and is therefore

likely to play an important role in the floral display size of female plants (see Chapter 4).

2.1.2.1 The importance of resource and pollen limitation in Aciphylla – does female

success depend on individual reproductive effort?

In this study, it is hypothesised that larger reproductive effort (increased floral display)

increases reproductive success (i.e. seed set) due to increased pollinator attraction.

However, it is anticipated that these effects may not be so straightforward due to the

opposing effects of resource limitation that are also likely to be acting on display size.

Therefore, these effects must be considered in order to make assumptions about the relative

importance of floral display size, pollinator attraction and resource limitation.

Bateman’s Principle states that males are limited by the ability to find mates due to

competition for mating opportunities while females are limited by resources required for

offspring provisioning (Bateman, 1948). “However, in flowering plants this principle

appears too simplistic because if male searching for mates (including pollen dissemination

via external agents) is not sufficiently successful, then the reproductive success of both

sexes will be limited by the number of matings rather than resources” (Burd, 1994 pp. 83).

Limitations of female success due to inadequate pollen receipt appear to be a common

phenomenon in plants (Vaughton & Carthew, 1993; Burd, 1994; Ashman et al., 2004;

Newstrom & Robertson, 2005). Across species, supplemental pollen often leads to

increased fruit set, especially in plants that are highly self-incompatible such as dioecious

species, suggesting that inadequate pollen receipt is a primary cause of low fecundity rates

in many perennial plants (Hirayama et al., 2005; Knight et al., 2006; Pias & Guitian, 2006).
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It was mentioned above that, as well as pollen, resources are likely to be playing an

important role in the reproductive success of female plants (Horvitz & Schemske, 1988). In

animal-pollinated plants, resources must be allocated for both pollinator attraction and

provisioned for successful offspring (seed or fruit) production (Ashman et al., 2004). Plant

populations are expected to evolve traits where taller inflorescences with more flowers may

promote increasing rates of pollinator visits and act to optimise fecundity, while resource

limitation may offset the ability for taller inflorescences to set more seeds (Haig &

Westoby, 1988). Therefore floral display size can be thought of as an optimal investment

between pollinator attraction and fecundity.

Thus there exists a dynamic interplay between the two opposing forces, requiring tradeoffs

between large reproductive effort and successful offspring provisioning, i.e. while taller

inflorescences attract more pollinators and may achieve higher rates of seed set, eventually

resources may become limited no longer enabling all ovules that have been fertilised to set

seed (Haig & Westoby, 1988). Because of the conflicting dynamics between the two, how

can we separate them to test for the relative importance of pollinator attraction and resource

limitation?

Resource limitation has been inferred when supplemental pollination does not increase seed

production (Brookes & Jesson, 2006). To simultaneously test for pollen and resource

limitation in this study, flowers are removed (0, 40 and 80% removal) to create three levels

of floral display size within populations of Aciphylla, experimentally imitating natural

variation in floral display size within a population. As previously mentioned, Aciphylla has

a large floral display consisting of inflorescences capable of reaching 3 metres tall with

thousands of flowers. In an important paper by Haig and Westoby (1988), they presented a

graphical model in which ovule fertilisations rise with increased allocation to pollinator

attraction (increased flowering length) while at the same time ovule maturation ability

(seed set rate) declined because enhanced attraction diverts resources from seed and fruit

production. Figure 2.2 depicts the hypothesised effects of pollen and resource limitation

scenarios on seed set rate.
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Fig. 2.2 Expected effects of pollen and resource limitation when supplemental pollen is added. Supplemental

pollination (––––––), natural pollination (– – – –) and induced pollen limitation by removing flowers (- - - -).

Under scenario (a) supplemental pollination resulting in an increase in seed set indicates pollen limitation.

Also shown is the effect of inducing pollen limitation by removing flowers. As flower number decreases,

floral attraction is reduced and thus lower seed set is expected. Under scenario (b) there is no increase in seed

set when pollen is added. Under scenario (c) when the plant is simultaneously pollen and resource limited, an

increase of resources to the remaining flowers and supplemental pollination would induce greater increases in

seed set than only being limited by one factor. (Adapted from Brookes & Jesson, 2006).

While this study does not attempt to test for the effects of resource limitation per se by

supplementing resources, by removing flowers it increases the amount of resources

available per seed on inflorescences with fewer flowers. Therefore, this study employs both

supplementary pollination and flower removal experiments to test for both pollen and

resource limitation simultaneously in Aciphylla by testing the above model explicitly. As

well as this, factorially designed manipulative experiments which provide more flexibility

and power to test proposed hypotheses, were used to test for the effects of floral display

size on pollinator attraction (Chapter 3) and reproductive success (this Chapter) at multiple

levels.

2.1.3 Measuring population-level flowering effort – pollinator efficiency

The benefits of having a large floral display at the plant level may scale up to the level of

the population, meaning that population flowering effort (i.e. pollinator economies of scale)
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could also be important for reproductive success. Because Aciphylla show masting

behaviour, there is a larger number of plants flowering overall in the population during

high-flowering years. Does masting benefit reproductive success of individual females in

Aciphylla by increasing population-level pollinator attraction through economies of scale?

Masting plant species are known to show clear benefits from masting when they are wind

pollinated (Norton & Kelly, 1988; Kelly et al., 2001). Concentration of pollen production

in mast years increases the probability of pollination for wind-pollinated species (Nilsson

& Wastljung, 1987). On the other hand, relatively few species that display masting

behaviour are insect-pollinated (Kelly & Sork, 2002; Crone et al., 2005). The negative

effect of extreme fluctuation in plant reproduction on the stability of populations of

pollinators might help to explain why most plant taxa that mast are wind-pollinated rather

than animal-pollinated (Smith et al., 1990). Many other authors regard animal pollination

to be disadvantageous in a mast-seeding system due to pollinator satiation (see Chapter 1

and review in Kelly, (1994)). Masting has been assumed to swamp specific pollinators by

producing such large temporally-concentrated flowering crops. However, if animals are

more attracted by large floral displays, masting could improve pollination (Kelly, 1994)

and overall lifetime reproductive fitness. This could be achieved by having a diverse and

generalised pollinator fauna that does not rely on the masting species as a sole food

resource, and are not satiated then starved, but is highly attracted to that species in the years

that it does flower.

If flowering effort is so great during mast years that the masting species can ‘out-compete’

other generalist-pollinated plant species in the community for pollinators, then masting

may be a successful method for ensuring overall lifetime reproductive fitness, because the

costs of forfeiting reproduction some years must be outweighed by the benefits of

concentrating flowering effort into certain years.

Because Aciphylla is dioecious, pollination requires male and female plants to flower

synchronously. Individual reproductive success in obligate outcrossers is profoundly

influenced by the presence of conspecifics in space and time, and individual plants may

succeed best when they synchronise with others (Howe & Westley, 1986). Plant population

size and density can influence the interactions between plants and pollinators and affect

reproductive success (Schemske, 1980; Kirchner et al., 2005) by affecting the quantity and
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quality of pollination services received (Kunin, 1993). Dense stands of a flowering plant

may collectively attract more pollinators as opposed to small patches or low population

size, because small or sparse stands may be less apparent and/or offer low pollen and nectar

rewards (Rathcke & Lacey, 1985; Bosch & Waser, 1999).

The effects of population-level flowering (pollinator attraction effort) on an individual

plant can be observed in rare plant species, isolated plants or populations, naturally sparse

populations or in a naturally low flowering year of masting species. For instance, in low

flowering years, when only a small proportion of individuals flower, and are out of

synchrony with the majority of the population (Smith et al., 1990), this could have negative

consequences for the individual in terms of pollinator attraction and reproductive success if

the flowering population is the “attraction unit” (Groom, 1998; Forsyth, 2003). The effects

of this can be stronger when a masting species has highly self-incompatible individuals

(Forsyth, 2003) such as dioecious Aciphylla. For individual female plants flowering out of

synchrony, these ‘isolation’ effects could be particularly detrimental to reproductive

success when they are effectively isolated from the pollen supply (i.e. male plants) (Groom,

1998). In this scenario, pollen and/or pollinator limitation are expected to be important,

particularly if population flowering effort is important for pollinator attraction (Kato &

Hiura, 1990; Bosch & Waser, 1999; Kirchner et al., 2005).

The effects described above can be studied using long-term datasets over time to measure

changes in flower production between years. However, because of the time frames under

which many studies are conducted, long-term experiments may not be practical. Therefore,

by manipulating the natural flowering effort, flowering density and sex-ratio within a mast

year using space-for-time substitution methods (e.g. Nilsson & Wastljung, 1987) as an

alternative to long-term studies, it is possible to imitate a low-flowering year to test the

effects of variation in floral display on reproductive success.

Many studies have investigated the effects of floral display on reproductive success but few

have tested for the relative importance of floral display size for pollinator attraction and

seed set at multiple levels (but see Kato & Hiura, 1990; Bosch & Waser, 1999; Grindeland

et al., 2005).
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2.1.4 Objectives

2.1.4.1 Part (A): Floral display at the level of the individual plant

The first part of this chapter attempts to test for the importance of female floral display size

on reproductive success through increased pollinator attraction at the plant-level, while

simultaneously testing for the importance of pollen and resource limitation. It is

hypothesised that an increased floral display will lead to increased female reproductive

success (seed set) through pollinator attraction but only if resources and/or pollen are not

limiting factors. Experiments were conducted during a high-flowering year using both

experimental manipulations and natural measures of floral display size within a population.

More specifically the questions were:

• How is seed set rate affected when bags are applied to inflorescences to exclude

insect pollinators?

• How does variation in floral display size affect rates of seed set in female Aciphylla

inflorescences? How does this vary when display size is measured by each of the

following?

- flowering length

- inflorescence height

- percent flower removal

- number of inflorescences

• Is pollen limitation occurring at the level of the individual plant?

• Are floral bracts playing an important role in reproductive success and is seed set

rate affected when bracts are removed?
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2.1.4.2 Part (B): Population level flowering effort - male to female flowering densities

The second aim was to investigate the effects of male floral densities (i.e. local pollen

availability) and asynchronous flowering on female reproductive success. ‘Space-for-time’

substitution was used to simulate the reduction of floral densities that would occur during a

low-flowering year and test what would happen to female reproductive success if male to

female flowering synchrony was reduced. It is hypothesised that by removing showy

attractive male inflorescences from the population, and decreasing population level floral

display in Aciphylla, this will lead to a decrease in reproductive success. More specifically:

• How is reproductive success in female inflorescences affected with increasing

distance to the nearest flowering male plants (i.e. distance from pollen source)?

• Is pollen limitation occurring in female inflorescences that are more isolated from

flowering male plants?

Table 2.1 outlines each predictive term used in this study and the hypothesised directions of

the relationships between the each floral display term and seed set rate, and provides an

explanation for each of these predictions based on the hypotheses discussed in the section

above (i.e. pollen and/or pollinators are limited and larger floral displays are more

attractive to pollinators).
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Table 2.1 Expected relationships between each predictive term and the response variable, seed set rate. The first six terms represent floral display at the level of the individual

plant, followed by an interaction between percent flower removal and pollination treatment, (as performed in statistical models in this chapter testing how each predictor

affects seed set rate in female Aciphylla inflorescences).  Explanations for expected direction of relationships are based on the assumption that a bigger display size increases

the number of insect pollinators and subsequently will experience higher seed set. 1 The double signs next to flower removal indicate where there were 3 levels of removal.

The first sign represents the direction of the relationship between the control (0%) and 40% removal and the second between 0% and 80% removal. 2 The interaction between

percent flower removal and pollination treatment is complex and cannot be simply represented by a single symbol (see Fig. 2.2).

   Predictive terms Expected  

 Floral display relationship Explanation

Floral display at the Hand pollination + Hand pollination = higher seed set, natural pollination = lower seed set if pollen limited

individual-plant Flower removal (0,40, 80%) – / – – Smaller floral display, less attractive to insects = lower seed set 1

level Flowering length (cm) 0 Should be cancelled out by the effects that percent flower removal has already explained in the model

Inflorescence height (cm)  + Taller  inflorescences  attract more insects, therefore more pollen received will give higher seed set

Number of inflorescences  + More inflorescences on a plant attracts more insects = higher seed set

Floral bract removal – Bract removal may deter pollinators, and/or remove resources required to set seed = lower seed set

Hand pollination x flower- NA 2 Refer to Fig. 2.2 and text in section 2.1.2.1

 removal (%)  interaction  

Floral display at the Local pollen index + Females closer to pollen (males),  insect visit males more often, females

population level visited more by insects closer to males if pollen is the main attraction = increase seed set

 Increasing distance to males – Females further from males, less local pollen, less insects, fewer visits = lower seed set

Other experiments Pollinator-exclusion bags – Bags prevent insect pollinators from delivering pollen = low or zero seed set
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2.2 Site and species selection

The number of flowering Aciphylla populations during the summer field season of

2004/2005 limited the number of sites available for study. An initial survey to find

potential flowering populations around the middle of the South Island was carried out in

late October 2004. Sites selected were Lewis Pass (Lat/Long: 42o 22.713 S, 172o 24.021 E),

Burkes Pass (Lat/Long: 44o 5.565 S, 170o 34.792 E) and Hakataramea Pass (Lat/Long: 44o

18.667 S, 170o 34.292 E). The three site locations were at the extreme northern (Lewis

Pass) and southern (Burkes and Hakataramea Passes) limits of the Canterbury region of the

South Island of New Zealand (Fig. 2.3). The sites were all at low alpine passes with easy

access and within a 200 metre altitudinal range of each other. See Table 2.2 for information

on study sites.

Fig. 2.3 Map of the South Island of New Zealand

 showing the three study site locations. All sites

are located within the wider Canterbury region,

with Lewis Pass at the northern boundary and Burkes

 and Hakataramea Pass at the southern boundary.

Lewis Pass

Hakataramea Pass

  Burkes Pass
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Site Location description Elevation (m.a.s.l) Climate Geology and soils Vegetation Historical background

 

Lewis Pass

 
Boggy grassland area
either side of road at
the Pass (near tarn at
start of St James
Walkway).
Conservation status:
Forest Park.

860 m

 
Cool, moist, warm
summers, rainfall
2800-4800mm p.a.
(higher at the Pass)

 

Parent material: mostly Triassic
Torlesse greywacke & argillite
mountains; gravelly glaical
outwash alluvial soils on river
flats, fertility: moderate; drainage:
good

Stable streams in valley
floors with open
grasslands of fescue
tussocks, and bogs on
terraces have
Dracophyllum, Carex,
Phormium, Sphagnum, etc

 
Change from continuous
beech forest to patchy
forest, some burning from
sheep graziers

 
Burkes Pass

Burkes Pass Scenic
Reserve, near
roadside Tekapo
Highway (SH1)

 
700 m

 

Subhumid hill climate
with cool to cold
winters and mild dry
summers; rainfall
800-1200 mm p.a. ;
NW winds prevail

 
Mostly Mesozoic-Paleozoic
Torlesse greywacke and argillite,
some schists, tertiary gravels &
marine deposits, Pleistocene loess-
covered gravels; subsoils pale-
coloured, compact and droughty in
summer

 
Tussocklands with
silver/fescue tussock,
scrub - matagauri,
Coprosma, introduced
grasses

 
Mostly modified by
repeated burning
beginning in Polynesian
times & grazed by both
domestic and wild
animals

 

Hakataramea
Pass

 
Alongside
Hakataramea River,
between Grampian
and Dalgety Ranges,
McKenzie district,
South Canterbury.
Farmed (merino
sheep).

 

900 m

 
Semi-arid to sub-
humid inland climate
with cold winters and
mild to hot summers;
rainfall less than 600-
1200 m p.a.

Landform: rolling to steep
mountains either side of Pass,
parent material: mainly Paleozoic
Torlesse greywacke and schist -
some older basalts, argillite
conglomerates, alluvium and loess,
basic volcanic and tertiary rocks,
including limestone; subsoils at
Pass pale, compact & droughty;
fertility: moderate, drainage: near
river - wet and boggy

 
Modified and depleted
tussocklands with heavy
weed infestation -
hawkweeds & broom.
Scrub in gullies:
matagauri, fescue/silver
tussock, Gaultheria,
Bulbinella, range of
introduced grasses

 
Mostly modified by
repeated burning
beginning in Polynesian
times & grazed by both
domestic and wild
animals

Table 2.2 Summary of site information for the three study areas used in this research including site location and description, elevation in metres above sea level (m.a.s.l.), and a brief
description of climate, geology, soils, vegetation and background/modifications of the general area. Data sourced from Land Environments of New Zealand (LENZ), (Leathwick et al. 2003)
and surveys from Ecological Regions and Districts of New Zealand (McEwen 1987).
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2.2.1 Study species

At these sites, three species were studied: A. aurea at Burkes and Hakataramea Passes, A.

scott-thomsonii at Hakataramea Pass, and A. ‘lewis’ at Lewis Pass. These taxa are

described below.

2.2.1.1 Aciphylla aurea W.R.B. Oliver

Aciphylla aurea (also known as golden spaniard) is abundant mainly east of the main

divide of the South Island (Wardle, 2002) from Marlborough through to Southland. Habitat

ranges from montane to sub-alpine tussocklands and shrublands, usually on well-drained

hill slopes, ridges, outwash surfaces and around rock outcrops (D. Glenny, pers. comm.

2005). Plants form 1-10 rosettes of golden yellow-green tussocks up to 1.3 m in diameter

and up to 70 cm tall.

Inflorescences consist of a tapering rachis (stalk) up to 1.8 m tall. There can be up to 10

inflorescences on a plant, but 1-4 is more common. The rachis supports compound lateral

umbels, each with multiple umbels and umbellules branching from the peduncle. These

lateral branches start from above the leaves, continuing to the apex, subtended by yellow

linear bracts which are long (18-37 cm) and consist of a sheath (29-37 mm length) and long

spiky stipules and leaflets. The rachis is hollow and the lower 1-20 bracts are usually

sterile. Bract and umbel length decreases towards the apex. Bracts at the upper half of the

inflorescence are reflexed at the top of the sheath to point downwards, while the stipules

point upwards to create a “cage” of spines (D. Glenny, pers. comm. 2005). See Fig. 2.4 for

a diagram of an Aciphylla inflorescence.

The winged fruits consist of two mericarps, forming a laterally compressed schizocarp

(Webb & Simpson, 2001). Fruits in A. aurea are dark brown. While the entire female

inflorescence is presented at the same time, flower maturation is basipetal with the top of

the inflorescence maturing first (Brookes & Jesson, 2006). Flowering begins from early to

mid December at montane altitudes.
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Although formidable, this plant is susceptible to browsing by animals such as hares, rabbits

and livestock (Allan, 1982), along with a suite of invertebrates such as weevils and various

Lepidopteran larvae, many of which are Aciphylla-specific herbivores.

2.2.1.2 Aciphylla scott-thomsonii Cockayne & Allan

Common and widespread in Otago and South Canterbury, the natural habitat of A. scott-

thomsonii is sub-alpine scrub, extending slightly into alpine tussocklands, shrublands and

scrub on south-facing colluvial hill slopes.  It is most common beside streams or in flushes

at valley heads (D. Glenny, pers. comm. 2005). A. scott-thomsonii is often found in

association with A. aurea (at damper, more fertile and scrubby habitat) and like numerous

members of the New Zealand Apiaceae, these two species can readily hybridise (Dawson

& Le Comte, 1978). Care was taken to avoid using hybrid specimens for purposes of this

research.

A. scott-thomsonii are typically much larger than A. aurea and form huge tussocks with

long, glaucous, extremely sharp pinnate leaves up to 1.5 m long (Allan, 1982).

Inflorescences can reach an impressive 4 metres tall with yellow-green fruits. Reproductive

arrangement is very similar to A. aurea (see above). Flowering in A. scott-thomsonii begins

early to late December and fruit ripens by mid-February (D. Glenny, pers. comm. 2005).

2.2.1.3 Aciphylla ‘lewis’

The northern limit of A. scott-thomsonii is recorded as Arthur’s Pass in mid-Canterbury

(Lat/Long: 42o 56.633 S, 171o 33.942 E), (Mark & Adams, 1973). However, D. Glenny

(2005), currently revising the taxonomy of this group, has collected plants as far north as

Kowhai Saddle near Kaikoura that are more similar to A. scott-thomsonii than any other

Aciphylla species. The form at Deer Valley near Lewis Pass represents a viable,

reproducing population very similar to A. scott-thomsonii, but with aspects of the next most

similar species, A. colensoi. D. Glenny (2005) suggests that it is difficult to draw a

boundary between A. scott-thomsonii and A. colensoi at Lewis Pass. Differences in leaf and

inflorescence morphology have been noted by D. Glenny (2005). This population will be
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referred to as A. ‘lewis’ from this point on. Leaf voucher specimens (of all study species)

were collected, pressed and mounted, then deposited in the University of Canterbury

Biological Sciences herbarium. Refer to specimen numbers #38835 to #38838 LMY.

Like A. scott-thomsonii, A. ‘lewis’ grows alongside streams and rivers in extremely wet

conditions amongst other bog-dwelling plants such as flax (Phormium tenax), fescue

tussocks and Sphagnum. The extent of its distribution is not yet confirmed, although is

probably restricted to wet riversides east of the Main Divide around the greater Lewis Pass

area. Plant size and colour is similar to that of A. scott-thomsonii but inflorescences and

bracts are a bright yellow and fruits are yellow-green. Flowering in A. ‘lewis’ typically

begins around mid to late November.

Fig. 2.4 Mid-section of an inflorescence stalk of Aciphylla scott-

thomsonii showing detail of spiky bracts with stipules,

subtending compound lateral umbels made up of clusters of

flowers (umbellules) which are beginning to develop into fruits

in the above example.

Bracts

Developing
fruits

Compound
lateral umbel

Stipules

Scale 12 cm
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2.2.2 Field work

The experiments were carried out at all three field locations over the summer of 2004/2005,

beginning late November when flowering commenced, through until early March when

fruit and seed set. Burkes and Hakataramea Passes were experiencing a heavy flowering

year therefore those populations were sufficiently large to perform manipulative

experiments in the field. At Lewis Pass, flowering Aciphylla plants were sparser and there

were relatively fewer in the population over a larger area, representing a relatively low

flowering year.

2.3 METHODS

2.3.1 Part (A): Floral display at the level of the individual plant

An experimental area (plot) was roughly measured out at each site. These plots varied in

size between sites because a large enough area to encompass sufficient numbers of

flowering plants for experimentation was needed, as well as leaving enough non-

experimental (control) plants. Aciphylla scott-thomsonii habitat is usually limited to wet

sites near streams and rivers therefore Hakataramea and Lewis Pass sites with A. scott-

thomsonii and A. “lewis” respectively were very long and relatively thin compared to A.

aurea populations (refer to Tables 2.3 & 2.4 for quantitative site information). The

following floral display experiments and the effect that they had on seed set rates all

involved female inflorescences only.

1) How do pollinator-exclusion bags affect seed set?

To see whether seed set was affected when insect pollinators were excluded, fine mesh

curtain bags (approximately 0.5 mm mesh diameter) were used to cover inflorescences.

These were put on at the beginning of the season when inflorescences were small and in an

early developmental stage, with bracts covering unopened flowers. Bags were tied at the

base of the inflorescence as close as possible to the point of attachment to the rosette. As



41

inflorescences grew taller, bags were extended so as to prevent stalks from bending over or

becoming damaged during growth and elongation. Bags were sufficient to exclude all

insects however mesh size was not small enough to exclude pollination by wind. Control

inflorescences were also tagged nearby or on the same plant for comparison with bagged

plants. Thus this method was used to test for seed set by mechanisms such as wind

pollination, selfing or apomixis (although selfing is unlikely given that plants in this study

were always strictly dioecious). At Hakataramea Pass however, one plant consisting of

mostly female flowers but with some male flowers present, was discovered. This plant was

noted as hermaphroditic and bagging was used to test for possible self-fertilisation.

2) Does floral display size affect seed set rate?

This question was approached in four ways. The first employed manipulative field

experimentation where 0, 40 and 80% of flowers were removed from inflorescences to test

whether seed set rate was affected by the varying proportion of flowers along the stem.

Percent flower removal was hence treated as a factor. The second two approaches measure

continuous variation in flowering length i.e. the length of inflorescence with flowers

present, and inflorescence height in relation to seed set rate, i.e. total length from ground to

apex. The fourth measures display size on the plant level as a whole, by using the number

of inflorescences on the plant as an indicator of display size.

     a) Flower removal experiment

Three levels of flower removal were chosen to represent variation in floral display size in

each population.  These were 0, 40 and 80% removal with flowers being removed from the

lower part of each inflorescence, leaving the flowering portion remaining at the top. To test

for pollen limitation, supplemental pollen was added to some inflorescences in each level

of flower removal treatment. Flower removal and pollen supplementation experiments were

set up factorially creating more flexibility and power to test the proposed questions.
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Treatments were assigned randomly to female plants that had at least 2 inflorescences to

enable paired design sampling. Within the same plant, one level of flower removal

treatment was performed on both inflorescences (e.g. 40% removal) with one inflorescence

receiving supplemental pollen and the other remaining naturally pollinated.  This design

was useful for controlling between-plant effects.

The flowering length of the inflorescence was measured from the lowest bract to the apex

and the appropriate length of flowers to be removed was calculated as 0, 40 or 80% off the

total flowering portion. Flowers were snipped off using fine scissors and care was taken to

avoid damaging the stem. Because inflorescences had not usually grown to full size at the

time of first flower removal with late expansion concentrated at the tip, flowering length

was re-measured between 2 and 3 weeks later and any more flowers that needed removing,

were removed.

     b) Flowering length

Flowering length, i.e. the flowering portion of the inflorescence (cm), was measured after

flower removal treatments were performed. This was done in order to run statistical

analyses to test whether the effects of the absolute value of flowering length (rather than

the percentage removed – as above) was a better expression of floral display size and if

there was any effect on seed set rate. Flowering length was recorded at the end of the

season immediately prior to harvest.

     c) Inflorescence height

The entire length of the inflorescences from the base to the tip of the apex was referred to

as inflorescence height (cm). Measurements of inflorescence height were recorded at the

end of the field season just prior to harvest.
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     d) Number of inflorescences

The number of inflorescences on each treatment plant was recorded and used in statistical

analyses to test whether this accounted for any variation in seed set rate.

3) How does the removal of floral bracts affect seed set?

To determine whether the spiny, sterile floral bracts were having any effect on seed set

rates, bracts were removed on some inflorescences. Again, plants with at least 2

inflorescences were randomly selected from the population in order for paired design

sampling to be used. On one inflorescence, all bracts were removed, and the other was left

as a control for comparison. Bracts were snipped off from the entire length of the

inflorescence, leaving about 2 cm beneath the base of each peduncle to avoid damage to the

stem or floral parts. (See Table 2.3 for all manipulative treatments, plot size, number of

replicates, etc).

Table 2.3 Quantitative information for floral display experimental manipulations performed in the field. The

six manipulated flower/pollination treatments include 0, 40 and 80% flower removal each with and without

hand pollination. Bract removal and bag treatments also included controls for each. (* = no hand-pollination

performed at Lewis site due to weather, hence only 3 treatments – 0, 40, and 80% flower removal). In total

252 female inflorescences with various treatments were harvested from the sites below.

Site Species

Site
dimensions

(m)
Type of
treatment

No. of
treatments

No. of
Replicates

Total no.  of
inflorescences

Burkes Pass A. aurea 127 x 236 Flower/pollination 6 8 48
Bract removal 2 9 18

   Bag 2 6 12
Hakataramea A. aurea 500 x 220 Flower/pollination 6 8 48
Pass Bract removal 2 8 16
   Bag 2 7 14
Hakataramea A. scott- 1200 x 50 Flower/pollination 6 6 36
Pass thomsonii Bract removal 2 6 12
   Bag 2 5 10
Lewis Pass A. ‘lewis’ 800 x 230 Flower/pollination   3 * 8 24

Bract removal 2 3 6
   Bag 2 4 8
 TOTALS      252
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4) Does local pollen availability affect seed set rates?

To determine whether local pollen densities were affecting female reproductive success,

the distance between each female plant used in the above experiments and the closest four

flowering male plants was measured. The number of inflorescences on each of the four

nearest male plants was recorded. This information was used to construct a weighted local

pollen index, indicating local densities of pollen from nearby male inflorescences. The

following formula was devised:

Distance-weighted local pollen index (DWPI) =  2
4

4
2

3

3
2

2

2
2

1

1

d
s

d
s

d
s

d
s

+++

where s is the number of male inflorescences on the four nearest male plants and d is the

distance in metres to the plant (indicated by the subscripts given). The DWPI decreases

with the square of the distance and increases linearly with the number of inflorescences on

each male. A larger value results when females are close to males with many

inflorescences.

2.3.2 Part (B): Population level flowering effort - male to female flowering densities

Isolated-female experiment

The aim of this study was to reduce the local density of flowering male plants to imitate a

low mast year when female and male plants might flower out of synchrony, or are

separated by increasing distance. To investigate the effects of male floral densities (i.e.

pollen availability) on female reproductive success (seed set), floral densities were

manipulated at separate plots at Burkes and Hakataramea Passes by removing male

inflorescences. At Lewis Pass, the population structure was such that there were a number

of flowering female plants that were naturally isolated (i.e. far away from flowering male

plants) therefore no experimental removal of flowering males was carried out.
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Fig 2.5 Diagrammatic representation of isolated female experimental design to investigate the effects of male

floral densities on female reproductive success. All flowering male inflorescences removed from plot (inner

rectangle), leaving only female plants at varying distances to male plants. Female plants (∆) in the centre of

the plot are more isolated from male plants (○) than females nearer the edge of the plot. Arrows represent

distance between female and nearest flowering male plant outside plot. This distance was measured for each

female.

One plot was marked out at each site, where all developing male inflorescences inside the

plot were removed. Only female inflorescences remained inside the plot and males were

left randomly distributed around the edge of the plot. Female plants were thus at varying

distances to the nearest flowering male (see Fig. 2.5). Within the plot, female plants with 2

or more inflorescences were randomly selected and tagged to enable paired design

sampling (see Table 2.4 for plot information). The position of each female plant was

mapped, as well as the position of each flowering male plant around the outskirts of the

plot. The distance between each experimental female and the nearest flowering male plant

outside the plot was measured. On each experimental plant, one inflorescence was given

supplemental pollen treatment and the other was left naturally pollinated. The hypothesis

was that pollen limitation (hand-pollinated seed set – control seed set) would be stronger in

females further from males. Hand pollination was performed 3 separate times over

approximately 3 weeks (see below).

Isolated female plants

Distance to nearest
flowering male plant
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Table 2.4 Plot information for isolated-female experiment. Pollen limitation was tested for by pollen

supplementation i.e. hand pollinated. (* = no hand-pollination performed at Lewis Pass site due to adverse

weather).

Site Species
Plot size

(m2)

Number
hand

pollinated

Number
naturally
pollinated

Total number
of

inflorescences

Dist. range to
nearest male

(m)

Burkes Pass A. aurea 7,650 20 21 41 1-60

Hakataramea Pass A. aurea 42,780 18 18 36 1-200

Lewis Pass A. 'lewis’ 184,000 0* 38 38 1-500

2.3.3 Pollen limitation

To determine whether seed set of female plants in all of the experiments outlined above at

Burkes and Hakataramea Passes was limited by the availability of pollen, supplemental

pollen was applied by hand to one inflorescence from each pair of treatments. Hand

(supplemental) pollination was done by whacking a section of male inflorescence with a

substantial pollen load over the female inflorescence while covering the non-hand-

pollinated stalk with a paper bag to avoid accidental pollination.

Hand pollination was repeated on each inflorescence three separate times over

approximately three weeks during December 2004, to encompass variation in flower

longevity and stigma receptivity over the course of the flowering season. Hand pollination

was performed only on non-rainy days to avoid pollen loss and wastage. Because there

were no days without rain during field work at Lewis Pass, hand pollination was not

performed there.

Male inflorescences used for hand pollination were taken from outside the experimental

plots, 50 to 300 metres away from the boundary to avoid altering the natural structure of

the population inside the plot. Naturally pollinated inflorescences were left untouched.

After male inflorescences were used for hand pollinating females, they were discarded over

300 metres away from the plot.
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2.3.4 Other field measurements

For each of the 377 experimental inflorescences, a number of measurements were made at

the: 1) inflorescence, and 2) plant level. These were used to compile detailed data matrices

to gain a more in-depth understanding of how both experimentally manipulated and natural

variables affect reproductive success in Aciphylla.

1) All inflorescences were harvested between late February and early March when fruit and

seeds were filled but not ripe enough to be dispersed. The height of each inflorescence was

re-measured and a categorical estimate of aphid densities on inflorescences was recorded

(low, medium or high). Each inflorescence was then carefully cut near the base of the

rachis and placed into separate paper for storage until seed sorting and counting began.

Some were stored in a freezer, but due to limited space, others were dry-stored.

2) Plant-level measurements recorded were plant area, plant leaf height, rosette number and

number of inflorescences. Diameter was measured as the greatest diameter across the

clump formed by all rosettes belonging to a single plant (length, L), and the diameter

perpendicular to that (width, W). To calculate the area of the plant, the formula for

measuring an ellipse was used ( ) π22/WL + . Plant leaf height was measured using the

distance from the leaf base at ground level to the tip of the tallest leaf. These measurements

were used to test the effect of plant size on reproductive success.

Other plant species flowering at each site were also noted along with the weather each day

field work was done. Insect visitation rates to every inflorescence in all of the experiments

were also recorded with multiple observations (see Chapter 3).

2.3.5 Lab work

2.3.5.1 Measuring reproductive success – counting seeds

Flowers that had been pollinated had developed into fruits by the time plants were

harvested. Reproductive success in females was measured by counting the proportion of
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fruits that made seeds (‘filled’) vs. the proportion that did not make seeds (‘unfilled’). Each

‘fruit’ is technically described as a laterally compressed schizocarp consisting of 2

mericarps, each containing one seed (see Fig. 2.6). For this study, seed set not fruit set was

measured by counting each mericarp individually, therefore each mericarp had either zero

or one seed (i.e. ‘filled’ or ‘unfilled’ respectively). For every inflorescence a sub-sample of

seeds were sorted and counted by hand (see below for sub-sampling methods). A total of

122,811 seeds were counted. Aside from the 2 categories of whether a fruit was ‘filled’ or

‘unfilled’ with a seed, the proportion of predated seeds (both fully and partially) was also

recorded. Predated seeds were assumed to have once been ‘filled’ before they were eaten

by an invertebrate seed predator, and hence were also counted as ‘filled’.

This measure of reproductive success in female plants slightly differed to methodology

used previously by Brookes & Jesson (2006). Rather than testing each seed for viability to

identify germinability, the simpler categorisation of seed ‘filled’ or ‘unfilled’ was

employed. Proportion of filled seeds will from now on be referred to as ‘percent seed set’.

This method is frequently used for quantifying pollination efficiency and although it is not

a direct measure of pollination success, it does set a lower limit (Tisch, 1996). This method

was used due to large sample sizes and time constraints. Slightly different methods of seed

counting were employed for A. aurea and A. scott-thomsonii as explained below.

Fig. 2.6 Intact developing fruit, or schizocarp, (left) consisting of 2 winged mericarps, each containing one

seed. The carpophore is the centre stalk that attaches to the mericarps. The picture on the right shows the fruit

at maturity with mericarps still attached prior to dispersal.

Schizocarp

Winged
Mericarps

Carpophores
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Aciphylla aurea and A. ‘lewis’

For each inflorescence, all fruits were removed from the entire length of the inflorescence

by shaking them off the stalk into a paper bag. The contents of the bag were shaken well to

mix them, then a random sub-sample of 250-350 developed and undeveloped fruits were

selected out for counting. The number of seeds that fell into each category (filled, unfilled

and eaten) was recorded. I counted only 250-350 seeds per inflorescence, as trials showed

that the ratio of filled: unfilled did not change with increasing number counted beyond that.

Aciphylla scott-thomsonii

For A. scott-thomsonii, all seeds were counted from every fifth lateral umbel along the axis

of the inflorescence. This method was used to obtain an idea of whether seed set rate varied

along the inflorescence. Only the grand mean seed set rate data for each inflorescence

however, will be presented in this section. See Appendix 1 for more detail of seed set along

the inflorescence and how flower number per umbel can be accurately predicted from its

particular location along the rachis.

2.3.5.2 Germination experiments

Sub-samples of seeds from all species and sites were randomly selected from the

experimental inflorescences in an attempt to germinate some of the seeds. This experiment

began in late August 2005. The purpose of this was to test the assumption that ‘filled’ fruits

were viable and ‘unfilled’ fruits were not. Because the seeds had been dry-stored since

harvest in late-February to early-March, soaking them before sowing was recommended

(Metcalf, 1995). One hundred filled and 100 unfilled fruits were separated out for each

species from each site and soaked in warm water overnight. These were then surface-

sterilised in 50% bleach solution for 10 minutes and a soak/rinse cycle in distilled water

was performed 3 times to clean off the bleach. Seeds were placed into sterilised Petri dishes

lined with damp germination paper, sealed with plastic wrap and refrigerated for 4 weeks to

imitate cold winter field conditions. In mid-October, seeds were removed from cool storage

and Petri dishes were then left at room temperature and kept moistened for ten months.
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2.3.6 Statistical Analyses

Statistical analyses were performed in the statistical package R version 1.5.1 and in

Microsoft Excel 2003. Generalised Linear Models (GLM's) were used to examine the

influence of the various treatments on rates of seed set. For all GLM’s with the response

variable ‘seed set’, a binomial error distribution with a logit link function was used because

there were two possible outcomes for the fate of a fruit: ‘filled’ or ‘unfilled’. Because the

assumption of independence necessary for use of tests based on the chi-squared distribution

appeared to be breached, the fit of all models was tested using F-ratios.

For each experiment performed at each site, a large multi-variate model was created to test

for the effects of each predictor on seed set rate. Model selection was attempted in multiple

ways, with the aim of fitting a model that could best explain variation in seed set rate and

that would allow for comparison between sites. Model construction was performed by

initial inclusion of all factors and variables of interest. The order of predictors in the model

was varied for each site until a generic order that could be used for all sites was selected.

Predictors lacking significant explanatory power were then removed from the model. For

both the floral display size (A) and isolated-female (B) experiments, five predictors were

used in the final model in the following order: pollination treatment, local pollen

availability (using DWPI or distance to nearest male inflorescences), percent flower

removal, flowering length, and inflorescence height. See Table 2.1 for predicted

relationships of all explanatory predictors and seed set rate (the order of variables are

shown in the GLM tables in section 2.4).

When testing various models to select the most appropriate one to explain variation in seed

set rate, percent flower removal (as a factor) explained little or no significant variation in

the data on its own at most sites. When the variable flowering length was added to the

model after percent flower removal, it usually explained a greater proportion of the

variance while percent flower removal explained little or none. Of the few sites where

percent flower removal explained the most variation, flowering length explained almost

none. Therefore, these two predictors were highly correlated, as expected. Flowering length

was essentially the same predictor as percent flower removal (because most of the variation

in final flowering length was due to experimental removal, rather than variation among
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unmanipulated inflorescences), but it expresses it as a continuous variable rather than a

factor with three levels of flower removal. Different sites responded to either one or the

other of these two predictors measuring “variation in the amount of flowers on an

inflorescence”, but were both retained in the final model to maintain consistency between

sites.

Apart from analysing the effects of floral display on seed set rate by site and species (for

floral display at multiple levels) using multi-variate models, some analyses were also done

by treatment and presented graphically to allow for more convenient comparison between

sites and species. The effect of the interaction between pollen supplementation and flower

removal (testing for simultaneous pollen versus resource limitation), was presented using

two separate graphs. The first compared seed set rate against percent flower removal as a

factor for supplemental and natural pollination, while the second compared seed set rate

and flowering length (cm) as a continuous variable for supplemental and natural

pollination.

2.4 RESULTS

2.4 Part (A): Effects of insect-exclusion bags, plant-level floral display, hand-

pollination, and local pollen on seed set

2.4.1 Mean seed set rates of control inflorescences at all sites

Seed set rates for control inflorescences varied between sites (Fig 2.7). Overall, Aciphylla

scott-thomsonii at Hakataramea Pass (HP) had the highest mean seed set rate of 87%, while

also at Hakataramea, seed set in A. aurea was relatively high (75% at HP1 and 72% at

HP2). Seed set at Lewis Pass (LP) was the next highest (66%). Aciphylla aurea at both

Burkes Pass (BP) sites experienced the lowest levels of seed set (57% BP1 and 53% at

BP2).
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Fig 2.7 The natural variation in seed set rates amongst sites using control inflorescences, including all

experiments (+/– 1 SE). The two bars for A. aurea at both Burkes Pass and Hakataramea Pass indicate mean

seed set rates for both experiments: floral display size (left) and isolated female (right).

2.4.2 Effects of bagging on seed set rate

Bagged inflorescences excluding insect pollinators experienced a highly significant

decrease in seed set rate, compared with controls, at all sites (Table 2.5; see also Fig. 2.8).

Seed set inside bags was expected to be zero or nearly so, yet in three cases mean seed set

rates inside bags were over 20%, which is surprisingly high, but still significantly less than

non-bagged plants suggesting insects played a vital role in pollen movement.
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Table 2.5 Mean seed set rates of bagged versus control inflorescences. Statistical values given are for the

effects of bagging on seed set rate from binomial GLM’s. (Abbreviations: BP = Burkes Pass, HP =

Hakataramea Pass and LP = Lewis Pass).

Species   Mean seed set rate (%)  % Deviance  

and sites Control Bag F  (d.f) explained P-value

A. aurea BP 52.0 23.8 354.24  (1,11) 50.33 < 0.0001

A. aurea HP 76.8 37.5 430.31  (1,9) 44.96 < 0.0001

A. scott-thomsonii HP 91.4 23.7 3067.4  (1,5) 92.68 < 0.0001

A. 'lewis' LP 79.1 9.2 1320.9  (1,8) 91.99 < 0.0001

2.4.3 Effects of floral display on seed set

2.4.3.1 Analyses by site

Burkes Pass – Aciphylla aurea

At Burkes Pass, all predictive terms had a significant effect on seed set rate. Inflorescence

height was the most significant predictor and accounted for over 13% of the variation in

seed set rate (Table 2.6). As expected, taller inflorescences had a higher rate of seed set.

Local pollen abundance (DWPI) also explained significant variation in seed set rates, and

as expected, an increase in local pollen abundance contributed to a higher seed set rate.

Hand pollinated inflorescences also set significantly more seed than those left openly

pollinated, although this explained only 1.7% of the variation in the model. Flower-removal

treatment significantly decreased seed set rate, suggesting that with an increase in the

number of flowers along the inflorescence stem, comes an increase in seed set rate.

Therefore, results demonstrate that taller inflorescences with more flowers have a higher

rate of seed set than shorter ones at Burkes Pass, and seed set rate is further increased when

there is more local pollen available. The model accounted for 25.7% of the variation in

seed set rates at Burkes Pass (ranging from 33-92%, see Fig. 2.8). There was also a

significant interaction between pollination and percent flower removal (see Fig. 2.9).
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Table 2.6 Analysis of Deviance Table for A. aurea at Burkes Pass showing variation in seed set rate as a

response to five predictive terms. The terms DWPI (Distance-Weighted local Pollen Index), flowering length

and inflorescence height are non-manipulated variables while the terms pollination (hand vs. natural) and

percent flower removal (0, 40 & 80%) are manipulated factors. Finally shown is the interaction between the

two manipulated factors – pollination and flower removal. The double signs next to flower removal indicate

where there were 3 levels of removal. The first sign represents the direction of the relationship between the

control (0%) and 40% removal and the second between 0% and 80% removal. † = refer to Fig. 2.8 for

pollination x flower removal effects.

Terms added Df F Resid. Df Resid.dev % Dev. expl. P-value Slope

NULL 45 1426.73

Hand pollination 1 23.62 44 1403.11 1.66 <0.001 +

DWPI 1 98.91 43 1304.20 6.93 <0.001 +

Flower removal (%) 2 16.22 41 1271.75 2.27 <0.001 – / – –

Flowering length (cm) 1 10.37 40 1261.38 0.73 0.0013 –

Inflorescence height (cm) 1 191.95 39 1069.43 13.45 <0.001 +

Pollination x Flower removal 2 4.68 37 1060.08 0.66 0.0093 †

Hakataramea Pass – Aciphylla aurea

The most significant variable affecting seed set in A. aurea at Hakataramea Pass was

inflorescence height, although the direction of this relationship was not as expected. As

inflorescence height increased, seed set rate significantly decreased (Table 2.7). Percent

flower removal also significantly decreased seed set rate as expected. Hand pollination

significantly increased seed set along with greater local pollen supply (DWPI). A

pollination x flower removal interaction also produced significant effects on seed set rates

(see Fig. 2.9 for detail). Overall, this model (Table 2.7) accounted for 26.3% of the

variation in A. aurea seed set at Hakataramea Pass (which ranged from 42-95%, see Fig.

2.8).
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Table 2.7 Analysis of Deviance Table for A. aurea at Hakataramea Pass showing variation in seed set rate

as a response to five predictive terms. Terms and symbols are as for Table 2.6.

Terms added Df F Resid. Df Resid.dev % Dev. expl. P-value Slope

NULL 39 811.9

Hand pollination 1 13.83 38 798.07 1.70 <0.001 +

DWPI 1 20.94 37 777.13 2.58 <0.001 +

Flower removal (%) 2 35.04 35 707.05 8.63 <0.001 – / – –

Flowering length (cm) 1 0.05 34 707 0.01 0.82 –

Inflorescence height (cm) 1 92.32 33 614.67 11.37 <0.001 –

Pollination x Flower removal 2 8.10 31 598.47 2.00 <0.001 † 

Hakataramea Pass – Aciphylla scott-thomsonii

In A. scott-thomsonii at Hakataramea Pass, the most significant outcome was that with an

increase in flowering length there was significant decrease in seed set rate (Table 2.8). The

variable flowering length explained more than 40% of the variation in seed set, accounting

for over four fifths of the variation that the entire model explained (which was 49.4%). The

range in seed set rate was 63-97% in A. scott-thomsonii. Taller inflorescences had a higher

seed set rate, although this explained only 4.7% of the deviance (Table 2.8). Hand

pollination only slightly increased seed set rate (see Fig. 2.8), although this was highly

statistically significant. Local pollen abundance was relatively unimportant at this site, as

was percent flower removal, although results significantly showed that percent seed set

increases with more flowers, as expected. Thus there is strong evidence for inflorescences

that are tall but with fewer flowers having higher seed set in A. scott-thomsonii.
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Table 2.8 Analysis of Deviance Table for A. scott-thomsonii at Hakataramea Pass showing variation in

seed set rate as a response to five predictive terms. Terms and symbols are as for Table 2.6.

Terms added Df F Resid. Df Resid.dev % Dev. expl. P-value Slope

NULL 30 1965.61

Hand pollination 1 13.65 29 1951.96 0.69 <0.001 +

DWPI 1 5.19 28 1946.77 0.26 0.023 –

Flower removal (%) 2 21.94 26 1902.89 2.23 <0.001  – / – –

Flowering length (cm) 1 801.09 25 1101.81 40.76 <0.001 –

Inflorescence height (cm) 1 93.24 24 1008.57 4.74 <0.001 +

Pollination x Flower removal 2 6.88 22 994.8 0.70 0.001 † 

Lewis Pass – Aciphylla ‘lewis’

The total variation in seed set rate explained by the Lewis Pass model was just 13.7%, with

seed set values ranging from 2-96%. The most significant explanatory term was flowering

length which accounted for around 8.5% of the variation in seed set in A. ‘lewis’ (Table

2.9). Seed set was greater with an increase in flowering length. Distance to the nearest

flowering male plant (pollen availability) was also highly significant, with isolated female

inflorescences experiencing lower rates of seed set. Also statistically significant was an

increase in seed set rate with increasing inflorescence height. Pollen limitation was not

tested for at Lewis Pass although with mean seed set rates of around 65% (see Figs 2.7 to

2.9) it would have been interesting to test whether seed set rates would increase if

supplementary pollen was applied.
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Table 2.9 Analysis of Deviance Table for A. ‘lewis’ at Lewis Pass showing variation in seed set rate as a

response to four predictive terms. Terms and symbols are as for Table 2.6. Note: no pollination treatment was

carried out at Lewis Pass.

Terms added Df F Resid. Df Resid.dev % Dev. expl. P-value Slope

NULL 20 1611.49

Nearest male 1 58.05 19 1553.44 3.60 <0.001 –

Flower removal (%) 2 14.65 17 1538.79 0.91 <0.001 – / +

Flowering length (cm) 1 136.53 16 1402.26 8.47 <0.001 +

Inflorescence height (cm) 1 10.9 15 1391.36 0.68 <0.001 +

The effect of bract removal on seed set

Inflorescences with bracts removed had a significantly higher seed set on A. aurea at

Burkes Pass, A. scott-thomsonii at Hakataramea Pass and on A. ‘lewis’ at Lewis Pass. Bract

removal on A. aurea inflorescences at Hakataramea Pass however, had a weak but

significant negative effect on seed set (Table 2.10).

Table 2.10 The effects of removing inflorescence floral bracts on seed set rate. Statistical values given are for

the effects of bract removal (as a factor) on seed set rate, using binomial GLM’s. (Abbreviations: BP =

Burkes Pass, HP = Hakataramea Pass and LP = Lewis Pass).

Species Mean seed set rate (%) % Deviance   

and sites Control Bract removal explained F (d.f) P-value

A. aurea BP 51.96 58.79 1.7 14.7  (1,15) <0.001
A. aurea HP 75.43 71.1 2.1 4.2  (1,11) 0.04
A. scott-thomsonii HP 86.87 89.17 1.3 5.7  (1,10) 0.02

A. 'lewis' LP 66.14 83.99 12.3 64.7 (1,13) <0.0001
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2.4.3.2 Analyses by treatment and graphical representation to compare sites

The following figures depict graphically, the effect of each predictive term on its own, by

site.  The graphs are based on the same datasets from which the above generalised linear

models were created, but linear models were fitted to show the trend from each main effect.

The graphs do not take into account the variation explained by the other variables in the

multivariate models, but they are useful for showing overall trends and making site

comparisons. The above GLM’s should be referred to for statistical values.

Flower-removal, pollination, and bagging effects on seed set

Overall, seed set rate was relatively high across all sites with the exception being for bag

treatments where seed set rates were consistently lower than all other treatments (Fig. 2.8).

Seed production in open-pollinated inflorescences was, in most cases, significantly less

than in hand-pollinated inflorescences (Tables 2.6 – 2.9), although the magnitude of this

effect was small. Across sites, this pattern was evident at the 0% and 40% flower removal

levels, but inflorescences with 80% flower removal were not affected (Figs. 2.8 and 2.9).
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Fig. 2.8 Box and whisker plots for all sites showing the variation in seed set rates for each level of flower

removal, pollination and bag treatment. The middle horizontal line within the box shows the median seed set

rate. Also shown are the upper and lower quartiles (lines either side of the median), and whiskers

encompassing 95% range of the data (designated by dashed lines), with outliers that fall beyond the 95%

range/whiskers (dots).  See Tables 2.6 to 2.9 for statistical tests.

Simultaneously testing for the effects of resource and pollen limitation on seed set

According to the multi-variate site GLM’s, for A. aurea at Burkes and Hakataramea Passes,

the factor percent flower removal was a stronger predictor of seed set rate than the

continuous variable flowering length, while flowering length was a significantly stronger

predictor for A. scott-thomsonii than percent flower removal (Tables 2.6, 2.7 and 2.8

Hakataramea – A. scott-thomsonii

Burkes Pass – A. aurea Hakataramea Pass – A. aurea

Lewis Pass – A. ‘lewis’
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respectively). Both terms fundamentally represent the same variable but each was

measured in a different way (see Methods section). This suggests that Fig 2.9 is more

appropriate for interpreting the relative importance of simultaneous pollen and resource

limitation for A. aurea while Fig. 2.10 is more appropriate for A. scott-thomsonii.

Percent flower removal and hand pollination

Figure 2.9 depicts the effects of the interactions between hand pollination and flower

removal. If both pollen and resources simultaneously limited seed set, hand pollination of

plants with 80% flower removal treatment would result in an increase in seed set compared

to the control (see Fig. 2.2). Overall, there was no evidence of resource limitation in any of

the Aciphylla species in this experiment because there was no significant increase in seed

set rates for  hand pollinated inflorescences with flowers removed (i.e. inflorescences with

more resources per flower). This suggests that the biological importance of resource

limitation was not particularly relevant within one flowering year when measured using

percentage of flowers removed.

To some degree, results for A. aurea at Hakataramea Pass conformed to the expected

effects that the pollinator attraction hypothesis would have on seed set rates, i.e.

inflorescences with more flowers had higher seed set rates (Fig. 2.9). This outcome did not

agree with the predictions made by the pollen and resource limitation model (see Fig. 2.2c)

as there was no evidence for resource limitation, because inflorescences with 40 or 80% of

the flowers removed did not have higher seed set rates relative to the controls. This

suggests that other factors, not tested for here, were possibly affecting the ability of

inflorescences with flowers removed to set more seed despite theoretically having more

resources allocated per flower to develop seeds.
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Fig. 2.9 Interaction plots showing the effects that simultaneous pollen and resource limitation following

flower removal and hand pollination (± 1 SE) had on seed set rates. Dark triangles (▲) represent hand

pollinated inflorescences and light squares (■) represent naturally pollinated inflorescences. Note: no hand

pollination performed at Lewis Pass due to weather. See Tables 2.1 to 2.4 for statistical significance values.

Consistent among most sites however, was evidence for pollen limitation, although in

biological terms, this effect was weak. Natural pollen limitation can be inferred when

inflorescences with zero percent of flowers removed have higher rates of seed set when

supplementary pollinated. This was evident among all three sites where inflorescences
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were hand pollinated (Fig. 2.9) but the effects were very small, particularly in A. scott-

thomsonii (see Table 2.8).

Flowering length and hand pollination

Flowering length (after manipulations) varied between sites and species: Aciphylla aurea

BP ranged from 5 cm to 90 cm ( x  = 43 cm ±2.9 SE, n = 62), A. aurea HP ranged from 6

cm to 110 cm ( x  = 50 cm ±3.3 SE, n = 55), A. scott-thomsonii ranged from 21 cm to 152

cm ( x  = 50 cm ±5.1 SE, n = 50) and A. ‘lewis’ LP ranged from 13 cm to 128 cm ( x  =

60.6 cm ±5.6 SE, n = 31). Overall, the effects of increasing flowering length on seed set

rates in A. aurea and A. ‘lewis’ were very small with the direction of the relationship

differing between sites.

The effects of hand pollination were also small, although as expected, adding pollen did

increase seed set compared with open-pollinated inflorescences (Fig. 2.10). For A. aurea at

Burkes Pass there was a slight negative effect of flowering length on seed set, while in A.

‘lewis’, an increase in flowering length was important in contributing to higher seed set

rates. However, the direction this relationship at Lewis Pass appears to be strengthened by

the outliers at the bottom-left of the graph. These were inflorescences that had stunted

growth and relatively low seed set compared with the rest of the Lewis Pass population.

There was considerable scatter in the A. aurea data at Hakataramea with no significant

effect of flowering length on seed set rates (Table 2.7). In the multivariate GLM (Table

2.8), flowering length was important in explaining a significant amount of the variation in

seed set rate in A. scott-thomsonii, however, Fig. 2.10 shows the relationship between

flowering length and seed set to be quite weak in contrast. In the multivariate GLM,

flowering length is probably having the main effect on seed set, as the table allows for

explanation by other variables. In A. scott-thomsonii the effects of hand pollination slightly

decreased with increasing flowering length, again suggesting alternative factors may have

been influencing the ability for inflorescences with flowers removed to set more seed as

would be expected (Fig. 2.10).
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Fig. 2.10 The effect of inflorescence flowering length on seed set rate for hand vs. natural pollination

treatment at all sites. Dashed lines (----) and solid symbols represent hand-pollinated inflorescences and

unbroken lines (–––) lines and hollow symbols represent control inflorescences. Note: x-axis ranges are

standardised between the two A. aurea sites, and between A. scott-thomsonii and A. ‘lewis’ sites. No hand

pollination was performed at Lewis Pass due to weather. See Tables 2.6 to 2.9 for statistical significance

values.
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The effect of inflorescence height on seed set

Mean inflorescence height varied between sites and species: A. aurea BP ranged from 80

cm to 155 cm ( x  = 122.2 cm ±2.3 SE, n = 62), A. aurea HP ranged from 62 cm to 190 cm

( x  = 141.5 cm ±3.4 SE, n = 55), A. scott-thomsonii HP ranged from 90 cm to 280 cm ( x  =

212.4 cm ±5.5 SE, n = 50) and A. ‘lewis’ LP ranged from 74 cm to 164 cm ( x  = 128 cm

±4.7 SE, n = 31). The relationship between inflorescence height and seed set rate is shown

in Figure 2.11. Seed set rate increased with inflorescence height in all sites except A. aurea

at Hakataramea. This relationship was strongest for A. aurea at Burkes Pass and positive,

though weakly significant in A. scott-thomsonii and A. ‘lewis’ (see Tables 2.6 to 2.9). A

small number of outliers are evident in the bottom two graphs of Figure 2.11. There are

occasional inflorescences with very low seed set, for unknown reasons. The outlier present

at the A. aurea site at Hakataramea Pass was an inflorescence subjected to intense

caterpillar damage.



65

60 80 100 120 140 160

0
20

40
60

80
10

0

Burkes - A. aurea

Inflorescence height (cm)

S
ee

d 
se

t r
at

e

50 100 150 200

0
20

40
60

80
10

0

Hakataramea - A. aurea

Inflorescence height (cm)

S
ee

d 
se

t r
at

e

100 150 200 250

0
20

40
60

80
10

0

Hakataramea - A. scott-thomsonii

Inflorescence height (cm)

S
ee

d 
se

t r
at

e

60 80 100 120 140 160 180

0
20

40
60

80
10

0

Lewis Pass - A. lewis

Inflorescence height (cm)

S
ee

d 
se

t r
at

e

Fig. 2.11 The effect of inflorescence height on seed set rate at all sites. See Tables 2.1 to 2.4 for statistical

significance values. Axes are standardised to the same intervals to allow for comparison between sites.
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2.4 Part (B): Effects of female isolation, hand-pollination and pollen on seed set

2.4.4 Analyses by site

Burkes Pass site 2 – Aciphylla aurea

For the isolated female experiment at Burkes Pass, where local pollen supply was

experimentally manipulated by removing male inflorescences, close to 40.5% of the total

variation in seed set rate of A. aurea could be accounted for by the model (Table 2.11).

There was no experimental removal of flowers within an inflorescence at this site or at

Hakataramea site 2 (also A. aurea). Seed set rates ranged between 18-81% at Burkes Pass

site 2. Natural (un-manipulated) flowering length was the most significant variable,

explaining almost 35% of the variation in seed set. Also significant was distance to male

inflorescences (an indicator of the local pollen abundance). As expected, the further from

flowering males, the lower the seed set rate. Hand pollination only slightly increased seed

set rates and inflorescence number had a very weak negative effect on seed set.

Table 2.11 Analysis of Deviance Table for isolated female experiment in A. aurea at Burkes Pass (site 2).

All terms added in to the GLM are non-manipulated variables apart from hand pollination which was a

manipulated treatment.

Terms added Df F Resid. Df Resid.dev % Dev. expl. P-value Slope

NULL 37 1622.18

Hand pollination 1 19.23 36 1602.95 1.19 <0.001 +

Nearest male 1 75.33 35 1527.62 4.64 <0.001 –

No. inflorescences 1 6.5 34 1521.12 0.40  0.011 –

Flowering length (cm) 1 554.89 33 966.24 34.21 <0.001 +

Inflorescence height (cm) 1 0.43 32 965.81 0.03 0.51 +
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Hakataramea Pass site 2 – Aciphylla aurea

The most significant variable affecting seed set rate in A. aurea at Hakataramea Pass site 2 was

inflorescence number. Plants with more inflorescences achieved higher rates of seed set (Table

2.12) as expected. Inflorescence height significantly decreased seed set rate, while flowering

length significantly increased seed set, but only weakly. Hand pollination did not further

improve seed set, and distance to nearest flowering male plant had a very weak but significant

negative effect. Seed set rates ranged between 49-92% and the model accounted for only

16.4% of the variation observed in seed set rates in A. aurea at Hakataramea Pass.

Table 2.12 Analysis of Deviance Table for isolated female experiment in A. aurea at Hakataramea Pass

(site 2). All terms added in to the GLM are non-manipulated variables apart from hand pollination which was

a manipulated treatment.

Terms added Df F Resid. Df Resid.dev % Dev. expl. P-value Slope

NULL 32 709.6

Hand pollination 1 0.35 31 709.25 0.05 0.55 +

Nearest male 1 5.7 30 703.55 0.80 0.02 –

No. inflorescences 1 64.01 29 639.55 9.02 <0.001 +

Flowering length (cm) 1 5.38 28 634.17 0.76 0.02 +

Inflorescence height (cm) 1 40.6 27 593.57 5.72 <0.001 –

Distance to males was also highly significant for A. ‘lewis’ at Lewis Pass, with isolated

females having lower seed set rates. This result was presented in section 2.4.3.1 (see Table

2.9)

Are isolated females pollen limited? The effects of local pollen abundance on seed set

The Distance-Weighted local Pollen Index (DWPI) value gets bigger with increasing

proximity to males with more inflorescences, therefore this represents a more abundant

local pollen supply. In A. aurea at both Burkes and Hakataramea Passes, DWPI had a
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significant positive effect on seed set rates at sites of un-manipulated male and female

densities, indicating that proximity to males (and hence synchronous flowering) is

important in A. aurea, with females not being too isolated from a pollen source to ensure

adequate seed set (Fig. 2.12).
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Fig. 2.12 The effect of local pollen abundance (measured with the Distance-Weighted local Pollen Index, or

DWPI) on seed set rate at Burkes and Hakataramea Passes. Larger DWPI values indicate higher local pollen

availability. Dashed lines (----) and solid symbols represent hand-pollinated inflorescences and unbroken

lines (–––) lines and hollow symbols represent control inflorescences. See Tables 2.6 to 2.8 for statistical

significance values.
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This is supported by the manipulated isolated female experiment results for A. aurea where

seed set rate decreased with increasing distance from the nearest flowering male plants at a

larger scale (Fig. 2.13). The same trend was also present for A. ‘lewis’, with isolated

females experiencing lower seed set rates. Local pollen abundance did not improve rates of

seed set in A. scott-thomsonii.
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Fig. 2.13 The effects of increasing distance to the nearest male inflorescence on seed set rate at isolated

female sites, where male to female flowering ratios were experimentally manipulated. Dashed lines (----) and

solid symbols represent hand-pollinated inflorescences and unbroken lines (–––) lines and hollow symbols
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represent control inflorescences. Note the difference in degree of isolation between the same species at

different sites. No hand pollination was performed at Lewis Pass due to weather.

2.4.5 Seed germination

Although seed germination tests were conducted to determine the germination rates of

‘filled’ seeds and to see whether any of the seeds classified as ‘un-filled’ germinated, there

was insufficient time to yield such results. Only two A. aurea seeds from Hakataramea and

one A. aurea seed from Burkes Pass germinated during the 8 month period, all of ‘filled’

seeds. There was no germination of ‘unfilled’ seeds. Aciphylla seeds are usually known to

remain dormant for a substantial period of time and often germinate over a 3-4 year period

(Metcalf, 1995).

2.4.6 Summary

Overall, there were many statistically significant effects of floral display, hand pollination

and local pollen abundance on seed set rates. Many of these effects were however,

biologically weak. The directions of the effects were mostly as expected (see Table 2.2),

but there were notable exceptions.

Table 2.13 presents the overall direction of the significant relationships between seed set

rates and predictive variables compared to the expected direction of the relationships. Most

consistently, hand pollination increased seed set rate at all sites. Also as expected, seed set

rate nearly always increased with either more local pollen (DWPI) or decreased with

increasing distance to male inflorescences, i.e. female plants closer to males improved seed

set rate. This suggests that pollinator attraction is important in A. aurea and A. ‘lewis’, as

an increase in local pollen supply lead to higher reproductive success. The only exception

to this pattern was A. scott-thomsonii at Hakataramea Pass where seed set was not

significantly affected by local pollen supply in biological terms.

In most cases, removing flowers negatively affected seed set rates, meaning that

inflorescences with more flowers remaining had higher seed set rates with the exception

again being A. scott-thomsonii (Table 2.13). In sites where flower removal was not

performed or where percent flower removal did not explain any variation in seed set rate,
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an increase in natural flowering length was significantly associated with an increase in seed

set rate, reiterating that floral display size is important for pollinator attraction. Figures 2.9

and 2.10 provided no convincing evidence for resource limitation at any site. Also

relatively consistent among sites and in accordance with the expected direction, increasing

seed set rates were significantly associated with taller inflorescences. Both A. aurea sites at

Hakataramea Pass were the exception to this trend however.

Table 2.13 Hypothesised directions of relationships between seed set rate and predictors, and the actual

outcomes from the GLM summary tables. 0 represents a non-significant result for a particular term and blank

spaces indicate terms that do not apply at certain sites. Lewis Pass was used for both the flower removal and

isolated female experiment. This was a non-manipulated isolated female experiment site (i.e. females were

naturally far from males). The double signs next to the term ‘percent flower removal’ indicate where there

were 3 levels of removal. The first sign represents the direction of the relationship between the control (0%)

and 40% removal and the second between 0% and 80% removal. Since percent flower removal and flowering

length are representing essentially the same variable (length of inflorescence with flowers on), and only one

usually explained significantly more variation than the other in each site model, the stronger effect is

highlighted. Site and species abbreviations: BP = Burkes Pass, HP = Hakataramea Pass, LP = Lewis Pass, A.

scott-th = A. scott-thomsonii, and 1 and 2 refer to experiments 1 and 2 (floral display size and isolated female

experiments respectively).

 Expected Flower removal experiment   

 direction    Isolated female experiment

Predictive terms of A. aurea A. aurea A. scott-th A. lewis A. aurea A. aurea

 relationship BP HP HP LP  BP 2  HP 2

Hand pollination + + + +  + +

DWPI + + + –    

Nearest male (m) –    – – –

No. of inflorescences +     – +

Flower removal (%)  – / – –  – / – –  – / – –  – / – –  – / +   

Flowering length (cm) 0 (or +) – 0 – + + +

Inflor. height (cm) + + – + + + –

In summary, pollen provisioning and close proximity to natural pollen sources increased

seed set across almost all species and sites. Moreover, seed set rates increased with taller
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inflorescences, and overall seed set also increased with greater flowering length in A. aurea

and A. ‘lewis’ but not in A. scott-thomsonii.

2.5 DISCUSSION

In terms of the reproductive strategy employed by Aciphylla i.e. irregular mass flowering,

overall high seed set rates seem to suggest that this reproductive strategy works well for

female plants at least in this high-flowering year. Bagged inflorescences had low seed set

rates, confirming that insects are important pollen vectors in Aciphylla. In most cases,

inflorescences with a larger floral display (either taller in height and/or with more flowers

along the rachis) had higher rates of seed set (although the intricacies of these results are

discussed below). Hand pollinated inflorescences with fewer flowers did not have a

significantly higher seed set rate relative to  hand pollinated inflorescences with no flowers

removed, therefore the hypothesis that flower removal would increase resources available

per flower for seed set was not supported. Hence there was no evidence for resource

limitation when defined in this sense. Pollen limitation was evident across all sites because

seed set improved with hand pollination, although the increase was generally small.

2.5.1 Part (A): Floral display at the plant level

2.5.1.1 The importance of insect versus wind as pollen vectors in Aciphylla

Results provide strong evidence that Aciphylla species are pollinator-dependant as the

addition of insect-excluding mesh bags significantly reduced seed set rates to an average of

23%. This is an important finding, as it was unclear in the literature what the relative

importance of wind versus insects as pollinator was (Dawson, 1971; Webb, 1986; Mitchell

et al., 1999). In A. aurea at Hakataramea Pass however, mean seed set inside bags was over

37%. This was unexpectedly high but a possible explanation for high bag seed set rates at

this site is that because this was the last site to be set up, some ovules may have already

been fertilised (due to the more developed stage of some of the flowers) before the bags

were put on. On the other hand, Lewis Pass was the first site where bags were set up, and

this is reflected by the very low levels of seed set that occurred (ca. 9%). The reasons for

the 23% of seeds that were made inside bags at the other sites are unclear but there are a

number of likely explanations. Plants could potentially make seeds inside bags due to
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either: wind pollination (because mesh bags almost certainly excluded insects but possibly

not wind-blown pollen); apomixis (reproduction by seeds formed without sexual fusion); or

by putting bags on after some flowers were receptive and ovules had already been

fertilised. Note that I checked that leaky dioecy (some male flowers inside the female bags)

was not occurring. These possibilities should be explored in more detail to determine

whether any wind pollination or apomixis is occurring, as this could have important

consequences for reproductive assurance of Aciphylla species in pollinator-limited

environments.

2.5.1.2 The importance of plant-level floral display (and how it is measured) on

reproductive success

According to the pollinator attraction hypothesis, increased floral display size could

enhance female fitness as more offspring could be produced (Davila & Wardle, 2002;

Grindeland et al., 2005). If resources are not limiting, female reproductive success can be

increased through greater allocation to floral display (Ehlers et al., 2002) although there

may be a threshold size for females over which increases in size do not increase seed set

due to the costs of offspring provisioning (Vaughton & Ramsey, 1998). This study showed

that overall, decreasing the size of the floral display in terms of reducing flowering length,

decreased seed set. This was true for all species and sites apart from A. scott-thomsonii at

Hakataramea Pass, where seed set was significantly increased with a decrease in flowering

length. Before discussing the importance of floral display for reproductive success in

Aciphylla, we must first consider the ways in which we define and measure floral display.

Results varied slightly when floral display was measured using different methods. For A.

aurea, the factor percent flower removal was a better measure of variation in the amount of

flowers along the stem than the continuous variable flowering length, as it explained

significantly more variation in seed set. On the other hand, variation in seed set for A. scott-

thomsonii and A. ‘lewis’ was explained significantly by flowering length and not percent

flower removal. In some cases, inflorescence height was the best predictor of seed set,

while unexpectedly, number of inflorescences on a plant was rarely a significant predictor

of seed set, hence its exclusion from the site models for experiment 1 (flower removal).

This study therefore emphasises the importance of the methodology and statistical analyses
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employed in this type of research, where results and outcomes may vary depending on how

the variable of interest is defined and approached.

With the exception of A. scott-thomsonii, these results suggest that decreasing floral display

(shorter inflorescences and smaller flowering length) reduces attractiveness to insect

pollinators (tested in Chapter 3). A greater floral display has been associated with

increasing pollinator visits in both hermaphroditic and dioecious plants (Andersson, 1996;

Donnelly et al., 1998) but for self-incompatible and dioecious plants, this is particularly

important given their obligate requirement for outcross pollen. Aciphylla being dioecious

requires out-crossing and this appears to be achieved effectively by having a large floral

display. In A. aurea and A. ‘lewis’, taller inflorescences with more flowers experienced

greater seed set during this high-flowering year. The effects of this were further amplified

when the local natural pollen abundance was greater.

Aciphylla scott-thomsonii on the other hand was more successful when inflorescences were

taller but with fewer flowers. This provides an ideal explanation for the common

occurrence of inflorescences within populations that have extraordinarily tall inflorescences

while often only having a low proportion of the inflorescence bearing flowers (see Fig.

2.1). This appears to be a clever strategy on the plant’s behalf because while being taller

was almost always associated with having higher seed set rates, being taller and having

more flowers was not. Therefore the may plant effectively get away with advertising for

pollinators by simply being taller, avoiding the costs of having to put un-necessary

(expensive) effort in to ovule production. The problem here however, is that accessory

costs per flower (or seed) could potentially become very high for stalks with few flowers,

and it may rapidly become uneconomic if flowering length is reduced and the stalk is large.

This is probably overcome by the fact that the stalk is largely made of carbon, while the

more expensive reproductive structures (i.e. seeds) require more nitrogen (Hogan et al.,

1998). Furthermore, inflorescence structures on Aciphylla, including carpels (in females),

spiny bracts, and stalks (males and females) can contribute to their own carbon and energy

costs by photosynthesising (Hogan et al., 1998). Therefore for species with extremely large

inflorescences such as A. scott-thomsonii and A. glaucescens, because seed set is typically

very high (see Hogan et al., 1998)), this natural tendency for plants to produce tall stalks

with fewer flowers is probably an ideal adaptation for pollinator attraction and is an

optimal trade-off between display size and fecundity.
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These results additionally suggest that there are negative effects on seed set rates in A.

scott-thomsonii on some inflorescences with excess flowers (i.e. there was no further

increase in seed set beyond a certain flowering length, even when hand pollinated).

Alternative reasons for having a high flower-to-fruiting ratio exist and will be discussed in

Chapter 5.

Resource availability, pollen availability, predation, adverse climatic conditions and

genetic conditions may all act to constrain plant fertility (Charlesworth, 1989). Of these

constraints, resource availability and pollen quantity and quality are generally considered

the principal determinants of among-plant variation in female reproductive success (Haig &

Westoby, 1988; Pias & Guitian, 2006). Some authors contend that pollen-limitation is

common (Bierzychudek, 1981; Ackerman & Montalvo, 1990) while others contend that

reproduction in most species is resource limited (Howe & Westley, 1986).  Haig and

Westoby (1988) argued that if floral display size is an optimal investment between

pollinator attraction and fecundity, then a plant should be simultaneously limited by both

resources and pollen. Because seed set rates in treatments with flowers removed (i.e.

increased resources) was not greater than seed set in controls when supplemental pollen

was added, there was no support found for simultaneous resource and pollen limitation in

Aciphylla aurea, A. ‘lewis’ or A. scott-thomsonii. However, seed production in open-

pollinated inflorescences was in most cases, significantly less than in hand-pollinated

inflorescences, suggesting that pollinators are failing to supply maximal pollination

services. By providing supplementary pollen, mean seed set rate was (statistically)

significantly higher, although in most cases, this was probably not biologically as

significant, (i.e. mean seed set rate for hand-pollinated inflorescences was never more than

10% greater than the natural rate in open-pollinated inflorescences). This will be discussed

further in Chapter 5.

2.5.2 Part (B): Population level flowering effort

At the population level, males were removed from a large area, leaving female

inflorescences at varying distances from the nearest pollen source. This tested whether

female plants were sufficiently attractive to encourage visitors from further distances and
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effectively aimed to understand the effects on reproductive success of individuals flowering

out of synchrony during a low-flowering (‘non-mast’) year.

Isolation, measured by the distance to the nearest flowering conspecific male, was a good

predictor of pollen limitation at isolated female experiment sites, because seed set of

individual female plants decreased with isolation. In the site GLM for the isolated female

experiment in A. aurea at Burkes Pass, nearest male was the second most significant

predictor of seed set rate after while natural flowering length. Hand pollination also

significantly increased the seed set rate of isolated females at this site.

At Hakataramea Pass, inflorescence number per plant was a significant predictor of seed

set rate for A. aurea. Female isolation was also important here but much less so than at

Burkes Pass and surprisingly, hand pollination did not significantly increase seed set. It is

likely that the effects of inflorescence number were significant at this site because of the

relatively low flowering densities in that particular area, suggesting that floral display at the

plant-level may play a more important role in pollinator attraction when population

densities are lower. Also at Hakataramea Pass, overall seed set rates for A. aurea were

higher than at Burkes Pass. Because seed set rates were extremely high in A. scott-

thomsonii at Hakataramea, this suggests they were highly attractive to insects. Perhaps by

flowering in synchrony with a highly successful con-generic, A. aurea is reaping the

benefits from being close-by. Alternatively, these differences in fecundity between the two

nearby sites could be attributed to variation in site productivity (but this was not tested

here).

At Lewis Pass, where there was natural female isolation due to the sparse nature of the

population, seed set also significantly decreased with isolation. This was the second-most

important variable after flowering length, in predicting seed set rate. Overall, taller

inflorescences with more flowers were more successful, and there were increased benefits

to this when females were isolated from males.

These results show that the negative effects of isolation and asynchronous flowering are

evident, but remain small in this study. The scale of the experimental design was most

likely too modest to reflect the magnitude of the outcomes likely to occur during natural

low-flowering years. High-flowering densities of Aciphylla remaining outside the
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experimental area possibly also influenced the overall outcome of these experiments.

Natural low-flowering years of course vary in their degree of flowering density, female

isolation and sex-ratio, but the overall scale would generally be larger. The outcomes of

this study however, are indicative of what would occur during a natural low-flowering year

with isolated individuals occurring naturally at much greater distances from conspecifics,

and provide a helpful insight into the negative effects on individuals if they flowered

during a ‘non-mast’ year. The overall conclusion is that the insect pollinators of Aciphylla

appear to move readily over the scales used in this experiment (up to several hundred

metres), albeit with some decrease in presumed pollen delivery rate (equivalent to rates of

seed set), tested in Chapter 3.

Monitoring the effects of pollen limitation on naturally low-flowering years remains to be

tested but would provide a better insight into whether this is an important selection pressure

for masting in Aciphylla species. Ashman et al. (2004) suggest that a larger response to

experimental pollen supplementation should occur in populations or species that experience

greater variance in pollen acquisition or have smaller costs, therefore in masting species

like Aciphylla, this should be expected between years.

2.5.3 Conclusions

The overall importance of floral display and densities for female reproductive success

There is much evidence for floral display size playing an important role in the reproductive

success of many plant species worldwide, (e.g. Andersson, 1996; Kawarasaki & Hori,

1999). Most studies have considered the importance of display size at the plant level, but

there are only a small number that test for the relative importance of floral display at both

the plant level and on a larger scale at the population and community levels (e.g. Kato &

Hiura, 1990; Bosch & Waser, 1999; Grindeland et al., 2005). To date, there have been

almost no studies showing that reproductive success can be achieved through economies of

scale in masting, insect pollinated, dioecious species (but see Forsyth, 2003). Therefore this

research provides one of the first insights that this paradoxical breeding system works

effectively by testing whether both plant and population level factors influence

reproductive success in Aciphylla.
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Haig and Westoby’s (1988) argument that plants should evolve to optimally allocate

resources towards pollinator attraction and seed maturation seems to hold true to a certain

degree for the Aciphylla populations studied here. The way they appear to have achieved

this is through masting. A number of insect-pollinated plant species with large floral

displays suffer pollen limitation (e.g. Wagenius, 2005) but masting may be a strategy that

has evolved to mitigate the effects of this. During this high-flowering year, there were no

effects of resource limitation seen, while the effects of pollen limitation were small.

(Brookes & Jesson, 2006) found similar patterns for Aciphylla squarrosa, another large-

leaved montane relative. At the same time, results from the isolated female experiment

suggested that when female plants are flowering out of synchrony or are isolated, the

effects on reproductive success are negative. If reproductive effort is concentrated into

certain years, at the expense of sacrificing reproductive opportunities during others,  there

should theoretically be plentiful resources allocated to pollinator attraction, pollen

dissemination (in males) and offspring provisioning (in females) that particular year, and

the effects of resource and/or pollen limitation should be negligible.

It was anticipated that in this study, space would be a good analogue for time, in order to

observe fitness gains to individuals in a ‘mast’ (high flowering density) situation, compared

with a ‘non-mast’ situation (asynchronous/isolated flowering female plants), but the overall

effects were generally very small. For example, at Burkes Pass, for the A. aurea isolated

female experiment, the predicted seed set decreased from 59% to 48% over the range of

experimentally induced low-flowering distances (to the nearest male) of 2 to 55 metres.

When this is compared to the size of the huge benefits from masting known to occur in

other systems, through predator satiation effects (e.g. seed set in Chionochloa pallens at

Mount Hutt increased from 4% to 94 % during mast years (Kelly & Sullivan, 1997)), or

wind pollination (e.g. in Nothofagus solandri, seed set is known to increase from <10% to

60% during mast years (Kelly et al., 2001)), it is harder to see the observed increases in

seed set through pollination economies of scale as being large enough to offset the potential

costs of masting in the Aciphylla populations studied here. However, one limitation is that

the range of variation in seed set could only be measured over the range of naturally

produced inflorescence heights (as inflorescence height could not be manipulated). I

predict that we might see more pronounced negative effects in these larger montane

Aciphylla species if inflorescences were significantly smaller (through decreased pollinator
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attraction), or more isolated (through decreased pollinator effectiveness) in space and time,

than the experimental ranges in this study.

Chapter 3 - The effects of floral display and population structure on insect visitation

rates and how this relates to reproductive success

3.1 INTRODUCTION

The reproductive biology of the New Zealand flora has many unusual features: flowers are

often small, structurally simple and not showy. Separate sexes (dioecy and monoecy),

fleshy fruit and mast seeding are unusually common (Webb & Kelly, 1993), and pollination

systems have been characterised as unspecialised, imprecise and entomophilous (Newstrom

& Robertson, 2005). This leads to combinations of reproductive strategies that are unusual

and uncommon worldwide (Newstrom & Robertson, 2005) such as Aciphylla, which has a

mast seeding (Webb & Kelly, 1993), largely dioecious and sexually dimorphic (Webb et

al., 1999), insect-pollinated reproductive system. This is an unusual and interesting system

that on the face seems it would not work well. For a masting species to be dioecious

imposes important constraints on minimum levels of synchrony among the sexes. A

masting species also provides a clumping of rewards in space and time with large

flower/seed crops some years but little or none during other years. This presents an

unpredictable and patchy food supply for the insect pollinators that rely on Aciphylla as a

resource.

For a masting plant population to be successful, individuals need to attain sufficiently high

seed set rates during a mast year. To achieve this requires a pollination system that is

resistant to fluctuations in flower production, and this is usually achieved by wind

pollination (Kelly, 1994). Insect pollinators must be either: a) generalists that are not solely

reliant on Aciphylla for food each year and can forage on a range of other plant species but

are still attracted to Aciphylla when it flowers; or b) specialised insect pollinator syndromes

that have an emergence pattern that coincides with the flowering of Aciphylla. Little is

known about the pollinator guild of Aciphylla and the degree of specialist or generalist

plant-pollinator interactions. Insect visitation rates can be correlated with pollination

success (Proctor et al., 1996). If a large floral display size gives a disproportionate increase
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in pollinator attraction, occasional large flowering years will lead to a higher average

visitation rate (and pollination success), than regular small ones.

Masting species that can attract more insects during a high-flowering year (e.g. through

increasing the size of floral display) would theoretically gain a selective advantage in doing

so through economies of scale. To better understand the causes and consequences of mast

seeding in Aciphylla, we need to know more about the pollination system and the

importance (if any) of having a large floral display.

3.1.1 Aims

Overall, this chapter investigates the relationship among insect visitation rates, floral

display size and seed set rates. It endeavours to elucidate the pollination system in large

montane Aciphylla species. Specific questions are:

• What types of insects are visiting Aciphylla and are they potential pollinators?

• Are insects pollinators attracted to larger floral displays? Is this correlated with any

variation in seed set rate in response to floral display size?

• Does the removal of floral bracts affect visitation rates?

• How does plant-level floral display size (i.e. number of inflorescences per plant)

affect visitation rates?

• Are insects attracted to isolated female inflorescences? Is insect visitation rate

higher when males and females are flowering in closer proximity to each other, and

is this related to plant reproductive success?

• Does insect visitation rate differ among male and female inflorescences?

• How do results from the above questions relate to seed set rate (reproductive

success) in Aciphylla? (Chapter 2).
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3.2 METHODS

3.2.1 Collecting insects

Insects were collected from male and female Aciphylla plants at all sites in order to obtain

information about what some of the insect visitors and potential pollinators to Aciphylla

were. This was carried out during peak flowering time (December and January 2004/2005)

and collections were made on two to four days throughout this period. Insects collected

were those seen either on male or female flowers, yet it was difficult to determine a priori

whether these insects were pollinators or not. Insects observed on flowers were caught

either by direct trapping into glass vials or with a pooter catcher. Samples were preserved

in 70% ethanol solution for subsequent photography, labelled and kept separate by site.

Identification to the lowest possible taxonomic level was carried out.

3.2.2 Insect visitation surveys

Insect observations were conducted on all female plants within the floral display size, bract

removal, and female ‘isolation’ experiments performed in Chapter 2 (see Chapter 2 for full

details of the experimental design). To record insect visits to inflorescences, visitors that

were potential pollinators were grouped into 6 taxonomic categories that could be

distinguished visually from a distance: big flies, hoverflies, small flies, beetles, weevils,

and moths. This was done for practicality and ease of analysis, but does not necessarily

depict accurately the relative roles or efficiencies of the different pollinator groups.  Other

visitors including ladybirds and spiders were also recorded. For all experiments at every

site (excluding Lewis Pass due to weather), insect visits to each inflorescence were

recorded.

Insect visitation is very difficult to measure on inflorescences with large numbers of small

flowers such as Apiaceae (Dafni, 1992). For the purposes of this study, an attractiveness

index (see Dafni, 1992) was employed to measure insect visitation to all the treatment
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inflorescences specified in Chapter 2. For each inflorescence, an ‘instantaneous’ insect

count was used to measure the degree of ‘attractiveness’ to insects. This involved an

observer and a recorder moving between inflorescences, stopping near each only for long

enough at each to record all the insects within each of the six taxonomic categories on that

inflorescence at that particular point in time. Because of the large sample size of plants in

each experiment, and the amount of time taken to move between each one, this method was

preferred above measures of insect visitation rates such as ten-minute counts. Start and

finish times of the instantaneous visitation counts were noted, as well as the date, weather

conditions and any other relevant information such as other plants flowering at the time.

Instantaneous insect visitation observations were performed 3-4 times at each site over a 3

week period during peak flowering season in late December/early January 2004/2005.

3.2.3 Insect visitation to male inflorescences

Male reproductive success can be difficult to measure, especially for plants such as

Aciphylla where each inflorescence can have tens of thousands of flowers. At Burkes and

Hakataramea Pass for A. aurea, and Hakataramea Pass for A. scott-thomsonii, an average of

8 male inflorescences were randomly selected and tagged. Using the instantaneous insect

visitation method outlined above, 3-4 observations were recorded for the male

inflorescences over a 3 week period during peak flowering. These data were compared to

control treatment female inflorescences within the same sites to see whether insect visits

differed between male and female inflorescences.

3.2.4 Insect visitation rates in response to floral display

This insect visitation information was used to test whether differences in pollinator

attraction (i.e. number of insect visits per inflorescence per instantaneous count) were

related to variation in floral display size and flowering densities in Aciphylla. As in Chapter

2, the effect of floral display was assessed at both the individual and the population level.

Specifically, the following comparisons were made:
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1) Total insect visitation rate per inflorescence for female inflorescences vs. flowering

length, where the number of flowers was manipulated in three treatment levels (0,

40 and 80 % removal).

2) Relative insect visitation rate (adjusted to reflect insects per flower) for female

inflorescences vs. flowering length, where the number of flowers was manipulated

in three treatment levels (0, 40 and 80 % removal).

3) Insect visitation rate vs. flowering length (as a continuous variable) for female

inflorescences, including both un-manipulated plants and the manipulated plants

used in (1).

4) Insect visitation rate to female inflorescences vs. height of inflorescence, using all

plants as in (3).

5) Insect visitation rates to female inflorescences in response to bract removal using a

paired design (one inflorescences with all bracts removed and one un-manipulated

inflorescence per plant).

6) Insect visitation rates to female inflorescences in response to the total number of

inflorescences on a plant (as a measure of plant level floral display), using all plants

as in 3.

7) Insect visitation rate to female inflorescences as a function of the distance to nearest

males (a measure of population level floral display) using un-manipulated areas.

8) Insect visitation rate to female inflorescences as a function of the distance to nearest

males (a measure of population level floral display) using areas where male spikes

were removed to create low male density areas.

9) Differences in insect visitation rates to male vs. female inflorescences using

unmanipulated male and female plants
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3.2.5 Statistical Analyses

The insect count data were analysed using single-factor Generalised Linear Models

(GLMs) with a poisson error distribution and a log link function (in R version 1.5.1). For

comparison (2) above, relative insect visitation rates were calculated by multiplying the

number of insect visits to 0, 40 and 80 percent flower removal by 2, 5 and 10 respectively.

These values were chosen to retain integer values for poisson analysis. For all comparisons,

a repeated measures design was used in order to avoid pseudo-replication on the

inflorescence level and from the multiple observation dates. This required F and P values to

be recalculated using inflorescence deviance as the residual deviance, in order to obtain the

appropriate degrees of freedom. To calculate percentage deviance explained (as an

indicator of the biological significance, equivalent to r-squared) the predictor deviance was

divided by the null residual deviance then multiplied by 100.

Local availability of male inflorescences (measured using the Distance Weighted local

Pollen Index (DWPI), see Chapter 2 methods) was tested as a predictor for variation in

insect visitation rates to females in response to female plant-distance to flowering male

plants. Secondly, data from isolated female manipulative experiments were also tested to

see how insect visitation rates varied when female inflorescences were relatively far

(isolated) from the closest flowering males. This was tested using distance to nearest

flowering male. Inflorescence effect and insect visitation round were also considered in the

model therefore, a nested design was employed in this analysis.

Each of the variables were tested using their own individual GLMs (as opposed to large

models including multiple predictive terms in Chapter 2) due to the necessity for the nested

repeated measures analyses to account for variation between each insect observation round.

3.3 RESULTS

3.3.1 What insects are visiting Aciphylla inflorescences?

A large and diverse insect fauna was associated with Aciphylla during flowering. A

summary of all taxa collected from inflorescences during December 2004 and January
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2005 (peak flowering time) is presented in Appendix 2. At all three sites, there were seven

orders of insects found including many species of fly (Diptera) from thirteen families,

several moth (Lepidoptera) species from at least three families, at least two species of

cranefly (Plecoptera) from two families, native solitary bee and wasp species

(Hymenoptera), a number of Hemipterans and a large number of beetles (Coleoptera) from

at least eleven families. Many of these insect taxa could potentially act as pollen vectors in

Aciphylla.

Other insects of significant interest (although possibly not contributing to pollination due to

different life history strategies and morphological structures) were shield bugs

(Heteroptera), at least four aphid species (Homoptera), which are sap-suckers and

potentially seed predators, and four ladybird (Coccinellid) species.

Two giant weevil species (Coleoptera: Curculionidae) were also identified, one being the

endangered speargrass weevil Lyperobius huttoni and the other being an entomologically

significant rediscovery of the “extinct” (category ‘X’ - IUCN endangered species list)

Canterbury knobbled weevil Hadramphus tuberculatus. This was the first sighting of this

species since 1922.

3.3.2 Are insects attracted to larger floral displays?

3.3.2.1 Insect visitation rates and flower removal manipulation

In A. aurea at Burkes Pass and A. scott-thomsonii, insect visitation rate varied significantly

between flower removal treatments (Table 3.1). Un-manipulated inflorescences received at

least 12 times more visitors than inflorescences with fewer flowers in A. aurea at Burkes

Pass, with flower removal explaining over 36% of the variation observed in insect

visitation, suggesting there was a large biological effect. Although there was significant

variation between the 3 levels of flower removal in A. scott-thomsonii at Hakataramea, the

inflorescences with 40% of flowers removed had unexpectedly more insect visitors than

those with no flowers removed. Experimental manipulation of floral display size (0, 40 &

80% removal) had no significant effect on insect visitor numbers in A. aurea at
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Hakataramea Pass. In all three sites, the 80% flower removal treatment consistently

received the least number of insect visitors.

Inflorescences of A. scott-thomsonii consistently had at least five times as many insect

visitors as A. aurea, both on average and in total (Table 3.1). Inflorescences of A. scott-

thomsonii are much larger than those of A. aurea (see Chapter 2) and consequently require

more visits to fertilise the greater number of flowers, therefore it makes sense that this

species receives more insect visits.

Table 3.1 Mean insect visitation to female Aciphylla inflorescences with 0, 40 and 80 per cent of flowers

removed (in units of insects per inflorescence per instantaneous count). The total number of insects seen in

each category over the total sampling period is given in parentheses. Statistical values given are for flower

removal effects on insect visitor numbers from poisson GLMs with flower removal as a factor (percent

variance explained, F statistic, (d.f.), and P value). (Abbreviations: BP = Burkes Pass, HP = Hakataramea Pass

and A. scott-th. refers to A. scott-thomsonii).

Study species Percent Flower Removal % Deviance   

and site 0% 40% 80% explained F (d.f.) P-value

A. aurea BP 0.64 (27) 0.04 (2) 0.02 (1) 36.73 27.77 (2,43) <0.0001

A. aurea HP 0.41 (16) 0.42 (19) 0.12 (5) 7.107 2.436 (2,39) 0.1007

A. scott-th. HP 5.97 (167) 9.58 (230) 3 (72) 18.7 10.985 (2,35) 0.0002

Even after the data were adjusted for flower removal to obtain relative visitation rates (~

visits per flower), mean seed set still remained significantly different among the three

levels of flower removal for A. aurea at Burkes Pass and A. scott-thomsonii at Hakataramea

Pass (Table 3.2). Insect visits to A. aurea at Hakataramea Pass remained non-significant

between flower removal categories. For A. aurea at Burkes Pass, there was still a

significant positive relationship, with more insect visitors to inflorescences with the most

flowers, however percent deviance explained decreased, suggesting the biological

significance of this was slightly weaker. For A. scott-thomsonii differences became more

significant and percent deviance explained increased relative to un-adjusted values (Table

3.1) to over 25%. There was an interesting variation in the proportional insect visitation
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values in response to flower removal treatments for A. scott-thomsonii and A. aurea at

Hakataramea pass, with the highest visitor numbers being observed on the 40% removal

treatment. This trend was not observed for A. aurea at Burkes Pass.

Table 3.2 Mean relative insect visitation to female Aciphylla inflorescences with 0, 40 and 80 per cent of

flowers removed, (scaled for the percentage of flowers remaining on the inflorescence). For raw insect counts

see Table 3.1. Statistical values given are for relative flower removal effects on insect visitor numbers from

poisson GLMs with flower removal as a factor (percent variance explained, F statistic, (d.f.), and P value).

(Abbreviations: BP = Burkes Pass, HP = Hakataramea Pass and A. scott-th. refers to A. scott-thomsonii).

Study species Percent Flower Removal % Deviance   

and sites 0% 40% 80% explained F (d.f.) P-value

A. aurea BP 1.29 0.21 0.21 17.72 8.55 (2,43) 0.00075

A. aurea HP 0.82 2.11 1.19 4.08 1.30 (2,39) 0.28

A. scott-th. HP 11.93 47.92 30 25.18 16.66 (2,35) 0.00001

3.3.2.2 Insect visitation and inflorescence height

Inflorescence height significantly influenced the number of insect visitors to A. aurea at

Burkes Pass and to A. scott-thomsonii at Hakataramea Pass (Table 3.3). The effect was not

significant for A. aurea at Hakataramea. Taller inflorescences tended to attract higher

visitor numbers to both species at all sites, although this was more distinct in A. scott-

thomsonii (Fig. 3.1).
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Table 3.3 Insect visitor numbers to female Aciphylla inflorescences in response to variation in inflorescence

height (cm). Statistical values given are for the effects of inflorescence height on insect visitor numbers from

single-factor poisson regressions with inflorescence height as the sole explanatory variable (percent deviance

explained, F statistic, (d.f.), and P value). Slope and intercept values from the model are given in loge units,

with the fitted model being in the form of insect numbers = e(slope*inflorescence height + intercept). (Abbreviations: BP =

Burkes Pass, HP = Hakataramea Pass and A. scott-th. refers to A. scott-thomsonii).

Study species Mean inflorescence height %
Deviance

and sites ± 1 standard dev. Slope Intercept explained F (df) P-value

A. aurea BP 120.52  +/- 18.6 0.029 -4.85 6.83 8.46 (1,64) 0.005

A. aurea HP 139.56  +/- 25.52 0.012 -2.92 2.24 2.14 (1,57) 0.149

A. scott-th. HP 209.79  +/- 38.63 0.010 -0.50 10.34 11.31 (1,51) 0.001

Aciphylla scott-thomsonii overall received higher visitor numbers than A. aurea. Because

the effect inflorescence height played on visitor numbers in A. scott-thomsonii and A. aurea

at Burkes Pass was highly significant, it is possible to estimate the mean number of insects

likely be present on an inflorescence of a particular height during any particular

instantaneous observation (from the equations in Table 3.3). For the mean A. scott-

thomsonii inflorescence height of 209.8 cm, an average of 4.9 visitors could be expected

per instantaneous observation. For an inflorescence of 248.4 cm (+ 1 standard deviation of

the mean), we would expect 7.2 insects, and a shorter inflorescence of 171.2 cm (- 1 std.

dev.), around 3.4 insect visitors. For the mean A. aurea (Burkes Pass) inflorescence height

of 120.5 cm, an average of 0.26 visitors could be expected per instantaneous observation.

For an inflorescence of 139.1 cm (+ 1 std. dev. of the mean), we would expect 0.44 insects,

and a shorter inflorescence of 101.9 cm (- 1 std. dev.), around 0.15 insect visitors.
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Fig. 3.1 Total number of insect visitors to female Aciphylla inflorescences (summed over all observation

days) in response to inflorescence height. The relationship was significantly positive for A. aurea at Burkes

Pass and A. scott-thomsonii at Hakataramea Pass but non-significant for A. aurea at Hakataramea Pass,

although the direction of the relationship remained positive (see table 3.3).

3.3.2.3 Insect visitation and inflorescence flowering length

Flowering length (the length of the inflorescence stalk with flowers present) was also a

strong predictor of insect visitor numbers to A. aurea at Burkes Pass and A. scott-thomsonii
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at Hakataramea Pass (Table 3.4). The greater the length of the stem with flowers present,

the more visitors there were in total. For A. aurea at Hakataramea, results were non

significant, but at Burkes Pass, flowering length was a stronger predictor of insect visits

than inflorescence height as it had the larger percentage deviance explained (Tables 3.3,

3.4). Figure 3.2 graphically demonstrates the positive relationship between length of

inflorescence with flowers and number of insect visitors.

Table 3.4 Insect visitor numbers in response to variation in flowering length (cm). Statistical values given are

for the effects of length of inflorescence with flowers on insect visitor numbers from poisson GLMs with

length of inflorescence with flowers as a variable (percent deviance explained, F statistic, (d.f.), and P value).

Slope and intercept values from the model are given in loge units, with the fitted model being in the form of

insect numbers = e(slope*flowering length + intercept).  (Abbreviations: BP = Burkes Pass, HP = Hakataramea Pass and

A. scott-th. refers to A. scott-thomsonii).

Study species Mean flowering length % Deviance

and sites ± 1 standard dev. Slope Intercept explained F (df) P-value

A. aurea BP 43.63  +/- 21.95 0.048 -3.74 23.66 43.47 (1,64) <0.0001

A. aurea HP 51.56  +/- 23.41 0.011 -1.89 2.1 2.01 (1,57) 0.162

A. scott-th. HP 87.42  +/- 34.51 0.008 0.95 6.64 6.72 (1,51) 0.012
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Fig. 3.2 Total number of insect visitors to female Aciphylla inflorescences (summed over all observation

days) in response to flowering length (length of inflorescence with flowers on). The relationship was

significantly positive for A. aurea at Burkes Pass and A. scott-thomsonii at Hakataramea Pass but non-

significant for A. aurea at Hakataramea Pass (see table 3.5).

3.3.3.4 Does bract removal affect insect visitation rates?

Bract removal had no significant effect on insect visitor numbers to female inflorescences

at any site (Table 3.5). The trend for A. aurea at Hakataramea Pass (P = 0.093) was

negative – bract removal resulted in a (non-significant) decrease in the numbers of insect
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visits. Although non significant, this trend was supported in A. aurea at Burkes Pass but not

in A. scott-thomsonii.

Table 3.5 Mean insect visitor numbers per female inflorescence per instantaneous observation in response to

bract removal. Statistical values (percent deviance explained, F statistic, (d.f.), and P value) are from poisson

GLMs comparing insect visitor numbers between bract removal treatments and control inflorescences.

(Abbreviations: BP = Burkes Pass, HP = Hakataramea Pass and A. scott-th. refers to A. scott-thomsonii).

Study species Bract removal % Deviance   

and site Control No bract explained F (df) P-value

A. aurea BP 0.81 0.56 1.48 0.66 (1,14) 0.431

A. aurea HP 0.39 0.095 11.79 3.39 (1,11) 0.093

A. scott-th. HP 5.75 6.58 0.55 0.098 (1,8) 0.763

3.3.3.5 Insect visitation and number of inflorescences per plant

There was no significant difference in mean visitation rates to inflorescences situated on

plants varying in inflorescence number, although an upward trend was apparent for A.

aurea at Hakataramea Pass and A. scott-thomsonii (Table 3.6, Figure 3.3).  Aciphylla scott-

thomsonii inflorescences had a greater mean number of visitors in every category than A.

aurea (Table 3.6).
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Figure 3.3 Total insect visitor numbers (per instantaneous observation) on single female inflorescence on

plants with 1,2,3,4 or 8 inflorescences. Lines are fitted from the single factor poisson GLMs in Table 3.6,

with inflorescence number as a variable. All the relationships are not significant (Table 3.6).
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Table 3.6 Mean insect visitor numbers (per instantaneous observation) on single female inflorescence on

plants with 1,2,3,4 or 8 inflorescences. The sample size for each category (i.e. the total number of

instantaneous observations) is listed adjacently in parentheses. Statistical values presented are the output from

single factor poisson GLMs with inflorescence number as a variable (percent deviance explained, F statistic,

(d.f.), and P value). (Abbreviations: BP = Burkes Pass, HP = Hakataramea Pass and A. scott-th. refers to A.

scott-thomsonii).

Species Number of inflorescences on plant % Dev.   

and sites 1 2 3 4 8 explained F (df) P-value

A. aurea BP 0.38 (60) 0.20 (148) 0.33 (64) NA NA 0.051 0.062 (1,65) 0.804

A. aurea HP 0.14 (48) 0.29 (108) 0.33 (21) 0.42 (12) NA 2.031 1.982 (1,61) 0.164

A.scott-th. HP 3.5 (22) 2.68 (22) 7.79 (34) 4.13 (8) 6.58 (12) 3.234 2.458 (1,47) 0.124

3.3.4 Insect visitation to isolated flowering female plants

Unexpectedly, there was no significant difference in insect visitor numbers to female

inflorescences at varying distances from flowering males (using the Distance Weighted

local Pollen Index (DWPI)) for unmanipulated male flowering densities in A. aurea and A.

scott-thomsonii at both study sites. A. aurea – Burkes Pass poisson GLM: F(1,33) = 0.03, P =

0.870, A. aurea – Hakataramea Pass poisson GLM: F(1,34) = 0.3, P = 0.59 and A. scott-

thomsonii – Hakataramea Pass poisson GLM: F(1,21) = 0.12, p = 0.74.

Where flowering plant distributions were manipulated by removing males and effectively

isolating female plants to represent a ‘non-mast’ year, results were also unexpectedly non

significant. A. aurea – Burkes Pass, poisson GLM: F(1,39) = 0.149, P = 0.701, and A. aurea

– Hakataramea Pass, poisson GLM: F(1,34) = 0.139, P = 0.711.

3.3.5 Insect visits to male vs. female inflorescences

At all sites there were significant differences between insect visits to male compared with

female inflorescences, with males receiving a significantly greater average number of visits
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per inflorescence per observation. The most common insect visitors to A. aurea at both

sites were big flies, small flies and weevils and these groups were almost always

significantly more common on male inflorescences (Table 3.7a and 3.7b). Total insect

numbers were particularly high on A. scott-thomsonii males, especially big flies and

hoverflies (Table 3.7c).

Table 3.7 The mean number of insects per inflorescence per observation in each taxonomic category on male

and female Aciphylla inflorescences according to site and species. The total number of insects seen in each

category over the entire sampling period is given in parentheses. Statistical values given are for plant sex

effects within each taxonomic group (as well as the total number of insect pollinators) from single-factor

poisson GLMs (percent variance explained, F statistic (d.f.), and P value). NA values indicate too few data to

run test.

a) Burkes Pass – Aciphylla aurea

Plant sex Big flies Hoverflies
Small
flies Beetles Weevils Moths Total

Male 0.83 (40) 0 (0) 1.13 (54) 0.02 (1) 2.75 (132) 0.06 (3) 19.17 (230)

Female 0.69 (33) 0 (0) 0.17 (8) 0.08 (4) 0 (0) 0.04 (2) 3.92 (47)

% var. expl. 0.4 NA 16.73 NA 38.56 NA 24.9

F (d.f. 1,22) 0.27 NA 11.16 NA 32.28 NA 9.08

P-value 0.61 NA 0.003 NA <0.001 NA <0.001

b) Hakataramea Pass – Aciphylla aurea

Plant sex Big flies Hoverflies
Small
flies Beetles Weevils Moths Total

Male 2.5 (75) 0.3 (9) 0.47 (14) 0.1 (3) 13.07 (392) 0 (0) 16.43 (493)

Female 0.1 (3) 0 (0) 0.1 (3) 0.03 (1) 0.03 (1) 0 (0) 0.27 (8)

% var. expl. 23.39 26.95 8.37 4.28 3.43 NA 38.53

F (d.f. 1,18) 9.03 9.54 2.95 1.29 15.67 NA 15.54

P-value 0.008 0.006 0.1 0.27 0.009 NA <0.001
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c) Hakataramea Pass – Aciphylla scott-thomsonii

Plant sex Big flies Hoverflies
Small
flies Beetles Weevils Moths Total

Male 31.56 (568) 24.11 (434) 0.28 (5) 0.11 (2) 5.56 (100) 0 (0) 61.6 (1109)

Female 3.45 (76) 1.77 (39) 0.45 (10) 0.09 (2) 0.05 (1) 0 (0) 5.8 (128)

% var. expl. 65.98 56.1 1.4 0.19 22.31 NA 65.16

F (d.f. 1,18) 45.51 29.27 0.39 0.05 37.48 NA 39.98

P-value <0.001 <0.001 0.01 0.83 <0.001 NA <0.001

The ratio of mean number of insect visitors per inflorescence per observation for males,

divided by the mean number of insect visitors per inflorescence per observation for females

(Table 3.7) was varied considerably between sites. A. aurea at Burkes Pass had the lowest

ratio (4.9 visitors per male for every one visitor per female), followed by A. scott-thomsonii

(10.6) and A. aurea at Hakataramea (60.9).

3.3.6 How do these results relate to results on seed set rate in chapter 2?

Overall, Table 3.8 shows some significantly similar trends occurring between a number of

variables/factors representing floral display and both reproductive success (seed set) and

insect visitation rates. In general, seed set rates showed similar patterns to that of insect

visitation rates at the majority of sites (for floral display size), in terms of the direction and

significance of the relationships in question (Table 3.8). For instance, a decrease in the

level of floral display (0, 40, 80% flower removal experiment) elicited a decrease in both

insect visitation and seed set rates (to varying extents), while taller inflorescences had a

significant positive effect on both visitation rates and seed set, as did greater flowering

length. There was no significant effect of female isolation on insect visitation rates, but

there was a significant negative effect on seed set rates at most sites (Table 3.8). These

results will be discussed further in Chapter 5.
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Table 3.8 Summary of the results from Chapters 2 and 3 showing the effects of floral display at both the individual (flower removal experiment) and population (isolated

female experiment) level on seed set rate (Chapter 2) and insect visitation rates (this Chapter) at all sites during the summer of 2004/2005. There are six predictive terms.

Where there are gaps, this means that a particular term does not apply to a certain species and/or site. BP refers to Burkes Pass, HP to Hakataramea Pass and LP to Lewis

Pass. Positive and negative signs indicate the direction of the relationship between each predictor and response, with expected direction provided in the first column based on

initial hypotheses. A zero refers to a statistically non-significant result. For percent flower removal, signs on the left side of the dash explain the direction of the relationship

from 0 to 40% and the right side is from 0 to 80% removal. A double sign on one side of the dash refers to the flower removal treatment that shows that strongest effect.

 Expected Flower removal experiment    

Predictive direction of       ‘Isolated’ female experiment

terms relationship A. aurea - BP A. aurea - HP A. scott-thom. - HP A. ‘lewis’ - LP A. aurea - BP A. aurea - HP

Seed set Visitation Seed set Visitation Seed set Visitation Seed set Visitation Seed set Visitation Seed set Visitation

  rate rate rate rate rate rate rate rate rate rate rate rate

Hand pollination  + +  +  +   +   +  

Pollen index  + + 0 + 0 – 0     

Nearest male – –  – 0 – 0

% Flwr removal – / – –  – / – –  –/–  – / – – 0  – / – –  +/–  –/+     

Flowering length  + – + 0 0 – + +  +  +  + + 

Inflor. height  + + + – 0 + + +  + 0 – 0
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3.4 DISCUSSION

3.4.1 The insect fauna of Aciphylla: a generalist or specialist pollination system?

A large number and diversity of insects were collected on flowering Aciphylla, yet without

further study, it is difficult to ascertain the relative roles and pollination efficiencies of the

different groups. Pollinator spectra for many plant species range across orders of insects

(beetles, flies, bees, moths and butterflies) classes of animal (insects, birds and mammals)

and pollinations agents (wind, water and animal) (Herrera, 1996; Ollerton, 1996). Based on

the ready availability of nectar and pollen, and on the large numbers and great diversity of

insect visitors, species in the Apiaceae have been labelled promiscuous (Lindsey, 1984),

which also seemed to hold true for Aciphylla aurea and A. scott-thomsonii in this study.

The distinction between floral visitors and effective pollinators, however, is extremely

important and is rarely discerned (Lindsey, 1984; Newstrom & Robertson, 2005). Although

it appears that a range of insects may pollinate New Zealand Apiaceae members such as

Aciphylla, this may not be the case. Some taxonomic or functional groups may serve to be

more effective and efficient than others.

This study provides the first recorded comprehensive description of the insect fauna

associated with flowers of lower montane Aciphylla species (but see Primack, 1983), but is

not an exhaustive list as collections were limited to diurnal visitors over a short period

during only one season, at three sites, using only one trapping technique.

At all three sites, there were seven orders of insects found. By far the most abundant and

ubiquitous of these were the Dipterans (flies) with a range of species belonging to thirteen

different families collected. This was probably the most significant pollinator group due to

their extremely large numbers at each site, and because many flies are known to be

opportunistic feeders on pollen and/or nectar and are important pollinators worldwide

(Newstrom & Robertson, 2005). Important pollinator families in New Zealand are bristle

flies (Tachinidae) and hoverflies (Syrphidae) (Newstrom & Robertson, 2005), which can

carry significant pollen loads on their gena (or cheeks) and perhaps other families such as

Bibionidae and Calliphoridae (Primack, 1983), all of which were collected on Aciphylla

during this study. Among other insect groups found that are likely to contribute to pollen
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movement in Aciphylla were: moths, craneflies, native solitary bee species, native wasps,

and a large number of beetles, although there have been very few studies of the

effectiveness of beetles as pollinators. They are less mobile and may not have as important

a role as bees, flies and moths. Godley (1979) listed weevils as pollinators of Aciphylla but

the effectiveness of other small beetles has not been investigated (Newstrom & Robertson,

2005).

Although many of these insects are potential pollinators, it is possible that only a small

proportion of these species are significantly contributing to the movement of pollen from

male to female plants. Lindsey (1984) tested insect floral visitation for plants of nine

populations in a comparative study of three species of the closely related Apioid genera,

Thaspium and Zizia. Results showed that, despite a high diversity of insect visitors,

generally 1-4 species accounted for at least 74% of the pollinations in all populations.

The wide variety of potential pollinators found on Aciphylla in this study suggests that

these species are adapted to pollination by a suite of generalists. However, further work

should be done to test the relative importance of insect pollinators in Aciphylla, as the

presence of specialist pollinator(s) cannot be ruled out from the findings in this study.

3.4.2 Why are insects more abundant on male inflorescences, and are females

receiving sufficient visits?

All experiments so far have been largely concerned with female reproductive success, i.e.

proportion of seed set. “Success” in males however can be difficult to define and measure

(Sutherland & Delph, 1984). Methods of measuring male reproductive success include

measuring the amount of pollen being carried away from the flowers, or frequency and

duration of pollinator visits to flowers. On species such as Aciphylla with tens of thousands

of flowers on a single male inflorescence, this can be difficult therefore a rough measure of

insect visitation to male flowers was employed here. One thing that did become evident

however was that on average male inflorescences received a much greater number of insect

visitors during the survey than females.
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So why is there an apparent bias towards insects visiting male rather than female

inflorescences? Male bias in visitation has been reported for several dioecious and

monoecious species (Bierzychudek, 1987; Le Corff et al., 1998). The ability of pollinators

to discriminate between male and female flowers has been observed by many, (e.g. Bawa,

1977; Bierzychudek, 1987; Armstrong, 1997; Le Corff et al., 1998). Baker (1976) suggests

that visits to female flowers are often made only by mistake, and predicted that

discrimination against female flowers should be common amongst species with unisexual

flowers. In this case, female flowers presumably offer less reward to insects than do males,

because they are usually incapable of producing pollen. Male flowers in this case would

produce not only copious quantities of pollen, but may also produce nectar, offering twice

the reward (Holland & Fleming, 2002; Orellana et al., 2005) to species that collect pollen.

Therefore, under these circumstances, it seems logical to assume that insects may be more

attracted to male inflorescences, especially if their floral display is generally larger,

showier, and more rewarding. Realistically however, insect visitation rates between male

and female flowers may depend on the quality of the rewards offered and on the insect’s

preferences which varies greatly between plant species and insect species. Some species

produce different volumes of nectar by sex, e.g. Fuchsia excorticata (Delph & Lively,

1989) and consequently that sex would ultimately be more attractive to nectar feeders but

not pollen feeders.

Possible reasons for the discrepancy between insect visitor numbers to male versus female

inflorescences in Aciphylla could be attributed to the female floral reward. Primack (1983)

reported that insects gather nectar from staminate (male) flowers, as well as pollen in A.

scott-thomsonii, however whether pistillate (female) flowers in Aciphylla offer nectar

rewards remains to be testified. Presuming pistillate flowers of Aciphylla do offer nectar

rewards, the timing and availability of nectar production and quality are not known. Nectar

is not a product of a plants sexual system but a reward offered to a foraging agent (Dafni,

1992), i.e. a secondary sex characteristic (Delph, 1999). There may be daily variation in

nectar production, due to weather or temperature changes, or production at a certain time of

the day such as morning (Proctor et al., 1996). If in Aciphylla, nectar is being produced by

the stylopodium only at a certain time of day, for example, during early morning, nectar-

feeding insects are likely to be more attracted to these flowers during peak production

times (Vaughton & Ramsey, 1998; Kudo & Harder, 2005). It is possible that the timing of

insect observations conducted during this study (which were usually between 10 am and 2
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pm) may not have encompassed peak nectar production times, and hence attracted fewer

insects, potentially causing the male-bias in visitation rates. Incorporating temporal

variation in observation times should be an important point of consideration for future

research in this area.

Overall, it seems that in Aciphylla, males probably offer both pollen and nectar and females

are presumed to only produce nectar. This suggests that because males offer a larger variety

of rewards to pollinators, they consequently attract a larger diversity of insect feeders that

have different feeding preferences, and this could explain the male-bias insect visitation

rates obtained in this study.

3.4.3 How do the effects of floral display on insect visitation rates relate to seed set

rates?

3.4.3.1 Insect visitation and floral display

Although insect visitation rates were significantly influenced by floral display size, it

depended on the measure of floral display and methodology used to measure visitation. In

both A. aurea (Burkes Pass) and A. scott-thomsonii (Hakataramea Pass), floral display

affected insect visitation rates when it was measured using inflorescence height, flowering

length (the length of stem with flowers on), and flower removal (0, 40 & 80 % flower

removal experiment). These significant outcomes did not always conform to the expected

direction of the relationship however. At Hakataramea, visitation rates were significantly

higher for 40% flower removal – an inflorescence of intermediate floral display. At this

site, insect observations were only performed twice due to weather and time limitations.

The most statistically significant outcome was for A. aurea at Burkes Pass where visitor

numbers significantly increased with increasing floral display size. Observations were

carried out four times at this site, and results suggest that at Burkes Pass, floral display

plays an important role in attracting pollinators, and this subsequently affected seed set.

Studies supporting an increased floral display size increases pollinator attraction are many

(e.g. Donnelly et al., 1998; Kawarasaki & Hori, 1999; Lortie & Aarsen, 1999; Abe, 2000;

Grindeland et al., 2005). The magnitude of this effect is relatively small in this study
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however, and further research is needed to test visitation rates in more detail to see if the

effect of inflorescence height on pollinator visits per flower is evident.

Visitation rates did not vary significantly when floral display was represented by number of

inflorescences per plant, although there was a suggestive trend towards an increase in

inflorescence number attracting more insects. If insects were visiting taller flowers

significantly more often, one would also expect insects to be more attracted to plants with

many inflorescences due to the benefits gained from minimising foraging efforts for a

concentrated food source (Collevatti et al., 1998). This was not found during this study, as

insect visitors were generally few and inflorescences were usually growing in dense

clumps, probably not limiting insect preferences for localised resources.

3.4.3.2 Are isolated flowering females reproductively successful?

For animal pollinated species, relationships between plant density and pollination rates

depend on the functional and behavioural responses of pollinator visitation to plant density

(Kelly, 1994). Results showed that the density of male inflorescences around females

played an important role in determining seed set rate, with the isolated females receiving

significantly lower levels of seed set than those flowering closer to males. However, the

frequency of insect visits to inflorescences at varying distances to males was not

significantly different. A number of studies show similar findings (e.g. Roberts & Boller,

1948; Grindeland et al., 2005). This would suggest that the reduction in seed set with

increasing distance to nearest male is a result of a decline in the efficiency of the

pollinators (Robertson, 1992; Grindeland et al., 2005) in successfully cross-pollinating

Aciphylla, rather than a decline in the numbers of pollinator visits as such (see Chapter 5

for further discussion).

3.4.4 Conclusions

Overall, seed set rates were high and insect visitation rates were low in this study.

However, having for instance, one insect on the inflorescence at any one time could be

enough if the flowers have a 2 week life and each insect crawls over 25 flowers Therefore,
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the numbers look low but may be sufficient for pollination. This remains to be examined in

detail. In many natural populations, seed set can be limited by the effectiveness of

pollinators (Bierzychudek, 1987). It seems unlikely, given the naturally high seed set rates

found in this study, and only minor or no increases in seed set when provisioned with

supplementary pollen, that pollinators are ineffective. This is of course, if the reproductive

system in Aciphylla is solely dependant on insects as pollinators. If there are other methods

by which Aciphylla are pollinated and can set seed, then this may help explain why when

visitor numbers are low, seed set can still be high. The questions remaining to be answered

therefore, are: how do Aciphylla manage to achieve such a high seed set rate when insect

visits appear to be low, and why do inflorescences in bags still have a greater than zero

seed set? Further research should be directed towards understanding whether seeds can still

be made without fertilisation, i.e. by apomixis, and should test for the effectiveness of wind

pollination. The implications of this will be discussed further in chapter 5.
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CHAPTER 4 – Sex-ratios, dioecy and sexual dimorphism in Aciphylla

4.1 INTRODUCTION

Dioecy exists in about 6% of the world’s angiosperm flora and has arisen independently in

many families (Sakai & Weller, 1999). In the Apiaceae, almost all genera are

hermaphroditic (Webb, 1981) and dioecy is unusual for the family; yet some New Zealand

Apioid genera – Aciphylla, Anisotome and Lignocarpa - have developed separate sex plants

(Webb, 1979) (along with two Australian Aciphylla species (Pickering, 2000)). There are a

number of hypotheses that exist to explain why dioecy evolved from hermaphroditism, (not

the focus of this research but see Charlesworth, 1999; Sakai & Weller, 1999). Dioecious

breeding systems usually exhibit sexual dimorphism (Delph, 1996; Eckhart, 1999). New

Zealand possesses a high number of sexually dimorphic taxa, along with Hawaii, (Webb &

Kelly, 1993) - yet another plant trait that appears particularly prevalent in island floras

(Webb et al., 1999). The frequency of sexually dimorphic genera is estimated at 18%,

higher than for most continental areas (Lloyd, 1985; Renner & Ricklefs, 1995).

Sexual dimorphism in plants refers to differences in primary and secondary sex

characteristics among plants that are dimorphic in gender (Delph, 1999) such as dioecious

species. Primary sex characteristics are traits such as gonads and copulatory organs that are

essential for reproduction (Darwin, 1877), (which are necessarily dimorphic), while

secondary sex characters are traits that are not directly connected with reproduction (Geber,

1999). The latter include reproductive sex characters such as features of flowers or

inflorescences (e.g. size and number) that affect male and female mating success or fertility

(Eckhart, 1999), as well as ecological life history traits (e.g. flowering phenology, age at

first flowering, and mortality) (Delph, 1999), and vegetative morphology, physiology and

competition (Lloyd & Webb, 1977; Bawa, 1980; Dawson & Geber, 1999; Delph, 1999;

Geber, 1999). Variation in any of the aforementioned traits between male and female plants

can be considered as sexual dimorphism, and there is considerable evidence for this in

dioecious plants in both reproductive and ecological secondary sex characters (Lloyd &

Webb, 1977). Sexually dimorphic traits have been reported for Aciphylla species (e.g.

Godley, 1964; Lloyd & Webb, 1977; Dawson & Le Comte, 1978; Webb, 1979; Webb &

Lloyd, 1980; Pickering, 2000, 2001; Pickering & Hill, 2002; Pickering & Arthur, 2003).
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See Figure 4.1 for morphological variation in floral display between male and female

Aciphylla aurea plants.

Fig. 4.1 Male (left) and female (right) plants of Aciphylla aurea showing typical variation in display size,

inflorescence number and showiness of males and females present within a population. This represents an

example of sexual dimorphism in floral display between the sexes, observed in most species of this dioecious

genus Aciphylla.

Sexual dimorphism can arise and be maintained in populations through natural selection

and sexual selection (Darwin, 1877; Lloyd & Webb, 1977; Bawa, 1980; Delph, 1999).

Sexual selection involves the differential effect on individuals of selection for male

function (pollen production and dissemination) and female function (seed production and

dissemination) (Bateman, 1948; Lloyd & Webb, 1977; Bawa, 1980; Delph, 1999). Sexual

selection theory proposes that males of dioecious plants are limited by the number of mates

(Bateman, 1948) resulting in intra-sexual competition among males (Eckhart, 1999), while

for females there is a trade-off between allocating resources to attracting mates and seed

production (Haig & Westoby, 1988) (see Chapter 2). This is thought to lead to sexual

dimorphism in secondary sex characters such as floral display and other life history traits

(Lloyd & Webb, 1977; Dawson & Geber, 1999).
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Pickering (2000) suggests specific examples of traits thought to be the result of sexual

selection: male-biased sex ratio, younger flowering of male plants, earlier flowering of

male plants, larger floral display in males, and allocation of more resources to reproduction

at the time of flowering in males, and the overall allocation of more resources to

reproduction by females (see Pickering, (2000) and references therein).

In sexually dimorphic dioecious flowering plants, male-biased sex ratios have been

reported for a wide variety of species (Darwin, 1877; Godley, 1964; Lloyd & Webb, 1977).

There have also been a number of hypotheses proposed to explain this deviation from

equality. These include gender-specific patterns of mortality due to different costs of

reproduction in females versus males (Lloyd & Webb, 1977), local mate competition (de

Jong et al., 2002), differential herbivory of the sexes (Ågren et al., 1999), selfish genetic

elements, (Delph, 1999), site productivity and environmental gradients (Pickering & Hill,

2002), among others (see Lloyd & Webb, 1977; Delph, 1999; Pickering & Hill, 2002).

It is thought that as a result of resource limitation, alpine dioecious species may exhibit

sexual dimorphism in life history traits, and as a result of this, populations of alpine

dioecious species may display a male-biased sex ratio (Pickering, 2000). As mentioned

above, Aciphylla populations have been previously reported to exhibit sexual dimorphism

in the floral display of male and female inflorescences in New Zealand (Webb & Lloyd,

1980) and Australia (Pickering, 2000). Webb and Lloyd (1980) measured 53 populations of

20 predominantly-alpine New Zealand apioid Apiaceae species, and reported that of the six

species of Aciphylla studied, the larger species A. scott-thomsonii and A. aurea exhibited a

significantly male-biased sex ratio and had significantly more inflorescences per plant. This

chapter further explores work carried out by Webb & Lloyd (1980) on the sex ratios of

Aciphylla, and aims to quantify some of the sexually dimorphic characters of three New

Zealand large-leaved montane Aciphylla species, focussing on four specific sites at similar

altitudes within the wider Canterbury region of New Zealand.
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4.1.1 Objectives

The previous two chapters of this study investigated the ecological intricacies of a large

floral display in Aciphylla and the paradoxical combination of mast-seeding, dioecy and

insect-pollination, with particular focus on female fecundity. This chapter aims to explore

the evolutionary impetus for sexual dimorphism and floral display in Aciphylla.

Specifically the aims of this study were:

1) To determine the plant- and inflorescence- sex ratio of dioecious Aciphylla

populations during a high-flowering year for multiple sites and species

2) To investigate and quantify some of the sexually dimorphic characteristics present

in Aciphylla by investigating whether certain plant or inflorescence traits varied

with plant gender.

3) The above measurements are made during only a single flowering season, capturing

a snap-shot of population sex ratios and sexually dimorphic traits. It has been

hypothesised that costs of reproduction are greater for females (Webb & Lloyd,

1980), therefore if male plants can flower more often than females, as this

hypothesis suggests, we are more likely to overestimate the number of males in a

population. The effects of single-year versus long-term sampling to obtain

population estimates of sex ratio will be discussed.

4.2 METHODS

4.2.1 Measuring population plant and inflorescence sex ratios

Sex ratios were recorded in a single year for four populations of three large-leaved montane

Aciphylla species at three different sites in Canterbury, New Zealand (see Chapter 2 for

details on site and species information). Counting was carried out during the summer of

2004/2005 during a relatively high-flowering year (except for Lewis Pass). Twenty-by-

twenty metre plots were set out at 2 or 3 random locations within each population to obtain
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sample sizes of at least 200 plants within each site. Only flowering individuals were

counted, because the sex-ratio of the remaining plants at each site without inflorescences

could not be determined (as non-flowering Aciphylla plants are impossible to sex in the

field). The proportion of flowering to non-flowering plants was not counted. Determining

the sex of each flowering plant was not difficult during flowering or fruiting in dioecious

Aciphylla populations, therefore counts were made later in the season to include all plants

that flowered that summer. The methods outlined above were carried out at all sites except

for Lewis Pass, where the population was naturally sparser with fewer plants. Instead, the

sex ratio of all flowering plants of A. ‘lewis’ in the entire Lewis Pass population was

obtained.

In addition to the sex of the plants, the number of inflorescences per plant was counted.

From these data, the average number of inflorescences per plant (un-weighted mean of

male and female averages) was obtained, along with the inflorescence sex ratio of the

population. Population plant and inflorescence sex ratios were obtained by calculating the

percentage of males and the percentage of females in the population (of the plants that

flowered).  Chi-squared tests of equality were performed to examine whether sex ratios

deviated significantly from the expected ratio of 50:50.

4.2.2 Measuring sexual dimorphism in plant and inflorescence traits

Approximately eight individual plants from both sexes were selected randomly from each

site (excluding Lewis Pass), and plant and inflorescence measurements were made. These

included plant height, plant area, rosette number per plant, inflorescence height (total

length of inflorescence from base to apex) and flowering length (length of inflorescence

with flowers on). These data were used to calculate whether there were differences in plant-

level traits (sexual dimorphism) between sexes, species and sites. Analysis of Variance

tests (ANOVA) were used to compare mean plant trait values between male and female

plants. Inflorescence traits such as flower number per inflorescence and perianth size were

not measured quantitatively during this study, but general observations of these were made

and an extensive literature search was carried out in order to examine whether there was

evidence for sexual dimorphism in other Aciphylla species.
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4.3 RESULTS

4.3.1 Sex ratios

There was a preponderance of flowering male plants in all populations studied (Fig. 4.2),

resulting in male-skewed plant sex ratios. For Aciphylla scott-thomsonii at Hakataramea

Pass, the plant sex ratio was significantly more male-biased than the other sites (Table 4.1),

with almost 68% of the flowering plants being male and 32% female. There were also

significantly more male than female plants in the A. aurea population at Hakataramea. The

sex ratios for A. ‘lewis’ at Lewis Pass and A. aurea at Burkes Pass were not significantly

different from 1:1 at these sites (Fig. 4.2 and Table 4.1), however, the trend was still

towards male-bias.
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Fig. 4.2 Proportion of male (■) and female (□) flowering plants in each population of Aciphylla species. BP

= Burkes Pass, HP = Hakataramea Pass and LP = Lewis Pass, and A. scott-th. refers to A. scott-thomsonii. (n

= total number of plants counted at each site).

The total inflorescence sex ratio for most populations was even more male-biased than for
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Hakataramea Pass with over 75% of the inflorescences sampled within the population

being male. This was also particularly significant for A. aurea at Hakataramea Pass, with

more than 63% male inflorescences and was also significant for A. aurea at Burkes Pass.

Again, the trend towards male-bias was present but not significant at Lewis Pass.

Table 4.1 Percentage of males for four populations of flowering Aciphylla in Canterbury. Population-level

plant and inflorescence sex ratios are shown for each site, with sample size, percentage of males, Chi-square

statistic and P-values showing significant deviation from 50:50 sex ratios. BP = Burkes Pass, HP =

Hakataramea Pass and LP = Lewis Pass, and A. scott-th. refers to A. scott-thomsonii.

 Plant counts Inflorescence counts
Species and site Sample size % Males χ2 P-value Sample size % Males χ2 P-value

A. aurea BP 252 54.37 1.92 0.17 362 57.73 8.66 0.003
A. aurea HP 213 57.28 4.51 0.03 357 63.03 24.23 <0.0001
A. scott-th. HP 236 67.8 29.9 <0.0001 503 75.35 129.27 <0.0001
A 'lewis' LP 53 52.83 0.08 0.77 77 55.41 0.86 0.35
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Fig. 4.3 Proportion of male (■) and female (□) inflorescences, measured as the percentage of male and

percentage of female inflorescences (out of a total of n inflorescences). BP = Burkes Pass, HP = Hakataramea

Pass and LP = Lewis Pass, and A. scott-th. refers to A. scott-thomsonii.
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There were a significantly greater number of inflorescences per male plant than for females

for A. aurea at Burkes Pass, (ANOVA: F (1,250) = 4.39, P = 0.04) and at Hakataramea

(ANOVA: F (1,211) = 6.35, P = 0.01), and for A. scott-thomsonii at Hakataramea Pass

(ANOVA: F (1,234) = 10.72, P = 0.001) (Fig. 4.4). At Lewis Pass, inflorescence number was

not significantly different between sexes (ANOVA: F (1,51) = 0.43, P = 0.51).
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Fig. 4.4 Mean number of inflorescences per male (■) and female (□) plant (± 1 SE) for all flowering plants

counted within each population (± 1 SE). BP = Burkes Pass, HP = Hakataramea Pass and LP = Lewis Pass,

and A. scott-th. refers to A. scott-thomsonii.

4.3.2 Sexual dimorphism in plant and inflorescence traits

There were almost no significant differences between mean male and female plant

dimensions, including plant height, plant area, and the number of rosettes per plant at any

site (Table 4.2). There was one significant but weak exception, with female plant area

being greater than males for A. aurea at Hakataramea Pass.
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Table 4.2 Mean plant dimensions for male and female Aciphylla plants at three populations in Canterbury,

including mean plant height (cm), mean plant area (cm2) and number of rosettes per plant. BP = Burkes Pass,

HP = Hakataramea Pass and LP = Lewis Pass, and A. scott-th. refers to A. scott-thomsonii.  Summary

statistics from Analysis of Variance (ANOVA’s) performed for each site and each variable. Significant P-

values (at 0.05) are highlighted in bold.

 Plant height (cm) Plant area (cm2) Rosettes per plant

Plant sex
A. aurea

BP
A. aurea

HP
A. scott

 HP
A. aurea

BP
A. aurea

HP
A. scott

HP
A. aurea

BP
A. aurea

HP
A. scott

HP

Female 45.8 45.23 79.71 5654 6358 18123 2.23 2.63 3.64
Male 47.75 42.67 77.5 7847 3946 17102 3.75 1.67 4.25
% var. expl. 0.4 1.4 0.3 5.45 8.1 0.1 7.68 0.06 0.76
F (d.f.) 0.18(1,43) 0.61(1,44) 0.09(1,30) 2.47(1,46) 4.04(1,43) 0.03(1,30) 3.49(1,42) 2.61(1,44) 0.21(1,27)

P-value 0.67 0.44 0.76 0.12 0.05 0.86 0.07 0.11 0.65

There were no significant differences in mean inflorescence height between male and

female plants at all sites, although male inflorescences were consistently taller on average

than females (Table 4.3). Male plants on average did however have significantly greater

flowering length than females, with the effect being strongest for A. scott-thomsonii at

Hakataramea Pass.

Table 4.3 Mean inflorescence height (cm) and flowering length (cm) of male and female Aciphylla plants at

three sites in Canterbury, BP = Burkes Pass, HP = Hakataramea Pass and LP = Lewis Pass, and A. scott-th.

refers to A. scott-thomsonii.  Summary statistics from Analysis of Variance (ANOVA’s) performed for each

site and each variable. Significant P-values (at 0.05) are highlighted in bold.

 Inflorescence height (cm) Flowering length (cm)
Plant sex A. aurea BP A. aurea HP A. scott-th HP A. aurea BP A. aurea HP A. scott-th HP

Female 74.11 84.19 128.78 56.5 60.12 69.08
Male 80.78 94.33 141.5 73.22 73.58 92.63
% var. expl.        0.85 3.88 4.03 9.85 11.93 26.61
F (d.f.)       0.66 (1,78)        3.15 (1,78)       1.39 (1,33)      8.2 (1,75)       8.13 (1,60)       11.60 (1,32)

P-value        0.42 0.08 0.25  0.005  0.006 0.002
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Table 4.4 compares plant sex ratios found during this study to Lloyd and Webb’s (1980)

results from one-year sex ratio data from six populations of dioecious Aciphylla species in

the South Island of New Zealand. All species except A. pinnatifida exhibit a preponderance

of male plants, while it is mostly the larger species: A. aurea and A. scott-thomsonii which

exhibit a significantly male-biased sex ratio (Table 4.4).

Table 4.4 A comparison of single-year plant sex-ratio data for six species of dioecious Aciphylla in the South

Island of New Zealand between this study and data published in Webb and Lloyd, (1980). Only plants

flowering were counted due to the inability to sex non-flowering plants. *(P<0.05), **(P<0.01),

***(P<0.001), calculated using Chi-square tests on hypothesis of equality.

Species Site Sample size % Males Source  

A. monroi Robert Ridge, Nelson 117 61.8** Webb & Lloyd, 1980
A. poppelwellii Rock & Pillar Range, Otago 103 55.3 Webb & Lloyd, 1980
A. pinnatifida Old Man Range, Otago 202 49.5 Webb & Lloyd, 1980
A. aurea Mt. St. Patrick, Canterbury 152 55.6* Webb & Lloyd, 1980

Mt. St. Patrick, Canterbury 135 51.9 Webb & Lloyd, 1980
Burkes Pass, Canterbury 252 54.8 This study
Hakataramea Pass, Canterbury 213 57.3* This study

A. scott-thomsonii Old Man Range, Otago 157 61.8** Webb & Lloyd, 1980
Hakataramea Pass, Canterbury 236 67.8*** This study

A. 'lewis' Lewis Pass, Canterbury 53 52.8 This study  

Further non-quantitative observations made during the flowering season suggested that

male flowers had markedly whiter and larger petals than female flowers. Male flowers

were ‘showy’ and more apparent from a distance than the more drab-coloured females (see

Fig. 4.1), a characteristic especially prominent in A. aurea. It was also observed during the

summer field season of 2004/2005 that male plants commenced and completed flowering

mostly before female plants suggesting that flowering phenologies are also different

between the sexes.
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4.4 DISCUSSION

4.4.1 Male-biased sex ratio in Aciphylla

There was a significant male bias in plant sex ratio in A. aurea and A. scott-thomsonii

populations at Hakataramea Pass, and a similar (though non-significant) trend towards this

at Burkes Pass and Lewis Pass. Population inflorescence sex ratios were also significantly

male-biased at all sites apart from Lewis Pass. Aciphylla scott-thomsonii showed the most

marked predominance of males compared to females for both plant and inflorescence sex

ratio within the Hakataramea Pass population, while A. ‘lewis’ exhibited a sex ratio closer

to 50:50. There is much evidence for male-biased sex ratios in dioecious species and it is

significantly more common than equal or female-biased ratios (of the species for which sex

ratio data is available) (Delph, 1999).

4.4.2 Apparent vs. real sex ratio

Is this simply an apparent sex ratio that we observe during one flowering year amongst

only the flowering individuals, or does this reflect the real sex ratio of all plants in a

population? Other researchers have attempted to determine sex ratios in Aciphylla in the

past and the answer to this question still remains unclear. Some researchers may have

underestimated the frequency of male plants within Aciphylla populations; e.g. Godley

(1964) reported a female-biased sex ratio during one summer for A. aurea. After anthesis in

large Aciphylla species, male inflorescences fall over soon after flowering whereas female

inflorescences remain erect and are more easily observed (Webb & Lloyd, 1980), and when

sex-ratio counts are performed late in the season, it would be easy to underestimate the

number of males. Others however, have similarly reported significant male-biased sex

ratios for Aciphylla populations (e.g. Lloyd & Webb, 1977; Webb & Lloyd, 1980). Under

the “higher costs of reproduction for females” hypothesis, it is easy to predict that males

should be more “optimistic” about flowering than females, because males can take a

chance of making some flowers in a low year in case there is a female to pollinate. Females

should be selected to more strongly concentrate their flowering in high years when

pollination is assured. Therefore, it can be predicted that low-flowering years should have

strong male-bias, but the highest flowering years should mirror the actual sex ratio of plants
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on site, or even show an apparent female bias. Hence why single-season counting

techniques should be replaced with long-term studies to map and eventually sex all

individual plants within a population to test whether the male bias in sex ratio is apparent

or real.

A number of researchers have shown from one-year experiments, strongly male-biased sex

ratios for American Holly Ilex opaca (Colville, 1932; Barton & Thornton, 1947; Ackerman

& Creech, 1965). These were largely in populations where less than 50% of the plants were

flowering. Nearing (1947), from observation, suggested that the preponderance of male

plants probably originated from studies of young seedling populations of which many of

the female plants had not yet flowered. Clark & Orton (1967) demonstrated with a seven

year study that in fact, male American Holly plants did flower at a younger age than

females, and as seedling age increased, flowering male and female plants occurred at a

more equal frequency. This may be true for a cohort of even-age young plants reaching

first-flowering age, however, in mixed-age populations in the field, the possible higher

mortality of female plants may come to give an increasing (and real) skew to the

population. This example demonstrates the importance of long-term studies, waiting for all

plants within the population to flower, in order to determine actual population structure and

real sex ratios. A similar situation is likely to be the case for Aciphylla as male plants

flower more often (Webb & Lloyd, 1980) due to the lower costs of reproduction. The

higher costs of reproduction in female Aciphylla, compared with males, was not directly

investigated in this study, however the fact that female inflorescences tended to have fewer

flowers (for a given height) suggests that the costs of reproduction was higher for females

than for males (discussed further in Chapter 5).

Lloyd & Webb (1977) provided evidence for different survival of the sexes for A. scott-

thomsonii with a male-biased sex ratio, where - among smaller plants the sex ratio was

close to 50:50, and that there were many small plants that did not flower that year. Webb &

Lloyd (1980) suggest that these non-flowering plants may account for part of the male-

biased ratio in the whole population, because more of them are likely to be females than

males since females flower less often and are usually larger at first flowering (Lloyd &

Webb, 1977). Furthermore, among larger plants that all flower, there is a distinct male-bias

– either indicating that males grow more quickly than females, or they survive longer

(Webb & Lloyd, 1980).
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There is much evidence for real male-biased sex ratios in dioecious species and it is

significantly more common than equal- or female-biased ratios (of the species for which

long-term sex ratio data is available) (Delph, 1999). There have been a number of

hypotheses proposed to explain this deviation from equality. A few of them are briefly

described below.                                                                                                                                          

Local mate competition

Sexual dimorphism can evolve through intersexual interactions such as competition or mate

choice in dioecious taxa, e.g. competition for limiting resources within and between the

sexes can cause the sexes to specialise on different forms or habitats. Some empiricists

have suggested that this form of intersexual character displacement explains the widespread

occurrence of spatial segregation of the sexes and of sex ratio biases by habitat in dioecious

plants (see review in Geber, 1999).

Effective pollination

Godley (1964) suggested that male-biased sex ratios may have arisen to compensate for

inefficiencies of pollination in situations where seed production is pollen-limited. However,

Webb (1979), Lloyd et al., (1980) and Webb & Lloyd (1980) provide evidence for female

plants of dimorphic Apiaceae being very effectively pollinated even when sex ratios show

little or no male bias. This study did however demonstrate significant evidence for (weak)

pollen limitation at most sites. This will be discussed further in Chapter 5.

Site productivity

Some researchers suggest that where recognisable habitats are found, sex ratios are often

more male-biased in stressful habitats and female-biased in favourable habitats (Geber,
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1999). For example, productivity declines with altitude and it has been shown that within a

species, male-bias in sex ratio becomes more pronounced at higher altitudes, and it is

hypothesised that males may gain a reproductive advantage in low resource environments

(Geber, 1999; Pickering & Hill, 2002). Pickering & Hill’s (2002) findings arose from only

single-year sex ratio, and may be simply exhibiting an apparent sex ratio bias.

Different costs of reproduction between males and females

Sex-specific life histories may be a consequence of sex-differential patterns of resource

allocation, which are in turn caused by differences in requirements for disseminating pollen

and maturing fruit (Delph, 1999). This may also include the timing of allocation to various

activities as well as differences in the amount of resources allocated. In a seminal paper by

Lloyd & Webb (1977), several predictions were made concerning how sexual dimorphism

in reproductive effort would lead to life-history differences between the sexes. Most

important to note is that the costs of reproduction between the sexes are significant

evolutionary determinants of sexual dimorphism in life histories (Lloyd & Webb, 1977).

They postulated that the energy cost to females of producing ovuliferous flowers and

maturing fruit is higher than the cost to males of producing polliniferous flowers, and that

many observed secondary sex characters in plants (including differential survival of the

sexes), are probably a consequence of this difference in reproductive effort between males

and females (Lloyd & Webb, 1977). It is important to consider sex ratio at other levels of

floral display, beyond the plant-level. The average number of inflorescences per plant is

usually higher among males than among females in dioecious species (Webb & Lloyd,

1980). This was also found for most species in this study. Webb & Lloyd (1980) propose

that males invariably produce more flowers per plant on average than do females in

dioecious species because the number of flowers per inflorescence is greater in males. The

relative number of flowers per inflorescence is important in dioecious populations (Lloyd

& Webb, 1977), and often contributes most to the relative number of pistillate (female) and

staminate (male) flowers in any population, as Opler & Bawa (1978) found for dioecious

tropical forest trees. Results from this study parallel the findings outlined above.

The greater resource allocation to reproduction by females can result in females needing to

accumulate more resource reserves prior to flowering, affecting seasonal and lifetime
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flowering phenologies (Lloyd & Webb, 1977; Delph, 1999). Because resource constraints

involved with flowering are supposedly greater for females, female plants may be under-

represented in populations because of factors such as age of first flowering and/or

flowering less frequently (Lloyd & Webb, 1977; Meagher & Antonovics, 1982; Delph,

1999; Eckhart, 1999). Also the high costs to females of producing seed and fruit are likely

to increase female mortality more than male, leading to male-biased sex ratios (Lloyd &

Webb, 1977; Delph, 1999). In some species, females must de-fray the costs of reproduction

by delaying reproductive maturity, or reproducing less frequently than males. Also,

differences in the investment per inflorescence may make it advantageous for males to

produce more inflorescences than do females (Pickering & Arthur, 2003), possibly

contributing to a male-biased sex ratio. (The link between costs of reproduction, sex ratios

and mast-seeding will be further discussed in Chapter 5).

4.4.3 Other sexually dimorphic traits in Aciphylla

Pickering & Hill (2002) reported that for A. simplicifolia, male plants exhibited a

significantly greater number of flowers per inflorescence, number of lateral umbels,

number of umbellules per lateral umbel, number of flowers per umbellule on lateral

umbels, number of umbellules on terminal umbel, and overall greater floral display area

(cm2) than females. These dimensions were not quantified for Aciphylla species in this

study, but similar results are expected judging from observation together with findings

from the literature.

It was also observed during the summer field season of 2004/2005 that male Aciphylla

plants commenced and completed flowering mostly before female plants finished. Clark &

Clark (1987) also found in Zamia skinneri, a tropical rainforest cycad, that males began

releasing pollen before the first female was receptive. This makes sense in that by

flowering first, males encourage pollinators initially so they can then deliver pollen on to

females (Proctor et al., 1996). However, the viability of pollen grains after such a period of

time may be affected, and in this case it would not make sense for the male plants in a

population to have their flowers finish and die before female flowers are receptive. Clark &

Clark (1987) also found for Zamia, that individual males were reproductively active for

longer periods than individual females were receptive.  It is possible that the female flowers
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are able to collect (and store or use) pollen earlier than seems obvious from visual

observation. This would make sense of the male timing, and also perhaps of the high seed

set inside bags (Chapter 2). These findings have merely been observational in this study

and should be explored further in future studies as this can have further consequences for

both male and female reproductive success in terms of pollen wastage, and pollen

limitation for females (Marden, 1984; Harder & Wilson, 1994).

4.5 Conclusions

Sexual dimorphism, specifically male-biased sex ratios, was found to occur in nearly all the

Aciphylla populations studied here. The male biased sex ratio and male bias in other

reproductive traits (such as inflorescence size) are entirely consistent with the literature that

states that male-biased sex ratios should be more prominent in dioecious, alpine flora, and

is most likely due to the differential costs of reproduction between male and female plants.

Male bias during a high flowering year indicates that sexual dimorphism is an important

feature of the reproductive ecology of Aciphylla. It still remains to be differentiated

whether there is:

1) an apparent male bias in a single year because a higher percentage of males flower

in any given year (or in all but the highest flowering years);

2) a real male bias in surviving plants due to slower growth and higher mortality of

females, even though the seed sex ratio might be 50:50;

3) Real male bias at all stages due to other skewing factors which means more male

seeds than female are produced.
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CHAPTER 5 – Discussion

5.1 Insect pollination, masting and reproductive success in Aciphylla

Previously little was known about the reproductive ecology of Aciphylla, although they are

a ubiquitous and prominent component of the high country grassland flora. They have a

unique breeding system that is characterised by being mast seeding, insect-pollinated,

dioecious and sexually dimorphic in a number of traits. Together this results in a

paradoxical reproductive system, because all these individual features are not usually

associated together within one particular breeding system. Theoretically, insect-pollinated

species should not provide a pulsed resource supply (a consequence of masting) if the

pollination system in highly specialised, as this could lead to a break-down of the

mutualism between the pollinator and the plant through pollinator satiation (Kelly, 1994).

On the other hand, if the pollination system of a masting species is generalised, the plant

may compete for pollinators with other flowering plants in the community (Rathcke &

Lacey, 1985). Therefore, how does Aciphylla escape from the apparent disadvantages of

being both masting and insect pollinated?

Chapter 3 showed that Aciphylla are most probably pollinated by a range of insect taxa

from a large number of families and hence have a suite of generalised pollinators. Although

this study did not test for the relative effectiveness of each taxon as pollinators, it is

anticipated that by having more than one pollinator, Aciphylla have probably overcome the

effect of satiating (and starving) pollinators with an unpredictable food supply, (an

important corollary of mast seeding). However, as a consequence of being visited by a

number of insects, Aciphylla must then have to compete for insect pollinators with a wide

range of other plant species flowering at the same time (Rathcke & Lacey, 1985) (assuming

pollinators are a limiting factor in reproductive success (Burd, 1994; Pias & Guitian,

2006)).

It is possible that masting behaviour in Aciphylla may serve to out-compete other plants for

pollinators by providing the biggest and best rewards during high flowering years.
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Evidence exists for some plant species when in full flower; insects may solely target that

species, in preference to other flower species (Rathcke & Lacey, 1985). In oldfields in

Michigan, honeybees visit Solidago graminifolia only after other plant species ceased

flowering; consequently, earlier flowering clones set fewer seeds (Gross & Werner, 1983).

Also in gardens, competition for honeybee visits commonly reduces seed set among crop

varieties (Evans, 1980). Bees have been shown to search more efficiently for flowers that

are similar to the flower they had just left, directing most of their foraging visits in a single

trip to one flower species, ignoring other rewarding species that they encounter (Waser,

1986; Chittka et al., 1999). Bees also show higher constancy to plants that are locally

abundant (Kunin, 1993; Chittka et al., 1997). It is hence possible, that some insect taxa that

pollinate Aciphylla, are also demonstrating this preference for one species. Therefore it is

likely that in Aciphylla, generalist insect pollinators feed on other (more constant)

flowering species when Aciphylla provide few resources (i.e. during low-flowering years)

and during high-flowering years, insects switch food resources to Aciphylla. Because of

their large floral display size and the provision of huge quantities of pollen and probably

nectar, with dense populations in localised patches (which is likely to be more efficient for

insects in terms of foraging bouts), they offer a highly attractive food source during the

years when they do flower. In this way they may be able to overcome the negative effects

of offering an unpredictable food reward, (through masting) to their pollinators and still

achieve high seed set as observed in this study.

5.2 The importance of synchronous flowering and display size

The isolated female experiment tested for not only flowering asynchrony (i.e. individuals

flowering in a ‘non-mast’ year), but for female asynchrony, because if in dioecious species,

males and females do not flower in synchrony, this could have detrimental consequences

for the reproductive success of both sexes (Crone et al., 2005). This study focussed mostly

on female fecundity, because it is more readily measurable than male success. In Chapter 2

it was demonstrated at some sites that, with increasing distance to flowering males, females

experienced lower seed set rates. Although these effects were relatively small, they

nevertheless demonstrated that even at a relatively small scale, the need for synchronous

flowering between females and males is important. Also important was display size

because individual inflorescences mostly showed increased benefits through having taller
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inflorescences with more flowers (except A. scott-thomsonii). Larger floral displays were

especially important when females were isolated. In a true non-mast year, when only a

small fraction of the individuals are flowering, it is expected that the effects of pollen

limitation will be considerably greater, and therefore there should be selection against very

small population flowering efforts and small floral display size in Aciphylla. This could

explain the emergence towards having such a large and spectacular floral display size in

large montane Aciphylla species.

It was expected in this study that these negative effects of isolation seen in females (i.e.

lower seed set) would correlate with a decrease in pollinator attraction (i.e. lower average

insect visitation rates to isolated females); however, this was not the case. Isolated females

experienced lower seed set rates than non-isolated females, but did not experience lower

insect visitation rates. The most likely explanation for this is that in areas with only female

inflorescences, insect pollinators move among female stalks just as frequently as in mixed-

sex areas, but are less effective at delivering pollen as they have fewer opportunities to

recharge their pollen loads on males. Another contribution to this effect could be the

possible role of wind pollination, which should vary with distance to males independent of

insect visitation rates. Mixed pollination systems, including generalist insect and wind, are

not uncommon in plants (Mahy et al., 1998). In areas with low insect abundance, such as

alpine communities (Primack, 1983), predominantly insect-pollinated plant species can also

be pollinated by wind, and this has been shown to provide reproductive assurance in some

species, e.g. Linanthus parviflorus (Polemoniaceae), (Goodwillie, 1999). Wind pollination

has been reported for Aciphylla by Dawson (1971) and Mitchell et al., (1999), but they did

not report any tests to confirm whether this was the case. This study points to wind

pollination being possible, but probably not as important as insect pollination for Aciphylla.

5.3 Pollen- and resource-limitation and masting

Pollen limitation is described as an inadequate quantity or quality of pollen that reduces

plant reproductive success (Ashman et al., 2004). Over the past 2 decades, determining

whether seed production is pollen limited has been an area of intense empirical study

(Burd, 1994), however there have only been weak attempts to explain the ecological and

evolutionary causes and consequences of pollen limitation, or evaluate how this influences
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plant species coexistence, community structure and ecosystem functioning. For example,

plant life histories and mating systems may all influence or be associated with the

probability or strength of pollen limitation (Kunin, 1993; Ashman et al., 2004).

This study tested for pollen limitation to females in Aciphylla populations, using hand

pollination techniques and assessed whether decreased flowering densities and

inflorescence display size limited pollinators. Moreover, it also tested how severe the

effects of pollen limitation were by simultaneously testing for resource limitation. Results

demonstrated no evidence for resource limitation when measured by removing flowers (see

Chapter 2), i.e. with increasing resources per seed to inflorescences with flowers removed.

Brookes & Jesson (2006) tested for simultaneous pollen and resource limitation in A.

squarrosa by removing flowers (comparable to methods used in this study) and obtained

similar results. They also found that resource reduction (removing leaves) and fertiliser

addition did not significantly influence fruit set. Both of these studies suggest that

reproduction in these species was limited by other unknown factors. The effects may not be

seen in a one-year study because masting involves switching resources from growth to

reproduction during flowering years (Kelly & Sork, 2002; Monks & Kelly, 2006). Pollen

was significantly limited however, implying that plants invested sufficient resources for

maximum seed provisioning during this high- flowering year. However, inflorescences at

Burkes and Lewis Passes had relatively lower seed set overall compared with Hakataramea

Pass, leaving many ovules that didn’t (or couldn’t) make seed. This in itself suggests that

there was some level of resource limitation occurring at the plant-level because otherwise

supplemental pollination would have increased seed set rates in a more pronounced

fashion, bringing it nearer to 100%. The effects of pollen and resource limitation were

almost non-existent for A. scott-thomsonii, probably because natural seed set rates were

extremely high (averaging around 90%). In saying that, tall inflorescences with greater

flowering length had slightly negative effects on seed set rate, with more ovules probably

representing a resource cost (Vaughton & Ramsey, 1998).  

Some plants exhibit high flower to fruit ratios (Sutherland & Delph, 1984; Sutherland,

1987; Holland et al., 2004), however, in female flowers, the potential advantage of

increased gamete production is unclear. Extra ovules in large flowers are often not

converted into seeds, and because they usurp resources that could be used to increase

fecundity during current or future reproductive events, increased ovule production in
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excess of what can be ripened may be disadvantageous (Vaughton & Ramsey, 1998).

Newstrom and Roberston (2005) suggest that low fruit-to-flower ratios may be a normal

part of several alternative plant strategies to maximise fitness from the excessive flowers or

to allow a bet-hedging strategy that maximises fruit set when pollinator service is

unreliable. Alternatively, increased ovule production may allow seeds of higher genetic

quality to be produced without reducing seed production if inferior embryos are aborted,

(Vaughton & Carthew, 1993; Newstrom & Robertson, 2005).

Examples of plants that exhibit high flower to fruit ratios are not uncommon (Sutherland,

1987) and include orchids which regularly have low capsule set, but compensate by

producing thousand of tiny seeds per capsule (Nilsson, 1992). However, Aciphylla develop

a maximum of 2 seeds in one schizocarp (fruit) and while thousands of flowers may be

presented along an inflorescence, some are not converted into seed. It remains to be

determined whether this occurs due to the ovule not being fertilised due to the lack of

pollen delivery, or whether the plant was not capable of making seed even if the ovule was

fertilised. However in this study, because supplemental pollen almost always increased

seed set to some degree, (although at Burkes Pass it never increased as much as expected),

this suggests that both of these factors (pollen and resources) play an important role in the

reproductive success of Aciphylla, and their relative effects are probably site-specific.

Some plants may incorporate pollen limitation as an important mediator of selection

(Ashman et al., 2004). Bet-hedging (excess flower or ovule supply relative to the average

pollen load received) may be a common strategy that is employed by plants to attract some

pollen in a stochastic pollinator environment. The fitness gains from the conversion of

occasional “jackpot” visits into extra seeds may outweigh the costs of unutilised ovules or

flowers (Ashman et al., 2004). This may be part of the reason for lower seed set rates in A.

aurea, as extra resources (per flower) did not increase seed set as much as expected.

If reproduction is pollen limited in animal-pollinated, dioecious plants in a stochastic

pollinator environment, it could be argued that under any of the following scenarios:  (a)

during a low-flowering year; (b) when females are isolated from males (i.e. pollen source);

(c) when the flowering population is sparse, or;  (d) when individual plants flower out of

synchrony with the majority of the population (as shown by naturally isolated Lewis Pass

individuals), that the effects of pollen limitation would be more severe (Kunin, 1993;
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Forsyth, 2003). Therefore, one could expect selection for reproductive strategies that

minimise the effect that factors such as pollen limitation have on reproductive success,

(unless this is part of an alternative adaptive strategy that maximises fitness from excessive

flowers (Newstrom & Robertson, 2005)). The best example of this is probably seen in A.

scott-thomsonii where natural seed set rates are high, resources are not significantly

limited, and excess flowers lead to a slight fitness loss (see Figure 2.10).

5.4 The effects of sexual dimorphism on reproductive success in Aciphylla

Chapter 4 demonstrated that sexual dimorphism was evident in a number of traits in

Aciphylla. Firstly, although largely observational in this study, it was found that life

histories such as flowering phenology and inflorescence longevity differed between male

and female plants. Male plants generally begin flowering before females and male flower

stalks fell over soon after flowering ceased, while female stalks remain standing often for

more than a year after flowering. (Primack, 1983) reported that individual male flowers are

open for a longer period of time than females. Sexual dimorphism was also evident in a

number of inflorescence level traits, with floral display in males being showier (see Fig.

4.1), with greater flowering length, and more inflorescences per plant. Similar findings

have been reported for various New Zealand Aciphylla species (e.g. Dawson & Le Comte,

1978; Webb et al., 1999) as well as for Australian Aciphylla species (Pickering, 2000,

2001). Additionally, inherent in primary sex characteristics, is that males produce pollen as

well as nectar, offering twice the variety of reward than female flowers. In this study, most

insect groups responded to this dimorphism in inflorescence traits and visited males more

frequently than females. Males also received a greater diversity of insect visitors than

females did. These sex-specific traits therefore, probably lead to the discrepancy in visits

between male and female inflorescences via pollinator attraction.

The greater resource allocation to reproduction by females most likely results in female

plants needing to accumulate more resources prior to flowering (Lloyd & Webb, 1977).

This can sometimes take years in masting species, leading to the ability for males to flower

more often than females (Meagher & Antonovics, 1982; Delph, 1999; Eckhart, 1999).

Consequently, this is probably an important reason for the apparent male-biased sex ratios

reported in this study, and elsewhere for Aciphylla (e.g. Pickering & Hill, 2002).
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Nonetheless, during a high-flowering year (which is particularly important for the

reproductive success of females), a male-biased sex ratio can pose a number of important

consequences on a population. For instance, the sex ratio is indicative of local pollen

densities. Having more male plants and/or inflorescences in a population may positively

affect female fecundity, because as this study suggests, males attract significantly more

insects overall. If Aciphylla do compete for generalist pollinators then males could provide

the resource rewards, and visits to female flowers would also occur more often (even if this

is by chance). On the other hand, male-biased sex ratios could have negative consequences

for female visitation rates if insects consciously differentiate between male and female

inflorescences and display a real preference for males. Overall, males appear to be

attractive to insects regardless of size, while females generally benefit from being taller

and/or having more flowers. Perhaps by being more “attractive” and more abundant, males

are helping the females out by attracting more insects to the Aciphylla population (which

indirectly benefits males by ensuring there will be more seeds produced which each male

can potentially sire).

If reproduction costs relatively less for males in Aciphylla, the pressures towards needing to

mast are not so great for males. If males do in fact make up the majority of the plants

flowering during low-flowering years, whereas females only flower during high-flowering

years (Hogan et al., 1998) then maybe selection for masting has been stronger in females

than males. Hence females may be driven to display masting behaviour as the costs of

reproduction are so great that they can’t do it every year and males may then be forced to

follow suit (although they still flower more often in low-flowering years, presumably on

the grounds that male prediction of when females will flower is imperfect so there is

always a chance of siring some seeds in low-flowering years).

5.5 Further research on the reproductive ecology of Aciphylla

Also observed during this study was that seed predation levels were high on many

inflorescences. Aphids were particularly abundant, and it was discovered that they also

prey upon seeds (as well as sucking sap from foliage). Many plant species are known to

show clear benefits from masting by satiating seed predators during high-flowering years,

e.g. Chionochloa (Kelly & Sullivan, 1997; McKone et al., 1998). Because Chionochloa
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and Aciphylla species often coexist in high-country grasslands, it is possible they share

some of the same seed predators. The effects of seed predation on reproductive success in

Aciphylla should not be ruled out and remains to be tested in relation to masting.

Monitoring the effects of pollen limitation on naturally low-flowering years also remains to

be tested as long-term studies would provide a better insight into whether this is an

important selection pressure for masting in Aciphylla species. The pollination aspect of this

system was not studied in great detail and it was not possible to gain a clear understanding

of the movement of pollen, the relative effectiveness of the pollinator taxa, and the floral

rewards offered. Obtaining such detailed information about the pollination biology of

Aciphylla was beyond the scope of this research, but detailed analyses would greatly aid in

the understanding of the pollination system of Aciphylla and the myriad interactions

between the plant and its extensive suite of visitors. This is important, because in order to

fully understand the reproductive system of these species, we need to know more about the

role of floral attractiveness to pollinators.

The conservation implications of this research are also noteworthy. A decline in the

diversity and abundance of insect pollinators, for example, caused through habitat

fragmentation (McGlone & Moar, 1998), can lead to a decrease in pollination rate

(Wilcock & Neiland, 2002) and have detrimental consequences on fecundity. This effect

could be particularly threatening to plant species that are self-incompatible and rely on

insects for pollination, such as Aciphylla. Moreover, if plant populations become

fragmented, it becomes more important on a spatial scale as pollinator movement between

more distant populations would be increasingly unlikely (Farwig et al., 2004) and hence

fail to promote genetic diversity within a species (Mitchell et al., 1999). For species such as

Aciphylla subflabellata, which is now becoming rare and sparse on the Canterbury plains

and foothills due to habitat loss, small populations with isolated individuals flowering far

from nearest conspecific neighbour could be affected by loss of pollinator movement and

the likelihood of decreased transfer of conspecific pollen.
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5.6 Conclusions

For Aciphylla, overall high seed set rates in the mass-flowering summer studied suggests

that this is a reproductive strategy that works well for female plants. Although masting is

probably a necessary outcome of having a large floral display size, benefits must be greater

than the high costs of masting in order for this reproductive system to be successful.

Results demonstrated that Aciphylla are generalist insect-pollinated and probably compete

for insects through having a large and attractive floral display during high-flowering years.

In most cases, inflorescences with a larger floral display had higher reproductive success.

There was no evidence for resource limitation, while pollen limitation was evident across

all sites (although this effect was relatively small). Hence, for Aciphylla, being a bigger

inflorescence in dense, synchronous flowering populations was generally better for overall

reproductive success. Hence masting may be a necessary strategy resulting from the need

to have large, synchronous flowering to achieve pollinator economies of scale.
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Appendix 1 - Floral morphology in Aciphylla scott-thomsonii

Aims: To assess whether a trend in flower number at certain locations on an inflorescence

was detectable among inflorescences of all sizes, and whether seed set rate was related to

this.

Methods: In early December prior to fruiting, while flowers were still present on A. scott-

thompsonii, eight inflorescences were selected from the Hakataramea Pass field site. Four

different sizes were chosen to represent the natural variation in inflorescence height present

in the population, from very tall to relatively short. Two inflorescences of each height class,

(approximately the same size), were selected from different plants. In the lab, all flowers on

every fifth lateral umbel, starting from the apex downwards along the inflorescence, were

counted. This was carried out in order to see whether a trend in flower number at certain

locations on an inflorescence was detectable among inflorescences of all sizes. Measured at

every fifth umbel was distance (cm) from the stem apex; diameter of the stem directly

beneath the umbel; number of umbellules (flower clusters); and number of flowers.

Regression analysis was used to test which variable was the best predictor of flower

number along the stem. The two variables consistently returning the best fit were distance

and diameter at every fifth umbel. This information could then be used to predict the

number of flowers on a compound umbel at any given position along any inflorescence of a

specified size. Later in the season when inflorescences were harvested, seed set was

measured on all 58 A. scott-thomsonii inflorescences by counting all seeds on every fifth

umbel along the stem to see if seed set rates varied with position on the inflorescence. Only

grand means were presented in Chapter 2 results, but examples of how seed set rate (and

flower number per umbel) varied with position along the stem are presented here. Results

are only presented for one inflorescence but provide a good example of what the trends

from most of the other selected inflorescences showed.

Results: Results show that umbels near the middle section of the flowering length of the

inflorescence had the most number of flowers per umbel and higher mean seed set rates

(Fig.1). Most consistently among all inflorescences sampled, stem diameter returned the

higher r2 value for flower number. The trends conformed to a negative polynomial

regression fit, with r2 values ranging from 0.79 to 0.96. Diameter along stem was also well
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correlated with seed set rate, but generally with lower r2 values. Distance along stem was

also a highly powerful predictor for both flower number and seed set rate, with all r2 values

ranging between 0.85 and 0.97 for flower number, and r2 values of around 0.2 to 0.6 for

seed set. Either one of these values would be useful for predicting flower number at any

given point along the inflorescence. See Figure 1 for representative inflorescences showing

the polynomial correlations between distance/diameter and flower number per umbel/seed

set rate.
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Fig.1 Polynomial regression analyses for A. scott-thomsonii at Hakataramea Pass, showing correlations

between flower number per umbel with distance and diameter along the stem for one inflorescence (a) and (b)

early in the flowering season, and between seed set rate and distance/diameter along the stem for one

inflorescence (c) and (d) post harvest. Graph (a) r2 = 0.96, y = - 0.03x2 + 4.01x + 14.99; graph (b) r2 = 0.90, y

= -31.83x2 + 157.71x – 40.28 ; graph (c) r2 = 0.59, y = -0.004x2 + 0.56x + 75.67; graph (d) r2 = 0.55, y = -

7.19x2 + 29.88 + 65.13.
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Overall, strong relationships exist between the above variables and these can be useful for

estimating flower number or seed set depending on position along the inflorescence.

However, to predict flower number per umbel accurately, it must be taken into account that

this can vary depending on the size of the inflorescence. Fig. 2 demonstrates that

inflorescences of varying flowering lengths all exhibit the same strong negative polynomial

correlation, with inflorescences in the middle portion of the stem having a higher number

of flowers per umbel.

R2 = 0.9178

R2 = 0.8938

R2 = 0.8905
R2 = 0.8489
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Fig. 2 Polynomial regression analyses for A. scott-thomsonii showing correlations between flower number per

umbel with distance along stem for four A. scott-thomsonii inflorescences of varying sizes at Hakataramea

Pass. R2 values for each inflorescence are shown.
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Appendix 2 Insects from the order: Diptera (flies) found on flowers of Aciphylla aurea, A. scott-thomsonii and A. ‘lewis’ at four sites from North to South Canterbury, South Island

of New Zealand (BP = Burkes Pass, HP = Hakataramea Pass, LP = Lewis Pass). Insects were caught during December 2004 and January 2005. Highlighted in bold are families that

are likely to be important as pollinators of Aciphylla.

Family (common name) Genus/species
Stage
found

Location
collected

Known to
feed on Notes

Agromyzidae (leafminer flies) several spp. adult HP Family - leaf grazers, vary small (<3mm)
Bibionidae (march flies) several spp. adult BP, HP nectar
Emdpididae  (danceflies) at least one spp. adult BP, HP nectar family - insect predators, long proboscis
Calliphoridae (blowflies) Calliphora quadrimaculata adult BP, HP pollen/nectar family - flower visitors
Muscidae (houseflies) 3 spp. adult BP, HP nectar family - frequent visitors to Apiaceous flowers
Phoridae (humpbacked flies) several spp. adult BP, HP family - flower visitors/breed on decaying matter
Simulidae (sandflies/midges) Austrosimulium sp. adult HP nectar
Stratiomyidae (soldierflies) Eulialia sp. puparium HP Eulalia adults frequent visitors to Apiaceae, good pollinators

Beris sp. adult HP nectar
Syrphidae (hoverflies) Syrphus sp. adult BP, HP pollen/nectar family - mostly smooth bodies, larvae predators of aphids/scale insects

Eristalis tenax adult BP, HP pollen/nectar Eristalis common, important pollinators of many flowers
larvae BP, HP

Helophilus sp. adult BP, HP pollen/nectar Helophilus hairy/large
Melangyna novaezelandiae adult BP, HP pollen/nectar
Melangyna sp. adult BP, HP pollen/nectar

Tachinidae (parasitoid flies) Montanarturia dimorpha adult HP nectar/pollen parasite of Lepidoptera caterpillars
Procissio cana group adult BP, HP nectar/pollen parasites of larval grass grub (Costelytra zelandica)
Protohystricia sp. adult BP, HP nectar/pollen short proboscis, common on open/flat flowers, abundant in grasslands

larvae BP, HP parasitises porina (hepialid) caterpillars
Pales sp. adult BP, HP nectar/pollen

Tephritidae (fruit flies) at least one spp. adult BP, HP nectar family unlikely to be significant pollinators
Therevidae (stilleto flies) Anabarhynchus sp. adult BP, HP nectar larva in branches and rotting logs
Tipulidae (craneflies) Discobola sp. adult LP

Holocusia sp. adult LP
Zelandotipula sp. adult LP nectar inhabits bogs

  larvae LP  root feeders (generally), larva subaquatic
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Appendix 2 continued… Insects from the orders: Lepidoptera (flies) and Coleoptera (beetles) found on flowers of Aciphylla aurea, A. scott-thomsonii and A. ‘lewis’ at four sites

from North to South Canterbury, South Island of New Zealand (BP = Burkes Pass, HP = Hakataramea Pass, LP = Lewis Pass). Insects were caught during December 2004 and

January 2005.

Order/Family Genus/species
Stage
found

Location
coll Food Notes

Lepidoptera:
Crambidae Orocrambus flexuosellus caterpillar BP/HP NZ's most ubiquitous moth

adults BP/HP nectar visit flowers, largely nocturnal but easily disturbed
Geometridae Dasyuris partheniata caterpillar BP/HP leaflets noctural, drop to the centre of plant where they are safe
Noctuidae Agrotis ipsilon (greasy cutworm) BP market gardens/lucerne paddocks Sth Canterbury
 Graphania nullifera * caterpillar BP/HP leaves deep ovoid notching of leaf petioles
Coleoptera:
Anthicidae (ant-like flower beetles) at least one sp. adult BP pollen

Cerambycidae (flower longhorn
beetles) Zorion sp. guttigerum adult HP pollen Zorion most strikingly and colouful beetles in NZ fauna

"Blue longhorn"
Coccinellidae (ladybirds) Coccinella leonina adult BP/HP/LP aphids possible contribution to pollination

C. undecimpunctata aphids
Adalia bipunctata aphids
unindentified sp. aphids

Curculionidae Hadramphus tuberculatus adult BP leaves/pollen Specific to Aciphylla, only known site is BP
"Canterbury knobbled weevil"
Lyperobius huttoni adult HP leaves/pollen Specific to Aciphylla, larvae subterranean and feed on roots
"Hutton's speargrass weevil"

Helodidae unknown adult HP ?
Leiodidae (small carrion beetles) unknown adult BP ? probably feed on decaying matter, fungi, carrion
Melryidae (flower beetles) Dasytes sp. adult HP pollen mainly herbivorous, found on flowering shrubs
Oedemerdiae (lax beetles) Selenopalpus aciphyllae adult BP Live in vegetation, common on flowers or herbage
Scarabaedae (scarabaed beetles) Prodontria sp. adult BP/HP Root feeders

Pyronota festiva "manuka beetle" adult BP Folivores
Staphylinidae (rove beetles) unknown adult BP/HP/LP ? live inside stalks of Aciphylla
Tenebrionidae (darkling beetles) Mimopeus convexus adult BP ? only found at a few localised sites in Mckenzie Basin
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Appendix 2 continued… Insects from the orders: Hemiptera, Hymenoptera and Plecoptera found on flowers of Aciphylla aurea, A. scott-thomsonii and A. ‘lewis’ at four sites from

North to South Canterbury, South Island of New Zealand (BP = Burkes Pass, HP = Hakataramea Pass, LP = Lewis Pass). Insects were caught during December 2004 and January

2005.

Order/Family Genus/species
Stage
found

Location
coll Food Notes

Hemiptera:
Acanthosomatidae (shield bugs)

Oncacontius vittatus adult LP leaves Live in dead flowerstalks of Aciphylla

Aphididae (aphids) Euschizaphus (undescribed)
Porters
Pass sap-suckers undescribed and rare

Cavariella aegopodii Sth Island sap-suckers at least five species of introduced aphids found on Aciphylla
Macrosiphum euphorbiae sap-suckers
Brachycaudus helichrysi sap-suckers

 Myzus persicae   sap-suckers  
Hymenoptera:
Colletidae (solitary bees) Leioproctus fulvescens adult HP pollen important pollinator, many hairs, short-tongued, endemic solitary bee
Cicadidae (cicadas) Kikihia sp. adult LP   
Plecoptera: (stoneflies)
Gripopterygidae Zelandoperla fenestrate adult LP pollen inhabit boggy areas
 Zelandobius confuses adult LP pollen inhabit boggy areas

* Only identifiable taxa have been reported in the tables above. Many other insects were found but have not yet been identified. Aciphylla has many specific herbivores
including the common Lepidopteran Graphania nullifera, which were not found on the flowers of Aciphylla during this study (but are still reported above due to the
significant damage they have on the roots in particular.

NOTES: All insects collected during this study were given to Alison Evans (Department of Conservation, DoC) under the requirements of the collection permit.
Hadramphus tuberculatus was deposited in the Canterbury Museum and its conservation status is currently being revised to change it from “extinct” to “nationally
endangered” or “nationally critical” by DoC.


